1
|
Barros S, Coimbra AM, Herath LA, Alves N, Pinheiro M, Ribeiro M, Morais H, Branco R, Martinez O, Santos HG, Montes R, Rodil R, Quintana JB, Santos MM, Neuparth T. Are Environmental Levels of Nonsteroidal Anti-Inflammatory Drugs a Reason for Concern? Chronic Life-Cycle Effects of Naproxen in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19627-19638. [PMID: 39445516 DOI: 10.1021/acs.est.4c05599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The nonsteroidal anti-inflammatory drug naproxen (NPX) is among the most consumed pharmaceuticals worldwide, being detected in surface waters within the ng to μg/L range. Considering the limited chronic ecotoxicity data available for NPX in aquatic ecosystems, the present study aimed at evaluating its impact in the model organism Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (0.1 to 5.0 μg/L). An integration of apical endpoints, i.e., survival, growth, and reproduction, with gonad histopathology and gene transcription (RNA-seq) was performed to provide additional insights into the mode of action (MoA) of NPX. NPX decreased zebrafish growth and reproduction and led to histopathological alterations in gonads at concentrations as low as 0.1 μg/L. At the molecular level, 0.7 μg/L of NPX led to a disruption in gonads transcription of genes involved in several biological processes associated with reproduction, mainly involving steroid hormone biosynthesis and epigenetic/epitranscriptomic machineries. Collectively, these results show that environmentally realistic concentrations of NPX affect zebrafish reproduction and associated signaling pathways, indicating that current hazard and risk assessment data for NPX underestimate the environmental risk of this pharmaceutical.
Collapse
Affiliation(s)
- Susana Barros
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, Vila Real 5000-801, Portugal
| | - Ana M Coimbra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, Vila Real 5000-801, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real 5000-801,Portugal
| | - Lihini Athapaththu Herath
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Nélson Alves
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marlene Pinheiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marta Ribeiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Hugo Morais
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Ricardo Branco
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Olga Martinez
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Hugo G Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Rosa Montes
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Miguel M Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Teresa Neuparth
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| |
Collapse
|
2
|
Ai N, Han CR, Zhao H, Cheng SY, Ge W. Disruption of Thyroid Hormone Receptor Thrab Leads to Female Infertility in Zebrafish. Endocrinology 2024; 165:bqae037. [PMID: 38527850 PMCID: PMC11491821 DOI: 10.1210/endocr/bqae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
Thyroid hormones (THs) T4 and T3 are vital for development, growth, and metabolism. Thyroid dysfunction can also cause problems in fertility, suggesting involvement of THs in reproduction. In zebrafish, there exist 2 forms of TH receptor alpha gene (thraa and thrab). Disruption of these genes by CRISPR/Cas9 showed no reproductive irregularities in the thraa mutant; however, inactivation of the thrab gene resulted in female infertility. Although young female mutants (thrabm/m) showed normal ovarian development and folliculogenesis before sexual maturation, they failed to release eggs during oviposition after sexual maturation. This spawning failure was due to oviductal blockage at the genital papilla. The obstruction of the oviduct subsequently caused an accumulation of the eggs in the ovary, resulting in severe ovarian hypertrophy, abdominal distention, and disruption of folliculogenesis. Gene expression analysis showed expression of both TH receptors and estrogen receptors in the genital papilla, suggesting a direct TH action and potential interactions between thyroid and estrogen signaling pathways in controlling genital papilla development and function. In addition to their actions in the reproductive tracts, THs may also have direct effects in the ovary, as suggested by follicle atresia and cessation of folliculogenesis in the heterozygous mutant (thrab+/m), which was normal in all aspects of female reproduction in young and sexually mature fish but exhibited premature ovarian failure in aged females. In summary, this study provides substantial evidence for roles of THs in controlling the development and functions of both reproductive tract and ovary.
Collapse
Affiliation(s)
- Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
3
|
Fernandes da Costa D, de Oliveira Ribeiro A, Morena Bonita Ricci J, da Silva Rodrigues M, Antonio de Oliveira M, Felipe da Rosa I, Benites Doretto L, Takahiro Nakajima R, Henrique Nóbrega R. A83-01 and DMH1 effects in the zebrafish spermatogonial niche: Unraveling the roles of TGF-β and BMP signaling in the Fsh-mediated spermatogonial fate. Gene 2024; 897:148082. [PMID: 38101710 DOI: 10.1016/j.gene.2023.148082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling has fundamental roles in the regulation of the stem cell niche for both embryonic and adult stem cells. In zebrafish, male germ stem cell niche is regulated by follicle-stimulating hormone (Fsh) through different members of the TGF-β superfamily. On the other hand, the specific roles of TGF-β and BMP signaling pathways are unknown in the zebrafish male germ stem cell niche. Considering this lack of information, the present study aimed to investigate the pharmacological inhibition of TGF-β (A83-01) and BMP (DMH1) signaling pathways in the presence of recombinant zebrafish Fsh using testicular explants. We also reanalyzed single cell-RNA sequencing (sc-RNA-seq) dataset from adult zebrafish testes to identify the testicular cellular sites of smad expression, and to understand the physiological significance of the changes in smad transcript levels after inhibition of TGF-β or BMP pathways. Our results showed that A83-01 potentiated the pro-stimulatory effects of Fsh on spermatogonial differentiation leading to an increase in the proportion area occupied by differentiated spermatogonia with concomitant reduction of type A undifferentiated (Aund) spermatogonia. In agreement, expression analysis showed lower mRNA levels for the pluripotency gene pou5f3, and increased expression of dazl (marker of type B spermatogonia and spermatocyte) and igf3 (pro-stimulatory growth factor) following the co-treatment with TGF-β inhibitor and Fsh. Contrariwise, the inhibition of BMP signaling nullified the pro-stimulatory effects of Fsh, resulting in a reduction of differentiated spermatogonia and increased proportion area occupied by type Aund spermatogonia. Supporting this evidence, BMP signaling inhibition increased the mRNA levels of pluripotency genes nanog and pou5f3, and decreased dazl levels when compared to control. The sc-RNA-seq data unveiled a distinctive pattern of smad expression among testicular cells, primarily observed in spermatogonia (smad 2, 3a, 3b, 8), spermatocytes (smad 2, 3a, 8), Sertoli cells (smad 1, 3a, 3b), and Leydig cells (smad 1, 2). This finding supports the notion that inhibition of TGF-β and BMP signaling pathways may predominantly impact cellular components within the spermatogonial niche, namely spermatogonia, Sertoli, and Leydig cells. In conclusion, our study demonstrated that TGF-β and BMP signaling pathways exert antagonistic roles in the zebrafish germ stem cell niche. The members of the TGF-β subfamily are mainly involved in maintaining the undifferentiated state of spermatogonia, while the BMP subfamily promotes spermatogonial differentiation. Therefore, in the complex regulation of the germ stem cell niche by Fsh, members of the BMP subfamily (pro-differentiation) should be more predominant in the niche than those belonging to the TGF-β (anti-differentiation). Overall, these findings are not only relevant for understanding the regulation of germ stem cell niche but may also be useful for expanding in vitro the number of undifferentiated spermatogonia more efficiently than using recombinant hormones or growth factors.
Collapse
Affiliation(s)
- Daniel Fernandes da Costa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Amanda de Oliveira Ribeiro
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Juliana Morena Bonita Ricci
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Marcos Antonio de Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Ivana Felipe da Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Lucas Benites Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Rafael Takahiro Nakajima
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic.
| |
Collapse
|
4
|
Huang J, Lu H, Du J, Zhang L, Wei J, Huang Q, Wu S, Zhou X, Ren L. Effects of exposure to PM 2.5 during pregnancy on the multigenerational reproductive outcomes of male mouse offspring and the role of Sertoli cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103823-103835. [PMID: 37697192 DOI: 10.1007/s11356-023-29751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
There is a paucity of studies on the multigenerational reproductive toxicity of fine particle matter (PM2.5) exposure during pregnancy on male offspring and the underlying mechanisms. This study explored the effects of PM2.5 exposure during pregnancy on the spermatogenesis of three consecutive generations of male mouse offspring. We randomized pregnant C57BL/6 mice into the control group, the Quartz Fiber Membrane control group, and two experimental groups exposed to different concentrations of PM2.5 (4.8 and 43.2 mg/kg B.Wt.). Pregnant mice from experimental groups received intratracheal instillation of PM2.5 of different doses on a three-day basis until birth. F1 mature male offspring from PM2.5-exposed pregnant mice were mated with normal female C57BL/6 mice. Likewise, their F2 mature male followed the same to produce the F3 generation. The results showed that PM2.5 exposure during pregnancy led to decreased body and tail length, body weight, and survival rates, decreased sperm concentration and sperm motility, and increased sperm abnormality rates significantly in F1 male offspring. We barely observed significant impacts of PM2.5 on the birth number, survival rates, and index of testes in the F2 and F3 offspring. Further exploration showed that PM2.5 exposure during pregnancy caused the morphological abnormality of Sertoli cells, downregulated androgen receptor (AR) and connexin43, upregulated anti-Müllerian hormone (AMH), cytokeratin-18 (CK-18), caspase-3, and cleaved caspase-3, decreased thyroid-stimulating hormone (TSH) and testosterone (T), and increased triiodothyronine (T3) in F1 male mouse offspring. Overall, we hypothesize that PM2.5 exposure during pregnancy mainly negatively impacts spermatogenesis in the F1 offspring. The possible mechanism could be that PM2.5 exposure during pregnancy disrupts endocrine hormone release in the F1 generation, thereby influencing the maturation and proliferation of their Sertoli cells and hindering spermatogenesis. This study for the first time investigates the role of Sertoli cells in the reproductive toxicity of PM2.5 on offspring.
