1
|
Houssein M, Aydın C, Köroğlu EY, Tam AA, Sezer S, Devran Z, Topaloglu O, Ersoy R, Cakir B. Is It Enough to Diagnose Pheochromocytoma by Measuring Urine Metanephrines Levels? Cureus 2024; 16:e69560. [PMID: 39421117 PMCID: PMC11484658 DOI: 10.7759/cureus.69560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
This study aimed to evaluate the diagnostic value of plasma and urinary metanephrines and determine their sensitivity, specificity, and correlation among patients with adrenal lesions, which required a multidisciplinary approach because of size, functional state, or malign appearance. This retrospective study of 152 patients with adrenal lesions was conducted at the Outpatient Clinics of Ankara Bilkent City Hospital at the Department of Endocrinology and Metabolism Diseases between August 2019 and February 2022. These patients were discussed at the Endocrinology and Surgery multidisciplinary council because of their adrenal lesions. Among them, 94 patients underwent adrenal surgery. Thirty patients with histologically proven pheochromocytoma, 36 with cortical nodular hyperplasia, four cases of adrenocortical carcinoma and 24 cases with angiomyolipoma were detected. According to the analysis, the most sensitive test in diagnosing pheochromocytoma was urinary fractionated metanephrine (90%), followed by plasma free metanephrines at 84 %. Conversely, the most specific test was plasma free normetanephrine (91.4%). A statistically significant correlation exists between plasma and urinary metanephrine; plasma normetanephrine levels were also significantly correlated with urine normetanephrine. These findings indicate that plasma and urine metanephrines are sensitive for detecting pheochromocytoma and can be used interchangeably.
Collapse
Affiliation(s)
- Mehdi Houssein
- Endocrinology and Metabolism, Ankara Bilkent City Hospital, Ankara, TUR
| | - Cevdet Aydın
- Endocrinology, Ankara City Hospital, Ankara, TUR
| | | | - Abbas Ali Tam
- Endocrinology and Metabolism, Ankara Yıldırım Beyazıt University School of Medicine, Ankara, TUR
| | - Sevilay Sezer
- Medical Biochemistry, Ankara Bilkent City Hospital, Ankara, TUR
| | - Zeynep Devran
- Public Health, Sakarya Provincial Health Directorate, Presidency of Public Health Services, Sakarya, TUR
| | - Oya Topaloglu
- Endocrinology and Metabolism, Ankara Yıldırım Beyazıt University School of Medicine, Ankara, TUR
| | - Reyhan Ersoy
- Endocrinology and Metabolism, Ankara Yıldırım Beyazıt University School of Medicine, Ankara, TUR
| | - Bekir Cakir
- Endocrinology and Metabolism, Ankara Yıldırım Beyazıt University School of Medicine, Ankara, TUR
| |
Collapse
|
2
|
Lakhani A, Kang DH, Kang YE, Park JO. Toward Systems-Level Metabolic Analysis in Endocrine Disorders and Cancer. Endocrinol Metab (Seoul) 2023; 38:619-630. [PMID: 37989266 PMCID: PMC10764991 DOI: 10.3803/enm.2023.1814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Metabolism is a dynamic network of biochemical reactions that support systemic homeostasis amidst changing nutritional, environmental, and physical activity factors. The circulatory system facilitates metabolite exchange among organs, while the endocrine system finely tunes metabolism through hormone release. Endocrine disorders like obesity, diabetes, and Cushing's syndrome disrupt this balance, contributing to systemic inflammation and global health burdens. They accompany metabolic changes on multiple levels from molecular interactions to individual organs to the whole body. Understanding how metabolic fluxes relate to endocrine disorders illuminates the underlying dysregulation. Cancer is increasingly considered a systemic disorder because it not only affects cells in localized tumors but also the whole body, especially in metastasis. In tumorigenesis, cancer-specific mutations and nutrient availability in the tumor microenvironment reprogram cellular metabolism to meet increased energy and biosynthesis needs. Cancer cachexia results in metabolic changes to other organs like muscle, adipose tissue, and liver. This review explores the interplay between the endocrine system and systems-level metabolism in health and disease. We highlight metabolic fluxes in conditions like obesity, diabetes, Cushing's syndrome, and cancers. Recent advances in metabolomics, fluxomics, and systems biology promise new insights into dynamic metabolism, offering potential biomarkers, therapeutic targets, and personalized medicine.
Collapse
Affiliation(s)
- Aliya Lakhani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Da Hyun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Bancel LP, Masso V, Dessein AF, Aubert S, Leteurtre E, Coppin L, Odou MF, Do Cao C, Cardot-Bauters C, Pigny P. Serum Succinate/Fumarate Ratio in Patients With Paraganglioma/Pheochromocytoma Attending an Endocrine Oncogenetic Unit. J Clin Endocrinol Metab 2023; 108:2343-2352. [PMID: 36848172 DOI: 10.1210/clinem/dgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) with SDHx pathogenic variants (PVs) are characterized by a higher intratissular succinate/fumarate ratio (RS/F) than non-SDHx-mutated ones. Also, an increase in serum succinate levels has been reported in patients with germline SDHB or SDHD PV. OBJECTIVE To assess whether measurement of serum succinate, fumarate levels, and RS/F might aid identification of an SDHx germline PV/likely pathogenic variant (LPV) in patients with PPGL or in asymptomatic relatives; and to guide identification of a PV/LPV among the variants of unknown significance (VUS) identified in SDHx by next-generation sequencing. METHODS This prospective monocentric study included 93 patients attending an endocrine oncogenetic unit for genetic testing. Succinate and fumarate were measured in serum by gas chromatography coupled to mass spectrometry. The RS/F was calculated to assess SDH enzymatic function. Diagnostic performance was assessed by receiver operating characteristic analysis. RESULTS RS/F had a higher discriminant power than succinate alone to identify an SDHx PV/LPV in patients with PPGL. However, SDHD PVs/LPVs are frequently missed. Only RS/F differed between asymptomatic SDHB/SDHD PV/LPV carriers and SDHB/SDHD-linked patients with PPGL. Finally RS/F could be helpful to easily evaluate the functional impact of VUS in SDHx. CONCLUSION Measurement of serum RS/F in patients with PPGL and in asymptomatic relatives is a valuable initial workup tool to detect those carrying a germline PV/LPV in SDHx. Its discriminative power is equal or superior to those of succinate measured alone. SDHD PVs/LPVs are less frequently identified by these biochemical tools. Use of RS/F for SDHx VUS reclassification needs to be evaluated further.
Collapse
Affiliation(s)
- Léo-Paul Bancel
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Vincent Masso
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Anne-Frederique Dessein
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Sébastien Aubert
- CHU Lille, Service d'Anatomie Pathologique, Centre de Biologie Pathologie, F-59037 Lille Cedex, France
| | - Emmanuelle Leteurtre
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to therapies, F-59000 Lille, France
| | - Lucie Coppin
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Marie-Françoise Odou
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Christine Do Cao
- CHU Lille, Service d'Endocrinologie, Diabétologie, Métabolisme, Nutrition, Hôpital Claude Huriez, F-59037 Lille Cedex, France
| | - Catherine Cardot-Bauters
- CHU Lille, Service d'Endocrinologie, Diabétologie, Métabolisme, Nutrition, Hôpital Claude Huriez, F-59037 Lille Cedex, France
| | - Pascal Pigny
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| |
Collapse
|
4
|
Branzoli F, Salgues B, Marjańska M, Laloi-Michelin M, Herman P, Le Collen L, Delemer B, Riancho J, Kuhn E, Jublanc C, Burnichon N, Amar L, Favier J, Gimenez-Roqueplo AP, Buffet A, Lussey-Lepoutre C. SDHx mutation and pituitary adenoma: can in vivo 1H-MR spectroscopy unravel the link? Endocr Relat Cancer 2023; 30:ERC-22-0198. [PMID: 36449569 PMCID: PMC9885742 DOI: 10.1530/erc-22-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequently involved in pheochromocytoma/paraganglioma (PPGL) development and were implicated in patients with the '3PAs' syndrome (associating pituitary adenoma (PA) and PPGL) or isolated PA. However, the causality link between SDHx mutation and PA remains difficult to establish, and in vivo tools for detecting hallmarks of SDH deficiency are scarce. Proton magnetic resonance spectroscopy (1H-MRS) can detect succinate in vivo as a biomarker of SDHx mutations in PGL. The objective of this study was to demonstrate the causality link between PA and SDH deficiency in vivo using 1H-MRS as a novel noninvasive tool for succinate detection in PA. Three SDHx-mutated patients suffering from a PPGL and a macroprolactinoma and one patient with an apparently sporadic non-functioning pituitary macroadenoma underwent MRI examination at 3 T. An optimized 1H-MRS semi-LASER sequence (TR = 2500 ms, TE = 144 ms) was employed for the detection of succinate in vivo. Succinate and choline-containing compounds were identified in the MR spectra as single resonances at 2.44 and 3.2 ppm, respectively. Choline compounds were detected in all the tumors (three PGL and four PAs), while a succinate peak was only observed in the three macroprolactinomas and the three PGL of SDHx-mutated patients, demonstrating SDH deficiency in these tumors. In conclusion, the detection of succinate by 1H-MRS as a hallmark of SDH deficiency in vivo is feasible in PA, laying the groundwork for a better understanding of the biological link between SDHx mutations and the development of these tumors.
Collapse
Affiliation(s)
- Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Center for Neuroimaging Research (CENIR), Paris, France
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, France
| | - Betty Salgues
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marie Laloi-Michelin
- Endocrinology department, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
| | - Philippe Herman
- ENT unit, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris-Cité University, INSERM U1141, Paris, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, University of Lille, Lille, France
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- Department of Genetic, University Hospital Center of Reims, Reims, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- CRESTIC EA 3804, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, Reims, France
| | - Julien Riancho
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
| | - Emmanuelle Kuhn
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Christel Jublanc
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Laurence Amar
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Charlotte Lussey-Lepoutre
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| |
Collapse
|
5
|
Lamy C, Tissot H, Faron M, Baudin E, Lamartina L, Pradon C, Al Ghuzlan A, Leboulleux S, Perfettini JL, Paci A, Hadoux J, Broutin S. Succinate: A Serum Biomarker of SDHB-Mutated Paragangliomas and Pheochromocytomas. J Clin Endocrinol Metab 2022; 107:2801-2810. [PMID: 35948272 DOI: 10.1210/clinem/dgac474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors that are frequently associated with succinate dehydrogenase (SDH) germline mutations. When mutated, SDH losses its function, thus leading to succinate accumulation. OBJECTIVE In this study, we evaluated serum succinate levels as a new metabolic biomarker in SDHx-related carriers. METHODS Retrospective monocentric study of 88 PPGL patients (43 sporadic, 35 SDHB, 10 SDHA/C/D), 17 tumor-free familial asymptomatic carriers (13 SDHB, 4 SDHC/D), and 60 healthy controls. Clinical, biological, and imaging data were reviewed. Serum succinate levels (n = 280) were quantified by an ultra-performance liquid chromatography coupled to a tandem mass spectrometry method and correlated to SDHx mutational status, disease extension, and other biological biomarkers. RESULTS Serum succinate levels > 7 μM allowed identification of tumor-free asymptomatic SDHB-mutated cases compared to a healthy control group (100% specificity; 85% sensitivity). At PPGL diagnosis, SDHB-mutated patients had a significantly increased median succinate level (14 μM) compared to sporadic patients (8 μM) (P < 0.01). Metastatic disease extension was correlated to serum succinate levels (r = 0.81). In the SDHB group, patients displaying highest tumor burdens showed significant increased succinate levels compared to the sporadic group (P < 0.0001). CONCLUSIONS In this pilot study, we showed that serum succinate level is an oncometabolic biomarker that should be useful to identify SDHB-related carriers. Succinate levels are also a marker of metabolic tumor burden in patients with a metastatic PPGL and a potential marker of treatment response and follow-up.
