1
|
Ratziu V, Scanlan TS, Bruinstroop E. Thyroid hormone receptor-β analogs for the treatment of Metabolic Dysfunction-Associated Steatohepatitis (MASH). J Hepatol 2024:S0168-8278(24)02639-4. [PMID: 39428045 DOI: 10.1016/j.jhep.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
The association between suboptimal thyroid function ((sub)clinical hypothyroidism or low normal thyroid function) and the metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD) is clearly established. Furthermore, in MASLD, thyroid hormones have low intracellular concentrations and the activation of the thyroid hormone receptor (THR) is reduced. Administration of thyroid hormone has been shown to reduce liver triglycerides by stimulating fatty acid disposal through lipophagy and beta-oxidation, and to lower LDL-cholesterol. As thyroid hormone exerts it's effects in many different organs, including heart and bone, several drug candidates have been developed acting as selective thyromimetics for the THR-β nuclear receptor with potent and targeted liver actions. Importantly, these compounds have reduced affinity for the THR-α nuclear receptor and tissue distribution profiles that differ from endogenous thyroid hormones thereby reducing unwanted cardiovascular side effects. The most advanced compound, resmetirom, is an oral drug that demonstrated, in a large phase 3 trial in MASH patients, the ability to remove liver fat, reduce aminotransferase levels and improve atherogenic dyslipidemia with a good tolerability profile. This translated into histological improvement that led to accelerated approval of this drug for active fibrotic steatohepatitis, a milestone achievement as a first MASH drug.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00991-4. [PMID: 39420154 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Yang Y, Xiao J, Qiu W, Jiang L. Cross-Talk Between Thyroid Disorders and Nonalcoholic Fatty Liver Disease: From Pathophysiology to Therapeutics. Horm Metab Res 2024; 56:697-705. [PMID: 38408595 DOI: 10.1055/a-2276-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The medical community acknowledges the presence of thyroid disorders and nonalcoholic fatty liver disease (NAFLD). Nevertheless, the interconnection between these two circumstances is complex. Thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), and thyroid-stimulating hormone (TSH), are essential for maintaining metabolic balance and controlling the metabolism of lipids and carbohydrates. The therapeutic potential of THs, especially those that target the TRβ receptor isoform, is generating increasing interest. The review explores the pathophysiology of these disorders, specifically examining the impact of THs on the metabolism of lipids in the liver. The purpose of this review is to offer a thorough analysis of the correlation between thyroid disorders and NAFLD, as well as suggest potential therapeutic approaches for the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Qiu
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Luxia Jiang
- Department of Cardiac Surgery ICU, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Bittla P, Paidimarri SP, Ayuthu S, Chauhan YD, Saad MZ, Mirza AA, Khan S. Resmetirom: A Systematic Review of the Revolutionizing Approach to Non-alcoholic Steatohepatitis Treatment Focusing on Efficacy, Safety, Cost-Effectiveness, and Impact on Quality of Life. Cureus 2024; 16:e69919. [PMID: 39439647 PMCID: PMC11495423 DOI: 10.7759/cureus.69919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
There has been a rise in the prevalence of non-alcoholic steatohepatitis (NASH), a subset of non-alcoholic fatty liver disease (NAFLD) with an ongoing increase in the prevalence of linked conditions such as obesity, type II diabetes mellitus, and metabolic syndrome. To date, there are no specific drugs that are approved for the treatment of NAFLD/NASH. With the recent discovery of association between subclinical hypothyroidism and NASH, various trials exploring treatment options for NASH using thyroid hormone derivatives led to the discovery of resmetirom (MGL-316) with high affinity to thyroid hormone receptors (THRs) targeting the liver. Following standardized guidelines, a systematic review was performed on the safety, efficacy, and other practical aspects of resmetirom in the treatment of NASH. Advanced search was carried out using the MeSH search strategy and appropriate keywords in major databases using various inclusion and exclusion criteria. The search was narrowed down to seven high-quality articles: four randomized control trials (RCTs), and three reviews to be included in the current study. The online database search yielded 62 articles, out of which six high-quality articles were selected to be included in the current systematic review after deleting duplicates and screening for irrelevant titles, and articles. Out of the three RCTs, two of them assessed the safety and efficacy of resmetirom, while the remaining RCT assessed the impact on health-related quality of life with resmetirom on patients with NASH. resmetirom (MGL-316) is a thyroid hormone derivative with high affinity to THRs targeting the liver and acts by improving mitochondrial oxidation, and lipophagy in the hepatic cell line. All the trials suggested in favor of resmetirom with a decrease in NASH fibrosis score by at least two points, along with reduction in hepatic fat content (minimum relative reduction of 20%), liver volume by 61%, improving secondary outcomes such as low-density lipoprotein-C, apolipoprotein-B, triglycerides, and hepatic enzymes with greater reduction in the study groups treated with higher doses of resmetirom with no significant increase in adverse events. Resmetirom was found to improve patient-reported outcomes, and thereby quality-adjusted life years (QALYs) in 12 weeks while being cost-effective compared to placebo at a willingness-to-pay threshold of US$100,000 up to a daily threshold of US$72.00, and an effective incremental cost-effectiveness ratio of US$53,925 per QALY gained. After carefully analyzing the available data by our team members, it could be concluded that resmetirom holds a strong potential to be implemented as a drug of choice in treating NAFLD/NASH in the coming years with proven efficacy, safety while being cost-effective, and also reducing secondary co-morbidities by improving cardiovascular risk factors. The results can be best achieved when combined with conventional approaches such as weight loss and dietary modifications. Long-term safety and sustainability of the achieved results are yet to be confirmed with large-scale clinical trials. However, resmetirom is still an investigational drug and could be expected to be available for clinical practice in the near future.
Collapse
Affiliation(s)
- Parikshit Bittla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Pavitra Paidimarri
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shriya Ayuthu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yashkumar D Chauhan
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Moyal Z Saad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amna A Mirza
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Sommer-Ballarini M, Nguyen TH, Pletsch-Borba L, Wernicke C, Tacke F, Schwerdtle T, Pellowski D, Machann J, Spranger J, Wirth EK, Mai K. Impact of peripheral thyroid hormone balance on liver fat: insights from the NutriAct trial. Eur J Endocrinol 2024; 191:183-191. [PMID: 39049801 DOI: 10.1093/ejendo/lvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Hypothyroidism has been proposed as a potential contributor to steatotic liver disease (SLD), but existing data shows conflicting results in euthyroid subjects. Therefore, we investigated the association between thyroid function and intrahepatic lipids (IHLs) during a 36-month randomized controlled trial evaluating a diet known to reduce liver fat. DESIGN 502 eligible subjects (aged 50-80 years, ≥1 risk factor for unhealthy aging) were randomly assigned to either follow a diet rich in unsaturated fatty acids, plant protein, and fiber (intervention group, IG), or dietary recommendations of the German Nutrition Society (control group, CG). METHODS Serum levels of thyroid hormones (THs) as well as IHLs, defined via magnetic resonance spectroscopy, were measured within an euthyroid subgroup without significant alcohol consumption at baseline (n = 332) and after 12 months (n = 243). A ratio of T3/T4 was used to assess whole-body deiodinase activity. Estimates of glucose and lipid metabolism were analyzed. RESULTS Only fT3 and T3/T4 ratios showed a significant positive correlation with IHL at baseline. We observed a significant decline in fT3, T3, fT3/fT4 ratio, and T3/T4 ratio in CG and IG after 12 months without significant differences between groups. TSH, fT4, and T4 remained stable. A larger improvement of IHL during dietary intervention was seen in those subjects with a lower decline in T3 concentrations. CONCLUSIONS Altered TH balance indicates a possible compensatory upregulation of whole-body TH activity in subjects with increased liver fat. This might be also relevant during the improvement of hepatic steatosis.
Collapse
Affiliation(s)
- Miriam Sommer-Ballarini
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Thu-Huong Nguyen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Laura Pletsch-Borba
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Charlotte Wernicke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 10115 Berlin, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Denny Pellowski
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam,14469 Potsdam, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Eva Katrin Wirth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Department of Human Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| |
Collapse
|
6
|
Petta S, Targher G, Romeo S, Pajvani UB, Zheng MH, Aghemo A, Valenti LVC. The first MASH drug therapy on the horizon: Current perspectives of resmetirom. Liver Int 2024; 44:1526-1536. [PMID: 38578141 DOI: 10.1111/liv.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) poses a significant global health challenge, affecting over 30% of adults worldwide. MASLD is linked to increased mortality rates and substantial healthcare costs, primarily driven by its progression to metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver complications including cirrhosis and hepatocellular carcinoma. Despite its growing burden, effective pharmacotherapy for MASLD/MASH has been lacking until the recent conditional approval of resmetirom by the FDA. Resmetirom, a liver-targeted thyroid hormone receptor-β selective drug, has shown promise in clinical trials for treating non-cirrhotic MASH with moderate to advanced fibrosis. It has demonstrated efficacy in reducing hepatic fat content, improving liver histology (both MASH resolution and fibrosis improvement), and ameliorating biomarkers of liver damage without significant effects on body weight or glucose metabolism. Notably, resmetirom also exhibits favourable effects on circulating lipids, potentially reducing cardiovascular risk in MASLD/MASH patients. The safety profile of resmetirom appears acceptable, with gastrointestinal adverse events being the most common, though generally mild or moderate. However, long-term surveillance is warranted to monitor for potential risks related to thyroid, gonadal, or bone diseases. Clinical implementation of resmetirom faces challenges in patient selection and monitoring treatment response, and will heavily rely on non-invasive tests for liver fibrosis assessment. Nonetheless, resmetirom represents a landmark breakthrough in MASLD/MASH treatment, paving the way for future therapeutic strategies aiming to mitigate the multifaceted risks associated with this complex metabolic liver disease.
