1
|
Wang D, Yu Z, Yao R, Zhang J, Cui W, Dai J, Li J, Qian H, Zhao X. Quercetin alleviates depressive-like behavior by modulating acetyl-H3K9 mediated ferroptosis pathway in hypothalamus of perimenopausal depression rat model. Biomed Pharmacother 2024; 179:117369. [PMID: 39216452 DOI: 10.1016/j.biopha.2024.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Perimenopausal depression is a subtype of depression and is prevalent among perimenopausal women, which has brought a heavy burden to family and society. The pathogenesis of perimenopausal depression is still unclear, which affects the prevention and treatment of perimenopausal depression to a certain extent. Quercetin is a flavonoid compound, and has estrogenic activity and pharmacological effects such as antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated whether quercetin improved perimenopausal depression-like behaviors and potential mechanism. The results demonstrated that quercetin could alleviate the depression-like behaviors in perimenopausal depression rat model, inhibit astrocyte activation, improve ferroptosis-associated mitochondrial damage (such as mitochondrial pyknosis and mitochondrial cristae reduction) in hypothalamus, increase the expressions of histone 3 lysine 9 acetylation (acetyl-H3K9), ferroptosis-associated protein including glutathione peroxidase 4 (GPX4) and Xc- antiporter (SLC7A11), and reduce the expressions of endoplasmic reticulum stress-related proteins including inositol-requiring enzyme 1 (IRE1α), phosphorylated IRE1α (p-IRE1α), X-box binding protein 1 (XBP1) and glucose-regulated protein 78 (GRP78) in hypothalamus of perimenopausal depression rat model. Furtherly, in vitro study indicated that quercetin could restore histone acetylase (HAT)/histone deacetylase (HDAC) homeostasis through binding to estrogen receptors and increase the expression of acetyl-H3K9, inhibiting ferroptosis through IRE1α/XBP1 pathway in astrocytes of hypothalamus. Our findings demonstrated that acetyl-H3K9 is a crucial target in development of perimenopausal depression, and quercetin exhibited antidepressant effects through modulating acetyl-H3K9 mediated ferroptosis in perimenopausal depression. Quercetin might be the prevention and adjuvant treatment strategy of perimenopausal depression.
Collapse
Affiliation(s)
- Dan Wang
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Ziran Yu
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Ranqi Yao
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jingnan Zhang
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Wenqi Cui
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jiaohua Dai
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jian Li
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Heng Qian
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Xiujuan Zhao
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
2
|
Raimondi GM, Eng AK, Kenny MP, Britting MA, Ostroff LE. Track-by-Day: A standardized approach to estrous cycle monitoring in biobehavioral research. Behav Brain Res 2024; 461:114860. [PMID: 38216058 DOI: 10.1016/j.bbr.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Despite known sex differences in brain function, female subjects are underrepresented in preclinical neuroscience research. This is driven in part by concerns about variability arising from estrous cycle-related hormone fluctuations, especially in fear- and anxiety-related research where there are conflicting reports as to whether and how the cycle influences behavior. The inconsistency may arise from a lack of common standards for tracking and reporting the cycle as opposed to inherent unpredictability in the cycle itself. The rat estrous cycle is conventionally tracked by assigning vaginal cytology smears to one of four qualitatively-defined stages. Although the cytology stages are of unequal length, the stage names are often, but not always, used to refer to the four cycle days. Subjective staging criteria and inconsistent use of terminology are not necessarily a problem in research on the cycle itself, but can lead to irreproducibility in neuroscience studies that treat the stages as independent grouping factors. We propose the explicit use of cycle days as independent variables, which we term Track-by-Day to differentiate it from traditional stage-based tracking, and that days be indexed to the only cytology feature that is a direct and rapid consequence of a hormonal event: a cornified cell layer formed in response to the pre-ovulatory 17β-estradiol peak. Here we demonstrate that cycle length is robustly regular with this method, and that the method outperforms traditional staging in detecting estrous cycle effects on Pavlovian fear conditioning and on a separate proxy for hormonal changes, uterine histology.