Collapse
Affiliation(s)
- Constance Lamy
- Université Paris-Saclay, Gustave Roussy, Inserm UMR1030, Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Hubert Tissot
- Gustave Roussy, Department of Nuclear Medicine, Villejuif, France
| | - Matthieu Faron
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France
- Gustave Roussy, Department of Digestive Surgery, Villejuif, France
| | - Eric Baudin
- Gustave Roussy, Department of Endocrine Oncology, Villejuif, France
| | - Livia Lamartina
- Gustave Roussy, Department of Endocrine Oncology, Villejuif, France
| | - Caroline Pradon
- Gustave Roussy, Department of Medical Biology and Pathology, Villejuif, France
| | - Abir Al Ghuzlan
- Gustave Roussy, Department of Medical Biology and Pathology, Villejuif, France
| | | | - Jean-Luc Perfettini
- Université Paris-Saclay, Gustave Roussy, Inserm UMR1030, Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 155 Fifth Street, San Francisco, CA 94103, USA
| | - Angelo Paci
- Université Paris-Saclay, Gustave Roussy, Inserm UMR1030, Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy, Department of Medical Biology and Pathology, Villejuif, France
| | - Julien Hadoux
- Gustave Roussy, Department of Endocrine Oncology, Villejuif, France
| | - Sophie Broutin
- Université Paris-Saclay, Gustave Roussy, Inserm UMR1030, Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy, Department of Medical Biology and Pathology, Villejuif, France
| |
Collapse
|
6
|
Serum fatty acid profiling in patients with SDHx mutations: New advances on cellular metabolism in SDH deficiency. Biochimie 2022; 201:196-203. [PMID: 35870552 DOI: 10.1016/j.biochi.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Apart from the oncometabolite succinate, little studies have appeared on extra-mitochondrial pathways in Succinate Dehydrogenase (SDH) genetic deficiency. The role of NADH/NAD+ redox status and dependent pathways was recently emphasized. Therein, fatty acid (FA) metabolism data were collected here in 30 patients with a loss of function (LOF) variant in one SDHx gene (either with a pheochromocytoma/paraganglioma (PPGL) or asymptomatic) and in 22 wild-type SDHx controls (with PPGL or asymptomatic). Blood acylcarnitines in two patients, peroxisomal biomarkers, very long-chain saturated FA (VLCFA), and C20 to C24 n-3 polyunsaturated fatty acids (PUFA), in all patients were measured by mass spectrometry. Preliminary data showed elevated even and odd long- and very long-chain acylcarnitines in two patients with a SDHB variant. In the whole series, no abnormalities were observed in biomarkers of peroxisomal β-oxidation (C27-bile acids, VLCFAs and phytanic/pristanic acids) in SDHx patients. However, an increased hexaene to pentaene PUFA ratio ([TetraHexaenoic Acid + DocosaHexaenoic Acid]/[n-3 DocosaPentaenoic Acid + EicosaPentaenoic Acid]) was noticed in patients with SDHC/SDHD variants vs patients with SDHA/SDHB variants or controls, suggesting a higher degree of unsaturation of PUFAs. Within the group with a SDHx variant, Eicosapentaenoate/Tetracosahexaenoate ratio, as an empiric index of shortening/elongation balance, discriminated patients with PPGL from asymptomatic ones. Present findings argue for stimulated elongation of saturated FAs, changes in shortening/elongation balance and desaturation rates of C20-C24 PUFAs in SDH-deficient patients with PPGL. Overall, oxidation of NADH sustained by these pathways might reflect or impact glycolytic NAD+ recycling and hence tumor proliferation.
Collapse
|
7
|
Armstrong N, Storey CM, Noll SE, Margulis K, Soe MH, Xu H, Yeh B, Fishbein L, Kebebew E, Howitt BE, Zare RN, Sage J, Annes JP. SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Rep 2022; 38:110453. [PMID: 35235785 PMCID: PMC8939053 DOI: 10.1016/j.celrep.2022.110453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.
Collapse
Affiliation(s)
- Neali Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Claire M Storey
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Myat Han Soe
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | | | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA; Endocrine Oncology Program, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
The Role of the Metabolome and Non-Coding RNA on Pheochromocytomas and Paragangliomas: An Update. Metabolites 2022; 12:metabo12020131. [PMID: 35208206 PMCID: PMC8880811 DOI: 10.3390/metabo12020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Pheochromocytoma and paragangliomas (PPGL) are rare neuroendocrine tumors. In some patients they exhibit malignant behavior characterized by the presence of metastases, limiting treatment options and survival rates. Therapeutic options are limited to surgery, localized radiotherapy, and a few systemic therapies. However, in several recent studies, non-coding RNA molecules are gaining increasing attention as markers of malignancy for PPGL. The understanding of PPGL development molecular mechanisms has improved in the last years, with some of the epigenetic regulatory mechanisms such as DNA and histones methylation, being better understood than RNA-based mechanisms. Metabolome deregulation in PPGL, with increased synthesis of molecules that facilitated tumor growth, results from the activation of hypoxia signaling pathways, affecting tumorigenesis. In addition, the assessment of these metabolites can be useful for the management of these tumors. This review summarizes recent discoveries linking metabolome and non-coding RNA to PPGL and their relevance for diagnosis and therapeutics.
Collapse
|
9
|
Lamy C, Mansard C, Blondel L, Mercier L, Paci A, Broutin S. Quantification of succinic acid levels, linked to succinate dehydrogenase (SDH) dysfunctions, by an automated and fully validated liquid chromatography tandem mass spectrometry method suitable for multi-matrix applications. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1189:123085. [PMID: 34974318 DOI: 10.1016/j.jchromb.2021.123085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022]
Abstract
The hallmarks of cancer include metabolism with deregulating cellular energetics. Dysfunctions in succinate dehydrogenase (SDH) metabolic enzyme activity, leading to an abnormal accumulation of succinic acid has been described in solid tumors but also in inflammation and ischemia reperfusion injury. Succinic acid is a potential biomarker of SDH related pathologies for diagnostic, evaluation of treatment response and follow-up of the disease. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method allowing a rapid, accurate and precise quantification of succinic acid levels in clinical (serum, urine) and preclinical (cellular pellets, supernatants) samples. 13C4 succinic acid disodium salt was used as internal standard and added to samples before a solid phase extraction (SPE) on Phenomenex STRATATM XL-A (200 mg - 3 mL) 33 µm cartridges. This method is automated by a Freedom EVO® platform from TECAN and succinic acid is separated on a C18 column combined to a Xevo® TQ-S micro Waters mass spectrometer with electrospray ionization (ESI) source. This biomedical analysis allows standard curves to be linear over the range 1.0-135.5 µM with r2 values > 0.999 and low matrix effects (<9.1 %). This method, which is validated according updated European Medicine Agency (EMA) guidelines, is accurate between-run (<11.0 %) and within-run (<7.8 %), precise between-run (<14.4 CV %) and within-run (<3.7 CV %), and is suitable for clinical and preclinical applications.
Collapse
Affiliation(s)
- Constance Lamy
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France
| | - Clémence Mansard
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Louis Blondel
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Lionel Mercier
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France
| | - Angelo Paci
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France; Service de pharmacocinétique, Faculté de pharmacie, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Sophie Broutin
- Gustave Roussy, Service de Pharmacologie, Département de biologie et pathologie médicales, F-94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM1030, Radiothérapie moléculaire et innovation thérapeutique, F-94805 Villejuif, France.
| |
Collapse
|
10
|
Mookerjee SA, Gerencser AA, Watson MA, Brand MD. Controlled power: how biology manages succinate-driven energy release. Biochem Soc Trans 2021; 49:2929-2939. [PMID: 34882231 PMCID: PMC8786295 DOI: 10.1042/bst20211032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Oxidation of succinate by mitochondria can generate a higher protonmotive force (pmf) than can oxidation of NADH-linked substrates. Fundamentally, this is because of differences in redox potentials and gearing. Biology adds kinetic constraints that tune the oxidation of NADH and succinate to ensure that the resulting mitochondrial pmf is suitable for meeting cellular needs without triggering pathology. Tuning within an optimal range is used, for example, to shift ATP consumption between different consumers. Conditions that overcome these constraints and allow succinate oxidation to drive pmf too high can cause pathological generation of reactive oxygen species. We discuss the thermodynamic properties that allow succinate oxidation to drive pmf higher than NADH oxidation, and discuss the evidence for kinetic tuning of ATP production and for pathologies resulting from substantial succinate oxidation in vivo.