Collapse
Affiliation(s)
- Jing Huang
- School of Nursing, Peking University, Beijing, 100191, China
| | - Hong Lu
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jiwei Du
- Nursing Department, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yan Tai, 264003, China
| | - Jialiu Wei
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Qifang Huang
- School of Nursing, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, 10069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Castañeda-Cortés DC, Rosa IF, Boan AF, Marrone D, Pagliaro N, Oliveira MA, Rodrigues MS, Doretto LB, Silva C, Tavares-Júnior J, Costa DF, Dodds MS, Strobl-Mazzulla PH, Langlois VS, Nóbrega RH, Fernandino JI. Thyroid axis participates in high-temperature-induced male sex reversal through its activation by the stress response. Cell Mol Life Sci 2023; 80:253. [PMID: 37589787 PMCID: PMC11071808 DOI: 10.1007/s00018-023-04913-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.
Collapse
Affiliation(s)
- Diana C Castañeda-Cortés
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Québec, QC, Canada
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Demian Marrone
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Natalia Pagliaro
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Marcos A Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira S Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Silva
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Tavares-Júnior
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel F Costa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - María S Dodds
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Québec, QC, Canada.
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany, Ceske Budejovice, 389 25, Czech Republic.
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
6
|
Zupa R, Duncan N, Giménez I, Mylonas CC, Pousis C, Passantino L, Cuko R, Corriero A. Male germ cell proliferation and apoptosis in sexually immature meagre Argyrosomus regius (Asso, 1801) treated with recombinant follicle stimulating hormone. Sci Rep 2023; 13:7013. [PMID: 37117257 PMCID: PMC10147655 DOI: 10.1038/s41598-023-34102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
The meagre Argyrosomus regius (Asso, 1801) is a marine fish species that has an increasing aquaculture production in Europe. Lowering the age at maturity of hatchery-produced juveniles would support meagre aquaculture by reducing time between generations in selective breeding programs and reducing industrial costs for broodstock maintenance. The aim of this work was to assess the effects of a treatment with recombinant follicle stimulating hormone (rFsh), produced in ovarian cells of Chinese hamsters, on male germ cell proliferation and apoptosis in sexually immature meagre. The rFsh-treated fish had higher gonadosomatic index, larger seminiferous tubules, more abundant luminal spermatozoa, a lower density of anti-PCNA positive single A spermatogonia, a higher density of anti-PCNA positive spermatocysts and a lower incidence of germ cell apoptosis than control groups. The present study demonstrated the effectiveness of the produced rFsh in stimulating testis development and spermatogenesis in pre-pubertal meagre. Moreover, the rFsh treatment proved to be highly efficient in removing the apoptotic block of spermatogenesis observed in juvenile meagre, allowing spermatogonial survival and progress towards meiosis. The administration of rFsh did not stimulate spermatogonial self-renewal, a process whose control still needs to be elucidated.
Collapse
Affiliation(s)
- Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Neil Duncan
- IRTA, Ctra. de Poble Nou km. 5.5, 43540, La Ràpita, Tarragona, Spain
| | - Ignacio Giménez
- Rara Avis Biotec, S. L., Calle Moratín 17, 46002, Valencia, Spain
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Letizia Passantino
- DiMePRe-J, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Rezart Cuko
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy.
| |
Collapse
|
7
|
Steinbach C, Lutz I, Šandová M, Pech M, Šálková E, Bořík A, Valentová O, Kroupová HK. Effects of the synthetic progestin levonorgestrel on some aspects of thyroid physiology in common carp (Cyprinus carpio). CHEMOSPHERE 2023; 310:136860. [PMID: 36244424 DOI: 10.1016/j.chemosphere.2022.136860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to assess the effects of levonorgestrel (LNG), a synthetic progestin, on early development and the thyroid system of carp using morphological, histological, immunohistochemical, and gene expression analysis. Fish were exposed to LNG at three levels (3, 31, and 310 ng L-1) from eggs to the onset of juvenile stage (47 days). LNG had no significant effect on early development in common carp or on the occurrence of morphological anomalies. No pathological alterations of the thyroid follicles were found. Immunohistochemical examination of the thyroid follicles using antibodies against thyroxin did not show any differences in fish exposed to 310 ng L-1 LNG compared to the controls. mRNA expression of iodothyronine deiodinases (dio1, 2, 3) was differentially affected by LNG treatment during carp development. Most importantly, dio3 was markedly downregulated in fish exposed to all three LNG levels compared to the controls at the conclusion of the experiment (47 days post-fertilization). A decrease in dio1 or dio3 or an increase in dio2 transcription observed at different time points of the study may be a sign of hypothyroidism. mRNA expression of genes npr, esr1, and esr2b in the body and npr and esr2b in the head of fish exposed to 310 ng L-1 LNG was significantly upregulated compared to the solvent control group at the end of the test. Together, these results show that levonorgestrel caused parallel changes in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-gonad axes.
Collapse
Affiliation(s)
- Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Marie Šandová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Michal Pech
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Eva Šálková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Olga Valentová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
8
|
Rodrigues MS, Tovo-Neto A, Rosa IF, Doretto LB, Fallah HP, Habibi HR, Nóbrega RH. Thyroid Hormones Deficiency Impairs Male Germ Cell Development: A Cross Talk Between Hypothalamic-Pituitary-Thyroid, and—Gonadal Axes in Zebrafish. Front Cell Dev Biol 2022; 10:865948. [PMID: 35646887 PMCID: PMC9133415 DOI: 10.3389/fcell.2022.865948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, thyroid hormones are critical players in controlling different physiological processes such as development, growth, metabolism among others. There is evidence in mammals that thyroid hormones are also an important component of the hormonal system that controls reproduction, although studies in fish remain poorly investigated. Here, we tested this hypothesis by investigating the effects of methimazole-induced hypothyroidism on the testicular function in adult zebrafish. Treatment of fish with methimazole, in vivo, significantly altered zebrafish spermatogenesis by inhibiting cell differentiation and meiosis, as well as decreasing the relative number of spermatozoa. The observed impairment of spermatogenesis by methimazole was correlated with significant changes in transcript levels for several genes implicated in the control of reproduction. Using an in vitro approach, we also demonstrated that in addition to affecting the components of the brain-pituitary-peripheral axis, T3 (triiodothyronine) also exerts direct action on the testis. These results reinforce the hypothesis that thyroid hormones are an essential element of multifactorial control of reproduction and testicular function in zebrafish and possibly other vertebrate species.
Collapse
Affiliation(s)
- Maira S. Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), São Paulo, Brazil
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Aldo Tovo-Neto
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), São Paulo, Brazil
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ivana F. Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas B. Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Hamideh P. Fallah
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Rafael H. Nóbrega,
| |
Collapse
|
9
|
Crespo D, Skaftnesmo KO, Kjærner-Semb E, Yilmaz O, Norberg B, Olausson S, Vogelsang P, Bogerd J, Kleppe L, Edvardsen RB, Andersson E, Wargelius A, Hansen TJ, Fjelldal PG, Schulz RW. Pituitary Gonadotropin Gene Expression During Induced Onset of Postsmolt Maturation in Male Atlantic Salmon: In Vivo and Tissue Culture Studies. Front Endocrinol (Lausanne) 2022; 13:826920. [PMID: 35370944 PMCID: PMC8964956 DOI: 10.3389/fendo.2022.826920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17β-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- *Correspondence: Diego Crespo,
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Ozlem Yilmaz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Sara Olausson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Petra Vogelsang
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rolf B. Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Tom J. Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Rüdiger W. Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Identification and expression analysis of thyroid-stimulating hormone β subunit, and effects of T3 on gonadal differentiation-related gene expression in rice field eel, Monopterus albus. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110681. [PMID: 34688906 DOI: 10.1016/j.cbpb.2021.110681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
Thyroid-stimulating hormone (TSH) is an important glycoprotein in hypothalamic-pituitary-thyroid axis, which plays a crucial role in the synthesis and release of thyroid hormones in vertebrates. Rice field eel, Monopterus albus, a protogynous hermaphroditic fish, which undergoes sex reversal from a functional female to a male, is an ideal model to investigate the regulation of sex differentiation. In this study, we obtained the cDNA sequence of thyroid-stimulating hormone β subunit (tshβ) from rice field eel, which contained a complete open reading frame and encoded a putative protein of 151 amino acids. Multiple alignment of protein sequences showed that tshβ was highly conserved in teleost. The tissue distribution indicated that tshβ showed high expression in the pituitary, moderate expression in the brain region, gonad, intestine and liver, and low expression in other peripheral tissues. During natural sex reversal, the expression of tshβ had no significant difference in the pituitary. Compared to that in the ovary, the expression of tshβ increased significantly in the gonad at late intersexual and male stages. After treatment by different doses of triiodothyronine (T3) (1 μg/g, 10 μg/g and 100 μg/g body weight), serum T3 and free triiodothyronine (FT3) increased sharply, while the expression of tshβ were inhibited significantly in the pituitary. Although T3 had no significant effect on the levels of serum E2, it stimulated the release of serum 11-KT at high-dose group. We also detected the effects of T3 on the expression of gonadal differentiation-related genes in rice field eel. T3 treatment inhibited the expression of foxl2, cyp19a1a and dax1, while stimulated the expression of sox9a1. These results indicate that TSH may be involved in sex differentiation, and THs may play roles in the regulation of male development and sex reversal in rice field eel.