Collapse
Affiliation(s)
- Gianna M Raimondi
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA; Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT, USA
| | - Ashley K Eng
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Murphy P Kenny
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Madison A Britting
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA; Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Lee HJ, Park MJ, Heo JD, Joo BS, Joo JK. Timing of hormone therapy and its association with cardiovascular risk and metabolic parameters in 4-vinylcyclohexene diepoxide-induced primary ovarian insufficiency mouse model. Gynecol Endocrinol 2023; 39:2247094. [PMID: 37599578 DOI: 10.1080/09513590.2023.2247094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE To evaluate the effects of various initiation time points and durations of hormone therapy (HT) on cardiovascular and metabolic parameters of premenarche, primary ovarian insufficiency (POI) mouse model, induced by 4-vinylcyclohexene diepoxide. METHODS A total of 50 mice at 4 weeks of age were developed into POI mouse model, further randomly categorized into 5 groups: control group without any intervention; no HT group with only high-fat diet (NT); group 1 with delayed estradiol treatment (T1); group 2 with on-time, continuous estradiol treatment (T2); and group 3 with on-time estradiol treatment but early stop (T3). Cardiovascular risk and metabolic parameters were measured. RESULTS Presenting with similar body weights, blood glucose levels of T1, T2, and T3 were all significantly lower than NT (p < .001). Serum total cholesterol and insulin were also significantly lower in all HT groups than in NT, especially in T2 (p < .001). For serum low-density lipoprotein-cholesterol, only T2 resulted in the statically lower level than those of NT, T1, and T3 (p < .001). Aortic thickness was significantly increased with aggravated fibrotic change of the intima in NT, and such consequence was significantly ameliorated in HT groups, mostly lowered in T2 (p < .05). Last, serum pro-inflammatory cytokines were significantly low in the HT groups than in NT, especially in T2 with the lowest level (p < .05). . CONCLUSIONS On-time, continuous E2 treatment immediately after a biologic estrogen deprivation event significantly reduced metabolic and cardiovascular risks in young, pre-menarche female mouse models of POI, confirming decreased serum levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jeong-Doo Heo
- Korea Institute of Toxicology, Gyeongnam Branch Institute, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
4
|
Hernandez Scudder ME, Young RL, Thompson LM, Kore P, Crews D, Hofmann HA, Gore AC. EDCs Reorganize Brain-Behavior Phenotypic Relationships in Rats. J Endocr Soc 2021; 5:bvab021. [PMID: 33928200 PMCID: PMC8055178 DOI: 10.1210/jendso/bvab021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
All species, including humans, are exposed to endocrine-disrupting chemicals (EDCs). Previous experiments have shown behavioral deficits caused by EDCs that have implications for social competence and sexual selection. The neuromolecular mechanisms for these behavioral changes induced by EDCs have not been thoroughly explored. Here, we tested the hypothesis that EDCs administered to rats during a critical period of embryonic brain development would lead to the disruption of normal social preference behavior, and that this involves a network of underlying gene pathways in brain regions that regulate these behaviors. Rats were exposed prenatally to human-relevant concentrations of EDCs (polychlorinated biphenyls [PCBs], vinclozolin [VIN]), or vehicle. In adulthood, a sociosexual preference test was administered. We profiled gene expression of in preoptic area, medial amygdala, and ventromedial nucleus. Prenatal PCBs impaired sociosexual preference in both sexes, and VIN disrupted this behavior in males. Each brain region had unique sets of genes altered in a sex- and EDC-specific manner. The effects of EDCs on individual traits were typically small, but robust; EDC exposure changed the relationships between gene expression and behavior, a pattern we refer to as dis-integration and reconstitution. These findings underscore the effects that developmental exposure to EDCs can have on adult social behavior, highlight sex-specific and individual variation in responses, and provide a foundation for further work on the disruption of genes and behavior after prenatal exposure to EDCs.