Collapse
Affiliation(s)
- Shona A. Mookerjee
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, U.S.A
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | | | | | - Martin D. Brand
- Department of Biological and Pharmaceutical Sciences, Touro University California College of Pharmacy, Vallejo, CA, U.S.A
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| |
Collapse
|
11
|
Abstract
Dysregulation of DNA damage response and repair (DDR) contributes to oncogenesis, yet also generates the potential for targeted cancer therapies by exploiting synthetic lethal interactions. Oncometabolites, small intermediates of metabolism overproduced in certain cancers, have emerged as a new mechanism of DDR modulation through their effects on multiple DNA repair pathways. Increasing evidence suggests that oncometabolite-induced DDR defects may offer the opportunity for tumor-selective chemo- and radio-sensitization. Here we review the biology of oncometabolites and diverse mechanisms by which they impact DDR, with a focus on emerging therapeutic strategies and ongoing clinical trials targeting oncometabolite-induced DDR defects in cancer.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
12
|
Asensio AF, Alvarez-González E, Rodríguez A, Sierra LM, Blanco-González E. Chromatographic methods coupled to mass spectrometry for the determination of oncometabolites in biological samples-A review. Anal Chim Acta 2021; 1177:338646. [PMID: 34482900 DOI: 10.1016/j.aca.2021.338646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
It is now well-established that dysregulation of the tricarboxylic acid (TCA) cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase leads to the abnormal cellular accumulation of succinate, fumarate, and 2-hydroxyglutarate, respectively, which contribute to the formation and malignant progression of numerous types of cancers. Thus, these metabolites, called oncometabolites, could potentially be useful as tumour-specific biomarkers and as therapeutic targets. For this reason, the development of analytical methodologies for the accurate identification and determination of their levels in biological matrices is an important task in the field of cancer research. Currently, hyphenated gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) techniques are the most powerful analytical tools in what concerns high sensitivity and selectivity to achieve such difficult task. In this review, we first provide a brief description of the biological formation of oncometabolites and their oncogenic properties, and then we present an overview and critical assessment of the GC-MS and LC-MS based analytical approaches that are reported in the literature for the determination of oncometabolites in biological samples, such as biofluids, cells, and tissues. Advantages and drawbacks of these approaches will be comparatively discussed. We believe that the present review represents the first attempt to summarize the applications of these hyphenated techniques in the context of oncometabolite analysis, which may be useful to new and existing researchers in this field.
Collapse
Affiliation(s)
- A Fernández Asensio
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería 8, 33006, Oviedo. Spain; Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - E Alvarez-González
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - A Rodríguez
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - L M Sierra
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - E Blanco-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería 8, 33006, Oviedo. Spain.
| |
Collapse
|
13
|
Goncalves J, Moog S, Morin A, Gentric G, Müller S, Morrell AP, Kluckova K, Stewart TJ, Andoniadou CL, Lussey-Lepoutre C, Bénit P, Thakker A, Vettore L, Roberts J, Rodriguez R, Mechta-Grigoriou F, Gimenez-Roqueplo AP, Letouzé E, Tennant DA, Favier J. Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Res 2021; 81:3480-3494. [PMID: 34127497 PMCID: PMC7616967 DOI: 10.1158/0008-5472.can-20-2936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.
Collapse
Affiliation(s)
- Judith Goncalves
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Sophie Moog
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Aurélie Morin
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
| | - Géraldine Gentric
- Stress and Cancer Laboratory, Institut Curie, Equipe Labellisée par la Ligue Nationale contre le Cancer, Inserm U830, PSL Research University, Paris France
| | - Sebastian Müller
- Chemical Biology of Cancer Team, Equipe Labellisée par la Ligue Contre le Cancer, PSL Research University, CNRS UMR3666 -INSERM U1143, Institut Curie, Paris, France
| | - Alexander P Morrell
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Theodora J Stewart
- London Metallomics Facility, King's College London and Imperial College London, London, United Kingdom
| | - Cynthia L Andoniadou
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London
| | - Charlotte Lussey-Lepoutre
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Sorbonne Université, Pitie-Salpêtrière Hospital, Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Paule Bénit
- Université de Paris, INSERM, UMR 1141, Hôpital Robert Debré, Paris, France
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Lisa Vettore
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Team, Equipe Labellisée par la Ligue Contre le Cancer, PSL Research University, CNRS UMR3666 -INSERM U1143, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, Equipe Labellisée par la Ligue Nationale contre le Cancer, Inserm U830, PSL Research University, Paris France
| | - Anne-Paule Gimenez-Roqueplo
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France
- Université de Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris France
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, \United Kingdom
| | - Judith Favier
- PARCC, INSERM UMR970, Equipe Labellisée par la Ligue Contre le Cancer, Paris, France.
- Université de Paris, Paris, France
| |
Collapse
|
14
|
Abstract
Abdominal paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors of the infradiaphragmatic paraganglia and adrenal medulla, respectively. Although few pathologists outside of endocrine tertiary centers will ever diagnose such a lesion, the tumors are well known through the medical community-possible due to a combination of the sheer rarity, their often-spectacular presentation due to excess catecholamine secretion as well as their unrivaled coupling to constitutional susceptibility gene mutations and hereditary syndromes. All PPGLs are thought to harbor malignant potential, and therefore pose several challenges to the practicing pathologist. Specifically, a responsible diagnostician should recognize both the capacity and limitations of histological, immunohistochemical, and molecular algorithms to pinpoint high risk for future metastatic disease. This focused review aims to provide the surgical pathologist with a condensed update regarding the current strategies available in order to deliver an accurate prognostication of these enigmatic lesions.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
15
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
16
|
März J, Kurlbaum M, Roche-Lancaster O, Deutschbein T, Peitzsch M, Prehn C, Weismann D, Robledo M, Adamski J, Fassnacht M, Kunz M, Kroiss M. Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors. Front Endocrinol (Lausanne) 2021; 12:722656. [PMID: 34557163 PMCID: PMC8453166 DOI: 10.3389/fendo.2021.722656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. OBJECTIVE Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. DESIGN Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. PATIENTS Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. RESULTS Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines.By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling. CONCLUSIONS The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.
Collapse
Affiliation(s)
- Juliane März
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital, Würzburg, Germany
- *Correspondence: Matthias Kroiss, ; Max Kurlbaum,
| | - Oisin Roche-Lancaster
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- Medicover Oldenburg Medizinisches Versorgungszentrum (MVZ), Oldenburg, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dirk Weismann
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, Madrid, Spain
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital, Würzburg, Germany
- Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
- Core Unit Clinical Mass Spectrometry, University Hospital, Würzburg, Germany
- Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
- *Correspondence: Matthias Kroiss, ; Max Kurlbaum,
| |
Collapse
|
17
|
Matlac DM, Hadrava Vanova K, Bechmann N, Richter S, Folberth J, Ghayee HK, Ge GB, Abunimer L, Wesley R, Aherrahrou R, Dona M, Martínez-Montes ÁM, Calsina B, Merino MJ, Schwaninger M, Deen PMT, Zhuang Z, Neuzil J, Pacak K, Lehnert H, Fliedner SMJ. Succinate Mediates Tumorigenic Effects via Succinate Receptor 1: Potential for New Targeted Treatment Strategies in Succinate Dehydrogenase Deficient Paragangliomas. Front Endocrinol (Lausanne) 2021; 12:589451. [PMID: 33776908 PMCID: PMC7994772 DOI: 10.3389/fendo.2021.589451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paragangliomas and pheochromocytomas (PPGLs) are chromaffin tumors associated with severe catecholamine-induced morbidities. Surgical removal is often curative. However, complete resection may not be an option for patients with succinate dehydrogenase subunit A-D (SDHx) mutations. SDHx mutations are associated with a high risk for multiple recurrent, and metastatic PPGLs. Treatment options in these cases are limited and prognosis is dismal once metastases are present. Identification of new therapeutic targets and candidate drugs is thus urgently needed. Previously, we showed elevated expression of succinate receptor 1 (SUCNR1) in SDHB PPGLs and SDHD head and neck paragangliomas. Its ligand succinate has been reported to accumulate due to SDHx mutations. We thus hypothesize that autocrine stimulation of SUCNR1 plays a role in the pathogenesis of SDHx mutation-derived PPGLs. We confirmed elevated SUCNR1 expression in SDHx PPGLs and after SDHB knockout in progenitor cells derived from a human pheochromocytoma (hPheo1). Succinate significantly increased viability of SUCNR1-transfected PC12 and ERK pathway signaling compared to control cells. Candidate SUCNR1 inhibitors successfully reversed proliferative effects of succinate. Our data reveal an unrecognized oncometabolic function of succinate in SDHx PPGLs, providing a growth advantage via SUCNR1.
Collapse
Affiliation(s)
- Dieter M. Matlac
- Neuroendocrine Oncology and Metabolism, Medical Department I, Center of Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Katerina Hadrava Vanova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julica Folberth
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Hans K. Ghayee
- Department of Medicine, Division of Endocrinology, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luma Abunimer
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- Department of Biomedical Engineering, Centre for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Margo Dona
- Division of Endocrinology 471, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ángel M. Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria J. Merino
- Laboratory of Surgical Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Hendrik Lehnert
- Neuroendocrine Oncology and Metabolism, Medical Department I, Center of Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Stephanie M. J. Fliedner
- Neuroendocrine Oncology and Metabolism, Medical Department I, Center of Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
- *Correspondence: Stephanie M. J. Fliedner,
| |
Collapse
|
18
|
Marden JH, Langford EA, Robertson MA, Fescemyer HW. Alleles in metabolic and oxygen-sensing genes are associated with antagonistic pleiotropic effects on life history traits and population fitness in an ecological model insect. Evolution 2020; 75:116-129. [PMID: 32895932 DOI: 10.1111/evo.14095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023]
Abstract
Genes with opposing effects on fitness at different life stages are the mechanistic basis for evolutionary theories of aging and life history. Examples come from studies of mutations in model organisms, but there is little knowledge of genetic bases of life history tradeoffs in natural populations. Here, we test the hypothesis that alleles affecting oxygen sensing in Glanville fritillary butterflies have opposing effects on larval versus adult fitness-related traits. Intermediate-frequency alleles in Succinate dehydrogenase d, and to a lesser extent Hypoxia inducible factor 1α, are associated in larvae with variation in metabolic rate and activation of the hypoxia inducible factor (HIF) pathway, which affects tracheal development and delivery of oxygen to adult flight muscles. A dominant Sdhd allele is likely to cause antagonistic pleiotropy for fitness through its opposing effects on larval metabolic and growth rate versus adult flight and dispersal, and may have additional effects arising from sensitivity to low-iron host plants. Prior results in Glanville fritillaries indicate that fitness of alleles in Sdhd and another antagonistically pleiotropic metabolic gene, Phosphoglucose isomerase, depend strongly on the size and distribution of host plant patches. Hence, these intermediate-frequency alleles are involved in ecoevolutionary dynamics involving life history tradeoffs.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University.,Huck Institutes of the Life Sciences, Pennsylvania State University
| | | | | | | |
Collapse
|
19
|
Sarkadi B, Meszaros K, Krencz I, Canu L, Krokker L, Zakarias S, Barna G, Sebestyen A, Papay J, Hujber Z, Butz H, Darvasi O, Igaz P, Doczi J, Luconi M, Chinopoulos C, Patocs A. Glutaminases as a Novel Target for SDHB-Associated Pheochromocytomas/Paragangliomas. Cancers (Basel) 2020; 12:E599. [PMID: 32150977 PMCID: PMC7139890 DOI: 10.3390/cancers12030599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 01/08/2023] Open
Abstract
Pheochromocytoma/paragangliomas (Pheo/PGL) are rare endocrine cancers with strong genetic background. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) predispose patients to malignant disease with limited therapeutic options and poor prognosis. Using a host of cellular and molecular biology techniques in 2D and 3D cell culture formats we show that SDH inhibition had cell line specific biological and biochemical consequences. Based on our studies performed on PC12 (rat chromaffin cell line), Hela (human cervix epithelial cell line), and H295R (human adrenocortical cell line) cells, we demonstrated that chromaffin cells were not affected negatively by the inhibition of SDH either by siRNA directed against SDHB or treatment with SDH inhibitors (itaconate and atpenin A5). Cell viability and intracellular metabolite measurements pointed to the cell line specific consequences of SDH impairment and to the importance of glutamate metabolism in chromaffin cells. A significant increase in glutaminase-1 (GLS-1) expression after SDH impairment was observed in PC12 cells. GLS-1 inhibitor BPTES was capable of significantly decreasing proliferation of SDH impaired PC12 cells. Glutaminase-1 and SDHB expressions were tested in 35 Pheo/PGL tumor tissues. Expression of GLS1 was higher in the SDHB low expressed group compared to SDHB high expressed tumors. Our data suggest that the SDH-associated malignant potential of Pheo/PGL is strongly dependent on GLS-1 expression and glutaminases may be novel targets for therapy.