Collapse
Affiliation(s)
- Salvatore Petta
- Gastroenterology and Hepatology, PROMISE, Università di Palermo, Palermo, Italy
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Utpal B Pajvani
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Alessio Aghemo
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Luca V C Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Kuchay MS, Isaacs S, Misra A. Intrahepatic hypothyroidism in MASLD: Role of liver-specific thyromimetics including resmetirom. Diabetes Metab Syndr 2024; 18:103034. [PMID: 38714040 DOI: 10.1016/j.dsx.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND AIMS Thyroid hormones are important regulators of hepatic lipid homeostasis and whole-body energy expenditure. Recent evidence suggests that euthyroid individuals with metabolic dysfunction-associated steatohepatitis (MASH) develop intrahepatic hypothyroidism that promotes progression of MASH. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases from inception till March 2024, using the following keywords: hypothyroidism and nonalcoholic fatty liver disease; MASLD and thyroid function; intrahepatic hypothyroidism; TRβ agonists; and resmetirom. Relevant studies were extracted that described pathogenesis of MASH in the context of thyroid functions. RESULTS In euthyroid individuals with MASH, there is decreased conversion of prohormone thyroxine (T4) to bioactive tri-iodothyronine (T3) and increased conversion of T4 to inactive metabolite reverse T3 (rT3). Consequently, reduced levels of T3 results in impaired intrahepatic TRβ signaling, a state of intrahepatic hypothyroidism, which promotes progression of MASH. Hepatic TRβ activation leads to metabolically beneficial effects in the liver including mitochondrial fatty acid uptake and β-oxidation, mitochondrial biogenesis, increasing surface low-density lipoprotein (LDL) receptor density and lowering of circulatory LDL-cholesterol. In recent years, selective thyroid hormone mimetics that exhibit TRβ-selective binding and liver-selective uptake have been designed. Resmetirom, a liver-specific thyromimetic, improves intrahepatic TRβ signaling and in clinical trials significantly improved liver inflammation, fibrosis and lipid profile in patients with MASH. CONCLUSIONS In euthyroid individuals with MASH, development of intrahepatic hypothyroidism results in further progression of the disease. In clinical trials, resmetirom treatment results in a significant improvement in steatosis, inflammation and fibrosis and is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of noncirrhotic MASH with moderate to advanced fibrosis.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Scott Isaacs
- Emory University School of Medicine, Atlanta, GA, USA
| | - Anoop Misra
- Fortis CDOC Hospital for Diabetes and Allied Sciences, New Delhi, India
| |
Collapse
|
8
|
Byrne CD, Targher G, Tilg H. Thyroid hormone receptor-beta agonists: new MASLD therapies on the horizon. Gut 2024; 73:573-581. [PMID: 38233199 DOI: 10.1136/gutjnl-2023-330596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Affiliation(s)
- Christopher D Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Metabolic Disease Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University, Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Manka P, Coombes JD, Sydor S, Swiderska-Syn MK, Best J, Gauthier K, van Grunsven LA, Oo YH, Wang C, Diehl AM, Hönes GS, Moeller LC, Figge A, Boosman RJ, Faber KN, Tannapfel A, Goetze O, Aspichueta P, Lange CM, Canbay A, Syn WK. Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells. Liver Int 2024; 44:125-138. [PMID: 37872645 DOI: 10.1111/liv.15759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.
Collapse
Affiliation(s)
- Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason D Coombes
- Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Marzena K Swiderska-Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jan Best
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Barnard Lyon, Lyon, France
| | - Leo A van Grunsven
- Department of Basic (Bio-)medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ye H Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, Birmingham Advanced Cell Therapy Facility, University of Birmingham, Birmingham, UK
| | - Cindy Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Georg S Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Figge
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - René J Boosman
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Oliver Goetze
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - Christian M Lange
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Harrison SA, Ratziu V, Anstee QM, Noureddin M, Sanyal AJ, Schattenberg JM, Bedossa P, Bashir MR, Schneider D, Taub R, Bansal M, Kowdley KV, Younossi ZM, Loomba R. Design of the phase 3 MAESTRO clinical program to evaluate resmetirom for the treatment of nonalcoholic steatohepatitis. Aliment Pharmacol Ther 2024; 59:51-63. [PMID: 37786277 DOI: 10.1111/apt.17734] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/20/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) associated with steatosis, hepatocellular injury, inflammation and fibrosis. In a Phase 2 trial in adults with NASH (NCT02912260), resmetirom, an orally administered, liver-targeted thyroid hormone receptor-β selective agonist, significantly reduced hepatic fat (via imaging) and resolved NASH without worsening fibrosis (via liver biopsy) in a significant number of patients compared with placebo. AIMS To present the design of the Phase 3 MAESTRO clinical programme evaluating resmetirom for treatment of NASH (MAESTRO-NAFLD-1 [NCT04197479], MAESTRO-NAFLD-OLE [NCT04951219], MAESTRO-NASH [NCT03900429], MAESTRO-NASH-OUTCOMES [NCT05500222]). METHODS MAESTRO-NASH is a pivotal serial biopsy trial in up to 2000 adults with biopsy-confirmed at-risk NASH. Patients are randomised to a once-daily oral placebo, 80 mg resmetirom, or 100 mg resmetirom. Liver biopsies are conducted at screening, week 52 and month 54. MAESTRO-NAFLD-1 is a 52-week safety trial in ~1400 adults with NAFLD/presumed NASH (based on non-invasive testing); ~700 patients from MAESTRO-NAFLD-1 are enrolled in MAESTRO-NAFLD-OLE, a 52-week active treatment extension to further evaluate safety. MAESTRO-NASH-OUTCOMES is enrolling 700 adults with well-compensated NASH cirrhosis to evaluate the potential for resmetirom to slow progression to hepatic decompensation events. Non-invasive tests (biomarkers, imaging) are assessed longitudinally throughout, in addition to validated patient-reported outcomes. CONCLUSION The MAESTRO clinical programme was designed in conjunction with regulatory authorities to support approval of resmetirom for treatment of NASH. The surrogate endpoints, based on week 52 liver biopsy, serum biomarkers and imaging, are confirmed by long-term clinical liver-related outcomes in MAESTRO-NASH (month 54) and MAESTRO-NASH-OUTCOMES (time to event).
Collapse
Affiliation(s)
- Stephen A Harrison
- Pinnacle Clinical Research Center, San Antonio, Texas, USA
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mazen Noureddin
- Houston Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | - Rebecca Taub
- Madrigal Pharmaceuticals, Conshohocken, Pennsylvania, USA
| | - Meena Bansal
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Rohit Loomba
- University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Machado MV. MASLD treatment-a shift in the paradigm is imminent. Front Med (Lausanne) 2023; 10:1316284. [PMID: 38146424 PMCID: PMC10749497 DOI: 10.3389/fmed.2023.1316284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
MASLD prevalence is growing towards the leading cause of end-stage liver disease. Up to today, the most effective treatment is weight loss. Weight loss interventions are moving from lifestyle changes to bariatric surgery or endoscopy, and, more recently, to a new wave of anti-obesity drugs that can compete with bariatric surgery. Liver-targeted therapy is a necessity for those patients who already present liver fibrosis. The field is moving fast, and in the near future, we will testify to a disruptive change in MASLD treatment, similar to the paradigm-shift that occurred for hepatitis C almost one decade ago with direct antiviral agents.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| |
Collapse
|
13
|
Ramanathan R, Patwa SA, Ali AH, Ibdah JA. Thyroid Hormone and Mitochondrial Dysfunction: Therapeutic Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023; 12:2806. [PMID: 38132126 PMCID: PMC10741470 DOI: 10.3390/cells12242806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly termed nonalcoholic fatty liver disease (NAFLD), is a widespread global health concern that affects around 25% of the global population. Its influence is expanding, and it is anticipated to overtake alcohol as the leading cause of liver failure and liver-related death worldwide. Unfortunately, there are no approved therapies for MASLD; as such, national and international regulatory health agencies undertook strategies and action plans designed to expedite the development of drugs for treatment of MASLD. A sedentary lifestyle and an unhealthy diet intake are important risk factors. Western countries have a greater estimated prevalence of MASLD partly due to lifestyle habits. Mitochondrial dysfunction is strongly linked to the development of MASLD. Further, it has been speculated that mitophagy, a type of mitochondrial quality control, may be impaired in MASLD. Thyroid hormone (TH) coordinates signals from the nuclear and mitochondrial genomes to control mitochondrial biogenesis and function in hepatocytes. Mitochondria are known TH targets, and preclinical and clinical studies suggest that TH, thyroid receptor β (TR-β) analogs, and synthetic analogs specific to the liver could be of therapeutic benefit in treating MASLD. In this review, we highlight how mitochondrial dysfunction contributes to development of MASLD, and how understanding the role of TH in improving mitochondrial function paved the way for innovative drug development programs of TH-based therapies targeting MASLD.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Sohum A. Patwa
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Lopez-Alcantara N, Oelkrug R, Sentis SC, Kirchner H, Mittag J. Lack of thyroid hormone receptor beta is not detrimental for non-alcoholic steatohepatitis progression. iScience 2023; 26:108064. [PMID: 37822510 PMCID: PMC10563054 DOI: 10.1016/j.isci.2023.108064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Agonists for thyroid hormone receptor β (TRβ) show promise in preclinical studies and clinical trials to improve non-alcoholic fatty liver disease. A recent study on human livers, however, revealed reduced TRβ expression in non-alcoholic steatohepatitis (NASH), indicating a developing thyroid hormone resistance, which could constitute a major obstacle for those agonists. Using a rapid NASH paradigm combining choline-deficient high-fat diet and thermoneutrality, we confirm that TRβ declines during disease progression in mice similar to humans. Contrary to expectations, mice lacking TRβ showed less liver fibrosis, and NASH marker genes were not elevated. Conversely, increasing TRβ expression in wild-type NASH mice using liver-targeted gene therapy did not improve histology, gene expression, or metabolic parameters, indicating that TRβ receptor levels are of minor relevance for NASH development and progression in our model, and suggest that liver-rather than isoform-specificity might be more relevant for NASH treatment with thyroid hormone receptor agonists.