Collapse
Affiliation(s)
| | - Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Pragati Kore
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hans A Hofmann
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA.,Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
6
|
Huerta-Ramos E, Labad J, Cobo J, Núñez C, Creus M, García-Parés G, Cuadras D, Franco J, Miquel E, Reyes JC, Marcó-García S, Usall J. Effects of raloxifene on cognition in postmenopausal women with schizophrenia: a 24-week double-blind, randomized, parallel, placebo-controlled trial. Eur Arch Psychiatry Clin Neurosci 2020; 270:729-737. [PMID: 31728631 DOI: 10.1007/s00406-019-01079-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
We assessed the utility of raloxifene (60 mg/day) as an adjuvant treatment for cognitive symptoms in postmenopausal women with schizophrenia in a 24-week, double-blind, randomized, placebo-controlled study. Patients were recruited from the inpatient and outpatient services of Parc Sanitari Sant Joan de Déu, Hospital Universitari Institut Pere Mata, and Corporació Sanitària Parc Taulí. Seventy eight postmenopausal women with schizophrenia were randomized to either adjunctive raloxifene or placebo. Sixty-eight began the clinical trial (37 women on raloxifene adjunct) and 31 on placebo adjunct. The outcome measures were: memory, attention and executive function. Assessment was conducted at baseline and at week 24. Between groups homogeneity was tested with the Student's t test for continuous variables and/or the Mann-Whitney U test for ordinal variables and the χ2 test or Fisher's exact test for categorical variables. The differences between the two groups in neuropsychological test scores were compared using the Student's t test. The sample was homogenous with respect to age, formal education, illness duration and previous pharmacological treatment. The addition of raloxifene to antipsychotic treatment as usual showed no differences in cognitive function. The daily use of 60 mg raloxifene as an adjuvant treatment in postmenopausal women with schizophrenia has no appreciable effect.ClinicalTrials.gov Identifier: NCT01573637.
Collapse
Affiliation(s)
- Elena Huerta-Ramos
- Parc Sanitari Sant Joan de Déu, C/Antoni Pujadas, 42. Sant Boi de Llobregat, 08830, Barcelona, Spain. .,Fundació Sant Joan de Déu, Barcelona, Spain. .,Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| | - Javier Labad
- Corporació Sanitària Parc Taulí, Barcelona, Spain
| | - Jesus Cobo
- Corporació Sanitària Parc Taulí, Barcelona, Spain
| | - Christian Núñez
- Parc Sanitari Sant Joan de Déu, C/Antoni Pujadas, 42. Sant Boi de Llobregat, 08830, Barcelona, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | - Daniel Cuadras
- Parc Sanitari Sant Joan de Déu, C/Antoni Pujadas, 42. Sant Boi de Llobregat, 08830, Barcelona, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Eva Miquel
- Parc Sanitari Sant Joan de Déu, C/Antoni Pujadas, 42. Sant Boi de Llobregat, 08830, Barcelona, Spain
| | | | - Silvia Marcó-García
- Parc Sanitari Sant Joan de Déu, C/Antoni Pujadas, 42. Sant Boi de Llobregat, 08830, Barcelona, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Judith Usall
- Parc Sanitari Sant Joan de Déu, C/Antoni Pujadas, 42. Sant Boi de Llobregat, 08830, Barcelona, Spain.,Fundació Sant Joan de Déu, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
7
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
8
|
Yin W, Borniger JC, Wang X, Maguire SM, Munselle ML, Bezner KS, Tesfamariam HM, Garcia AN, Hofmann HA, Nelson RJ, Gore AC. Estradiol treatment improves biological rhythms in a preclinical rat model of menopause. Neurobiol Aging 2019; 83:1-10. [PMID: 31585360 DOI: 10.1016/j.neurobiolaging.2019.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/14/2023]
Abstract
The perimenopausal transition at middle age is often associated with hot flashes and sleep disruptions, metabolic changes, and other symptoms. Whereas the mechanisms for these processes are incompletely understood, both aging (AG) and a loss of ovarian estrogens play contributing roles. Furthermore, the timing of when estradiol (E) treatment should commence and for how long are key clinical questions in the management of symptoms. Using a rat model of surgical menopause, we determined the effects of regimens of E treatment with differing time at onset and duration of treatment on diurnal rhythms of activity and core temperature and on food intake and body weight. Reproductively mature (MAT, ∼4 months) or AG (∼11 months) female rats were ovariectomized, implanted intraperitoneally with a telemetry device, and given either a vehicle (V) or E subcutaneous capsule implantation. Rats were remotely recorded for 10 days per month for 3 (MAT) or 6 (AG) months. To ascertain whether delayed onset of treatment affected rhythms, a subset of AG-V rats had their capsules switched to E at the end of 3 months. Another set of AG-E rats had their capsules removed at 3 months to determine whether beneficial effects of E would persist. Overall, activity and temperature mesor, robustness, and amplitude declined with AG. Compared to V treatment, E-treated rats showed (1) better maintenance of body weight and food intake; (2) higher, more consolidated activity and temperature rhythms; and (3) higher activity and temperature robustness and amplitude. In the AG arm of the study, switching treatment from V to E or E to V quickly reversed these patterns. Thus, the presence of E was the dominant factor in determining stability and amplitude of locomotor activity and temperature rhythms. As a whole, the results show benefits of E treatment, even with a delay, on biological rhythms and physiological functions.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xutong Wang