Collapse
Affiliation(s)
- Balazs Sarkadi
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
| | - Katalin Meszaros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Ildiko Krencz
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.)
| | - Lilla Krokker
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Sara Zakarias
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
| | - Gabor Barna
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Anna Sebestyen
- Bionics Innovation Center, 1088 Budapest, Hungary;
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Judit Papay
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Zoltan Hujber
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Henriett Butz
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| | - Otto Darvasi
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Peter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Judit Doczi
- Department of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary; (J.D.); (C.C.)
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.)
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary; (J.D.); (C.C.)
| | - Attila Patocs
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
20
|
Abstract
Pheochromocytomas are rare tumors originating in the adrenal medulla. They may be sporadic or in the context of a hereditary syndrome. A considerable number of pheochromocytomas carry germline or somatic gene mutations, which are inherited in the autosomal dominant way. All patients should undergo genetic testing. Symptoms are due to catecholamines over production or to a mass effect. Diagnosis is confirmed by raised plasma or urine metanephrines or normetanephrines. Radiology assists in the tumor location and any local invasion or metastasis. All the patients should have preoperative preparation with α-blockers and/or other medications to control hypertension, arrhythmia, and volume expansion. Surgery is the definitive treatment. Follow up should be life-long.
Collapse
|
21
|
Antonio K, Valdez MMN, Mercado-Asis L, Taïeb D, Pacak K. Pheochromocytoma/paraganglioma: recent updates in genetics, biochemistry, immunohistochemistry, metabolomics, imaging and therapeutic options. Gland Surg 2020; 9:105-123. [PMID: 32206603 DOI: 10.21037/gs.2019.10.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs), rare chromaffin/neural crest cell tumors, are commonly benign in their clinical presentation. However, there are a number of cases presenting as metastatic and their diagnosis and management becomes a dilemma because of their rarity. PPGLs are constantly evolving entities in the field of endocrinology brought about by endless research and discoveries, especially in genetics. Throughout the years, our knowledge and perception of these tumors and their genetic background has greatly expanded and changed, and each new discovery leads to advancement in the diagnosis, treatment and follow-up of PPGLs. In this review, we discuss the recent updates in the genetics, biochemistry, immunohistochemistry, metabolomics, imaging and treatment options of PPGLs.
Collapse
Affiliation(s)
- Karren Antonio
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Division of Endocrinology, University of Santo Tomas Hospital, Manila, Philippines
| | - Ma Margarita Noreen Valdez
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Division of Endocrinology, University of Santo Tomas Hospital, Manila, Philippines
| | | | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Dwight T, Kim E, Novos T, Clifton-Bligh RJ. Metabolomics in the Diagnosis of Pheochromocytoma and Paraganglioma. Horm Metab Res 2019; 51:443-450. [PMID: 31307108 DOI: 10.1055/a-0926-3790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Metabolomics refers to the detection and measurement of small molecules (metabolites) within biological systems, and is therefore a powerful tool for identifying dysfunctional cellular physiologies. For pheochromocytomas and paragangliomas (PPGLs), metabolomics has the potential to become a routine addition to histology and genomics for precise diagnostic evaluation. Initial metabolomic studies of ex vivo tumors confirmed, as expected, succinate accumulation in PPGLs associated with pathogenic variants in genes encoding succinate dehydrogenase subunits or their assembly factors (SDHx). Metabolomics has now shown utility in clarifying SDHx variants of uncertain significance, as well as the accurate diagnosis of PPGLs associated with fumarate hydratase (FH), isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH2) and aspartate transaminase (GOT2). The emergence of metabolomics resembles the advent of genetic testing in this field, which began with single-gene discoveries in research laboratories but is now done by standardized massively parallel sequencing (targeted panel/exome/genome testing) in pathology laboratories governed by strict credentialing and governance requirements. In this setting, metabolomics is poised for rapid translation as it can utilize existing infrastructure, namely liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the measurement of catecholamine metabolites. Metabolomics has also proven tractable to in vivo diagnosis of SDH-deficient PPGLs using magnetic resonance spectroscopy (MRS). The future of metabolomics - embedded as a diagnostic tool - will require adoption by pathologists to shepherd development of standardized assays and sample preparation, reference ranges, gold standards, and credentialing.
Collapse
Affiliation(s)
- Trisha Dwight
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, Australia
- University of Sydney, Sydney, Australia
| | - Edward Kim
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, Australia
- University of Sydney, Sydney, Australia
| | - Talia Novos
- Clinical Chemistry, South Eastern Area Laboratory Services Pathology, Prince of Wales Private Hospital, Randwick, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, Australia
- University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
23
|
Eijkelenkamp K, Osinga TE, Links TP, van der Horst-Schrivers ANA. Clinical implications of the oncometabolite succinate in SDHx-mutation carriers. Clin Genet 2019; 97:39-53. [PMID: 30977114 PMCID: PMC6972524 DOI: 10.1111/cge.13553] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
Succinate dehydrogenase (SDH) mutations lead to the accumulation of succinate, which acts as an oncometabolite. Germline SDHx mutations predispose to paraganglioma (PGL) and pheochromocytoma (PCC), as well as to renal cell carcinoma and gastro‐intestinal stromal tumors. The SDHx genes were the first tumor suppressor genes discovered which encode for a mitochondrial enzyme, thereby supporting Otto Warburg's hypothesis in 1926 that a direct link existed between mitochondrial dysfunction and cancer. Accumulation of succinate is the hallmark of tumorigenesis in PGL and PCC. Succinate accumulation inhibits several α‐ketoglutarate dioxygenases, thereby inducing the pseudohypoxia pathway and causing epigenetic changes. Moreover, SDH loss as a consequence of SDHx mutations can lead to reprogramming of cell metabolism. Metabolomics can be used as a diagnostic tool, as succinate and other metabolites can be measured in tumor tissue, plasma and urine with different techniques. Furthermore, these pathophysiological characteristics provide insight into therapeutic targets for metastatic disease. This review provides an overview of the pathophysiology and clinical implications of oncometabolite succinate in SDHx mutations.
Collapse
Affiliation(s)
- Karin Eijkelenkamp
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thamara E Osinga
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thera P Links
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk N A van der Horst-Schrivers
- Department of Endocrinology and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Papathomas TG, Sun N, Chortis V, Taylor AE, Arlt W, Richter S, Eisenhofer G, Ruiz-Babot G, Guasti L, Walch AK. Novel methods in adrenal research: a metabolomics approach. Histochem Cell Biol 2019; 151:201-216. [PMID: 30725173 DOI: 10.1007/s00418-019-01772-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Metabolic alterations have implications in a spectrum of tissue functions and disease. Aided by novel molecular biological and computational tools, our understanding of physiological and pathological processes underpinning endocrine and endocrine-related disease has significantly expanded over the last decade. Herein, we focus on novel metabolomics-related methodologies in adrenal research: in situ metabolomics by mass spectrometry imaging, steroid metabolomics by gas and liquid chromatography-mass spectrometry, energy pathway metabologenomics by liquid chromatography-mass spectrometry-based metabolomics of Krebs cycle intermediates, and cellular reprogramming to generate functional steroidogenic cells and hence to modulate the steroid metabolome. All four techniques to assess and/or modulate the metabolome in biological systems provide tremendous opportunities to manage neoplastic and non-neoplastic disease of the adrenal glands in the era of precision medicine. In this context, we discuss emerging clinical applications and/or promising metabolic-driven research towards diagnostic, prognostic, predictive and therapeutic biomarkers in tumours arising from the adrenal gland and extra-adrenal paraganglia as well as modern approaches to delineate and reprogram adrenal metabolism.
Collapse
Affiliation(s)
- Thomas G Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vasileios Chortis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Susan Richter
- Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Gerard Ruiz-Babot
- Department of Internal Medicine III, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| |
Collapse
|
25
|
Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nat Commun 2018; 9:2221. [PMID: 29880867 PMCID: PMC5992162 DOI: 10.1038/s41467-018-04603-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 05/07/2018] [Indexed: 01/07/2023] Open
Abstract
Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CIIlow, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CIIlow leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CIIlow is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy. Mitochondrial complex II is normally composed of four subunits. Here the authors show that bioenergetic stress conditions give rise to a partially assembled variant of complex II, which shifts the anabolic pathways to less energy demanding processes.
Collapse
|
26
|
Kluckova K, Tennant DA. Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma. Cell Tissue Res 2018; 372:367-378. [PMID: 29450727 PMCID: PMC5915505 DOI: 10.1007/s00441-018-2801-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Hypoxia is a critical driver of cancer pathogenesis, directly inducing malignant phenotypes such as epithelial-mesenchymal transition, stem cell-like characteristics and metabolic transformation. However, hypoxia-associated phenotypes are often observed in cancer in the absence of hypoxia, a phenotype known as pseudohypoxia, which is very well documented in specific tumour types, including in paraganglioma/pheochromocytoma (PPGL). Approximately 40% of the PPGL tumours carry a germ line mutation in one of a number of susceptibility genes of which those that are found in succinate dehydrogenase (SDH) or in von Hippel-Lindau (VHL) genes manifest a strong pseudohypoxic phenotype. Mutations in SDH are oncogenic, forming tumours in a select subset of tissues, but the cause for this remains elusive. Although elevated succinate levels lead to increase in hypoxia-like signalling, there are other phenotypes that are being increasingly recognised in SDH-mutated PPGL, such as DNA hypermethylation. Further, recently unveiled changes in metabolic re-wiring of SDH-deficient cells might help to decipher cancer related roles of SDH in the future. In this review, we will discuss the various implications that the malfunctioning SDH can have and its impact on cancer development.