Collapse
|
11
|
Li J, Liu Z, Kang T, Li M, Wang D, Cheng CHK. Igf3: a novel player in fish reproduction†. Biol Reprod 2021; 104:1194-1204. [PMID: 33693502 DOI: 10.1093/biolre/ioab042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
As in other vertebrates, fish reproduction is tightly controlled by gonadotropin signaling. One of the most perplexing aspects of gonadotropin action on germ cell biology is the restricted expression of gonadotropin receptors in somatic cells of the gonads. Therefore, the identification of factors conveying the action of gonadotropins on germ cells is particularly important for understanding the mechanism of reproduction. Insulin-like growth factors (Igfs) are recognized as key factors in regulating reproduction by triggering a series of physiological processes in vertebrates. Recently, a novel member of Igfs called Igf3 has been identified in teleost. Different from the conventional Igf1 and Igf2 that are ubiquitously expressed in a majority of tissues, Igf3 is solely or highly expressed in the fish gonads. The role of Igf3 in mediating the action of gonadotropin through Igf type 1 receptor on several aspects of oogenesis and spermatogenesis have been demonstrated in several fish species. In this review, we will summarize existing data on Igf3. This new information obtained from Igf3 provides insight into elucidating the molecular mechanism of fish reproduction, and also highlights the importance of Igf system in mediating the action of gonadotropin signaling on animal reproduction.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
| | - Zhiquan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
| | - Tao Kang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
12
|
Nittoli V, Colella M, Porciello A, Reale C, Roberto L, Russo F, Russo NA, Porreca I, De Felice M, Mallardo M, Ambrosino C. Multi Species Analyses Reveal Testicular T3 Metabolism and Signalling as a Target of Environmental Pesticides. Cells 2021; 10:2187. [PMID: 34571837 PMCID: PMC8471965 DOI: 10.3390/cells10092187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormones (THs) regulate many biological processes in vertebrates, including reproduction. Testicular somatic and germ cells are equipped with the arrays of enzymes (deiodinases), transporters, and receptors necessary to locally maintain the optimal level of THs and their signalling, needed for their functions and spermatogenesis. Pesticides, as chlorpyrifos (CPF) and ethylene thiourea (ETU), impair the function of thyroid and testis, affecting male fertility. However, their ability to disarrange testicular T3 (t-T3) metabolism and signalling is poorly considered. Here, a multi-species analysis involving zebrafish and mouse suggests the damage of t-T3 metabolism and signalling as a mechanism of gonadic toxicity of low-doses CPF and ETU. Indeed, the developmental exposure to both compounds reduces Dio2 transcript in both models, as well as in ex-vivo cultures of murine seminiferous tubules, and it is linked to alteration of steroidogenesis and germ cell differentiation. A major impact on spermatogonia was confirmed molecularly by the expression of their markers and morphologically evidenced in zebrafish. The results reveal that in the adopted models, exposure to both pesticides alters the t-T3 metabolism and signalling, affecting the reproductive capability. Our data, together with previous reports suggest zebrafish as an evaluable model in assessing the action of compounds impairing locally T3 signalling.
Collapse
Affiliation(s)
- Valeria Nittoli
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Potenza, Italy
| | - Alfonsina Porciello
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Carla Reale
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Luca Roberto
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Filomena Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Nicola A. Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Immacalata Porreca
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 59100 Naples, Italy;
- IEOS-CNR, 80131 Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 59100 Naples, Italy;
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino (AV), Italy; (V.N.); (M.C.); (A.P.); (C.R.); (L.R.); (F.R.); (N.A.R.); (I.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- IEOS-CNR, 80131 Naples, Italy
| |
Collapse
|
13
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
14
|
Rodrigues MS, Fallah HP, Zanardini M, Malafaia G, Habibi HR, Nóbrega RH. Interaction between thyroid hormones and gonadotropin inhibitory hormone in ex vivo culture of zebrafish testis: An approach to study multifactorial control of spermatogenesis. Mol Cell Endocrinol 2021; 532:111331. [PMID: 34038752 DOI: 10.1016/j.mce.2021.111331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Reproduction is under multifactorial control of neurohormones, pituitary gonadotropins, as well as of local gonadal signaling systems including sex steroids, growth factors and non-coding RNAs. Among the factors, gonadotropin-inhibitory hormone (Gnih) is a novel RFamide neuropeptide which directly modulates gonadotropin synthesis and release from pituitary, and in the gonads, Gnih mediated inhibitory actions on gonadotropin response of zebrafish spermatogenesis. Thyroid hormones are peripheral hormones which are also known to interact with reproductive axis, in particular, regulating testicular development and function. This study investigated the interaction between Gnih and thyroid hormones in zebrafish spermatogenesis using in vivo and ex vivo approaches. Three experimental groups were established: "control" (non-treated fish), "methimazole" and "methimazole + T4". Fish were exposed to goitrogen methimazole for 3 weeks; T4 (100 μg/L) was added in the water from the second week only in the "reversal treatment" group. After exposure, testes were dissected out and immediately incubated in Leibovitz's L-15 culture medium containing hCG, Gnih or hCG + Gnih for 7 days. Germ cell cysts and haploid cell population were evaluated by histomorphometry and flow cytometry, respectively. Our results showed that hypothyroidism affected germ cell development in basal and gonadotropin-induced spermatogenesis, in particular, meiosis and spermiogenesis. Hypothyroid testes showed lower amount of spermatozoa, and decreased potency of hCG. We also showed that goitrogen treatment nullified the inhibitory actions of Gnih on the gonadotropin-induced spermatogenesis. This study provided evidences that thyroid hormones are important regulatory factors for hCG- and Gnih-mediated functions in zebrafish spermatogenesis.
Collapse
Affiliation(s)
- Maira S Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), 14884-900, Jaboticabal, São Paulo, Brazil; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil
| | - Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Maya Zanardini
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Guilherme Malafaia
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil; Biological Research Laboratory, Goiano Federal Institution, Urata Campus, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, Goiás, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
15
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
16
|
Trigueiro NSDS, Canedo A, Braga DLDS, Luchiari AC, Rocha TL. Zebrafish as an Emerging Model System in the Global South: Two Decades of Research in Brazil. Zebrafish 2020; 17:412-425. [PMID: 33090089 DOI: 10.1089/zeb.2020.1930] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is an emerging model system in several research areas worldwide, especially in the Global South. In this context, the present study revised the historical use and trends of zebrafish as experimental models in Brazil. The data concerning the bibliometric parameters, research areas, geographic distribution, experimental design, zebrafish strain, and reporter lines, as well as recent advances were revised. In addition, the comparative trends of Brazilian and global research were discussed. Revised data showed the rapid growth of Brazilian scientific production using zebrafish as a model, especially in three main research areas (Neuroscience &and Behavior, Pharmacology and Toxicology, and Environment/Ecology). Studies were conducted in 19 Brazilian states (70.37%), confirming the wide geographic distribution and importance of zebrafish research. Results indicated that research related to toxicological approaches are widespread in Global South countries such as Brazil. Studies were performed mainly using in vivo tests (89.58%) with adult fish (59.75%) and embryos (30.67%). Moreover, significant research gaps and recommendations for future research are presented. The present study shows that the zebrafish is a suitable vertebrate model system in the Global South.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Lôbo de Siqueira Braga
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
17
|
Lara NDLEM, Costa GMJ, Figueiredo AFA, de França LR. The Sertoli cell: what can we learn from different vertebrate models? Anim Reprod 2020; 16:81-92. [PMID: 33299481 PMCID: PMC7720927 DOI: 10.21451/1984-3143-ar2018-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Besides having medical applications, comparative studies on reproductive biology are very useful, providing, for instance, essential knowledge for basic, conservation and biotechnological research. In order to maintain the reproductive potential and the survival of all vertebrate species, both sperm and steroid production need to occur inside the testis. From the approximately fifty thousand vertebrate species still alive, very few species are already investigated; however, our knowledge regarding Sertoli cell biology is quite good. In this regard, it is already known that since testis differentiation the Sertoli cells are the somatic cells in charge of supporting and orchestrating germ cells during development and full spermatogenesis in adult animals. In the present review, we highlight key aspects related to Sertoli cell biology in vertebrates and show that this key testis somatic cell presents huge and intrinsic plasticity, particularly when cystic (fish and amphibians) and non-cystic (reptiles, birds and mammals) spermatogenesis is compared. In particular, we briefly discuss the main aspects related to Sertoli cells functions, interactions with germ cells, Sertoli cells proliferation and efficiency, as well as those regarding spermatogonial stem cell niche regulation, which are crucial aspects responsible for the magnitude of sperm production. Most importantly, we show that we could greatly benefit from investigations using different vertebrate experimental models, mainly now that there is a big concern regarding the decline in human sperm counts caused by a multitude of factors.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
19
|
Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish ( Danio rerio) Testicular Explants. Biomolecules 2020; 10:biom10030429. [PMID: 32164184 PMCID: PMC7175196 DOI: 10.3390/biom10030429] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cortisol is the major endocrine factor mediating the inhibitory effects of stress on vertebrate reproduction. It is well known that cortisol affects reproduction by interacting with the hypothalamic–pituitary–gonads axis, leading to downstream inhibitory and stimulatory effects on gonads. However, the mechanisms are not fully understood. In this study, we provide novel data demonstrating the stimulatory effects of cortisol on spermatogenesis using an ex vivo organ culture system. The results revealed that cortisol treatment did not modulate basal androgen production, but it influenced transcript levels of a selected number of genes involved in the zebrafish testicular function ar (androgen receptor), star (steroidogenic acute regulatory), cyp17a1 (17α-hydroxylase/17,20 lyase/17,20 desmolase), cyp11a2 (cytochrome P450, family 11, subfamily A, polypeptide 2), hsd11b2 (11-beta hydroxysteroid dehydrogenase), cyp2k22 (cytochrome P450, family 2, subfamily K, polypeptide 22), fkbp5 (FKBP prolyl isomerase 5), grα (glucocorticoid receptor alpha), and grβ (glucocorticoid receptor beta) in a short-term culture. We also showed that cortisol stimulates spermatogonial proliferation and differentiation in an androgen independent manner as well as promoting meiosis and spermiogenesis by increasing the number of spermatozoa in the testes. Moreover, we demonstrated that concomitant treatment with RU 486, a potent glucocorticoid receptor (Gr) antagonist, did not affect the cortisol effects on spermatogonial differentiation but blocked the induced effects on meiosis and spermiogenesis. Supporting the Gr-mediated effects, RU 486 nullified the cortisol-induced expression of sycp3l (synaptonemal complex protein 3), a marker for the meiotic prophase that encodes a component of the synaptonemal complex. This is consistent with in silico analysis that found 10 putative GREs (glucocorticoid response elements) upstream of the zebrafish sycp3l. Finally, we also showed that grα mRNA is expressed in Sertoli and Leydig cells, but also in several types of germ cells, including spermatogonia and spermatocytes. Altogether, this evidence indicates that cortisol exerts paracrine roles in the zebrafish testicular function and spermatogenesis, highlighting its effects on spermatogonial differentiation, meiosis, and spermiogenesis.