Collapse
Affiliation(s)
- Nuria Lopez-Alcantara
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebecca Oelkrug
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Sarah Christine Sentis
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henriette Kirchner
- Institut für Humangenetik, AG Epigenetik und Metabolismus, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- Institut für Endokrinologie und Diabetes, AG Molekulare Endokrinologie, Universität zu Lübeck / Universitätsklinikum Schleswig-Holstein, Center for Brain Behavior and Metabolism CBBM, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
15
|
Marino L, Kim A, Ni B, Celi FS. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2023:01515467-990000000-00521. [PMID: 37535802 DOI: 10.1097/hep.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thyroid hormone action is involved in virtually all physiological processes. It is well known that the liver and thyroid are intimately linked, with thyroid hormone playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Clinical and mechanistic research studies have shown that thyroid hormone can be involved in chronic liver diseases, including alcohol-associated or NAFLD and HCC. Thyroid hormone action and synthetic thyroid hormone analogs can exert beneficial actions in terms of lowering lipids, preventing chronic liver disease and as liver anticancer agents. More recently, preclinical and clinical studies have indicated that some analogs of thyroid hormone could also play a role in the treatment of liver disease. These synthetic molecules, thyromimetics, can modulate lipid metabolism, particularly in NAFLD/NASH. In this review, we first summarize the thyroid hormone signaling axis in the context of liver biology, then we describe the changes in thyroid hormone signaling in liver disease and how liver diseases affect the thyroid hormone homeostasis, and finally we discuss the use of thyroid hormone-analog for the treatment of liver disease.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Adam Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, Pennsylvania, USA
| | - Francesco S Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
16
|
Karim G, Bansal MB. Resmetirom: An Orally Administered, Smallmolecule, Liver-directed, β-selective THR Agonist for the Treatment of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:60-70. [PMID: 37313239 PMCID: PMC10258622 DOI: 10.17925/ee.2023.19.1.60] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty liver disease, including non-alcoholic fatty liver (NAFL) and its more progressive form, non-alcoholic steatohepatitis (NASH). The prevalence of NAFLD/NASH along with type 2 diabetes and obesity is rising worldwide. In those who develop NASH, unlike those with bland steatosis (NAFL), lipotoxic lipids drive hepatocyte injury, inflammation and stellate cell activation leading to progressive accumulation of collagen or fibrosis, ultimately leading to cirrhosis and increased risk of hepatocellular carcinoma. Hypothyroidism is associated with NAFLD/NASH; specifically, intrahepatic hypothyroidism drives lipotoxicty in preclinical models. Agonists of thyroid hormone receptor (THR)-β, which is primarily found in the liver, can promote lipophagy, mitochondrial biogenesis and mitophagy, stimulating increased hepatic fatty acid β-oxidation, and thereby decreasing the burden of lipotoxic lipids, while promoting low-density lipoprotein (LDL) uptake and favourable effects on lipid profiles. A number of THR-β agonists are currently being investigated for NASH. This review focuses on resmetirom, an orally administered, once-daily, small-molecule, liver-directed, ß-selective THR agonist, as it is furthest along in development. Data from completed clincal studies outlined in this review demonstrate that resmetirom is effective in reducing hepatic fat content as measured by magnetic resonance imaging-derived proton density fat fraction, reduces liver enzymes, improves non-i nvasive markers of liver fibrogenesis and decreases liver stiffness, while eliciting a favourable cardiovascular profile with a reduction in serum lipids, including LDL cholesterol. Topline phase III biopsy data showed resolution of NASH and/or fibrosis improvement after 52 weeks of treatment, with more detailed peer-reviewed findings anticipated in order to certify these findings. Longer term clinical outcomes from both MAESTRO-NASH and MAESTRO-NASH OUTCOMES will be a pivotal juncture in the drug's road towards being approved as a NASH therapeutic.
Collapse
Affiliation(s)
- Gres Karim
- Department of Medicine, Mount Sinai Israel, New York, NY, USA
| | - Meena B Bansal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Francque S, Ratziu V. Future Treatment Options and Regimens for Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:429-449. [PMID: 37024217 DOI: 10.1016/j.cld.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Recent progress in our understanding of the pathogenic mechanisms that drive progression of nonalcoholic steatohepatitis as well as lessons learned from several clinical trials that have been conducted over the past 15 years guide our current regulatory framework and trial design. Targeting the metabolic drivers should probably be the backbone of therapy in most of the patients, with some requiring more specific intrahepatic antiinflammatory and antifibrotic actions to achieve success. New and innovative targets and approaches as well as combination therapies are currently explored, while awaiting a better understanding of disease heterogeneity that should allow for future individualized medicine.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium; Translational Sciences in Inflammation and Immunology, University of Antwerp, Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Antwerp University Hospital, Drie Eikenstraat 665, Edegem B-2650, Belgium.
| | - Vlad Ratziu
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; INSERM UMRS 1138 CRC, Paris, France.
| |
Collapse
|
18
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 594] [Impact Index Per Article: 594.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
19
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
20
|
Walther A, Häberle B, Küppers J, Lurz E, Schmid I, Schmidt H, Dubinski I. Severe consumptive hypothyroidism in hepatic hemangioendothelioma. J Pediatr Endocrinol Metab 2022; 35:1560-1564. [PMID: 36190305 DOI: 10.1515/jpem-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Consumptive hypothyroidism may occur in hepatic hemangioendothelioma. The altered expression of deiodinases inactivates peripheral thyroid hormones. As a result, serum levels of free triiodothyronine and free thyroxine are reduced to varying degrees. There are no established recommendations for the dosage of sirolimus for this particular indication. We describe for the first time the course of treatment with low-dose sirolimus. CASE PRESENTATION We present a 5-week-old infant with hepatic hemangioendothelioma and severe consumptive hypothyroidism. Due to hepatic infiltration he showed signs of right heart strain. Therapy of hemangioendothelioma was initiated with propranolol and, in the absence of response, methylprednisolone was added. Treatment was continued with low-dose sirolimus (due to side effects) and propranolol. Hypothyroidism was managed with levothyroxine and liothyronine. CONCLUSIONS Consumptive hypothyroidism due to cutaneous hemangioma and hepatic hemangioendothelioma can be managed with propranolol and low-dose sirolimus. Treatment of severe hypothyroidism may require a combinational therapy by substitution of both T3 and T4.
Collapse
Affiliation(s)
- Antonia Walther
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| | - Julia Küppers
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| | - Eberhard Lurz
- Division of Pediatric Gastroenterology und Hepatology, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| | - Irene Schmid
- Division of Pediatric Hematology and Oncology, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| | - Heinrich Schmidt
- Division of Pediatric Endocrinology and Diabetology, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| | - Ilja Dubinski
- Division of Pediatric Endocrinology and Diabetology, Dr. von Hauner Children's Hospital, University Hospital Munich, LMU, Munich, Germany
| |
Collapse
|
21
|
Brennan PN, Dillon JF, McCrimmon R. Advances and Emerging Therapies in the Treatment of Non-alcoholic Steatohepatitis. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:148-155. [PMID: 36694893 PMCID: PMC9835815 DOI: 10.17925/ee.2022.18.2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) now represents one of the most prevalent forms of cirrhosis and hepatocellular carcinoma. A number of treatment agents have undergone assessment in humans following promising results in animal models. Currently, about 50 therapeutic agents are in various stages of development. Recently, however, there have been a number of exciting and positive developments in this landscape, although there are inherent challenges ahead. In this article, we review the aetiological and pathological basis of NASH progression and describe putative targets for current therapies. We also discuss some of the likely future directions and difficulties around this complex and challenging disease paradigm.
Collapse
Affiliation(s)
- Paul N Brennan
- The University of Edinburgh, Centre for Regenerative Medicine, Edinburgh, UK,NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK,The University of Dundee, Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - John F Dillon
- NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK,The University of Dundee, Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Rory McCrimmon
- NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK,The University of Dundee, Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hatziagelaki E, Paschou SA, Schön M, Psaltopoulou T, Roden M. NAFLD and thyroid function: pathophysiological and therapeutic considerations. Trends Endocrinol Metab 2022; 33:755-768. [PMID: 36171155 DOI: 10.1016/j.tem.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide rising challenge because of hepatic, but also extrahepatic, complications. Thyroid hormones are master regulators of energy and lipid homeostasis, and the presence of abnormal thyroid function in NAFLD suggests pathogenic relationships. Specifically, persons with hypothyroidism feature dyslipidemia and lower hepatic β-oxidation, which favors accumulation of triglycerides and lipotoxins, insulin resistance, and subsequently de novo lipogenesis. Recent studies indicate that liver-specific thyroid hormone receptor β agonists are effective for the treatment of NAFLD, likely due to improved lipid homeostasis and mitochondrial respiration, which, in turn, may contribute to a reduced risk of NAFLD progression. Taken together, the possible coexistence of thyroid disease and NAFLD calls for increased awareness and optimized strategies for mutual screening and management.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
23
|
Wirth EK, Puengel T, Spranger J, Tacke F. Thyroid hormones as a disease modifier and therapeutic target in nonalcoholic steatohepatitis. Expert Rev Endocrinol Metab 2022; 17:425-434. [PMID: 35957531 DOI: 10.1080/17446651.2022.2110864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and closely interconnected to the metabolic syndrome. Liver-specific and systemic signaling pathways orchestrating glucose and fatty acid metabolism contribute to intrahepatic accumulation of lipids and inflammatory processes eventually causing disease progression to nonalcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. Since a high number of key regulatory genes regarding liver homeostasis are directly mediated via thyroid hormone (TH) signaling, targeting TH receptors (TRs) represent a promising therapeutic potential for the treatment of NAFLD. AREAS COVERED In this review, we elucidate the effects of TH on metabolic regulations in the liver via local availability and actions. We discuss recent advances and the potential impact of thyromimetics in basic research and clinical trials including liver-targeted and TRβ-specific agents for the treatment of NAFLD. EXPERT OPINION Unselective TR targeting can be accompanied by negative side effects due to high TRβ expression in other organs and TRα-mediated effects. Recent advances in drug development and the introduction of liver-targeted thyromimetics selectively activating TRβ such as Resmetirom (MGL-3196) and VK2809 bring new hope of translating the knowledge on local TH effects into effective hepatic lipid-clearing therapies against NASH.