Collapse
Affiliation(s)
- Katarina Kluckova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
27
|
Pheochromocytoma and paraganglioma: genotype versus anatomic location as determinants of tumor phenotype. Cell Tissue Res 2018; 372:347-365. [DOI: 10.1007/s00441-017-2760-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
|
28
|
Taïeb D, Pacak K. New Insights into the Nuclear Imaging Phenotypes of Cluster 1 Pheochromocytoma and Paraganglioma. Trends Endocrinol Metab 2017; 28:807-817. [PMID: 28867159 PMCID: PMC5673583 DOI: 10.1016/j.tem.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) belong to the family of neural crest cell-derived neoplasms. In up to 70% of cases they are associated with germline and somatic mutations in 15 well-characterized PPGL driver or fusion genes. PPGLs can be grouped into three main clusters, where cluster 1 includes PPGLs characterized by a pseudohypoxic signature. Although cluster 1 tumors share several common features, they exhibit unique behaviors. We present here unique insights into the imaging phenotypes of cluster 1 PPGLs based on glucose uptake, catecholamine metabolism, and somatostatin receptor expression. Recent data suggest that succinate is a major player in the imaging phenotype of succinate dehydrogenase-deficient PPGLs. This review emphasizes the emerging stromal cell-succinate interaction and highlights new perspectives in PPGL theranostics.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, Marseille, France.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Garrigue P, Bodin-Hullin A, Balasse L, Fernandez S, Essamet W, Dignat-George F, Pacak K, Guillet B, Taïeb D. The Evolving Role of Succinate in Tumor Metabolism: An 18F-FDG-Based Study. J Nucl Med 2017; 58:1749-1755. [PMID: 28619735 DOI: 10.2967/jnumed.117.192674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
In recent years, inherited and acquired mutations in the tricarboxylic acid (TCA) cycle enzymes have been reported in diverse cancers. Pheochromocytomas and paragangliomas often exhibit dysregulation of glucose metabolism, which is also driven by mutations in genes encoding the TCA cycle enzymes or by activation of hypoxia signaling. Pheochromocytomas and paragangliomas associated with succinate dehydrogenase (SDH) deficiency are characterized by high 18F-FDG avidity. This association is currently only partially explained. Therefore, we hypothesized that accumulation of succinate due to the TCA cycle defect could be the major connecting hub between SDH-mutated tumors and the 18F-FDG uptake profile. Methods: To test whether succinate modifies the 18F-FDG metabolic profile of tumors, we performed in vitro and in vivo (small-animal PET/CT imaging and autoradiography) experiments in the presence of succinate, fumarate, and phosphate-buffered saline (PBS) in different cell models. As a control, we also evaluated the impact of succinate on 18F-fluorocholine uptake and retention. Glucose transporter 1 (GLUT1) immunohistochemistry was performed to assess whether 18F-FDG uptake correlates with GLUT1 staining. Results: Intratumoral injection of succinate significantly increased 18F-FDG uptake at 24 h on small-animal PET/CT imaging and autoradiography. No effect of succinate was observed on cancer cells in vitro, but interestingly, we found that succinate caused increased 18F-FDG uptake by human umbilical vein endothelial cells in a concentration-dependent manner. No significant effect was observed after intratumoral injection of fumarate or PBS. Succinate, fumarate, and PBS have no effect on cell viability, regardless of cell lineage. Intramuscular injection of succinate also significantly increases 18F-FDG uptake by muscle when compared with either PBS or fumarate, highlighting the effect of succinate on connective tissues. No difference was observed between PBS and succinate on 18F-fluorocholine uptake in the tumor and muscle and on hind limb blood flow. GLUT1 expression quantification did not significantly differ between the study groups. Conclusion: The present study shows that succinate stimulates 18F-FDG uptake by endothelial cells, a finding that partially explains the 18F-FDG metabotype observed in tumors with SDH deficiency. Although this study is an 18F-FDG-based approach, it provides an impetus to better characterize the determinants of 18F-FDG uptake in various tumors and their surrounding microenvironment, with a special emphasis on the role of tumor-specific oncometabolites.
Collapse
Affiliation(s)
- Philippe Garrigue
- Aix-Marseille University, INSERM, UMR-S 1076, Marseille, France.,Aix-Marseille University, CERIMED, Marseille, France.,Department of Nuclear Medicine, Aix-Marseille University, Marseille, France
| | | | - Laure Balasse
- Aix-Marseille University, INSERM, UMR-S 1076, Marseille, France.,Aix-Marseille University, CERIMED, Marseille, France
| | | | - Wassim Essamet
- Department of Neuropathology, APHM Timone, Marseille, France; and
| | | | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Benjamin Guillet
- Aix-Marseille University, INSERM, UMR-S 1076, Marseille, France.,Aix-Marseille University, CERIMED, Marseille, France.,Department of Nuclear Medicine, Aix-Marseille University, Marseille, France
| | - David Taïeb
- Aix-Marseille University, CERIMED, Marseille, France .,Department of Nuclear Medicine, Aix-Marseille University, Marseille, France
| |
Collapse
|
30
|
Abstract
OBJECTIVE Discuss exciting new research in the area of adrenal disorders that has emerged in the last few years. Advances in genetics, biochemical diagnosis, and imaging modalities that have set new standards for diagnosis and treatment are described. METHODS A literature review was conducted on adrenal disorders using PubMed. RESULTS We highlight new developments in adrenal diseases from new genes discovered in aldosterone-producing adenomas, cortisol-producing tumors to pheochromocytomas/paragangliomas. In addition, we discuss new information regarding the question of whether nonfunctional adrenal adenomas are really functional or not. In congenital adrenal hyperplasia, emerging steroids that might be helpful in the near future for diagnostic purposes are discussed. New types of imaging are now available to identify endocrine neoplasms to help clinicians find lesions after biochemical confirmation. CONCLUSION The tremendous knowledge gained thus far in adrenal diseases sets the stage for not only new precision treatment modalities for individualized care but also for prevention. ABBREVIATIONS ACC = adrenal cortical carcinoma; APA = aldosterone-producing adenoma; APCC = aldosterone-producing cell cluster; CAH = congenital adrenal hyperplasia; CT = computed tomography; DOTATATE = [68Ga]-DOTA(0)-Tyr(3)-octreotate; FDG = fluorodeoxyglucose; FH = fumarate hydratase; MR = miner-alocorticoid; MDH2 = malate dehydrogenase 2; PCC = pheochromocytoma; PET = positron emission tomography; PGL = paraganglioma; SCS = subclinical cortisol-secreting; SDHB = succinate dehydrogenase subunit B; TCGA = The Cancer Genome Atlas.
Collapse
|
31
|
Implications of SDHB genetic testing in patients with sporadic pheochromocytoma. Langenbecks Arch Surg 2017; 402:787-798. [PMID: 28229225 DOI: 10.1007/s00423-017-1564-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Succinate dehydrogenase B (SDHB) associated pheochromocytomas (PHEOs) are associated with a higher risk of tumor aggressiveness and malignancy. The aim of the present study was to evaluate (1) the frequency of germline SDHB mutations in apparently sporadic patients with PHEO who undergo preoperative genetic testing and (2) the ability to predict pathogenic mutations. METHODS From 2012 to 2016, 82 patients underwent a PHEO surgical resection. Sixteen were operated in the context of hereditary PHEO and were excluded from analysis. Among the 66 remaining cases, 48 were preoperatively screened for an SDHB mutation. In addition to imaging studies with specific radiopharmaceuticals (123I-MIBG or 18F-FDOPA) for exclusion of multifocality/metastases, 36 patients underwent 18F-FDG PET/CT. RESULTS From the 48 genetically screened patients, genetic testing found a germline SDHB variant in two (4.2%) cases: a variant of unknown significance, exon 1, c.14T>G (p.Val5Gly), and a most likely pathogenic mutation, exon 5, c.440A>G (p.Tyr147Cys), according to in silico analysis. Structural and functional analyses of the protein predicted that p.Tyr147Cys mutant was pathogenic. Both tumors exhibited moderate 18F-FDG PET uptake with similar uptake patterns to non-SDHB mutated PHEOs. The two patients underwent total laparoscopic adrenalectomies. Of the remaining patients, 44 underwent a laparoscopic adrenalectomy, and two had an open approach. Pathological analysis of the tumors from patients bearing two germline SDHB variants revealed a typical PHEO (PASS 0 and 2). Ex-vivo analyses (metabolomics, SDHB immunohistochemistry, loss of heterozygosity analysis) allowed a reclassification of the two SDHB variants as probably non-pathogenic variants. CONCLUSIONS This study illustrates that SDHx mutational analysis can be misleading, even if structural and functional analyses are done. Surgeons should be aware of the difficulty of classifying new SDHB variants prior to implementing SDHB mutation status into a tailored surgical management strategy of a patient.
Collapse
|
32
|
Kim E, Wright MJ, Sioson L, Novos T, Gill AJ, Benn DE, White C, Dwight T, Clifton-Bligh RJ. Utility of the succinate: Fumarate ratio for assessing SDH dysfunction in different tumor types. Mol Genet Metab Rep 2016; 10:45-49. [PMID: 28070496 PMCID: PMC5219629 DOI: 10.1016/j.ymgmr.2016.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/17/2016] [Indexed: 12/14/2022] Open
Abstract
Objective Mutations of genes encoding the four subunits of succinate dehydrogenase (SDH) have been associated with pheochromocytoma and paraganglioma (PPGLs), gastrointestinal stromal tumors (GISTs) and renal cell carcinomas (RCCs). These tumors have not been characterized in a way that reflects severity of SDH dysfunction. Mass spectrometric analysis now allows measurement of metabolites extracted from formalin fixed paraffin embedded (FFPE) specimens. We assess whether SDH deficiency in various tumor types characterized by loss of SDHB protein expression correlates with SDH dysfunction as assessed by the ratio of succinate:fumarate in FFPE specimens. Patients and methods Sections of FFPE tumor specimens from 18 PPGL, 10 GIST and 11 RCC patients with known SDHx mutation status for SDH deficiency were collected for mass spectrometric analysis of succinate and fumarate. Results FFPE samples showed higher succinate:fumarate ratios in SDH-deficient PPGLs compared to SDH-sufficient PPGLs. Similarly, a higher succinate:fumarate ratio was able to distinguish SDH-deficient GISTs and RCCs from their SDH-sufficient counterparts with great selectivity. Interestingly, the cut-off value of the succinate:fumarate ratio was two-folds greater in RCCs than GISTs. Conclusion Analyzing biochemical imbalances preserved in FFPE specimens with mass spectrometry expands the method and sample type repertoire available for characterisation of multiple neoplasias associated with SDH deficiency.