Collapse
|
20
|
Ma Y, Ladisa C, Chang JP, Habibi HR. Multifactorial control of reproductive and growth axis in male goldfish: Influences of GnRH, GnIH and thyroid hormone. Mol Cell Endocrinol 2020; 500:110629. [PMID: 31678419 DOI: 10.1016/j.mce.2019.110629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Reproduction and growth are under multifactorial control of neurohormones and peripheral hormones. This study investigated seasonally related effects of GnIH, GnRH, and T3 on the reproductive and growth axis in male goldfish at three stages of gonadal recrudescence. The effects of injection treatments with GnRH, GnIH and/or T3 were examined by measuring serum LH and GH levels, as well as peripheral transcript levels, using a factorial design. As expected, GnRH elevated serum LH and GH levels in a seasonally dependant manner, with maximal elevations of LH in late stages of gonadal recrudescence (Spring) and maximal increases in GH in the regressed gonadal stage (Summer). GnIH injection increased serum LH and GH levels only in fish at the regressed stage but exerted both stimulatory and inhibitory effects on GnRH-induced LH responses depending on season. T3 treatment mainly had stimulatory effects on circulating LH levels and inhibitory effects on serum GH concentrations. In the liver and testes, we observed seasonal differences in thyroid receptors, estrogen receptors, vitellogenin, follicle-stimulating hormone receptor, aromatase and IGF-I transcript levels that were tissue- and sex-specific. Generally, there were no clear correlation between circulating LH and GH levels and peripheral transcript levels, presumably due to time-related response and possible direct interaction of GnRH and GnIH at the level of liver and testis. The results support the hypothesis that GnRH and GnIH are important components of multifactorial mechanisms that work in concert with T3 to regulate reciprocal control of reproduction and growth in goldfish.
Collapse
Affiliation(s)
- Y Ma
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - C Ladisa
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - J P Chang
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Department of Biological Sciences University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - H R Habibi
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
| |
Collapse
|
21
|
Ma Y, Ladisa C, Chang JP, Habibi HR. Seasonal Related Multifactorial Control of Pituitary Gonadotropin and Growth Hormone in Female Goldfish: Influences of Neuropeptides and Thyroid Hormone. Front Endocrinol (Lausanne) 2020; 11:175. [PMID: 32318022 PMCID: PMC7154077 DOI: 10.3389/fendo.2020.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Female reproduction is under multifactorial control of brain-pituitary-peripheral origin. The present study provides information on seasonal changes in circulating LH and GH concentrations, as well as transcript levels for a number of genes involved in the regulation of reproduction and growth in female goldfish. We also provide information on the effects of treatments with GnRH and/or GnIH, and their interaction with T3, at three stages of gonadal recrudescence. Maximum basal concentration of LH was observed at late recrudescence (Spring) while no seasonal changes in basal serum GH levels was detected. Serum LH and GH levels were stimulated by GnRH as expected, depending on the season. GnIH stimulated basal GH concentrations in gonadally regressed fish. GnIH inhibitory action on GnRH-induced LH response was observed in late, but not in mid recrudescence. T3 actions on basal and GnRH- or GnIH-induced GH secretion were generally inhibitory, depending on season. Administration of T3 attenuated GnRH-induced LH responses in mid and late stages of gonadal recrudescence, and the presence of GnIH abolished inhibitory actions of T3 in fish at mid recrudescence. Our results also demonstrated seasonal patterns in basal and GnRH- and/or GnIH-induced transcript levels for ERα, ERβI, FSHR, aromatase, TRαI, TRβ, IGF-I, and Vtg in the liver and ovary. However, there were no clear correlations between changes in transcript levels and circulating levels of LH and GH. The results support the hypothesis that GnRH, GnIH, and T3 are contributing factors in complex reciprocal control of reproduction and growth in goldfish.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - John P. Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|
22
|
Abstract
In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth, differentiation, and reproduction, by sensing and translating central and peripheral signals to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events, and the ability to tolerate changing environments. The vast majority of the research on the thyroid axis pertains to mammals, in particular rodents, and although some progress has been made to understand the role of this endocrine axis in non-mammalian vertebrates, including amphibians and teleost fish, major gaps in our knowledge remain regarding other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the roles of the thyroid axis in fish and its contributions to growth and development, metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient metabolism. We also discuss how thyroid hormones have been/can be used in aquaculture, and potential threats to the thyroid system in this regard.
Collapse
|
23
|
Lombó M, Fernández-Díez C, González-Rojo S, Herráez MP. Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: from spermatozoa to the progeny. Sci Rep 2019; 9:18029. [PMID: 31792261 PMCID: PMC6889327 DOI: 10.1038/s41598-019-54368-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to bisphenol A (BPA) has been related to male reproductive disorders. Since this endocrine disruptor also displays genotoxic and epigenotoxic effects, it likely alters the spermatogenesis, a process in which both hormones and chromatin remodeling play crucial roles. The hypothesis of this work is that BPA impairs early embryo development by modifying the spermatic genetic and epigenetic information. Zebrafish males were exposed to 100 and 2000 μg/L BPA during early spermatogenesis and during the whole process. Genotoxic and epigenotoxic effects on spermatozoa (comet assay and immunocytochemistry) as well as progeny development (mortality, DNA repairing activity, apoptosis and epigenetic profile) were evaluated. Exposure to 100 µg/L BPA during mitosis slightly increased sperm chromatin fragmentation, enhancing DNA repairing activity in embryos. The rest of treatments promoted high levels of sperm DNA damage, triggering apoptosis in early embryo and severely impairing survival. Regarding epigenetics, histone acetylation (H3K9Ac and H3K27Ac) was similarly enhanced in spermatozoa and embryos from males exposed to all the treatments. Therefore, BPA male exposure jeopardizes embryonic survival and development due to the transmission of a paternal damaged genome and of a hyper-acetylated histone profile, both alterations depending on the dose of the toxicant and the temporal window of exposure.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Cristina Fernández-Díez
- Instituto Ganadero de Motaña (IGM), Finca Marzanas-Grulleros Vega de Infanzones, León, 24346, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain.
| |
Collapse
|
24
|
Safian D, Bogerd J, Schulz RW. Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. Gen Comp Endocrinol 2019; 284:113244. [PMID: 31415728 DOI: 10.1016/j.ygcen.2019.113244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a cellular developmental process characterized by the coordinated proliferation and differentiation activities of somatic and germ cells in order to produce a large number of spermatozoa, the cellular basis of male fertility. Somatic cells in the testis, such as Leydig, peritubular myoid and Sertoli cells, provide structural and metabolic support and contribute to the regulatory microenvironment required for proper germ cell survival and development. The pituitary follicle-stimulating hormone (Fsh) is a major endocrine regulator of vertebrate spermatogenesis, targeting somatic cell functions in the testes. In fish, Fsh regulates Leydig and Sertoli cell functions, such as sex steroid and growth factor production, processes that also control the development of spermatogonia, the germ cell stages at the basis of the spermatogenic process. Here, we summarize recent advances in our understanding of mechanisms used by Fsh to regulate the development of spermatogonia. This involves discussing the roles of insulin-like growth factor (Igf) 3 and canonical and non-canonical Wnt signaling pathways. We will also discuss how these locally active regulatory systems interact to maintain testis tissue homeostasis.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; Reproduction and Developmental Biology Group, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
25
|
Lee I, Lee J, Jung D, Kim S, Choi K. Two-generation exposure to 2-ethylhexyl 4-methoxycinnamate (EHMC) in Japanese medaka (Oryzias latipes) and its reproduction and endocrine related effects. CHEMOSPHERE 2019; 228:478-484. [PMID: 31051350 DOI: 10.1016/j.chemosphere.2019.04.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
2-Ethylhexyl 4-methoxycinnamate (EHMC) is one of the most widely used UV-filters, and hence has been frequently detected in water environment. EHMC has been reported to induce short-term reproductive toxicity in fish, and thyroid disrupting effects in other animal studies. However, limited information is available for its long-term effects on fecundity, and thyroid disrupting effects in fish. In the present study, effects of EHMC on fecundity, measured as number of eggs, were evaluated in Japanese medaka (Oryzias latipes), and its underlying mechanisms on sex and thyroid hormone disruption were explored. For this purpose, a five-month long (154 d) exposure to F0 generation was conducted on fertilized eggs (<24 h post-fertilization (hpf)), with nominal concentration of 0, 0.05, 0.158, 0.5, 1.58, or 5 mg/L EHMC, followed by a 3-8-d exposure of F1 generation. After >3 months exposure, significant decreases in reproductive performances were observed at all test concentrations as low as 0.05 mg/L. Reproduction effects were not accompanied with sex hormone changes, but up-regulation of vitellogenin gene was observed. Thyroid hormones were decreased by EHMC exposure in F1 fish at -38 day post-fertilization (dpf). In addition, down-regulation of type II iodothyronine deiodinase (dio2) and up-regulation of thyrotropin releasing hormone (trh) were observed in both F0 and F1 juvenile fish, suggesting thyroid disruption potential of EHMC. Our observation suggests that EHMC at the levels one to two orders of magnitude higher than those detected in ambient water may affect reproduction and thyroid hormonal balance of fish.