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean M Maguire
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Mercedes L Munselle
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Kelsey S Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Haben M Tesfamariam
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra N Garcia
- Psychology Department, The University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Psychology Department, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Sapouckey SA, Kassotis CD, Nagel SC, Vandenberg LN. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice. Endocrinology 2018; 159:1277-1289. [PMID: 29425295 PMCID: PMC5809159 DOI: 10.1210/en.2017-00866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies.
Collapse
Affiliation(s)
- Sarah A. Sapouckey
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Christopher D. Kassotis
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri 65211
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
10
|
Garcia AN, Depena C, Bezner K, Yin W, Gore AC. The timing and duration of estradiol treatment in a rat model of the perimenopause: Influences on social behavior and the neuromolecular phenotype. Horm Behav 2018; 97:75-84. [PMID: 29108778 PMCID: PMC5771824 DOI: 10.1016/j.yhbeh.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
This study tested the effects of timing and duration of estradiol (E2) treatment, factors that are clinically relevant to hormone replacement in perimenopausal women, on social behavior and expression of genes in brain regions that regulate these behaviors. Female rats were ovariectomized (OVX) at 1year of age, roughly equivalent to middle-age in women, and given E2 or vehicle for different durations (3 or 6months) and timing (immediately or after a 3-month delay) relative to OVX. Social and ultrasonic vocalization (USV) behaviors were assessed at the 3 and 6month timepoints, and the rats' brains were then used for gene expression profiling in hypothalamus (supraoptic nucleus, paraventricular nucleus), bed nucleus of the stria terminalis, medial amygdala, and prefrontal cortex using a 48-gene qPCR platform. At the 3-month post-OVX testing period, E2 treatment significantly decreased the number of frequency-modulated USVs emitted. No effects of hormone were found at the 6-month testing period. There were few effects of timing and duration of E2 in a test of social preference of a rat given a choice between her same-sex cagemate and a novel conspecific. For gene expression, effects of timing and duration of E2 were region-specific, with the majority of changes found for genes involved in regulating social behavior such as neuropeptides (Oxt, Oxtr &Avp), neurotransmitters (Drd1, Drd2, Htr2a, Grin2d &Gabbr1), and steroid hormone receptors (Esr2, Ar, Pgr). These data suggest that the mode of E2 treatment has specific effects on social behavior and expression of target genes involved in the regulation of these behaviors.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kelsey Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Nutsch VL, Will RG, Tobiansky DJ, Reilly MP, Gore AC, Dominguez JM. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats. Horm Behav 2017; 96:4-12. [PMID: 28882473 PMCID: PMC5722693 DOI: 10.1016/j.yhbeh.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Testosterone is the main circulating steroid hormone in males, and acts to facilitate sexual behavior via both reduction to dihydrotestosterone (DHT) and aromatization to estradiol. The mPOA is a key site involved in mediating actions of androgens and estrogens in the control of masculine sexual behavior, but the respective roles of these hormones is not fully understood. As males age they show impairments in sexual function, and a decreased facilitation of behavior by steroid hormones compared to younger animals. We hypothesized that an anatomical substrate for these behavioral changes is a decline in expression and/or activation of hormone receptor-sensitive cells in the mPOA. We tested this by quantifying and comparing numbers of AR- and ERα-containing cells, and Fos as a marker of activated neurons, in the mPOA of mature (4-5months) and aged (12-13months) male rats, assessed one hour after copulation to one ejaculation. Numbers of AR- and ERα cells did not change with age or after sex, but the percentage of AR- and ERα-cells that co-expressed Fos were significantly up-regulated by sex, independent of age. Age effects were found for the percentage of Fos cells that co-expressed ERα (up-regulated in the central mPOA) and the percentage of Fos cells co-expressing AR in the posterior mPOA. Interestingly, serum estradiol concentrations positively correlated with intromission latency in aged but not mature animals. These data show that the aging male brain continues to have high expression and activation of both AR and ERα in the mPOA with copulation, raising the possibility that differences in relationships between hormones, behavior, and neural activation may underlie some age-related impairments.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA.