Collapse
Affiliation(s)
- Edward Kim
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Michael Jp Wright
- Clinical Chemistry, South Eastern Area Laboratory Services Pathology, Prince of Wales Private Hospital, Sydney, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Talia Novos
- Clinical Chemistry, South Eastern Area Laboratory Services Pathology, Prince of Wales Private Hospital, Sydney, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Diana E Benn
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Christopher White
- Clinical Chemistry, South Eastern Area Laboratory Services Pathology, Prince of Wales Private Hospital, Sydney, Australia; Department of Endocrinology and Diabetes, Prince of Wales Hospital, Sydney, Australia
| | - Trisha Dwight
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| |
Collapse
|
33
|
18F-fluorodihydroxyphenylalanine PET/CT in pheochromocytoma and paraganglioma: relation to genotype and amino acid transport system L. Eur J Nucl Med Mol Imaging 2016; 44:812-821. [PMID: 27900521 DOI: 10.1007/s00259-016-3586-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE F-FDOPA is a highly sensitive and specific radiopharmaceutical for pheochromocytoma and paraganglioma (PPGL) imaging. However, 18F-FDOPA might be falsely negative in these tumors, especially those related to mutations in succinate dehydrogenase genes (SDHx). The aim of the present study was to evaluate the relationship between expression of L-DOPA transporters and 18F-FDOPA PET imaging results in PPGL. METHODS From 2007 to 2015, 175 patients with non-metastatic PPGL were evaluated by 18F-FDOPA PET/CT for initial diagnosis/staging and follow-up. 18F-FDOPA PET/CT was considered as falsely negative for at least one lesion in 10/126 (8%) patients (two sporadic, six SDHD, two SDHB PPGLs). The mRNA and protein expression levels of CD98hc and LATs were evaluated in samples with different genetic backgrounds and imaging phenotypes. The qRT-PCR and immunohistochemical analyses were performed in 14 and 16 tumor samples, respectively. RESULTS The SDHx mutated samples exhibited a significant decrease in mRNA expression of LAT3 when compared to sporadic PPGLs (P = 0.042). There was also a statistical trend toward decreased CD98hc (P = 0.147) and LAT4 (P = 0.012) levels in SDHx vs sporadic PPGLs. No difference was observed for LAT1/LAT2 mRNA levels. LAT1 protein was expressed in 15 out of 16 (93.75%) SDHx tumors, regardless of the 18F-FDOPA positivity. LAT1 and CD98hc were co-expressed in 6/8 18F-FDOPA-negative PPGLs. In contrast, in one case with absence of LAT1/CD98hc, 18F-FDOPA uptake was positive and attributed to LAT4 expression. CONCLUSIONS We conclude that down-regulation of LAT1/CD98hc cannot explain the imaging phenotype of SDHx-related PPGLs. A reduced activity of LAT1 remains the primary hypothesis possibly due to a modification of intracellular amino acid content which may reduce 18F-FDOPA uptake.
Collapse
|
34
|
Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, Ras C, Seifar RM, van Minderhout I, Cornelisse CJ, Hogendoorn PCW, Breuning MH, Suijker J, Korpershoek E, Kunst HPM, Frizzell N, Devilee P, Bayley JP, Bovée JVMG. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget 2016; 6:38777-88. [PMID: 26472283 PMCID: PMC4770736 DOI: 10.18632/oncotarget.6091] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/26/2015] [Indexed: 12/27/2022] Open
Abstract
Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes and tumor suppressors. Loss-of-function mutations give rise to hereditary paragangliomas/pheochromocytomas and hereditary leiomyomatosis and renal cell carcinoma. Inactivation of SDH and FH results in an abnormal accumulation of their substrates succinate and fumarate, leading to inhibition of numerous α-ketoglutarate dependent dioxygenases, including histone demethylases and the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. To evaluate the distribution of DNA and histone methylation, we used immunohistochemistry to analyze the expression of 5mC, 5-hydroxymethylcytosine (5hmC), TET1, H3K4me3, H3K9me3, and H3K27me3 on tissue microarrays containing paragangliomas/pheochromocytomas (n = 134) and hereditary and sporadic smooth muscle tumors (n = 56) in comparison to their normal counterparts. Our results demonstrate distinct loss of 5hmC in tumor cells in SDH- and FH-deficient tumors. Loss of 5hmC in SDH-deficient tumors was associated with nuclear exclusion of TET1, a known regulator of 5hmC levels. Moreover, increased methylation of H3K9me3 occurred predominantly in the chief cell component of SDH mutant tumors, while no changes were seen in H3K4me3 and H3K27me3, data supported by in vitro knockdown of SDH genes. We also show for the first time that FH-deficient smooth muscle tumors exhibit increased H3K9me3 methylation compared to wildtype tumors. Our findings reveal broadly similar patterns of epigenetic deregulation in both FH- and SDH-deficient tumors, suggesting that defects in genes of the TCA cycle result in common mechanisms of inhibition of histone and DNA demethylases.
Collapse
Affiliation(s)
- Attje S Hoekstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cor Ras
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Reza Maleki Seifar
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ivonne van Minderhout
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees J Cornelisse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martijn H Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johnny Suijker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther Korpershoek
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Pierre Bayley
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Kornaczewski ER, Pointon OP, Burgess JR. Utility of FDG-PET imaging in screening for succinate dehydrogenase B and D mutation-related lesions. Clin Endocrinol (Oxf) 2016; 85:172-9. [PMID: 26776272 DOI: 10.1111/cen.13020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 01/10/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Mutations of the genes encoding succinate dehydrogenase B and D (SDHB, SDHD) are associated with highly penetrant phenotypes, including paragangliomas and phaeochromocytomas. Patients with these mutations require lifelong surveillance; however, there is currently ambiguity regarding the optimal screening regimen. We sought to determine the utility of fluorodeoxyglucose (18F) positron emission tomography (18F-FDG PET) imaging, compared to other modalities for detecting SDHB and SDHD mutation-related lesions. DESIGN A retrospective audit of patients with SDHB or SDHD mutation. PATIENTS All adult patients with confirmed SDHB and SDHD mutations who underwent 18F-FDG PET/CT at our institution between 1 July 2011 and 30 May 2015. MEASUREMENTS 18F-FDG PET/computed tomography (CT) performed during surveillance of patients with SDHB and SDHD mutations. Lesion numbers and locations detected by 18F-FDG PET were compared to those identified on the CT component, as well as other imaging modalities and histology when available. RESULTS Thirty-one 18F-FDG PET/CT studies were completed on 22 patients. For SDHB (20 patients), there were five positive and 21 negative studies. There were no false-negative 18F-FDG PET studies. Positive 18F-FDG PET findings correlated with magnetic resonance imaging (MRI), CT and [68 Ga]-DOTA(0)-Tyr(3)-octreotate (68 Ga DOTATATE PET/CT) imaging with no missed lesions; the only potential false-positive result relating to nonspecific postoperative changes (sensitivity 100·0%, specificity 95·5%). For SDHD (two patients), lesions were detected on 18F-FDG PET and correlated with other imaging in three of five studies. Metastatic lesions were incompletely visualized on 18F-FDG PET but were detected on the noncontrast fusion CT. CONCLUSIONS 18F-FDG PET/CT is suitable for detecting SDHB and SDHD mutation-related lesions and may be considered effective for periodic surveillance of patients with these mutations.
Collapse
Affiliation(s)
- E R Kornaczewski
- Department of Diabetes & Endocrinology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - O P Pointon
- Department of Nuclear Medicine, Royal Hobart Hospital, Hobart, TAS, Australia
| | - J R Burgess
- Department of Diabetes & Endocrinology, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
36
|
(18)F-DOPA: the versatile radiopharmaceutical. Eur J Nucl Med Mol Imaging 2016; 43:1187-9. [PMID: 26966122 DOI: 10.1007/s00259-016-3354-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/23/2023]
|
37
|
Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1086-1101. [PMID: 26971832 DOI: 10.1016/j.bbabio.2016.03.012] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022]
Abstract
Succinate is an important metabolite at the cross-road of several metabolic pathways, also involved in the formation and elimination of reactive oxygen species. However, it is becoming increasingly apparent that its realm extends to epigenetics, tumorigenesis, signal transduction, endo- and paracrine modulation and inflammation. Here we review the pathways encompassing succinate as a metabolite or a signal and how these may interact in normal and pathological conditions.(1).
Collapse
|
38
|
Saxena N, Maio N, Crooks DR, Ricketts CJ, Yang Y, Wei MH, Fan TWM, Lane AN, Sourbier C, Singh A, Killian JK, Meltzer PS, Vocke CD, Rouault TA, Linehan WM. SDHB-Deficient Cancers: The Role of Mutations That Impair Iron Sulfur Cluster Delivery. J Natl Cancer Inst 2016; 108:djv287. [PMID: 26719882 DOI: 10.1093/jnci/djv287] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Mutations in the Fe-S cluster-containing SDHB subunit of succinate dehydrogenase cause familial cancer syndromes. Recently the tripeptide motif L(I)YR was identified in the Fe-S recipient protein SDHB, to which the cochaperone HSC20 binds. METHODS In order to characterize the metabolic basis of SDH-deficient cancers we performed stable isotope-resolved metabolomics in a novel SDHB-deficient renal cell carcinoma cell line and conducted bioinformatics and biochemical screening to analyze Fe-S cluster acquisition and assembly of SDH in the presence of other cancer-causing SDHB mutations. RESULTS We found that the SDHBR46Q mutation in UOK269 cells disrupted binding of HSC20, causing rapid degradation of SDHB. In the absence of SDHB, respiration was undetectable in UOK269 cells, succinate was elevated to 351.4 ± 63.2 nmol/mg cellular protein, and glutamine became the main source of TCA cycle metabolites through reductive carboxylation.Furthermore, HIF1α, but not HIF2α, increased markedly and the cells showed a strong DNA CpG island methylatorphenotype (CIMP). Biochemical and bioinformatic screening revealed that 37% of disease-causing missense mutations in SDHB were located in either the L(I)YR Fe-S transfer motifs or in the 11 Fe-S cluster-ligating cysteines. CONCLUSIONS These findings provide a conceptual framework for understanding how particular mutations disproportionately cause the loss of SDH activity, resulting in accumulation of succinate and metabolic remodeling in SDHB cancer syndromes.