Collapse
Affiliation(s)
- Inae Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jyeun Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Dawoon Jung
- Korea Environment Institute, Sejong, Republic of Korea
| | - Sujin Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Hatef A, Unniappan S. Metabolic hormones and the regulation of spermatogenesis in fishes. Theriogenology 2019; 134:121-128. [PMID: 31167155 DOI: 10.1016/j.theriogenology.2019.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
Metabolic hormones play essential regulatory roles in many biological processes, including morphogenesis, growth, and reproduction through the maintenance of energy balance. Various metabolic hormones originally discovered in mammals, including ghrelin, leptin, and nesfatin-1 have been identified and characterized in fish. However, physiological roles of these metabolic hormones in regulating reproduction are largely unknown in fishes, especially in males. While the information available is restricted, this review attempts to summarize the main findings on the roles of metabolic peptides on the reproductive system in male fishes with an emphasis on testicular development and spermatogenesis. Specifically, the primary goal is to review the physiological interactions between hormones that regulate reproduction and hormones that regulate metabolism as a critical determinant of testicular function. A brief introduction to the localization of metabolic hormones in fish testis is also provided. Besides, the consequences of fasting and food deprivation on testicular development and sperm quality will be discussed with a focus on interactions between metabolic and reproductive hormones.
Collapse
Affiliation(s)
- Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
27
|
Wang C, Zheng P, Adeniran SO, Ma M, Huang F, Adegoke EO, Zhang G. Thyroid hormone (T 3) is involved in inhibiting the proliferation of newborn calf Sertoli cells via the PI3K/Akt signaling pathway in vitro. Theriogenology 2019; 133:1-9. [PMID: 31051388 DOI: 10.1016/j.theriogenology.2019.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
Abstract
The experiment was designed to study the effects of Thyroid hormone (T3) on the proliferation and differentiation of newborn calf Sertoli cells (SCs) to provide a theoretical and practical basis for increased testicular semen production. In this experiment, the cck8 method was used to detect the effects of different concentrations of T3 on the proliferation rate of newborn calf SCs. qPCR and Western Blot methods were used to explore the effects of T3 on the proliferation and differentiation of calves SCs and whether T3 through Wnt/β-catenin and PI3K/Akt pathways can regulate the proliferation and differentiation of SCs. We found that dosage (T3) and time correlated with proliferation inhibition of SC. T3 inhibited the proliferation of SC by down-regulating cyclinD1, upregulating p21Cip, p27Kip1, and other cell-cycle factors. By up-regulating AR and down-regulating KRT-18, T3 promoted the maturated differentiation of SC. T3 could not affect the expression of β-catenin in SC of newborn calf, indicating that T3 may not regulate SCs proliferation through the Wnt pathway. T3 also negatively regulated the gene expression and protein levels of some genes in the PI3K/Akt signaling pathway. We concluded that T3 inhibited newborn calf SCs proliferation through the PI3K/Akt signaling pathway and possibly promoted their differentiation.
Collapse
Affiliation(s)
- Chen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - S O Adeniran
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mingjun Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - E O Adegoke
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
28
|
Houbrechts AM, Van Houcke J, Darras VM. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J Endocrinol 2019; 241:JOE-18-0549.R3. [PMID: 30817317 DOI: 10.1530/joe-18-0549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
Thyroid hormones are crucial mediators of many aspects of vertebrate life, including reproduction. The key player is the biologically active 3,5,3'-triiodothyronine (T3), whose local bio-availability is strictly regulated by deiodinase enzymes. Deiodinase type 2 (Dio2) is present in many tissues and is the main enzyme for local T3 production. To unravel its role in different physiological processes, we generated a mutant zebrafish line, completely lacking Dio2 activity. Here we focus on the reproductive phenotype studied at the level of offspring production, gametogenesis, functioning of the hypothalamic-pituitary-gonadal axis and sex steroid production. Homozygous Dio2-deficient zebrafish were hypothyroid, displayed a delay in sexual maturity, and the duration of their reproductive period was substantially shortened. Fecundity and fertilization were also severely reduced. Gamete counts pointed to a delay in oogenesis at onset of sexual maturity and later on to an accumulation of oocytes in mutant ovaries due to inhibition of ovulation. Analysis of spermatogenesis showed a strongly decreased number of spermatogonia A at onset of sexual maturity. Investigation of the hypothalamic-pituitary-gonadal axis revealed that dysregulation was largely confined to the gonads with significant upregulation of igf3, and a strong decrease in sex steroid production concomitant with alterations in gene expression in steroidogenesis/steroid signaling pathways. Rescue of the phenotype by T3 supplementation starting at 4 weeks resulted in normalization of reproductive activity in both sexes. The combined results show that reproductive function in mutants is severely hampered in both sexes, thereby linking the loss of Dio2 activity and the resulting hypothyroidism to reproductive dysfunction.
Collapse
Affiliation(s)
- Anne M Houbrechts
- A Houbrechts, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Van Houcke
- J Van houcke, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- V Darras, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Safian D, Ryane N, Bogerd J, Schulz RW. Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. J Endocrinol 2018; 239:351-363. [PMID: 30400013 DOI: 10.1530/joe-18-0447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating somatic cell functions in the testis. We have found previously that zebrafish Fsh stimulated the differentiating proliferation of type A undifferentiated spermatogonia (Aund) in an androgen-independent manner by regulating the production of growth factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). For example, Fsh triggered the release of Igf3 that subsequently activated β-catenin signaling to promote the differentiating proliferation of Aund. In the present study, we report that Fsh moreover uses the non-canonical Wnt pathway to promote the proliferation and accumulation of Aund. Initially, we found that the stimulatory effect of Fsh on the proliferation activity of Aund was further strengthened when β-catenin signaling was inhibited, resulting in an accumulation of Aund. We then showed that this Fsh-induced accumulation of Aund was associated with increased transcript levels of the non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to incubations with Fsh decreased both the proliferation activity and the relative section area occupied by Aund, while an agonist of Wnt5a increased these same parameters for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-canonical Wnt signaling to ensure the production of Aund, while also triggering β-catenin signaling via Igf3 to ensure spermatogonial differentiation.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Najoua Ryane
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
- Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
30
|
Campbell DEK, Langlois VS. Thyroid hormones and androgens differentially regulate gene expression in testes and ovaries of sexually mature Silurana tropicalis. Gen Comp Endocrinol 2018; 267:172-182. [PMID: 29990494 DOI: 10.1016/j.ygcen.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 02/04/2023]
Abstract
A series of ex vivo exposures using testicular and ovarian tissues of sexually mature Western clawed frogs (Silurana tropicalis) were designed to examine molecular mechanisms of thyroid hormone (TH) and androgen crosstalk sans hypophyseal feedback as well as investigate potential sex-specific differences. Tissues were exposed ex vivo to either triiodothyronine (T3), iopanoic acid (IOP), one co-treatment of IOP + 5α-dihydrotestosterone (5α-DHT), 5α-DHT, 5β-dihydrotestosterone (5β-DHT), or testosterone (T). Direct exposure to different androgens led to androgen specific increases in thyroid receptor and deiodinase transcripts in testes (trβ and dio1) but a decrease in expression in ovaries (trβ and dio3), suggesting that male and female frogs can be differently affected by androgenic compounds. Moreover, exposure to select androgens differentially increased estrogen-related transcription (estrogen receptor alpha (erα) and aromatase (cyp19)) and production (estradiol) in ovaries and testes indicating the activation of alternate metabolic pathways yielding estrogenic metabolites. Sex-steroid-related transcription (i.e., steroid 5α-reductase type 2 (srd5α2) and erα) and production (i.e., 5α-DHT) were also differentially regulated by THs. The presence and frequency of transcription factor binding sites in the putative promoter regions of TH- and sex steroid-related genes were also examined in S. tropicalis, rodent, and fish models using in silico analysis. In summary, this study provides an improved mechanistic understanding of TH- and androgen-mediated actions and reveals differential transcriptional effects as a function of sex in frogs.