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Bauman BM, Yin W, Gore AC, Wu TJ. Regulation of Gonadotropin-Releasing Hormone-(1-5) Signaling Genes by Estradiol Is Age Dependent. Front Endocrinol (Lausanne) 2017; 8:282. [PMID: 29163355 PMCID: PMC5663685 DOI: 10.3389/fendo.2017.00282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a key regulatory molecule of the hypothalamus-pituitary (PIT)-gonadal (HPG) axis that ultimately leads to the downstream release of estradiol (E2) and progesterone (P). These gonadal steroids feed back to the hypothalamus and PIT to regulate reproductive function and behavior. While GnRH is thought to be the master regulator of reproduction, its metabolic product GnRH-(1-5) is also biologically active. Thimet oligopeptidase 1 (also known as EP24.15) cleaves GnRH to form GnRH-(1-5). GnRH-(1-5) is involved in regulation of the HPG axis, exerting its actions through a pair of orphan G protein-coupled receptors, GPR101 and GPR173. The physiological importance of GnRH-(1-5) signaling has been studied in several contexts, but its potential role during reproductive senescence is poorly understood. We used an ovariectomized (OVX) rat model of reproductive senescence to assess whether and how GnRH-(1-5) signaling genes in hypothalamic subnuclei change in response to aging and/or different estradiol replacement regimens designed to model clinical hormone replacement in women. We found that Gpr101 and Gpr173 mRNA expression was increased with age in the arcuate nucleus, while expression of Gpr173 and EP24.15 increased with age in the medial preoptic area. Treatment with E2 in younger OVX animals increased expression of Gpr101, Gpr173, and EP24.15. However, older animals treated with E2 showed decreased expression of these GnRH-(1-5) signaling genes, displaying an age-related decline in responsiveness to E2. To our knowledge, this is the first study to systematically assess the effects of age and different clinically relevant regimens of E2 replacement on GnRH-(1-5) signaling genes.
Collapse
Affiliation(s)
- Bradly M. Bauman
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Weiling Yin
- Division of Pharmacology and Toxicology, Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - T. John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
Gao N, Hu R, Huang Y, Dao L, Zhang C, Liu Y, Wu L, Wang X, Yin W, Gore AC, Sun Z. Specific effects of prenatal DEHP exposure on neuroendocrine gene expression in the developing hypothalamus of male rats. Arch Toxicol 2017; 92:501-512. [PMID: 28871463 DOI: 10.1007/s00204-017-2049-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/28/2017] [Indexed: 12/29/2022]
Abstract
Endocrine disrupting chemicals may disrupt developing neuroendocrine systems, especially when the exposure occurs during a critical period. This study aimed to investigate whether prenatal exposure to di-(2-ethylhexyl) phthalate (DEHP), a major component of plasticizers used worldwide, disrupted the development of a network of genes important for neuroendocrine function in male rats. Pregnant rats were treated with corn oil (vehicle control), 2, 10 or 50 mg/kg DEHP by gavage from gestational day 14 to 19. The neuroendocrine gene expressions were quantified using a 48-gene Taqman qPCR array in the whole hypothalamus of neonatal rats (postnatal day 1) and in the anteroventral periventricular nucleus (AVPV), medial preoptic nucleus (MPN) and arcuate nucleus (ARC) of adult rats (postnatal day 70). Immunofluorescent signals of ERα and CYP19 were detected using the confocal microscopy in adult AVPV, MPN and ARC. The results showed that prenatal DEHP exposure perturbed somatic and reproductive development of offspring. Eleven genes were down-regulated in neonatal hypothalamus and showed non-monotonic dose-response relationships, that the 10 mg/kg DEHP dosage was associated with the greatest number of gene expression changes. Different from this, 14 genes were altered in adult AVPV, MPN and ARC and most of alterations were found in the 50 mg/kg DEHP group. Also, 50 mg/kg DEHP reduced ERα expression in the ARC, but no alterations were observed in CYP19 expression. These results indicated that prenatal DEHP exposure may perturb hypothalamic gene programming and the influences are permanent. The effects showed dependence on developmental stages and nuclei region.