Collapse
Affiliation(s)
- Eva K Wirth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
24
|
Pujia R, Mazza E, Montalcini T, Arturi F, Brunetti A, Aversa A, Romeo S, Perticone M, Sciacqua A, Pujia A. Liver Stiffness in Obese Hypothyroid Patients Taking Levothyroxine. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070946. [PMID: 35888665 PMCID: PMC9316150 DOI: 10.3390/medicina58070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Thyroid dysfunction is associated with non-alcoholic fatty liver disease, but its role in the progression of liver damage in obese patients remains unclear. In addition, several case reports have suggested the existence of a levothyroxine-induced liver injury, which has been poorly investigated. Our aim was to verify whether a difference in the prevalence of liver fibrosis exists in a population of obese individuals taking Levothyroxine. Materials and Methods: We conducted a cross-sectional study on a population of 137 obese individuals, of which 49 were on replacement therapy with Levothyroxine. We excluded those who had hypertriglyceridemia and diabetes mellitus. All participants underwent a liver stiffness assessment by transient elastography as well as biochemical measurements. In subjects with liver fibrosis, other cause of liver fibrosis were ruled out. Results: Participants taking Levothyroxine had a higher prevalence of liver fibrosis than those not taking Levothyroxine (30.6% vs. 2.3%; p < 0.001), and these results were obtained after we made an adjustment for age (Exp(B) = 18.9; 95% CI = 4.1−87.4; p < 0.001). The liver stiffness value differed significantly between groups (6.0 ± 3.6 and 5.1 ± 1.2, p = 0.033). Of those subjects taking Levothyroxine, there were no significant differences in the dose of medication (1.21 ± 0.36 vs. 1.07 ± 0.42; p = 0.240) and treatment duration (13.7 ± 7.43 vs. 11.13 ± 6.23; p = 0.380) between those with and without liver fibrosis. Conclusions: We found, for the first time, a greater prevalence of liver fibrosis in obese individuals taking Levothyroxine than in those not taking this medication. This finding needs to be confirmed by longitudinal population studies as well as by cellular studies.
Collapse
Affiliation(s)
- Roberta Pujia
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy;
- Correspondence:
| | - Franco Arturi
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Antonio Brunetti
- Department of Health Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Aversa
- Department of Clinical and Experimental Medicine, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
- Department of Molecular and Clinical Medicine, The University of Gothenburg, 40530 Gothenburg, Sweden
| | - Maria Perticone
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Angela Sciacqua
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| |
Collapse
|
25
|
Zhou J, Tripathi M, Ho JP, Widjaja AA, Shekeran SG, Camat MD, James A, Wu Y, Ching J, Kovalik JP, Lim KH, Cook SA, Bay BH, Singh BK, Yen PM. Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid 2022; 32:725-738. [PMID: 35317606 DOI: 10.1089/thy.2021.0621] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, lobular inflammation, and fibrosis. Thyroid hormone (TH) reduces steatosis; however, the therapeutic effect of TH on NASH-associated inflammation and fibrosis is not known. This study examined the therapeutic effect of TH on hepatic inflammation and fibrosis during NASH and investigated THs molecular actions on autophagy and mitochondrial biogenesis. Methods: HepG2-TRβ cells were treated with bovine serum albumin-conjugated palmitic acid (PA) to mimic lipotoxic conditions in vitro. Mice with NASH were established by feeding C57BL/6J mice Western diet with 15% fructose in drinking water for 16 weeks. These mice were administered triiodothyronine (T3)/thyroxine (T4) supplemented in drinking water for the next eight weeks. Results: In cultured HepG2-TRβ cells, TH treatment increased mitochondrial respiration and fatty acid oxidation under basal and PA-treated conditions, as well as decreased lipopolysaccharides and PA-stimulated inflammatory and fibrotic responses. In a dietary mouse model of NASH, TH administration decreased hepatic triglyceride content (3.19 ± 0.68 vs. 8.04 ± 0.42 mM/g liver) and hydroxyproline (1.44 ± 0.07 vs. 2.58 ± 0.30 mg/g liver) when compared with mice with untreated NASH. Metabolomics profiling of lipid metabolites showed that mice with NASH had increased triacylglycerol, diacylglycerol, monoacylglycerol, and hepatic cholesterol esters species, and these lipid species were decreased by TH treatment. Mice with NASH also showed decreased autophagic degradation as evidenced by decreased transcription Factor EB and lysosomal protease expression, and accumulation of LC3B-II and p62. TH treatment restored the level of lysosomal proteins and resolved the accumulation of LC3B-II and p62. Impaired mitochondrial biogenesis was also restored by TH. The simultaneous restoration of autophagy and mitochondrial biogenesis by TH increased β-oxidation of fatty acids. Additionally, the elevated oxidative stress and inflammasome activation in NASH liver were also decreased by TH. Conclusions: In a mouse model of NASH, TH restored autophagy and mitochondrial biogenesis to increase β-oxidation of fatty acids and to reduce lipotoxicity, oxidative stress, hepatic inflammation, and fibrosis. Activating thyroid hormone receptor in the liver may represent an effective strategy for NASH treatment.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Madhulika Tripathi
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jia Pei Ho
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Anissa Anindya Widjaja
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shamini Guna Shekeran
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Anne James
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianhong Ching
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Stuart Alexander Cook
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Medical Research Council, London Institute for Medical Sciences, Imperial College London, London, United Kingdom
- National Heart Centre Singapore, Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brijesh Kumar Singh
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Paul Michael Yen
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, North Carolina, USA
- Endocrinology, Diabetes, and Metabolism Division, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
26
|
Abstract
Initially a condition that received limited recognition and whose clinical impact was controversial, non-alcoholic steatohepatitis (NASH) has become a leading cause of chronic liver disease. Although there are no approved therapies, major breakthroughs, which will be reviewed here, have paved the way for future therapeutic successes. The unmet medical need in NASH is no longer disputed, and progress in the understanding of its pathogenesis has resulted in the identification of many pharmacological targets. Key surrogate outcomes for therapeutic trials are now accepted by regulatory agencies, thus creating a path for drug registration. A set of non-invasive measurements enabled early-stage trials to be conducted expeditiously, thus providing early indications on the biological and possibly clinical actions of therapeutic candidates. This generated efficacy results for a number of highly promising compounds that are now in late-stage development. Intense research aimed at further improving the assessment of histological endpoints and in developing non-invasive predictive biomarkers is underway. This will help improve the design and feasibility of successful trials, ultimately providing patients with therapeutic options that can change the course of the disease.
Collapse
|
27
|
Von-Hafe M, Borges-Canha M, Vale C, Leite AR, Sérgio Neves J, Carvalho D, Leite-Moreira A. Nonalcoholic Fatty Liver Disease and Endocrine Axes—A Scoping Review. Metabolites 2022; 12:metabo12040298. [PMID: 35448486 PMCID: PMC9026925 DOI: 10.3390/metabo12040298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease. NAFLD often occurs associated with endocrinopathies. Evidence suggests that endocrine dysfunction may play an important role in NAFLD development, progression, and severity. Our work aimed to explore and summarize the crosstalk between the liver and different endocrine organs, their hormones, and dysfunctions. For instance, our results show that hyperprolactinemia, hypercortisolemia, and polycystic ovary syndrome seem to worsen NAFLD’s pathway. Hypothyroidism and low growth hormone levels also may contribute to NAFLD’s progression, and a bidirectional association between hypercortisolism and hypogonadism and the NAFLD pathway looks likely, given the current evidence. Therefore, we concluded that it appears likely that there is a link between several endocrine disorders and NAFLD other than the typically known type 2 diabetes mellitus and metabolic syndrome (MS). Nevertheless, there is controversial and insufficient evidence in this area of knowledge.
Collapse
Affiliation(s)
- Madalena Von-Hafe
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
| | - Marta Borges-Canha
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-918935390
| | - Catarina Vale
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
| | - Ana Rita Leite
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
| | - João Sérgio Neves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Investigação e Inovação em Saúde (i3s), Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; (M.V.-H.); (C.V.); (A.R.L.); (J.S.N.); (A.L.-M.)