Collapse
Affiliation(s)
- D E K Campbell
- Biology Department, Queen's University, Kingston, ON, Canada
| | - V S Langlois
- Biology Department, Queen's University, Kingston, ON, Canada; Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, Quebec City, QC, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
31
|
Tovo-Neto A, da Silva Rodrigues M, Habibi HR, Nóbrega RH. Thyroid hormone actions on male reproductive system of teleost fish. Gen Comp Endocrinol 2018; 265:230-236. [PMID: 29678724 DOI: 10.1016/j.ygcen.2018.04.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Thyroid hormones (THs) play important roles in the regulation of many biological processes of vertebrates, such as growth, metabolism, morphogenesis and reproduction. An increasing number of studies have been focused on the involvement of THs in the male reproductive system of vertebrates, in particular of fish. Therefore, this mini-review aims to summarize the main findings on THs role in male reproductive system of fish, focusing on sex differentiation, testicular development and spermatogenesis. The existing data in the literature have demonstrated that THs exert their roles at the different levels of the hypothalamic-pituitary-gonadal (HPG) axis. In general a positive correlation has been shown between THs and fish reproductive status; where THs are associated with testicular development, growth and maturation. Recently, the molecular mechanisms underlying the role of THs in spermatogenesis have been unraveled in zebrafish testis. THs promote germ cell proliferation and differentiation by increasing a stimulatory growth factor of spermatogenesis produced by Sertoli cells. In addition, THs enhanced the gonadotropin-induced androgen release in zebrafish testis. Next to their functions in the adult testis, THs are involved in the gonadal sex differentiation through modulating sex-related gene expression, and testicular development via regulation of Sertoli cell proliferation. In conclusion, this mini-review showed that THs modulate the male reproductive system during the different life stages of fish. The physiological and molecular mechanisms showed a link between the thyroid and reproduction, suggesting a possibly co-evolution and interdependence of these two systems.
Collapse
Affiliation(s)
- Aldo Tovo-Neto
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Aquaculture Program, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Departament of Morphology, Reproductive and Molecular Biology Group, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira da Silva Rodrigues
- Aquaculture Program, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Departament of Morphology, Reproductive and Molecular Biology Group, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Rafael Henrique Nóbrega
- Departament of Morphology, Reproductive and Molecular Biology Group, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
32
|
Safian D, Bogerd J, Schulz RW. Igf3 activates β-catenin signaling to stimulate spermatogonial differentiation in zebrafish. J Endocrinol 2018; 238:245-257. [PMID: 29941503 DOI: 10.1530/joe-18-0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Follicle-stimulating hormone (Fsh) is a major regulator of spermatogenesis, targeting somatic cell functions in the testes. We reported previously that zebrafish Fsh promoted the differentiation of type A undifferentiated spermatogonia (Aund) by stimulating the production of factors that advance germ cell differentiation, such as androgens, insulin-like peptide 3 (Insl3) and insulin-like growth factor 3 (Igf3). In addition, Fsh also modulated the transcript levels of several other genes, including some belonging to the Wnt signaling pathway. Here, we evaluated if and how Fsh utilizes part of the canonical Wnt pathway to regulate the development of spermatogonia. We quantified the proliferation activity and relative section areas occupied by Aund and type A differentiating (Adiff) spermatogonia and we analyzed the expression of selected genes in response to recombinant proteins and pharmacological inhibitors. We found that from the three downstream mediators of Fsh activity we examined, Igf3, but not 11-ketotestosterone or Insl3, modulated the transcript levels of two β-catenin sensitive genes (cyclinD1 and axin2). Using a zebrafish β-catenin signaling reporter line, we showed that Igf3 activated β-catenin signaling in type A spermatogonia and that this activation did not depend on the release of Wnt ligands. Pharmacological inhibition of the β-catenin or of the phosphoinositide 3-kinase (PI3K) pathways revealed that Igf3 activated β-catenin signaling in a manner involving PI3K to promote the differentiation of Aund to Adiff spermatogonia. This mechanism represents an intriguing example for a pituitary hormone like Fsh using Igf signaling to recruit the evolutionary conserved, local β-catenin signaling pathway to regulate spermatogenesis.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology GroupDivision Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology GroupDivision Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology GroupDivision Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
- Reproduction and Developmental Biology GroupInstitute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
33
|
Muthulakshmi S, Hamideh PF, Habibi HR, Maharajan K, Kadirvelu K, Mudili V. Mycotoxin zearalenone induced gonadal impairment and altered gene expression in the hypothalamic-pituitary-gonadal axis of adult female zebrafish (Danio rerio). J Appl Toxicol 2018; 38:1388-1397. [PMID: 29923290 DOI: 10.1002/jat.3652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
In the present study, we aimed to assess the adverse effects of zearalenone (ZEA) at environmentally relevant concentrations (0.5, 1, 5 and 10 μg l-1 ) on hypothalamic-pituitary-gonadal axis associated reproductive function using zebrafish model. ZEA was exposed to female zebrafish for 21 days to assess growth indices such as condition factor, hepatosomatic index, gonadosomatic index and caspase 3 activity. Further, expression of estrogen receptor (ER) α and CYP19a1b genes in the brain, ERα and vitellogenin (Vtg) genes in the liver and follicle-stimulating hormone receptor, luteinizing hormone receptor, ERα, steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase (HSD), 17-βHSD and CYP19a1 genes in the ovary were also investigated. Our results showed that there were no significant changes in the condition factor and hepatosomatic index, whereas a significant (P < .05) reduction in the gonadosomatic index, increase in caspase 3 activities and Vtg expression was observed at higher concentration. However, no significant changes were observed at lower treatment levels. Further, we also observed significant (P < .05) upregulation in ERα, Vtg, luteinizing hormone receptor, steroidogenic acute regulatory protein, 3β-HSD, 17β-HSD, CYP19a1 and CYP19a1b genes in treatment groups with higher levels of ZEA. Moreover, in histopathological examination, we observed oocyte atresia and oocyte membrane detachment in ovaries at the highest concentration. In conclusion, the present study revealed the negative impact of ZEA on zebrafish reproductive system by involvement of the hypothalamic-pituitary-gonadal axis-associated reproductive function.
Collapse
Affiliation(s)
- Sellamani Muthulakshmi
- Toxicology and Immunology Division, DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India.,Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Pourmohammadi Fallah Hamideh
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Kannan Maharajan
- Toxicology and Immunology Division, DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Krishna Kadirvelu
- Toxicology and Immunology Division, DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Venkataramana Mudili
- Toxicology and Immunology Division, DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
34
|
Fraz S, Lee AH, Wilson JY. Gemfibrozil and carbamazepine decrease steroid production in zebrafish testes (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:1-9. [PMID: 29494825 DOI: 10.1016/j.aquatox.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/20/2023]
Abstract
Gemfibrozil (GEM) and carbamazepine (CBZ) are two environmentally relevant pharmaceuticals and chronic exposure of fish to these compounds has decreased androgen levels and fish reproduction in laboratory studies. The main focus of this study was to examine the effects of GEM and CBZ on testicular steroid production, using zebrafish as a model species. Chronic water borne exposures of adult zebrafish to 10 μg/L of GEM and CBZ were conducted and the dosing was confirmed by chemical analysis of water as 17.5 ± 1.78 and 11.2 ± 1.08 μg/L respectively. A 67 day exposure led to reduced reproductive output and lowered whole body, plasma, and testicular 11-ketotestosterone (11-KT). Testicular production of 11-KT was examined post exposure (42 days) using ex vivo cultures to determine basal and stimulated steroid production. The goal was to ascertain the step impaired in the steroidogenic pathway by each compound. Ex vivo 11-KT production in testes from males chronically exposed to GEM and CBZ was lower than that from unexposed males. Although hCG, 25-OH cholesterol, and pregnenolone stimulation increased 11-KT production in all treatment groups over basal levels, hCG stimulated 11-KT production remained significantly less in testes from exposed males compared to controls. 25-OH cholesterol and pregnenolone stimulated 11-KT production was similar between GEM and control groups but the CBZ group had lower 11-KT production than controls with both stimulants. We therefore propose that chronic GEM and CBZ exposure can reduce production of 11-KT in testes through direct effects independent of mediation through HPG axis. The biochemical processes for steroid production appear un-impacted by GEM exposure; while CBZ exposure may influence steroidogenic enzyme expression or function.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Abigail H Lee
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada; Current affiliation: Department of Medicine, University of Toronto, 1 Kings College, Toronto, M5S 1A8, ON, Canada
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada.
| |
Collapse
|
35
|
de Castro Assis LH, de Nóbrega RH, Gómez-González NE, Bogerd J, Schulz RW. Estrogen-induced inhibition of spermatogenesis in zebrafish is largely reversed by androgen. J Mol Endocrinol 2018; 60:273-284. [PMID: 29476039 DOI: 10.1530/jme-17-0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
The hormonal regulation of spermatogenesis involves both gonadotropins and steroid hormones. Long-term in vivo exposure of adult zebrafish to estrogen impaired spermatogenesis associated with an androgen insufficiency, possibly induced by inhibiting gonadotropin release. Using this experimental model, we investigated if androgen treatment could enhance spermatogenesis, while maintaining the inhibition of gonadotropin release through continued estrogen exposure. Moreover, we also exposed animals to androgen alone, in order to examine androgen effects in the absence of estrogen-induced gonadotropin inhibition. Estrogen exposure depleted type B spermatogonia, meiotic and postmeiotic germ cells from the adult testis, but promoted the proliferation of type A undifferentiated spermatogonia, which accumulated in the testis. This change in germ cell composition was accompanied by reduced mRNA levels of those growth factors (e.g. insl3 and igf3) expressed by testicular somatic cells and known to stimulate spermatogonial differentiation in zebrafish. Additional androgen (11-ketoandrostenedione, which is converted to 11-ketotestosterone) treatment in vivo reversed most of the effects of estrogen exposure on spermatogenesis while insl3 and igf3 transcript levels remained suppressed. When androgen treatment was given alone, it promoted the production of haploid cells at the expense of spermatogonia, and increased transcript levels of some growth factor and hormone receptor genes, but not those of insl3 or igf3 We conclude that estrogen exposure efficiently inhibits spermatogenesis because it induces androgen insufficiency and suppresses gonadotropin-regulated growth factors known to stimulate germ cell differentiation. Moreover, our results suggest that androgens and the growth factors Insl3 and Igf3 stimulate spermatogenesis via independent pathways.