Collapse
|
39
|
Dai Z, Pan S, Chen C, Cao L, Li X, Chen X, Su X, Lin S. Down-regulation of succinate dehydrogenase subunit B and up-regulation of pyruvate dehydrogenase kinase 1 predicts poor prognosis in recurrent nasopharyngeal carcinoma. Tumour Biol 2015; 37:5145-52. [PMID: 26547584 DOI: 10.1007/s13277-015-4107-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 01/24/2023] Open
Abstract
Succinate dehydrogenase subunit B (SDHB) and pyruvate dehydrogenase kinase 1 (PDK1) play key roles in the regulation of growth and survival of various cancers. This study aimed to investigate expression of SDHB and PDK1 in recurrent nasopharyngeal carcinoma (rNPC) tissues and analyzed the association of SDHB and PDK1 expression with the clinical significance and potential prognostic implication of rNPC. Immunohistochemistry was performed to determine the expression of SDHB and PDK1 in tissues in primary NPC (pNPC) and rNPC patients. Our results revealed that expression of SDHB in rNPC was significantly lower than that in pNPC, while the expression of PDK1 was higher compared to pNPC. The expression levels of SDHB and PDK1 were associated with T stage, N stage, clinical stage, and metastasis of rNPC. Survival analysis showed that patients with low SDHB expression had a significantly shorter overall survival time than those with high SDHB expression. Patients with high PDK1 expression had a shorter survival time than patients with low PDK1 expression. Multivariate analysis showed that the expression of SDHB and PDK1 was an independent predictor for the survival of patients with rNPC. Our results demonstrated that down-regulation of SDHB and up-regulation of PDK1 may be novel biomarkers for predicting advanced tumor progression and unfavorable prognosis in rNPC patients.
Collapse
Affiliation(s)
- ZhiJian Dai
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Shenhua Pan
- Department of Pathology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congxi Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Longhe Cao
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xianhui Li
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiaofeng Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiaoqing Su
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Sen Lin
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
40
|
Lussey-Lepoutre C, Bellucci A, Morin A, Buffet A, Amar L, Janin M, Ottolenghi C, Zinzindohoué F, Autret G, Burnichon N, Robidel E, Banting B, Fontaine S, Cuenod CA, Benit P, Rustin P, Halimi P, Fournier L, Gimenez-Roqueplo AP, Favier J, Tavitian B. In Vivo Detection of Succinate by Magnetic Resonance Spectroscopy as a Hallmark of SDHx Mutations in Paraganglioma. Clin Cancer Res 2015; 22:1120-9. [PMID: 26490314 DOI: 10.1158/1078-0432.ccr-15-1576] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Germline mutations in genes encoding mitochondrial succinate dehydrogenase (SDH) are found in patients with paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and renal cancers. SDH inactivation leads to a massive accumulation of succinate, acting as an oncometabolite and which levels, assessed on surgically resected tissue are a highly specific biomarker of SDHx-mutated tumors. The aim of this study was to address the feasibility of detecting succinate in vivo by magnetic resonance spectroscopy. EXPERIMENTAL DESIGN A pulsed proton magnetic resonance spectroscopy ((1)H-MRS) sequence was developed, optimized, and applied to image nude mice grafted with Sdhb(-/-) or wild-type chromaffin cells. The method was then applied to patients with paraganglioma carrying (n = 5) or not (n = 4) an SDHx gene mutation. Following surgery, succinate was measured using gas chromatography/mass spectrometry, and SDH protein expression was assessed by immunohistochemistry in resected tumors. RESULTS A succinate peak was observed at 2.44 ppm by (1)H-MRS in all Sdhb(-/-)-derived tumors in mice and in all paragangliomas of patients carrying an SDHx gene mutation, but neither in wild-type mouse tumors nor in patients exempt of SDHx mutation. In one patient, (1)H-MRS results led to the identification of an unsuspected SDHA gene mutation. In another case, it helped define the pathogenicity of a variant of unknown significance in the SDHB gene. CONCLUSIONS Detection of succinate by (1)H-MRS is a highly specific and sensitive hallmark of SDHx mutations. This noninvasive approach is a simple and robust method allowing in vivo detection of the major biomarker of SDHx-mutated tumors.
Collapse
Affiliation(s)
- Charlotte Lussey-Lepoutre
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Alexandre Bellucci
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Aurélie Morin
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Alexandre Buffet
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Laurence Amar
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'hypertension artérielle et médecine vasculaire, Paris, France
| | - Maxime Janin
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Biochimie Métabolique, Paris, France. INSERM, U1124, Paris, France
| | - Chris Ottolenghi
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Biochimie Métabolique, Paris, France. INSERM, U1124, Paris, France
| | - Franck Zinzindohoué
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Chirurgie Digestive, Paris, France
| | - Gwennhael Autret
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Nelly Burnichon
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Estelle Robidel
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Benjamin Banting
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Radiologie, Paris, France
| | - Sébastien Fontaine
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Radiologie, Paris, France
| | - Charles-André Cuenod
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Radiologie, Paris, France
| | - Paule Benit
- INSERM, UMR1141, Hôpital Robert Debré, Paris, France. Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Pierre Rustin
- INSERM, UMR1141, Hôpital Robert Debré, Paris, France. Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Philippe Halimi
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Radiologie, Paris, France
| | - Laure Fournier
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Radiologie, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Judith Favier
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| | - Bertrand Tavitian
- INSERM, UMR970, Paris Cardiovascular Research Center, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Radiologie, Paris, France
| |
Collapse
|
41
|
Radiopharmaceuticals in paraganglioma imaging: too many members on board? Eur J Nucl Med Mol Imaging 2015; 43:391-3. [PMID: 26459050 DOI: 10.1007/s00259-015-3213-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
|
42
|
Mannelli M, Rapizzi E, Fucci R, Canu L, Ercolino T, Luconi M, Young WF. 15 YEARS OF PARAGANGLIOMA: Metabolism and pheochromocytoma/paraganglioma. Endocr Relat Cancer 2015; 22:T83-90. [PMID: 26113605 DOI: 10.1530/erc-15-0215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
The discovery of SDHD as a pheochromocytoma/paraganglioma susceptibility gene was the prismatic event that led to all of the subsequent work highlighting the key roles played by mitochondria in the pathogenesis of these tumors and other solid cancers. Alterations in the function of tricarboxylic acid cycle enzymes can cause accumulation of intermediate substrates and subsequent changes in cell metabolism, activation of the angiogenic pathway, increased reactive oxygen species production, DNA hypermethylation, and modification of the tumor microenvironment favoring tumor growth and aggressiveness. The elucidation of these tumorigenic mechanisms should lead to novel therapeutic targets for the treatment of the most aggressive forms of pheochromocytoma/paraganglioma.
Collapse
Affiliation(s)
- Massimo Mannelli
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Elena Rapizzi
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Rossella Fucci
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Letizia Canu
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Tonino Ercolino
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Michaela Luconi
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - William F Young
- Endocrinology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyEndocrinology UnitCareggi Hospital, Azienda Ospedaliera Universitaria Careggi, Florence, ItalyDivision of EndocrinologyDiabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
Gorlach S, Fichna J, Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett 2015; 366:141-9. [PMID: 26185003 DOI: 10.1016/j.canlet.2015.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 01/02/2023]
Abstract
Mitochondria are the respiratory and energetic centers of the cell where multiple intra- and extracellular signal transduction pathways converge leading to dysfunction of those organelles and, consequently, apoptotic or/and necrotic cell death. Mitochondria-targeted anticancer drugs are referred to as mitocans; they have recently been classified by Neuzil et al. (2013) according to their molecular mode of action into: hexokinase inhibitors; mimickers of the Bcl-2 homology-3 (BH3) domains; thiol redox inhibitors; deregulators of voltage-dependent anionic channel (VDAC)/adenine nucleotide translocase (ANT) complex; electron redox chain-targeting agents; lipophilic cations targeting the mitochondrial inner membrane; tricarboxylic acid cycle-targeting agents; and mitochondrial DNA-targeting agents. Polyphenols of plant origin and their synthetic or semisynthetic derivatives exhibit pleiotropic biological activities, including the above-mentioned modes of action characteristic of mitocans. Some of them have already been tested in clinical trials. Gossypol has served as a lead compound for developing more efficient BH3 mimetics such as ABT-737 and its orally available structural analog ABT-263 (Navitoclax). Furthermore, mitochondriotropic derivatives of phenolic compounds such as quercetin and resveratrol have been synthesized and reported to efficiently induce cancer cell death in vitro.
Collapse
Affiliation(s)
- Sylwia Gorlach
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
44
|
Jochmanová I, Zhuang Z, Pacak K. Pheochromocytoma: Gasping for Air. Discov Oncol 2015; 6:191-205. [PMID: 26138106 DOI: 10.1007/s12672-015-0231-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
There has been increasing evidence that pseudohypoxia--a phenomenon that we refer to as "gasping for air"--along with mitochondrial enzyme dysregulation play a crucial role in tumorigenesis, particularly in several hereditary pheochromocytomas (PHEOs) and paragangliomas (PGLs). Alterations in key tricarboxylic acids (TCA) cycle enzymes (SDH, FH, MDH2) have been shown to induce pseudohypoxia via activation of the hypoxia-inducible transcription factor (HIF) signaling pathway that is involved in tumorigenesis, invasiveness, and metastatic spread, including an association with resistance to various cancer therapies and worse prognosis. This review outlines the ongoing story of the pathogenesis of hereditary PHEOs/PGLs, showing the unique and most updated evidence of TCA cycle dysregulation that is tightly linked to hypoxia signaling.