Collapse
Affiliation(s)
- Na Gao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Ruixia Hu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Yujing Huang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Long Dao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Caifeng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Yongzhe Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Lina Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China
| | - Xutong Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zengrong Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Rd., Heping Dist., Tianjin, 300070, People's Republic of China.
| |
Collapse
|
14
|
Hutchens S, Liu C, Jursa T, Shawlot W, Chaffee BK, Yin W, Gore AC, Aschner M, Smith DR, Mukhopadhyay S. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. J Biol Chem 2017; 292:9760-9773. [PMID: 28461334 DOI: 10.1074/jbc.m117.783605] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
Manganese is an essential metal that becomes toxic at elevated levels. Loss-of-function mutations in SLC30A10, a cell-surface-localized manganese efflux transporter, cause a heritable manganese metabolism disorder resulting in elevated manganese levels and parkinsonian-like movement deficits. The underlying disease mechanisms are unclear; therefore, treatment is challenging. To understand the consequences of loss of SLC30A10 function at the organism level, we generated Slc30a10 knock-out mice. During early development, knock-outs were indistinguishable from controls. Surprisingly, however, after weaning and compared with controls, knock-out mice failed to gain weight, were smaller, and died prematurely (by ∼6-8 weeks of age). At 6 weeks, manganese levels in the brain, blood, and liver of the knock-outs were ∼20-60-fold higher than controls. Unexpectedly, histological analyses revealed that the brain and liver of the knock-outs were largely unaffected, but their thyroid exhibited extensive alterations. Because hypothyroidism leads to growth defects and premature death in mice, we assayed for changes in thyroid and pituitary hormones. At 6 weeks and compared with controls, the knock-outs had markedly reduced thyroxine levels (∼50-80%) and profoundly increased thyroid-stimulating hormone levels (∼800-1000-fold), indicating that Slc30a10 knock-out mice develop hypothyroidism. Importantly, a low-manganese diet produced lower tissue manganese levels in the knock-outs and rescued the phenotype, suggesting that manganese toxicity was the underlying cause. Our unanticipated discovery highlights the importance of determining the role of thyroid dysfunction in the onset and progression of manganese-induced disease and identifies Slc30a10 knock-out mice as a new model for studying thyroid biology.
Collapse
Affiliation(s)
- Steven Hutchens
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Chunyi Liu
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Thomas Jursa
- the Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - William Shawlot
- the Mouse Genetic Engineering Facility, Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Beth K Chaffee
- the Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas 78602, and
| | - Weiling Yin
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Andrea C Gore
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Donald R Smith
- the Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Somshuvra Mukhopadhyay
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| |
Collapse
|
15
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Zettergren A, Karlsson S, Studer E, Sarvimäki A, Kettunen P, Thorsell A, Sihlbom C, Westberg L. Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice. BMC Neurosci 2017; 18:9. [PMID: 28056817 PMCID: PMC5217640 DOI: 10.1186/s12868-016-0332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (ARNesDel) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Results Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between ARNesDel and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Conclusions Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0332-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Anna Sarvimäki
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Annika Thorsell
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.