- Serviço de Cirurgia Cardiotorácica do Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| |
Collapse
|
28
|
Bruinstroop E, Zhou J, Tripathi M, Yau WW, Boelen A, Singh BK, Yen PM. Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD progression. Mol Metab 2021; 53:101266. [PMID: 34098145 PMCID: PMC8237360 DOI: 10.1016/j.molmet.2021.101266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum ranging from hepatosteatosis to progressive nonalcoholic steatohepatitis that can lead to cirrhosis. Humans with low levels of prohormone thyroxine (T4) have a higher incidence of NAFLD, and thyroid hormone treatment is very promising in all patients with NAFLD. Deiodinase type 1 (Dio1) is a hepatic enzyme that converts T4 to the bioactive T3 and therefore regulates thyroid hormone availability within hepatocytes. We investigated the role of this intrahepatic regulation during the progression of NAFLD. METHODS We investigated hepatic thyroid hormone metabolism in two NAFLD models: wild-type mice fed a Western diet with fructose and Leprdb mice fed a methionine- and choline-deficient diet. AAV8-mediated liver-specific Dio1 knockdown was employed to investigate the role of Dio1 during the progression of NAFLD. Intrahepatic thyroid hormone levels, deiodinase activity, and metabolic parameters were measured. RESULTS Dio1 expression and activity were increased in the early stages of NAFLD and were associated with an increased T3/T4 ratio. Prevention of this increase by AAV8-mediated liver-specific Dio1 knockdown increased hepatic triglycerides and cholesterol and decreased the pACC/ACC ratio and acylcarnitine levels, suggesting there was lower β-oxidation. Dio1 siRNA KD in hepatic cells treated with fatty acids showed increased lipid accumulation and decreased oxidative phosphorylation. CONCLUSION Hepatic Dio1 gene expression was modulated by dietary conditions, was increased during hepatosteatosis and early NASH, and regulated hepatic triglyceride content. These early adaptations likely represent compensatory mechanisms that reduce hepatosteatosis and prevent NASH progression.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Endocrinology & Metabolism, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Winifred W Yau
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N Duke St, Durham, NC 27701, USA; Endocrinology, Diabetes, and Metabolism Division, Duke University School of Medicine, 300 N Duke St, Durham, NC 27701, USA
| |
Collapse
|
29
|
Kube I, Tardio LB, Hofmann U, Ghallab A, Hengstler JG, Führer D, Zwanziger D. Hypothyroidism Increases Cholesterol Gallstone Prevalence in Mice by Elevated Hydrophobicity of Primary Bile Acids. Thyroid 2021; 31:973-984. [PMID: 33231505 DOI: 10.1089/thy.2020.0636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Thyroid hormone (TH) deficiency has been associated with increased cholesterol gallstone prevalence. Hypothyroidism impacts hepatic lipid homeostasis, biliary secretion, gallbladder motility, and gallstone (LITH) gene expression, all potential factors contributing to cholesterol gallstone disease (CGD). However, how TH deficiency may lead to gallstone formation is still poorly understood. Therefore, we performed molecular studies in a CGD mouse model under lithogenic conditions and modulation of TH status. Methods: Male, three-month-old C57BL/6 mice were randomly divided into a control (euthyroid) group, a hypothyroid (hypo) group, a gallstone (litho) group, and a gallstone+hypothyroid (litho+hypo) group and were treated for 2, 4, and 6 weeks (n = 8/treatment period). Gallstone prevalence, biliary composition and cholesterol crystals, hepatic expression of genes participating in cholesterol, bile acid (BA), and phosphatidylcholine synthesis (Hmgcr, Cyp7a1, Pcyt1a), and canalicular transport (Abcg5, Bsep, Abcb4) were investigated. Results: Increased cholesterol gallstone prevalence was observed in hypothyroid mice under lithogenic diet after 4 and 6 weeks of treatment (4 weeks: 25% vs. 0%; 6 weeks: 75% vs. 37.5%). Interestingly, neither the composition of the three main biliary components, cholesterol, BAs, and phosphatidylcholine, nor the hepatic expression of genes involved in synthesis and transport could explain the differences in cholesterol gallstone formation in the mice. However, TH deficiency resulted in significantly increased hydrophobicity of primary BAs in bile. Furthermore, downregulation of hepatic sulfonation enzymes Papss2 and Sult2a8 as well as diminished biliary BA sulfate concentrations in mice were observed under hypothyroid conditions all contributing to a lithogenic biliary milieu as evidenced by microscopic cholesterol crystals and macroscopic gallstone formation. Conclusions: We describe a novel pathogenic link between TH deficiency and CGD and suggest that the increased hydrophobic character of biliary BAs due to the diminished expression of hepatic detoxification enzymes promotes cholesterol crystal precipitation and enhances cholesterol gallstone formation in the bile of hypothyroid mice.
Collapse
Affiliation(s)
- Irina Kube
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Luca Bartolomeo Tardio
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Ahmed Ghallab
- Department of Toxicology/Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jan G Hengstler
- Department of Toxicology/Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry, Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Harrison SA, Bashir M, Moussa SE, McCarty K, Pablo Frias J, Taub R, Alkhouri N. Effects of Resmetirom on Noninvasive Endpoints in a 36-Week Phase 2 Active Treatment Extension Study in Patients With NASH. Hepatol Commun 2021; 5:573-588. [PMID: 33860116 PMCID: PMC8034581 DOI: 10.1002/hep4.1657] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
Resmetirom (MGL-3196), a selective thyroid hormone receptor-β agonist, was evaluated in a 36-week paired liver biopsy study (NCT02912260) in adults with biopsy-confirmed nonalcoholic steatohepatitis (NASH). The primary endpoint was relative liver fat reduction as assessed by MRI-proton density fat fraction (MRI-PDFF), and secondary endpoints included histopathology. Subsequently, a 36-week active treatment open-label extension (OLE) study was conducted in 31 consenting patients (including 14 former placebo patients) with persistently mild to markedly elevated liver enzymes at the end of the main study. In patients treated with resmetirom (80 or 100 mg orally per day), MRI-PDFF reduction at OLE week 36 was -11.1% (1.5%) mean reduction (standard error [SE]; P < 0.0001) and -52.3% (4.4%) mean relative reduction, P < 0.0001. Low-density lipoprotein (LDL) cholesterol (-26.1% [4.5%], P < 0.0001), apolipoprotein B (-23.8% [3.0%], P < 0.0001), and triglycerides (-19.6% [5.4%], P = 0.0012; -46.1 [14.5] mg/dL, P = 0.0031) were reduced from baseline. Markers of fibrosis were reduced, including liver stiffness assessed by transient elastography (-2.1 [0.8] mean kilopascals [SE], P = 0.015) and N-terminal type III collagen pro-peptide (PRO-C3) (-9.8 [2.3] ng/mL, P = 0.0004 (baseline ≥ 10 ng/mL). In the main and OLE studies, PRO-C3/C3M (matrix metalloproteinase-degraded C3), a marker of net fibrosis formation, was reduced in resmetirom-treated patients (-0.76 [-1.27, -0.24], P = 0.0044 and -0.68, P < 0.0001, respectively). Resmetirom was well tolerated, with few, nonserious adverse events. Conclusion: The results of this 36-week OLE study support the efficacy and safety of resmetirom at daily doses of 80 mg and 100 mg, used in the ongoing phase 3 NASH study, MAESTRO-NASH (NCT03900429). The OLE study demonstrates a potential for noninvasive assessments to monitor the response to resmetirom from an individual patient with NASH.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom.,Department of MedicinePinnacle Clinical ResearchSan AntonioTXUSA
| | - Mustafa Bashir
- Department of RadiologyCenter for Advanced Magnetic ResonanceDuke University Medical CenterDurhamNCUSA
| | - Sam E Moussa
- Department of MedicineUniversity of Arizona for Medical SciencesTusconAZUSA
| | | | | | | | | |
Collapse
|
31
|
Jurgelewicz A, Dornbos P, Warren M, Nault R, Arkatkar A, Lin H, Threadgill DW, Zacharewski T, LaPres JJ. Genetics-Based Approach to Identify Novel Genes Regulated by the Aryl Hydrocarbon Receptor in Mouse Liver. Toxicol Sci 2021; 181:285-294. [PMID: 33720361 PMCID: PMC8599770 DOI: 10.1093/toxsci/kfab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor in the Per-Arnt-Sim superfamily of environmental sensors that is linked to several metabolic diseases, including nonalcoholic fatty liver disease. Much remains unknown regarding the impact of genetic variation in AHR-driven disease, as past studies have focused on a small number of inbred strains. Recently, the presence of a wide range of interindividual variability amongst humans was reported in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical ligand of the AHR. In this study, a panel of 14 diverse mouse strains was exposed to TCDD for 10 days to characterize the AHR-mediated response across genetic backgrounds. Responses to TCDD are heavily dependent on genetic background. Although mice carry 1 of 4 Ahr alleles known to impact the affinity to AHR-ligands, we observed significant intra-allelic variability suggesting the presence of novel genetic modifiers of AHR signaling. A regression-based approach was used to scan for genes regulated by the AHR and/or associated with TCDD-induced phenotypes. The approach identified 7 genes, 2 of which are novel, that are likely regulated by the AHR based on association with hepatic TCDD burden (p ≤ .05). Finally, we identified 1 gene, Dio1, which was associated with change in percent body fat across the diverse set of strains (p ≤ .05). Overall, the results in this study exemplify the power of genetics-based approaches in identifying novel genes that are putatively regulated by the AHR.
Collapse
Affiliation(s)
- Amanda Jurgelewicz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Peter Dornbos
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Melanie Warren
- Interdisciplinary Program in Toxicology, Texas A&M University, College Station, Texas 77843, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Anooj Arkatkar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hui Lin
- The Dow Chemical Company, Environmental Technology Center, Midland, Michigan 48674, USA
| | - David W Threadgill
- Interdisciplinary Program in Toxicology, Texas A&M University, College Station, Texas 77843, USA
| | - Tim Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - John J LaPres
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA,To whom correspondence should be addressed at Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 224, East Lansing, MI 48824-1319. E-mail:
| |
Collapse
|
32
|
Guirguis E, Grace Y, Bolson A, DellaVecchia MJ, Ruble M. Emerging therapies for the treatment of nonalcoholic steatohepatitis: A systematic review. Pharmacotherapy 2021; 41:315-328. [PMID: 33278029 DOI: 10.1002/phar.2489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
To describe the mechanism, efficacy, and safety of novel agents that have reached phase 3 clinical trials for the treatment of biopsy-proven nonalcoholic steatohepatitis (NASH). A literature search was conducted using the PRISMA guidelines of MEDLINE databases (1990 to October 2020) with the following MeSH terms: NASH, nonalcoholic liver disease, fatty liver, liver diseases, steatohepatitis, liver fibrosis; combined with obeticholic acid, FXR agonist, cenicriviroc, CCR5 receptor antagonist, elafibranor, PPAR, selonsertib, ASK-1 inhibitor, resmetirom, THR-β receptor, arachidyl amido cholanoic acid (Aramchol™), and SCD-1 modulator. Results were verified via clinicaltrials.gov, Google Scholar, and Google. Articles were included if the medications of interest had ongoing or completed phase 3 trials in biopsy-proven NASH with outcomes directly related to NASH resolution. Eleven studies were identified involving obeticholic acid (OCA), elafibranor, cenicriviroc, Aramchol, and resmetirom. Two agents have reported data from phase 3 trials: OCA and elafibranor. OCA demonstrated safety and efficacy in NASH with a primary end point of improvement or NASH resolution; a new drug approval has been submitted. Elafibranor failed to show efficacy in NASH in the preliminary report from the RESOLVE-IT trial; however, the study is being extended to reassess outcomes. The remaining agents demonstrated positive results in phase 2b studies and have initiated phase 3 trials. With projections for increased prevalence of patients with NASH and the current lack of treatment options, novel agents with targeted mechanisms could potentially change the treatment landscape. The manufacturer of OCA is first to submit a new drug application for the treatment of NASH. These novel agents may fill a pharmacotherapy gap in patients with NASH and possibly prevent progression to advanced liver disease.