Collapse
Affiliation(s)
- Ivana Jochmanová
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Building 10, CRC, 1-East, Room 1E-3140, 10 Center Drive, MSC-1109, Bethesda, MD, 20892-1109, USA.,1st Department of Internal Medicine, Medical Faculty, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Building 10, CRC, 1-East, Room 1E-3140, 10 Center Drive, MSC-1109, Bethesda, MD, 20892-1109, USA.
| |
Collapse
|
45
|
Edalat A, Schulte-Mecklenbeck P, Bauer C, Undank S, Krippeit-Drews P, Drews G, Düfer M. Mitochondrial succinate dehydrogenase is involved in stimulus-secretion coupling and endogenous ROS formation in murine beta cells. Diabetologia 2015; 58:1532-41. [PMID: 25874444 DOI: 10.1007/s00125-015-3577-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Generation of reduction equivalents is a prerequisite for nutrient-stimulated insulin secretion. Mitochondrial succinate dehydrogenase (SDH) fulfils a dual function with respect to mitochondrial energy supply: (1) the enzyme is part of mitochondrial respiratory chains; and (2) it catalyses oxidation of succinate to fumarate in the Krebs cycle. The aim of our study was to elucidate the significance of SDH for beta cell stimulus-secretion coupling (SSC). METHODS Mitochondrial variables, reactive oxygen species (ROS) and cytosolic Ca(2+) concentration ([Ca(2+)]c) were measured by fluorescence techniques and insulin release by radioimmunoassay in islets or islet cells of C57Bl/6N mice. RESULTS Inhibition of SDH with 3-nitropropionic acid (3-NPA) or monoethyl fumarate (MEF) reduced glucose-stimulated insulin secretion. Inhibition of the ATP-sensitive K(+) channel (KATP channel) partly prevented this effect, whereas potentiation of antioxidant defence by superoxide dismutase mimetics (TEMPOL and mito-TEMPO) or by nuclear factor erythroid 2-related factor 2 (Nrf-2)-mediated upregulation of antioxidant enzymes (oltipraz, tert-butylhydroxyquinone) did not diminish the inhibitory influence of 3-NPA. Blocking SDH decreased glucose-stimulated increase in intracellular FADH2 concentration without alterations in NAD(P)H. In addition, 3-NPA and MEF drastically reduced glucose-induced hyperpolarisation of mitochondrial membrane potential, indicative of decreased ATP production. As a consequence, the glucose-stimulated rise in [Ca(2+)]c was significantly delayed and reduced. Acute application of 3-NPA interrupted glucose-driven oscillations of [Ca(2+)]c. 3-NPA per se did not elevate intracellular ROS, but instead prevented glucose-induced ROS accumulation. CONCLUSIONS/INTERPRETATION SDH is an important regulator of insulin secretion and ROS production. Inhibition of SDH interrupts membrane-potential-dependent SSC, pointing to a pivotal role of mitochondrial FAD/FADH2 homeostasis for the maintenance of glycaemic control.
Collapse
Affiliation(s)
- Armin Edalat
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Magnetic resonance spectroscopy of paragangliomas: new insights into in vivo metabolomics. Endocr Relat Cancer 2015; 22:M1-8. [PMID: 26115958 DOI: 10.1530/erc-15-0246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 12/27/2022]
Abstract
Paragangliomas (PGLs) can be associated with mutations in genes of the tricarboxylic acid (TCA) cycle. Succinate dehydrogenase (SDHx) mutations are the prime examples of genetically determined TCA cycle defects with accumulation of succinate. Succinate, which acts as an oncometabolite, can be detected by ex vivo metabolomics approaches. The aim of this study was to evaluate the potential role of proton magnetic resonance (MR) spectroscopy ((1)H-MRS) for identifying SDHx-related PGLs in vivo and noninvasively. Eight patients were prospectively evaluated with single voxel (1)H-MRS. MR spectra from eight tumors (four SDHx-related PGLs, two sporadic PGLs, one cervical schwannoma, and one cervical neurofibroma) were acquired and interpreted qualitatively. Compared to other tumors, a succinate resonance peak was detected only in SDHx-related tumor patients. Spectra quality was considered good in three cases, medium in two cases, poor in two cases, and uninterpretable in the latter case. Smaller lesions had lower spectra quality compared to larger lesions. Jugular PGLs also exhibited a poorer spectra quality compared to other locations. (1)H-MRS has always been challenging in terms of its technical requisites. This is even more true for the evaluation of head and neck tumors. However, (1)H-MRS might be added to the classical MR sequences for metabolomic characterization of PGLs. In vivo detection of succinate might guide genetic testing, characterize SDHx variants of unknown significance (in the absence of available tumor sample), and even optimize a selection of appropriate therapies.
Collapse
|
47
|
SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol 2015; 28:807-21. [PMID: 25720320 DOI: 10.1038/modpathol.2015.41] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/10/2015] [Accepted: 01/10/2015] [Indexed: 12/13/2022]
Abstract
Despite the established role of SDHB/SDHA immunohistochemistry as a valuable tool to identify patients at risk for familial succinate dehydrogenase-related pheochromocytoma/paraganglioma syndromes, the reproducibility of the assessment methods has not as yet been determined. The aim of this study was to investigate interobserver variability among seven expert endocrine pathologists using a web-based virtual microscopy approach in a large multicenter pheochromocytoma/paraganglioma cohort (n=351): (1) 73 SDH mutated, (2) 105 non-SDH mutated, (3) 128 samples without identified SDH-x mutations, and (4) 45 with incomplete SDH molecular genetic analysis. Substantial agreement among all the reviewers was observed either with a two-tiered classification (SDHB κ=0.7338; SDHA κ=0.6707) or a three-tiered classification approach (SDHB κ=0.6543; SDHA κ=0.7516). Consensus was achieved in 315 cases (89.74%) for SDHB immunohistochemistry and in 348 cases (99.15%) for SDHA immunohistochemistry. Among the concordant cases, 62 of 69 (~90%) SDHB-/C-/D-/AF2-mutated cases displayed SDHB immunonegativity and SDHA immunopositivity, 3 of 4 (75%) with SDHA mutations showed loss of SDHA/SDHB protein expression, whereas 98 of 105 (93%) non-SDH-x-mutated counterparts demonstrated retention of SDHA/SDHB protein expression. Two SDHD-mutated extra-adrenal paragangliomas were scored as SDHB immunopositive, whereas 9 of 128 (7%) tumors without identified SDH-x mutations, 6 of 37 (~16%) VHL-mutated, as well as 1 of 21 (~5%) NF1-mutated tumors were evaluated as SDHB immunonegative. Although 14 out of those 16 SDHB-immunonegative cases were nonmetastatic, an overall significant correlation between SDHB immunonegativity and malignancy was observed (P=0.00019). We conclude that SDHB/SDHA immunohistochemistry is a reliable tool to identify patients with SDH-x mutations with an additional value in the assessment of genetic variants of unknown significance. If SDH molecular genetic analysis fails to detect a mutation in SDHB-immunonegative tumor, SDHC promoter methylation and/or VHL/NF1 testing with the use of targeted next-generation sequencing is advisable.
Collapse
|
48
|
Her YF, Nelson-Holte M, Maher LJ. Oxygen concentration controls epigenetic effects in models of familial paraganglioma. PLoS One 2015; 10:e0127471. [PMID: 25985299 PMCID: PMC4436181 DOI: 10.1371/journal.pone.0127471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023] Open
Abstract
Familial paraganglioma (PGL) is a rare neuroendocrine cancer associated with defects in the genes encoding the subunits of succinate dehydrogenase (SDH), a tricarboxylic acid (TCA) cycle enzyme. For unknown reasons, a higher prevalence of PGL has been reported for humans living at higher altitude, with increased disease aggressiveness and morbidity. In this study, we evaluate the effects of oxygen on epigenetic changes due to succinate accumulation in three SDH loss cell culture models. We test the hypothesis that the mechanism of α-ketoglutarate (α-KG)-dependent dioxygenase enzymes explains the inhibitory synergy of hypoxia and succinate accumulation. We confirm that SDH loss leads to profound succinate accumulation. We further show that hypoxia and succinate accumulation synergistically inhibit α-KG-dependent dioxygenases leading to increased stabilization of transcription factor HIF1α, HIF2α, and hypermethylation of histones and DNA. Increasing oxygen suppresses succinate inhibition of α-KG-dependent dioxygenases. This result provides a possible explanation for the association between hypoxia and PGL, and suggests hyperoxia as a potential novel therapy.
Collapse
Affiliation(s)
- Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
- Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First St. SW, Rochester, MN, 55905, United States of America
| | - Molly Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lopes-Borges J, Valvassori SS, Varela RB, Tonin PT, Vieira JS, Gonçalves CL, Streck EL, Quevedo J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacol Biochem Behav 2014; 128:89-95. [PMID: 25433326 DOI: 10.1016/j.pbb.2014.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have revealed alterations in mitochondrial complexes in the brains of bipolar patients. However, few studies have examined changes in the enzymes of the tricarboxylic acid cycle. Several preclinical studies have suggested that histone deacetylase inhibitors may have antimanic effects. The present study aims to investigate the effects of lithium, valproate and sodium butyrate, a histone deacetylase inhibitor, on the activity of tricarboxylic acid cycle enzymes in the brains of rats subjected to an animal model of mania induced by ouabain. Wistar rats received a single intracerebroventricular injection of ouabain or cerebrospinal fluid. Starting on the day following the intracerebroventricular injection, the rats were treated for 7days with intraperitoneal injections of saline, lithium, valproate or sodium butyrate. Risk-taking behavior, locomotor and exploratory activities were measured using the open-field test. Citrate synthase, succinate dehydrogenase, and malate dehydrogenase were examined in the frontal cortex and hippocampus. All treatments reversed ouabain-related risk-taking behavior and hyperactivity in the open-field test. Ouabain inhibited tricarboxylic acid cycle enzymes in the brain, and valproate and sodium butyrate but not lithium reversed this ouabain-induced dysfunction. Thus, protecting the tricarboxylic acid cycle may contribute to the therapeutic effects of histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Jéssica Lopes-Borges
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil.
| | - Roger B Varela
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Paula T Tonin
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Julia S Vieira
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC 88806-000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
50
|
Taïeb D, Kaliski A, Boedeker CC, Martucci V, Fojo T, Adler JR, Pacak K. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr Rev 2014; 35:795-819. [PMID: 25033281 PMCID: PMC4167435 DOI: 10.1210/er.2014-1026] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors belonging to the family of pheochromocytoma/paraganglioma neoplasms. Despite advances in understanding the pathogenesis of these tumors, the growth potential and clinical outcome of individual cases remains largely unpredictable. Over several decades, surgical resection has long been the treatment of choice for HNPGLs. However, increasing experience in various forms of radiosurgery has been reported to result in curative-like outcomes, even for tumors localized in the most inaccessible anatomical areas. The emergence of such new therapies challenges the traditional paradigm for the management of HNPGLs. This review will assist and guide physicians who encounter patients with such tumors, either from a diagnostic or therapeutic standpoint. This review will also particularly emphasize current and emerging knowledge in genetics, imaging, and therapeutic options as well as the health-related quality of life for patients with HNPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine (D.T.), La Timone University Hospital, CERIMED, Aix-Marseille Univ, F-13385 Marseille, France; Department of Radiation Oncology (A.K.), Besançon University Hospital, F-25030 Besançon, France; Department of Otorhinolaryngology/Head and Neck Surgery (C.C.B.), HELIOS Hanseklinikum Stralsund, D-18435 Stralsund, Germany; Department of Otorhinolaryngology/Head and Neck Surgery (C.C.B.), University Hospital, Freiburg, Germany; Program in Reproductive and Adult Endocrinology (V.M., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development and Medical Oncology Branch (T.F.), National Institutes of Health, Bethesda, Maryland 20892; Department of Neurosurgery (J.R.A.), Stanford Hospital and Clinics, Stanford University, Stanford, California 94305
| | | | | | | | | | | | | |
Collapse
|