Collapse
Affiliation(s)
- Luiz Henrique de Castro Assis
- Reproductive Biology GroupDivision of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Rafael Henrique de Nóbrega
- Reproductive and Molecular Biology GroupDepartment of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Nuria Esther Gómez-González
- Department of Cell Biology and HistologyFaculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Jan Bogerd
- Reproductive Biology GroupDivision of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger Winfried Schulz
- Reproductive Biology GroupDivision of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Cavalari FC, da Rosa LA, Escott GM, Dourado T, de Castro AL, Kohek MBDF, Ribeiro MFM, Partata WA, de Fraga LS, Loss EDS. Epitestosterone- and testosterone-replacement in immature castrated rats changes main testicular developmental characteristics. Mol Cell Endocrinol 2018; 461:112-121. [PMID: 28870779 DOI: 10.1016/j.mce.2017.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/28/2023]
Abstract
Epitestosterone is the 17α-epimer of testosterone and has been described as an anti-androgen, since it inhibits the effects produced by testosterone and dihydrotestosterone via the nuclear androgen receptor (nAR). However, epitestosterone also displays an effect which is similar to the non-classical effect of testosterone, depolarizing the membrane potential of Sertoli cells and inducing a rapid Ca2+ uptake. This study aimed to investigate the effects of a treatment with epitestosterone on developmental parameters of immature rats. Animals were chemically castrated by using the gonadotropin-releasing hormone (GnRH) antagonist cetrorelix and then received a replacement of 7 days with epitestosterone or testosterone. Replacement with either epitestosterone or testosterone restored the anogenital distance (AGD) and testicular weight which had been reduced by chemical castration. The immunocontent of nAR and the nAR-immunoreactivity were reduced by epitestosterone treatment in the testis of both castrated and non-castrated animals. Furthermore, testosterone was unable of changing the membrane potential of Sertoli cells through its non-classical action in the group of animals castrated and replaced with epitestosterone. In conclusion, in relation to the level of protein expression of nAR epitestosterone acts as an anti-androgen. However, it acts in the same way as testosterone when genital development parameters are evaluated. Moreover, in castrated rats epitestosterone suppressed the non-classical response of testosterone, changing the pattern of testosterone signalling via a membrane mechanism in Sertoli cells.
Collapse
Affiliation(s)
- Fernanda Carvalho Cavalari
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Luciana Abreu da Rosa
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Gustavo Monteiro Escott
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Tadeu Dourado
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Alexandre Luz de Castro
- Centro Universitário Ritter dos Reis, UNIRITTER, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil.
| | | | - Maria Flávia Marques Ribeiro
- Laboratório de Interação Neuro-Humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Wania Aparecida Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luciano Stürmer de Fraga
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Medaka igf1 identifies somatic cells and meiotic germ cells of both sexes. Gene 2018; 642:423-429. [DOI: 10.1016/j.gene.2017.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
|
38
|
Brüggemann M, Licht O, Fetter É, Teigeler M, Schäfers C, Eilebrecht E. Knotting nets: Molecular junctions of interconnecting endocrine axes identified by application of the adverse outcome pathway concept. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:318-328. [PMID: 28984380 DOI: 10.1002/etc.3995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 05/10/2023]
Abstract
To be defined as an endocrine disruptor, a substance has to meet several criteria, including the induction of specific adverse effects, a specific endocrine mode of action, and a plausible link between both. The latter criterion in particular might not always be unequivocally determined, especially because the endocrine system consists of diverse endocrine axes. The axes closely interact with each other, and manipulation of one triggers effects on the other. The present review aimed to identify some of the many interconnections between these axes. The focus was on fish, but data obtained in studies on amphibians and mammals were considered if they assisted in closing data gaps, because most of the endocrine mechanisms are evolutionarily conserved. The review includes data both from ecotoxicological studies and on physiological processes and gives information on hormone/hormone receptor interactions or gene transcription regulation. The key events and key event relationships identified provide explanations for unexpected effects on one axis, exerted by substances suspected to act specifically on another axis. Based on these data, several adverse outcome pathway (AOP) segments are identified, describing connections between the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes, the HPG and hypothalamic-pituitary-adrenal/interrenal (HPA/I) axes, and the HPT and HPA/I axes. Central key events identified across axes were altered aromatase activity as well as altered expression and function of the proteins 11β-hydroxysteroid dehydrogenase (11β-HSD) and steroidogenic acute regulatory (StAR) protein. Substance classes that act on more than one endocrine axis were, for example, goitrogens or aromatase inhibitors. Despite the wealth of information gathered, the present review only provides a few insights into the molecular nets of endocrine axes, demonstrating the complexity of their interconnections. Environ Toxicol Chem 2018;37:318-328. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Maria Brüggemann
- Fraunhofer IME, Department of Ecotoxicology, Schmallenberg, Germany
| | - Oliver Licht
- Fraunhofer ITEM, Department of Chemical Risk Assessment, Hannover, Germany
| | - Éva Fetter
- German Environment Agency (UBA), Dessau, Germany
| | | | | | - Elke Eilebrecht
- Fraunhofer IME, Department of Ecotoxicology, Schmallenberg, Germany
| |
Collapse
|
39
|
Morais RDVS, Crespo D, Nóbrega RH, Lemos MS, van de Kant HJG, de França LR, Male R, Bogerd J, Schulz RW. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol Cell Endocrinol 2017. [PMID: 28645700 DOI: 10.1016/j.mce.2017.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh up-regulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3.
Collapse
Affiliation(s)
- R D V S Morais
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - D Crespo
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R H Nóbrega
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil
| | - M S Lemos
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - H J G van de Kant
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - L R de França
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; National Institute of Amazonian Research (L.R.F.), Manaus, Brazil
| | - R Male
- Department of Molecular Biology (R.M.), University of Bergen, 5020 Bergen, Norway
| | - J Bogerd
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - R W Schulz
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology (R.W.S.), Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
40
|
Kleppe L, Andersson E, Skaftnesmo KO, Edvardsen RB, Fjelldal PG, Norberg B, Bogerd J, Schulz RW, Wargelius A. Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci Rep 2017; 7:12584. [PMID: 28974703 PMCID: PMC5626747 DOI: 10.1038/s41598-017-12936-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11β, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17β and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Jan Bogerd
- Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
41
|
Wirbisky SE, Freeman JL. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:1-8. [PMID: 28111253 PMCID: PMC5325771 DOI: 10.1016/j.cbpc.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/30/2022]
Abstract
Atrazine is an agricultural herbicide used throughout the Midwestern United States that frequently contaminates potable water supplies resulting in human exposure. Using the zebrafish model system, an embryonic atrazine exposure was previously reported to decrease spawning rates with an increase in progesterone and ovarian follicular atresia in adult females. In addition, alterations in genes associated with distinct molecular pathways of the endocrine system were observed in brain and gonad tissue of the adult females and males. Current hypotheses for mechanistic changes in the developmental origins of health and disease include genetic (e.g., copy number alterations) or epigenetic (e.g., DNA methylation) mechanisms. As such, in the current study we investigated whether an atrazine exposure would generate copy number alterations (CNAs) in the zebrafish genome. A zebrafish fibroblast cell line was used to limit detection to CNAs caused by the chemical exposure. First, cells were exposed to a range of atrazine concentrations and a crystal violet assay was completed, showing confluency decreased by ~60% at 46.3μM. Cells were then exposed to 0, 0.463, 4.63, or 46.3μM atrazine and array comparative genomic hybridization completed. Results showed 34, 21, and 44 CNAs in the 0.463, 4.63, and 46.3μM treatments, respectively. Furthermore, CNAs were associated with previously reported gene expression alterations in adult male and female zebrafish. This study demonstrates that atrazine exposure can generate CNAs that are linked to gene expression alterations observed in adult zebrafish exposed to atrazine during embryogenesis providing a mechanism of the developmental origins of atrazine endocrine disruption.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| |
Collapse
|
42
|
Safian D, van der Kant HJG, Crespo D, Bogerd J, Schulz RW. Follicle-Stimulating Hormone Regulates igfbp Gene Expression Directly or via Downstream Effectors to Modulate Igf3 Effects on Zebrafish Spermatogenesis. Front Endocrinol (Lausanne) 2017; 8:328. [PMID: 29209278 PMCID: PMC5702253 DOI: 10.3389/fendo.2017.00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Previous work showed that pharmacological inactivation of Igf-binding proteins (Igfbps), modulators of Igf activity, resulted in an excessive differentiation of type A undifferentiated (Aund) spermatogonia in zebrafish testis in tissue culture when Fsh was present in the incubation medium. Using this testis tissue culture system, we studied here the regulation of igfbp transcript levels by Fsh and two of its downstream effectors, Igf3 and 11-ketotestosterone (11-KT). We also explored how Fsh-modulated igfbp expression affected spermatogonial proliferation by adding or removing the Igfbp inhibitor NBI-31772 at different times. Fsh (100 ng/mL) decreased the transcript levels of igfbp1a, -3, and -6a after 1 or 3 days, while increasing igfbp2a and -5b expression, but only after 5 days of incubation. Igf3 down-regulated the same igfbp transcripts as Fsh but with a delay of at least 4 days. 11-KT increased the transcripts (igfbp2a and 5b) that were elevated by Fsh and decreased those of igfbp6a, as did Fsh, while 11-KT did not change igfbp1a or -3 transcript levels. To evaluate Igfbps effects on spermatogenesis, we quantified under different conditions the mitotic indices and relative section areas occupied by the different spermatogonial generations (type Aund, type A differentiating (Adiff), or type B (B) spermatogonia). Igf3 (100 ng/mL) increased the area occupied by Adiff and B while decreasing the one for Aund. Interestingly, a concentration of Igf3 that was inactive by itself (25 ng/mL) became active in the presence of the Igfbp inhibitor NBI-31772 and mimicked the effect of 100 ng/mL Igf3 on spermatogonia. Studies exploiting the different dynamics of igfbp expression in response to Fsh and adding or removing NBI-31772 at different times showed that the quick downregulation of three igfbp as well as the delayed upregulated of two igfbps all support Igf3 bioactivity, namely the stimulation of spermatogonial differentiation. We conclude that Fsh modulates, directly or via androgens and Igf3, igfbp gene expression, supporting Igf3 bioactivity either by decreasing igfbp1a, -3, -6a or by increasing igfbp2a and -5b gene expression.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, Netherlands