Collapse
Affiliation(s)
- Erenie Guirguis
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Yasmin Grace
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Anthony Bolson
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Matthew J DellaVecchia
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Melissa Ruble
- Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
33
|
Lai S, Li J, Wang Z, Wang W, Guan H. Sensitivity to Thyroid Hormone Indices Are Closely Associated With NAFLD. Front Endocrinol (Lausanne) 2021; 12:766419. [PMID: 34803928 PMCID: PMC8602917 DOI: 10.3389/fendo.2021.766419] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Previous studies on the association between thyroid function and non-alcoholic fatty liver disease (NAFLD) have contradicted. Acquired resistance to thyroid hormone theory might provide a reasonable explanation for these contradictions. We aimed to analyze the association between sensitivity to thyroid hormone indices with NAFLD. METHODS A total of 4,610 individuals from the health medical center of the First Hospital of China Medical University were included in this study. The previously used thyroid feedback quantile-based index (TFQIFT4) was calculated. Also, we substituted free triiodothyronine (FT3) into the TFQI formulas to get the TFQIFT3 index. NAFLD was defined using abdominal ultrasound. RESULTS Study results showed that FT3/FT4 and TFQIFT3 were positively correlated with the triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels (P<0.05) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) level (P<0.05). In contrast, TFQIFT4 was positively correlated with HDL-C level (P < 0.05). After adjustment for multiple confounders, FT3, FT3/FT4, and TFQIFT3 were positively associated with the risks of dyslipidemia and NAFLD (P < 0.05). TFQIFT3 and FT3/FT4 performed better than TFQIFT4 on ROC analyses for NAFLD prediction, although the diagnostic sensitivity and specificity at the optimal cut-points were low. However, no association was observed between TFQIFT4 with the risks of dyslipidemia and NAFLD. CONCLUSION TFQIFT3 and FT3/FT4 can be used as new indicators for predicting dyslipidemia and NAFLD, although with low sensitivity and specificity at the optimal cut-points, while TFQIFT4 has insufficient evidence in predicting dyslipidemia and NAFLD.
Collapse
Affiliation(s)
- Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiarong Li
- Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Ziyang, Ziyang, China
| | - Zixiao Wang
- Department of Physical Examination Center, The First Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Physical Examination Center, The First Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Raza S, Rajak S, Upadhyay A, Tewari A, Anthony Sinha R. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci (Landmark Ed) 2021; 26:206-237. [PMID: 33049668 DOI: 10.2741/4892] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one the fastest emerging manifestations of the metabolic syndrome worldwide. Non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, may culminate into cirrhosis and hepatocellular cancer (HCC) and is presently a leading cause of liver transplant. Although a steady progress is seen in understanding of the disease epidemiology, pathogenesis and identifying therapeutic targets, the slowest advancement is seen in the therapeutic field. Currently, there is no FDA approved therapy for this disease and appropriate therapeutic targets are urgently warranted. In this review we discuss the role of lifestyle intervention, pharmacological agents, surgical approaches, and gut microbiome, with regard to therapy for NASH. In particular, we focus the role of insulin sensitizers, thyroid hormone mimetics, antioxidants, cholesterol lowering drugs, incretins and cytokines as therapeutic targets for NASH. We highlight these targets aiming to optimize the future for NASH therapy.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Aditya Upadhyay
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India,
| |
Collapse
|
35
|
Van Gaal LF, Mertens J, Francque S, De Block C. Therapeutic approaches for non-alcoholic steatohepatitis. Ther Adv Endocrinol Metab 2021; 12:20420188211034300. [PMID: 34497708 PMCID: PMC8419532 DOI: 10.1177/20420188211034300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have been reported as a novel worldwide epidemic, very often associated with obesity, metabolic syndrome, and type 2 diabetes. Both conditions have also been shown to be associated with a number of endocrine pathologies. Despite the epidemic, the complex pathophysiology and major complications, ranging from metabolic disturbances (diabetes and more) to cardiovascular disease, people with NASH are left with very few management options. The best and most approved therapeutic option is lifestyle intervention. Although pharmacotherapies based on pathophysiological background are in development, response rates appear modest, mainly for fibrosis treatment, which is the reason for lack of approved drug therapy. Previous drugs analyzed, such as pioglitazone and vitamin E, show weak efficacy. From different phase II trials, antidiabetic (injectable) drugs seem to be promising, both in mono- or bitherapy. Also, derivatives of peroxisome proliferator-activated receptors may have an interesting future, as well. For that reason, more focus should be given on prevention of this novel disease entity. In view of this booming epidemic, with a background of obesity and type 2 diabetes, and the important medical consequences, early recognition, prevention and intervention of NAFLD/NASH seems appropriate. In this review, we will focus on the different current and future therapeutic intervention options, taking into consideration the complex pathophysiology of this disease.
Collapse
Affiliation(s)
| | | | - Sven Francque
- Department of Gastroenterology & Hepatology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Faculty of Medicine & Health Sciences, LEMP, Wilrijk, Belgium
| | - Christophe De Block
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Faculty of Medicine & Health Sciences, LEMP, Wilrijk, Belgium
| |
Collapse
|
36
|
Abstract
The worldwide prevalence of non-alcoholic fatty liver disease is around 25%, and that of nonalcoholic steatohepatitis (NASH) ranges from 1.5% to 6.45%. Patients with NASH, especially those with fibrosis, are at higher risk for adverse outcomes such as cirrhosis and liver-related mortality. Although vitamin E, pioglitazone, and liraglutide improved liver histology in randomized trials, there are currently no Food and Drug Administration-approved drugs for NASH. Five pharmacologic agents-obeticholic acid, elafibranor, cenicriviroc, resmetirom, and aramchol-are being evaluated in large, histology-based phase 3 trials. Within 2 to 4 years, new and effective drugs for the treatment of NASH are expected. Additionally, many phase 2 trials are ongoing for various agents. Based on the results of phase 2 and 3 trials, combination treatments are also being investigated. Future treatment strategies will comprise drug combinations and precision medicine based on the different phenotypes of NASH and treatment response of the individual patient.
Collapse
Affiliation(s)
- Soung Won Jeong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
- Corresponding author: Soung Won Jeong Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesagwan-ro, Yongsan-gu, Seoul 04401, Korea E-mail:
| |
Collapse
|
37
|
Hypothyroidism-Induced Nonalcoholic Fatty Liver Disease (HIN): Mechanisms and Emerging Therapeutic Options. Int J Mol Sci 2020; 21:ijms21165927. [PMID: 32824723 PMCID: PMC7460638 DOI: 10.3390/ijms21165927] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide problem and its association with other metabolic pathologies has been one of the main research topics in the last decade. The aim of this review article is to provide an up-to-date correlation between hypothyroidism and NAFLD. We followed evidence regarding epidemiological impact, immunopathogenesis, thyroid hormone-liver axis, lipid and cholesterol metabolism, insulin resistance, oxidative stress, and inflammation. After evaluating the influence of thyroid hormone imbalance on liver structure and function, the latest studies have focused on developing new therapeutic strategies. Thyroid hormones (THs) along with their metabolites and thyroid hormone receptor β (THR-β) agonist are the main therapeutic targets. Other liver specific analogs and alternative treatments have been tested in the last few years as potential NAFLD therapy. Finally, we concluded that further research is necessary as well as the need for an extensive evaluation of thyroid function in NAFLD/NASH patients, aiming for better management and outcome.
Collapse
|
38
|
Borges-Canha M, Neves JS, Mendonça F, Silva MM, Costa C, Cabral PM, Guerreiro V, Lourenço R, Meira P, Salazar D, Ferreira MJ, Pedro J, Leite A, Von-Hafe M, Vale C, Viana S, Sande A, Belo S, Lau E, Freitas P, Carvalho D. Thyroid Function and the Risk of Non-Alcoholic Fatty Liver Disease in Morbid Obesity. Front Endocrinol (Lausanne) 2020; 11:572128. [PMID: 33193088 PMCID: PMC7655985 DOI: 10.3389/fendo.2020.572128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND An association between hypothyroidism and the risk of Non-alcoholic Fatty Liver Disease (NAFLD) has been suggested. This association remains to be elucidated in patients with morbid obesity. AIM To evaluate the association between thyroid function and parameters of liver function and hepatic scores in patients with morbid obesity. METHODS Patients with morbid obesity followed in our center between January 2010 and July 2018 were included. The ones without evaluation of liver and thyroid functions were excluded. Fatty Liver Index (FLI) and BARD scores were used as predictors of hepatic steatosis and fibrosis, respectively. RESULTS We observed a positive association between TSH and both BARD (OR 1.14; p = 0.035) and FLI (OR 1.19; p = 0.010) in the unadjusted analysis. We found a negative association between free triiodothyronine levels and BARD (OR 0.70; p<0.01) and a positive association between free triiodothyronine levels and FLI (OR 1.48; p = 0.022). Concerning liver function, we found a positive association between total bilirubin and free thyroxine levels (β = 0.18 [0.02 to 0.35]; p = 0.033) and a negative association between total bilirubin and free triiodothyronine levels (β = -0.07 [-0.14 to -0.002]; p = 0.042). CONCLUSION Higher levels of TSH and free triiodothyronine may be associated with a higher risk of NAFLD, particularly steatosis, in patients with morbid obesity.