| |
Collapse
|
17
|
Kassotis CD, Bromfield JJ, Klemp KC, Meng CX, Wolfe A, Zoeller RT, Balise VD, Isiguzo CJ, Tillitt DE, Nagel SC. Adverse Reproductive and Developmental Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture in Female C57Bl/6 Mice. Endocrinology 2016; 157:3469-81. [PMID: 27560547 PMCID: PMC5393361 DOI: 10.1210/en.2016-1242] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022]
Abstract
Unconventional oil and gas operations using hydraulic fracturing can contaminate surface and groundwater with endocrine-disrupting chemicals. We have previously shown that 23 of 24 commonly used hydraulic fracturing chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors in a human endometrial cancer cell reporter gene assay and that mixtures can behave synergistically, additively, or antagonistically on these receptors. In the current study, pregnant female C57Bl/6 dams were exposed to a mixture of 23 commonly used unconventional oil and gas chemicals at approximately 3, 30, 300, and 3000 μg/kg·d, flutamide at 50 mg/kg·d, or a 0.2% ethanol control vehicle via their drinking water from gestational day 11 through birth. This prenatal exposure to oil and gas operation chemicals suppressed pituitary hormone concentrations across experimental groups (prolactin, LH, FSH, and others), increased body weights, altered uterine and ovary weights, increased heart weights and collagen deposition, disrupted folliculogenesis, and other adverse health effects. This work suggests potential adverse developmental and reproductive health outcomes in humans and animals exposed to these oil and gas operation chemicals, with adverse outcomes observed even in the lowest dose group tested, equivalent to concentrations reported in drinking water sources. These endpoints suggest potential impacts on fertility, as previously observed in the male siblings, which require careful assessment in future studies.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - John J Bromfield
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Andrew Wolfe
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
18
|
Garcia AN, Depena CK, Yin W, Gore AC. Testing the critical window of estradiol replacement on gene expression of vasopressin, oxytocin, and their receptors, in the hypothalamus of aging female rats. Mol Cell Endocrinol 2016; 419:102-12. [PMID: 26454088 PMCID: PMC4684429 DOI: 10.1016/j.mce.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/28/2022]
Abstract
The current study tested the "critical window" hypothesis of menopause that postulates that the timing and duration of hormone treatment determine their potential outcomes. Our focus was genes in the rat hypothalamus involved in social and affiliative behaviors that change with aging and/or estradiol (E2): Avp, Avpr1a, Oxt, Oxtr, and Esr2 in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Rats were reproductively mature or aging adults, ovariectomized, given E2 or vehicle treatment of different durations, with or without a post-ovariectomy delay. Our hypothesis was that age-related changes in gene expression are mitigated by E2 treatments. Contrary to this, PVN Oxtr increased with E2, and Avpr1a increased with age. In the SON, Avpr1a increased with age, Oxtr with age and timing, and Avp was altered by duration. Thus, chronological age and E2 have independent actions on gene expression, with the "critical window" hypothesis supported by the observed timing and duration effects.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina K Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Shults CL, Pinceti E, Rao YS, Pak TR. Aging and Loss of Circulating 17β-Estradiol Alters the Alternative Splicing of ERβ in the Female Rat Brain. Endocrinology 2015; 156:4187-99. [PMID: 26295370 PMCID: PMC4606750 DOI: 10.1210/en.2015-1514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loss of circulating 17β-estradiol (E2) that occurs during menopause can have detrimental effects on cognitive function. The efficacy of hormone replacement therapy declines as women become farther removed from the menopausal transition, yet the molecular mechanisms underlying this age-related switch in E2 efficacy are unknown. We hypothesized that aging and varying lengths of E2 deprivation alters the ratio of alternatively spliced estrogen receptor (ER)β isoforms in the brain of female rats. Further, we tested whether changes in global transcriptional activity and splicing kinetics regulate the alternative splicing of ERβ. Our results revealed brain region-specific changes in ERβ alternative splicing in both aging and E2-deprivation paradigms and showed that ERβ could mediate E2-induced alternative splicing. Global transcriptional activity, as measured by phosphorylated RNA polymerase II, was also regulated by age and E2 in specific brain regions. Finally, we show that inhibition of topoisomerase I resulted in increased ERβ2 splice variant expression.
Collapse
Affiliation(s)
- Cody L Shults
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Elena Pinceti
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Yathindar S Rao
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|