| | - Henk J. G. van der Kant
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, Netherlands
| | - Diego Crespo
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, Netherlands
| | - Rüdiger W. Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, Netherlands
- Institute of Marine Research, Bergen, Norway
- *Correspondence: Rüdiger W. Schulz,
| |
Collapse
|
43
|
Safian D, Morais RDVS, Bogerd J, Schulz RW. Igf Binding Proteins Protect Undifferentiated Spermatogonia in the Zebrafish Testis Against Excessive Differentiation. Endocrinology 2016; 157:4423-4433. [PMID: 27689414 DOI: 10.1210/en.2016-1315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IGF binding proteins (IGFBPs) modulate the availability of IGFs for their cognate receptors. In zebrafish testes, IGF3 promotes the proliferation and differentiation of type A undifferentiated (Aund) spermatogonia, and igf3 expression is strongly elevated by FSH but also responds to T3. Here we report the effects of FSH and T3 on igfbp transcript levels in adult zebrafish testis. We then examined T3 and FSH effects on zebrafish spermatogenesis and explored the relevance of IGFBPs in modulating these T3 or FSH effects, using a primary tissue culture system for adult zebrafish testis. T3 up-regulated igfbp1a and igfbp3 expression, whereas FSH reduced igfbp1a transcript levels. To quantify effects on spermatogenesis, we determined the mitotic index and relative section areas occupied by Aund, type A differentiating, or type B spermatogonia. In general, T3 and FSH stimulated spermatogonial proliferation and increased the areas occupied by spermatogonia, suggesting that both self-renewal and differentiating divisions were stimulated. Preventing IGF/IGFBP interaction by NBI-31772 further increased T3- or FSH-induced spermatogonial proliferation. However, under these conditions the more differentiated type A differentiating and B spermatogonia occupied larger surface areas at the expense of the area held by Aund spermatogonia. Clearly decreased nanos2 transcript levels are in agreement with this finding, and reduced amh expression may have facilitated spermatogonial differentiation. We conclude that elevating IGF3 bioactivity by blocking IGFBPs shifted T3- or FSH-induced signaling from stimulating spermatogonial self-renewal as well as differentiation toward predominantly stimulating spermatogonial differentiation, which leads to a depletion of type Aund spermatogonia.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group (D.S., R.D.V.S.M., J.B., R.W.S.), Division of Developmental Biology, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; and Institute of Marine Research (R.W.S.), Nordnes, 5817 Bergen, Norway
| | - Roberto D V S Morais
- Reproductive Biology Group (D.S., R.D.V.S.M., J.B., R.W.S.), Division of Developmental Biology, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; and Institute of Marine Research (R.W.S.), Nordnes, 5817 Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group (D.S., R.D.V.S.M., J.B., R.W.S.), Division of Developmental Biology, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; and Institute of Marine Research (R.W.S.), Nordnes, 5817 Bergen, Norway
| | - Rüdiger W Schulz
- Reproductive Biology Group (D.S., R.D.V.S.M., J.B., R.W.S.), Division of Developmental Biology, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; and Institute of Marine Research (R.W.S.), Nordnes, 5817 Bergen, Norway
| |
Collapse
|
44
|
Sharma P, Tang S, Mayer GD, Patiño R. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish. Gen Comp Endocrinol 2016; 235:38-47. [PMID: 27255368 DOI: 10.1016/j.ygcen.2016.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2nM), goitrogen [methimazole (MZ), 0.15mM], MZ (0.15mM) and T4 (2nM) (rescue treatment), or reconstituted water (control) from 3 to 33days postfertilization (dpf) and maintained in control water until 45dpf. Whole fish were collected during early (25dpf) and late (45dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45dpf and, unexpectedly, reduced expression of dmrt1 at 45dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its "feminizing" activity on gonadal sex is not permanent.
Collapse
Affiliation(s)
- Prakash Sharma
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Song Tang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA
| | - Gregory D Mayer
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| |
Collapse
|
45
|
Beltagy DM, Mohamed TM, El Said AS, Tousson E. Beneficial role of ascorbic and folic acids antioxidants against thyroxin-induced testicular dysfunction in hyperthyroid rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17246-17254. [PMID: 27221465 DOI: 10.1007/s11356-016-6876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Thyroid hormones play a fundamental role in the regulation of metabolism of almost all mammalian tissue including the reproductive system. Hyperthyroidism in early life may cause delayed sexual maturation, although physical development is normal and skeletal growth may be accelerated. Hyperthyroidism after puberty influences reproductive functions and increases testosterone level. The aim of this work is to study the effect of induced hyperthyroidism by L-thyroxine sodium administration on the testis of rats and to evaluate the ameliorating role of different antioxidants as ascorbic acid and folic acid on the hyperthyroid state via the assessment of different biochemical markers, histopathological and immunochemical sections. DNA analysis of the D1 deiodinase was performed to determine genetic mutation due to hyperthyroidism. The results showed partially disrupted in the measured biochemical parameters and spermatogenesis in hyperthyroid rats. Post-administration of both folic and ascorbic acids together in hyperthyroid rats showed the best ameliorating effects on the thyroid hormones, testosterone, testicular GGT and ALP, and all oxidative stress markers. There is no genetic mutations that occurred in D1 deiodinase due to hyperthyroidism. These findings were indicated by the proliferating cell nuclear antigen (PCNA) studies of testes.
Collapse
Affiliation(s)
- Doha M Beltagy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
- Biochemistry Unit, Chemistry Department, Damanhour, Egypt
- Department of Zoology, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
- Biochemistry Unit, Chemistry Department, Damanhour, Egypt
- Department of Zoology, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed S El Said
- Biochemistry Division, Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
- Biochemistry Unit, Chemistry Department, Damanhour, Egypt
- Department of Zoology, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Biochemistry Division, Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt.
- Biochemistry Unit, Chemistry Department, Damanhour, Egypt.
- Department of Zoology, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
46
|
Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH. Zebrafish: A Versatile Animal Model for Fertility Research. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9732780. [PMID: 27556045 PMCID: PMC4983327 DOI: 10.1155/2016/9732780] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Collapse
Affiliation(s)
- Jing Ying Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Seow Mun Hue
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
47
|
Wirbisky SE, Sepúlveda MS, Weber GJ, Jannasch AS, Horzmann KA, Freeman JL. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish. Toxicol Sci 2016; 153:149-64. [PMID: 27413107 DOI: 10.1093/toxsci/kfw115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments.
Collapse
Affiliation(s)
- Sara E Wirbisky
- *School of Health Sciences, Purdue University, Indiana 47907
| | - Maria S Sepúlveda
- *School of Health Sciences, Purdue University, Indiana 47907 Department of Forestry and Natural Resources, Purdue University, Indiana 47907
| | - Gregory J Weber
- *School of Health Sciences, Purdue University, Indiana 47907
| | | | | | | |
Collapse
|
48
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
49
|
Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol 2015; 57:10-20. [DOI: 10.1016/j.reprotox.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
50
|
Chu L, Li J, Liu Y, Cheng CHK. Gonadotropin Signaling in Zebrafish Ovary and Testis Development: Insights From Gene Knockout Study. Mol Endocrinol 2015; 29:1743-58. [PMID: 26452104 DOI: 10.1210/me.2015-1126] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using the transcription activator-like effectors nucleases-mediated gene knockout technology, we have previously demonstrated that LH signaling is required for oocyte maturation and ovulation but is dispensable for testis development in zebrafish. Here, we have further established the fshb and fshr knockout zebrafish lines. In females, fshb mutant is subfertile, whereas fshr mutant is infertile. Folliculogenesis is partially affected in the fshb mutant but is completely arrested at the primary growth stage in the fshr mutant. In males, fshb and fshr mutant are fertile. The fertilization rate and histological structure of the testis is not affected. However, double knockout of fshb;lhb or fshr;lhr leads to all infertile male offspring. The key steroid hormones and steroidogenic genes are dramatically decreased in double knockout mutant (fshb;lhb and fshr;lhr) but not in single knockout mutant (fshb, lhb, fshr, and lhr) males. Furthermore, we have also demonstrated the constitutive activities of both FSH receptor (FSHR) and LH receptor in zebrafish and the compensatory role of LH by cross-reacting with FSHR in the fshb;lhr double mutant, thus explaining the phenotypic discrepancy observed among the ligand/receptor mutant lines. Taken together, our data established the following models on the roles of gonadotropin signaling in zebrafish gonad development. In females, FSH signaling is mainly responsible for promoting follicular growth, whereas LH signaling is mainly responsible for stimulating oocyte maturation and ovulation. In males, the functions of FSH and LH signaling overlap, and only disruption of both FSH and LH signaling could lead to the infertile phenotype. In the absence of FSH, LH could play a compensatory role by cross-reacting with FSHR in both male and female.
Collapse
Affiliation(s)
- Lianhe Chu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Jianzhen Li
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Yun Liu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Christopher H K Cheng
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|