Collapse
Affiliation(s)
- Marta Borges-Canha
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- *Correspondence: Marta Borges-Canha,
| | - João Sérgio Neves
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fernando Mendonça
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Maria Manuel Silva
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Cláudia Costa
- Serviço de Endocrinologia do Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Pedro M. Cabral
- Serviço de Patologia Clínica do Centro Hospitalar, Universitário Cova da Beira, Covilhã, Portugal
| | - Vanessa Guerreiro
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Rita Lourenço
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Patrícia Meira
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Daniela Salazar
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Maria João Ferreira
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Jorge Pedro
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Leite
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Madalena Von-Hafe
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Catarina Vale
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Sara Viana
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Ana Sande
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Sandra Belo
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Eva Lau
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Paula Freitas
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Investigação e Inovação em Saúde (i3s), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do Centro Hospitalar Universitário de São João, Porto, Portugal
- Investigação e Inovação em Saúde (i3s), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Alkhouri N. Thyromimetics as emerging therapeutic agents for nonalcoholic steatohepatitis: rationale for the development of resmetirom (MGL-3196). Expert Opin Investig Drugs 2019; 29:99-101. [DOI: 10.1080/13543784.2020.1708899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Naim Alkhouri
- Texas Liver Institute, University of Texas Health San Antonio (UTHSA), San Antonio, TX, USA
| |
Collapse
|
40
|
Affiliation(s)
- Vlad Ratziu
- Institute for Cardiometabolism and Nutrition, Sorbonne Universités, Paris, France; Department of Hepatogastroenterology, Hospital Pitié-Salpêtrière 75013, Paris, France.
| |
Collapse
|
41
|
Harrison SA, Bashir MR, Guy CD, Zhou R, Moylan CA, Frias JP, Alkhouri N, Bansal MB, Baum S, Neuschwander-Tetri BA, Taub R, Moussa SE. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019; 394:2012-2024. [PMID: 31727409 DOI: 10.1016/s0140-6736(19)32517-6] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation, hepatocellular injury, and progressive liver fibrosis. Resmetirom (MGL-3196) is a liver-directed, orally active, selective thyroid hormone receptor-β agonist designed to improve NASH by increasing hepatic fat metabolism and reducing lipotoxicity. We aimed to assess the safety and efficacy of resmetirom in patients with NASH. METHODS MGL-3196-05 was a 36-week randomised, double-blind, placebo-controlled study at 25 centres in the USA. Adults with biopsy confirmed NASH (fibrosis stages 1-3) and hepatic fat fraction of at least 10% at baseline when assessed by MRI-proton density fat fraction (MRI-PDFF) were eligible. Patients were randomly assigned 2:1 by a computer-based system to receive resmetirom 80 mg or matching placebo, orally once a day. Serial hepatic fat measurements were obtained at weeks 12 and 36, and a second liver biopsy was obtained at week 36. The primary endpoint was relative change in MRI-PDFF assessed hepatic fat compared with placebo at week 12 in patients who had both a baseline and week 12 MRI-PDFF. This trial is registered with ClinicalTrials.gov, number NCT02912260. FINDINGS 348 patients were screened and 84 were randomly assigned to resmetirom and 41 to placebo at 18 sites in the USA. Resmetirom-treated patients (n=78) showed a relative reduction of hepatic fat compared with placebo (n=38) at week 12 (-32·9% resmetirom vs -10·4% placebo; least squares mean difference -22·5%, 95% CI -32·9 to -12·2; p<0·0001) and week 36 (-37·3% resmetirom [n=74] vs -8·5 placebo [n=34]; -28·8%, -42·0 to -15·7; p<0·0001). Adverse events were mostly mild or moderate and were balanced between groups, except for a higher incidence of transient mild diarrhoea and nausea with resmetirom. INTERPRETATION Resmetirom treatment resulted in significant reduction in hepatic fat after 12 weeks and 36 weeks of treatment in patients with NASH. Further studies of resmetirom will allow assessment of safety and effectiveness of resmetirom in a larger number of patients with NASH with the possibility of documenting associations between histological effects and changes in non-invasive markers and imaging. FUNDING Madrigal Pharmaceuticals.
Collapse
Affiliation(s)
- Stephen A Harrison
- Pinnacle Clinical Research, San Antonio, TX, USA; Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Mustafa R Bashir
- Department of Radiology, Center for Advanced Magnetic Resonance Development, Department of Pathology, and Division of Hepatology, Duke University Medical Center, Durham, NC, USA
| | - Cynthia D Guy
- Department of Radiology, Center for Advanced Magnetic Resonance Development, Department of Pathology, and Division of Hepatology, Duke University Medical Center, Durham, NC, USA
| | | | - Cynthia A Moylan
- Department of Radiology, Center for Advanced Magnetic Resonance Development, Department of Pathology, and Division of Hepatology, Duke University Medical Center, Durham, NC, USA
| | - Juan P Frias
- Department of Medicine, University of California, San Diego, CA, USA
| | - Naim Alkhouri
- Division of Gastroenterology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Meena B Bansal
- Division of Hepatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seth Baum
- Department of Integrated Medicine, Florida Atlantic University, Miami, FL, USA
| | | | | | - Sam E Moussa
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
42
|
Sinha RA, Bruinstroop E, Singh BK, Yen PM. Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid 2019; 29:1173-1191. [PMID: 31389309 PMCID: PMC6850905 DOI: 10.1089/thy.2018.0664] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Thyroid hormones (THs) exert a strong influence on mammalian lipid metabolism at the systemic and hepatic levels by virtue of their roles in regulating circulating lipoprotein, triglyceride (TAG), and cholesterol levels, as well as hepatic TAG storage and metabolism. These effects are mediated by intricate sensing and feedback systems that function at the physiological, metabolic, molecular, and transcriptional levels in the liver. Dysfunction in the pathways involved in lipid metabolism disrupts hepatic lipid homeostasis and contributes to the pathogenesis of metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD) and hypercholesterolemia. There has been strong interest in understanding and employing THs, TH metabolites, and TH mimetics as lipid-modifying drugs. Summary: THs regulate many processes involved in hepatic TAG and cholesterol metabolism to decrease serum cholesterol and intrahepatic lipid content. TH receptor β analogs designed to have less side effects than the natural hormone are currently being tested in phase II clinical studies for NAFLD and hypercholesterolemia. The TH metabolites, 3,5-diiodo-l-thyronine (T2) and T1AM (3-iodothyronamine), have different beneficial effects on lipid metabolism compared with triiodothyronine (T3), although their clinical application is still under investigation. Also, prodrugs and glucagon/T3 conjugates have been developed that direct TH to the liver. Conclusions: TH-based therapies show clinical promise for the treatment of NAFLD and hypercholesterolemia. Strategies for limiting side effects of TH are being developed and may enable TH metabolites and analogs to have specific effects in the liver for treatments of these conditions. These liver-specific effects and potential suppression of the hypothalamic/pituitary/thyroid axis raise the issue of monitoring liver-specific markers of TH action to assess clinical efficacy and dosing of these compounds.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
43
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
44
|
Manka P, Bechmann L, Best J, Sydor S, Claridge LC, Coombes JD, Canbay A, Moeller L, Gerken G, Wedemeyer H, Syn WK. Low Free Triiodothyronine Is Associated with Advanced Fibrosis in Patients at High Risk for Nonalcoholic Steatohepatitis. Dig Dis Sci 2019; 64:2351-2358. [PMID: 31155687 DOI: 10.1007/s10620-019-05687-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/27/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Thyroid hormone is critical for tissue-organ development, growth, differentiation, and metabolism. In murine models of advanced nonalcoholic steatohepatitis (NASH), the administration of T3 reduced liver triglyceride, repressed liver inflammation, and attenuated injury. In recent studies of patients with NASH, hypothyroidism was noted to be associated with more advanced NASH. These findings suggest that thyroid hormone function might be a modulator of nonalcoholic fatty liver disease (NAFLD) outcomes. AIMS Herein, we evaluated the correlation between plasma TSH/free T3 (fT3)/free T4 (fT4) levels and (non-invasive) surrogate markers of NAFLD fibrosis. METHODS We performed a retrospective analysis of 144 patients who were seen in our NASH outpatient clinic between 2015 and 2017. Each patient underwent a standard anthropometric assessment, laboratory and clinical evaluations, and liver stiffness measurements by transient elastography (Fibroscan). Univariate analysis and multivariate linear and logistic regression analysis were used to identify factors independently associated with NASH and advanced fibrosis. RESULTS Low fT3 values but not TSH and fT4 were associated with higher liver stiffness and higher NAFLD fibrosis score, respectively. fT3 and TSH values correlated significantly with indices of liver disease including INR, albumin, ALT, AST, bilirubin, and platelets. In multivariate analyses, a low fT3 was independently associated with high NFS scores (OR 0.169, CI 0.05-0.54, p = 0.003) and was also associated with high liver stiffness readings (OR 0.326, CI 0.135-0.785, p = 0.001). CONCLUSION A low-normal thyroid hormone function is predictive of NASH and advanced fibrosis and may have a pathogenic role in modulating NAFLD outcomes.
Collapse
Affiliation(s)
- Paul Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany. .,Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Lars Bechmann
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jan Best
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Svenja Sydor
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lee C Claridge
- Department of Hepatology, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - Jason D Coombes
- Department of Inflammation Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Bioengineering, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Ali Canbay
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Moeller
- Department of Endocrinology, Diabetology, and Metabolism, University Hospital Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
45
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most frequently encountered chronic liver disease. NAFLD is associated with increased liver-related morbidity and mortality, but also contributes to cardiovascular disease, diabetes and non-liver-related malignancy. Non-alcoholic steatohepatitis (NASH) is considered the more severe subtype of NAFLD that drives most of these adverse outcomes. Lifestyle modification and associated weight loss can improve NASH but are not always sufficient and sustained results are difficult to obtain. There is hence an urgent need for pharmacological treatment. In this review we discuss some of the concepts and challenges in the development of pharmacological treatment. We also briefly summarise what can be achieved with some of the drugs that are currently available for other indications but have demonstrated benefit in the treatment of NASH. Finally we present an overview of some of the main drugs or types of drugs, mainly based on their mode of action, that are now being developed specifically to treat NASH and that might soon result in the availability of drugs licensed for NASH.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium.
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium.
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
46
|
Manka P, Coombes JD, Boosman R, Gauthier K, Papa S, Syn WK. Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment. Cancer Lett 2019; 419:175-186. [PMID: 29414304 DOI: 10.1016/j.canlet.2018.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) commonly arises from a liver damaged by extensive inflammation and fibrosis. Various factors including cytokines, morphogens, and growth factors are involved in the crosstalk between HCC cells and the stromal microenvironment. Increasing our understanding of how stromal components interact with HCC and the signaling pathways involved could help identify new therapeutic and/or chemopreventive targets. It has become increasingly clear that the cross-talk between tumor cells and host stroma plays a key role in modulating tumor growth. Emerging reports suggest a relationship between HCC and thyroid hormone signaling (dysfunction), raising the possibility that perturbed thyroid hormone (TH) regulation influences the cancer microenvironment and cancer phenotype. This review provides an overview of the role of thyroid hormone and its related pathways in HCC and, specifically, its role in regulating the tumor microenvironment.
Collapse
Affiliation(s)
- P Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany; Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston (SC), USA.
| | - J D Coombes
- Regeneration and Repair, Institute of Hepatology, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - R Boosman
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - S Papa
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - W K Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston (SC), USA; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston (SC), USA.
| |
Collapse
|
47
|
Gionfra F, De Vito P, Pallottini V, Lin HY, Davis PJ, Pedersen JZ, Incerpi S. The Role of Thyroid Hormones in Hepatocyte Proliferation and Liver Cancer. Front Endocrinol (Lausanne) 2019; 10:532. [PMID: 31543862 PMCID: PMC6730500 DOI: 10.3389/fendo.2019.00532] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormones T3 and T4 (thyroxine) control a wide variety of effects related to development, differentiation, growth and metabolism, through their interaction with nuclear receptors. But thyroid hormones also produce non-genomic effects that typically start at the plasma membrane and are mediated mainly by integrin αvβ3, although other receptors such as TRα and TRβ are also able to elicit non-genomic responses. In the liver, the effects of thyroid hormones appear to be particularly important. The liver is able to regenerate, but it is subject to pathologies that may lead to cancer, such as fibrosis, cirrhosis, and non-alcoholic fatty liver disease. In addition, cancer cells undergo a reprogramming of their metabolism, resulting in drastic changes such as aerobic glycolysis instead of oxidative phosphorylation. As a consequence, the pyruvate kinase isoform M2, the rate-limiting enzyme of glycolysis, is dysregulated, and this is considered an important factor in tumorigenesis. Redox equilibrium is also important, in fact cancer cells give rise to the production of more reactive oxygen species (ROS) than normal cells. This increase may favor the survival and propagation of cancer cells. We evaluate the possible mechanisms involving the plasma membrane receptor integrin αvβ3 that may lead to cancer progression. Studying diseases that affect the liver and their experimental models may help to unravel the cellular pathways mediated by integrin αvβ3 that can lead to liver cancer. Inhibitors of integrin αvβ3 might represent a future therapeutic tool against liver cancer. We also include information on the possible role of exosomes in liver cancer, as well as on recent strategies such as organoids and spheroids, which may provide a new tool for research, drug discovery, and personalized medicine.
Collapse
Affiliation(s)
- Fabio Gionfra
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
- *Correspondence: Sandra Incerpi
| |
Collapse
|
48
|
Krause C, Grohs M, El Gammal AT, Wolter S, Lehnert H, Mann O, Mittag J, Kirchner H. Reduced expression of thyroid hormone receptor β in human nonalcoholic steatohepatitis. Endocr Connect 2018; 7:1448-1456. [PMID: 30496129 PMCID: PMC6300861 DOI: 10.1530/ec-18-0499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023]
Abstract
Hepatic thyroid hormone signaling has an important role in the development and progression of nonalcoholic steatohepatitis (NASH). While the systemic levels of thyroid hormone might remain stable, there is evidence that the intracellular signaling machinery consisting of transporters, deiodinases and receptors could be altered in NASH. However, clinical material from human liver biopsies of individuals with NASH has not been studied to date. In a cross-sectional study, we analyzed 85 liver biopsies from patients with different stages of NASH that underwent bariatric surgery. Using qPCR, we analyzed gene expression of thyroid hormone transporters NTCP (SLC10A1), MCT8 (SLC16A2) and OATP1C1 (SLCO1C1), thyroid hormone receptor α and β (THRA and THRB) and deiodinase type I, II and III (DIO1, DIO2, DIO3). The expression was correlated with serum TSH, triglyceride, HbA1c and NASH score and corrected for age or gender if required. While DIO2, DIO3 and SLCO1C1 were not expressed in human liver, we observed a significant negative correlation of THRB and DIO1 with age, and SLC16A2 with gender. THRB expression was also negatively associated with serum triglyceride levels and HbA1c. More importantly, its expression was inversely correlated with NASH score and further declined with age. Our data provide unique insight into the mRNA expression of thyroid hormone transporters, deiodinases and receptors in the human liver. The findings allow important conclusions on the intrahepatic mechanisms governing thyroid hormone action, indicating a possible tissue resistance to the circulating hormone in NASH, which becomes more prominent in advanced age.
Collapse
Affiliation(s)
- Christin Krause
- Epigenetics & Metabolism, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Martina Grohs
- Epigenetics & Metabolism, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Mittag
- Molecular Endocrinology, Medical Department I, University of Lübeck, Lübeck, Germany
- Correspondence should be addressed to J Mittag or H Kirchner: or
| | - Henriette Kirchner
- Epigenetics & Metabolism, Medical Department I, University of Lübeck, Lübeck, Germany
- Correspondence should be addressed to J Mittag or H Kirchner: or
| |
Collapse
|
49
|
Bruinstroop E, Dalan R, Cao Y, Bee YM, Chandran K, Cho LW, Soh SB, Teo EK, Toh SA, Leow MKS, Sinha RA, Sadananthan SA, Michael N, Stapleton HM, Leung C, Angus PW, Patel SK, Burrell LM, Lim SC, Sum CF, Velan SS, Yen PM. Low-Dose Levothyroxine Reduces Intrahepatic Lipid Content in Patients With Type 2 Diabetes Mellitus and NAFLD. J Clin Endocrinol Metab 2018; 103:2698-2706. [PMID: 29718334 DOI: 10.1210/jc.2018-00475] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in patients with type 2 diabetes mellitus (T2DM) and associated with significant morbidity and mortality. Thyroid hormone (TH) increases β-oxidation of fatty acids and decreases intrahepatic lipid content (IHLC) in rodents with NAFLD. OBJECTIVE We investigated the possibility of low intrahepatic TH concentration in NAFLD and studied the effect of TH treatment in humans. DESIGN/SETTING This was a phase 2b single-arm study in six hospitals in Singapore. Intrahepatic thyroid hormone concentrations were measured in rats with induced NAFLD. PATIENTS Euthyroid patients with T2DM and steatosis measured by ultrasonography. INTERVENTION Levothyroxine was titrated to reach a thyroid-stimulating hormone level of 0.34 to 1.70 mIU/L before a 16-week maintenance phase. MAIN OUTCOME MEASURES The primary outcome measure was change in IHLC measured by proton magnetic resonance spectroscopy after treatment. RESULTS Twenty male patients were included in the per-protocol analysis [mean ± SD: age, 47.8 ± 7.8 years; body mass index (BMI), 30.9 ± 4.4 kg/m2; baseline IHLC, 13% ± 4%]. After treatment, IHLC was decreased 12% (±SEM, 26%) relative to baseline (absolute change, -2%; 95% CI, -3 to 0; P = 0.046). Small decreases in BMI (P = 0.044), visceral adipose tissue volume (P = 0.047), and subcutaneous adipose tissue volume (P = 0.045) were observed. No significant changes in glucose regulation or lipid profile occurred. CONCLUSION This study demonstrated the efficacy and safety of low-dose TH therapy for NAFLD in men. TH or TH analogs may be beneficial for this condition.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
- Department of Endocrinology and Metabolism, Amsterdam, Netherlands
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- NTU-Lee Kong Chian School of Medicine, Singapore
| | - Yang Cao
- Singapore Clinical Research Institute, Singapore
| | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore
| | | | - Li Wei Cho
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Shui Boon Soh
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Eng Kiong Teo
- Department of Gastroenterology, Changi General Hospital, Singapore
| | - Sue-Anne Toh
- Department of Endocrinology, National University Health System, Singapore
| | - Melvin Khee Shing Leow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Rohit A Sinha
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | | | - Navin Michael
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Heather M Stapleton
- Duke University, Nicholas School of the Environment, A220 LSRC, Durham, North Carolina
| | - Christopher Leung
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria, Australia
- Department of Gastroenterology, Austin Health, Heidelberg, Victoria, Australia
- Department of General Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Peter W Angus
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria, Australia
- Department of Gastroenterology, Austin Health, Heidelberg, Victoria, Australia
| | - Sheila K Patel
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria, Australia
- Department of General Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Su Chi Lim
- Department of Endocrinology, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University Health System, Singapore
| | - Chee Fang Sum
- Department of Endocrinology, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Singapore Bioimaging Consortium, Singapore
| | - Paul M Yen
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
50
|
Abstract
It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- ;
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- ;
| |
Collapse
|