1
|
Ohtsuki Y, Fujiki J, Maeda N, Iwano H. Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats. Gen Comp Endocrinol 2025; 362:114661. [PMID: 39761705 DOI: 10.1016/j.ygcen.2025.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis. The expression of Cyp17a1 is regulated by methylation, typically showing marked interspecies differences, including repression of Cyp17a1 expression in the adrenal gland of rodents. This study focused on the liver, an extragonadal steroidogenic organ showing active sulfate conjugation, as a site for DHEA-sulfate (DHEA-S) biosynthesis during pregnancy in rodents, rather than the adrenal glands. Cyp17a1 expression in rat liver was significantly lower than in the testis, with no differences between sexes. However, Cyp17a1 expression increased significantly before parturition (gestational days [GD] 19-21) compared to late pregnancy (GD 15-18). The Sult2a family were expressed in the livers of both pregnant and non-pregnant rats. We also observed increased DHEA and DHEA-S levels in the liver of pregnant rats before parturition compared to non-pregnant rats, with DHEA-S concentrations being significantly higher at GD 19-21 than at days 15-18. These findings suggest that increased expression of Cyp17a1 in the last trimester enhances DHEA synthesis in the liver, and that DHEA is quickly conjugated by Sult2a. In rodents, the liver may be involved in DHEA-S biosynthesis before parturition, compensating for the repression of Cyp17a1 in the adrenal glands.
Collapse
Affiliation(s)
- Yuya Ohtsuki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Naoyuki Maeda
- Laboratory of Meat Science, Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
2
|
Wagenaars F, Cenijn P, Chen Z, Meima M, Scholze M, Hamers T. Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4. Arch Toxicol 2024; 98:3019-3034. [PMID: 38761188 PMCID: PMC11324666 DOI: 10.1007/s00204-024-03787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Zhongli Chen
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Marcel Meima
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Martin Scholze
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
3
|
He J, Liu G, Kong F, Tan Q, Wang Z, Yang M, He Y, Jia X, Yan C, Wang C, Qian H. Structural basis for the transport and substrate selection of human urate transporter 1. Cell Rep 2024; 43:114628. [PMID: 39146184 DOI: 10.1016/j.celrep.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
High serum urate levels are the major risk factor for gout. URAT1, the primary transporter for urate absorption in the kidneys, is well known as an anti-hyperuricemia drug target. However, the clinical application of URAT1-targeted drugs is limited because of their low specificity and severe side effects. The lack of structural information impedes elucidation of the transport mechanism and the development of new drugs. Here, we present the cryoelectron microscopy (cryo-EM) structures of human URAT1(R477S), its complex with urate, and its closely related homolog OAT4. URAT1(R477S) and OAT4 exhibit major facilitator superfamily (MFS) folds with outward- and inward-open conformations, respectively. Structural comparison reveals a 30° rotation between the N-terminal and C-terminal domains, supporting an alternating access mechanism. A conserved arginine (OAT4-Arg473/URAT1-Arg477) is found to be essential for chloride-mediated inhibition. The URAT1(R477S)-urate complex reveals the specificity of urate recognition. Taken together, our study promotes our understanding of the transport mechanism and substrate selection of URAT1.
Collapse
Affiliation(s)
- Jingjing He
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Guoyun Liu
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fang Kong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiulong Tan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zhenzhou Wang
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Meng Yang
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yonglin He
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoxiao Jia
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hongwu Qian
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
4
|
Mao Q, Chen X. An update on placental drug transport and its relevance to fetal drug exposure. MEDICAL REVIEW (2021) 2022; 2:501-511. [PMID: 37724167 PMCID: PMC10388746 DOI: 10.1515/mr-2022-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023]
Abstract
Pregnant women are often complicated with diseases that require treatment with medication. Most drugs administered to pregnant women are off-label without the necessary dose, efficacy, and safety information. Knowledge concerning drug transfer across the placental barrier is essential for understanding fetal drug exposure and hence drug safety and efficacy to the fetus. Transporters expressed in the placenta, including adenosine triphosphate (ATP)-binding cassette efflux transporters and solute carrier uptake transporters, play important roles in determining drug transfer across the placental barrier, leading to fetal exposure to the drugs. In this review, we provide an update on placental drug transport, including in vitro cell/tissue, ex vivo human placenta perfusion, and in vivo animal studies that can be used to determine the expression and function of drug transporters in the placenta as well as placental drug transfer and fetal drug exposure. We also describe how the knowledge of placental drug transfer through passive diffusion or active transport can be combined with physiologically based pharmacokinetic modeling and simulation to predict systemic fetal drug exposure. Finally, we highlight knowledge gaps in studying placental drug transport and predicting fetal drug exposure and discuss future research directions to fill these gaps.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Xin Chen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Fokina VM, Patrikeeva S, Wang XM, Noguchi S, Tomi M, König J, Ahmed MS, Nanovskaya T. Role of Uptake Transporters OAT4, OATP2A1, and OATP1A2 in Human Placental Bio-disposition of Pravastatin. J Pharm Sci 2022; 111:505-516. [PMID: 34597623 PMCID: PMC8792198 DOI: 10.1016/j.xphs.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
Pravastatin is currently under evaluation for prevention of preeclampsia. Factors contributing to placental disposition of pravastatin are important in assessment of potential undesirable fetal effects. The purpose of this study was to identify the uptake transporters that contribute to the placental disposition of pravastatin. Our data revealed the expression of organic anion transporting polypeptide 1A2 (OATP1A2) and OATP2A1 in the apical, and OATP2B1 and OATP5A1 in the basolateral membranes of the placenta, while organic anion transporter 4 (OAT4) exhibited higher expression in basolateral membrane but was detected in both membranes. Preloading placental membrane vesicles with glutarate increased the uptake of pravastatin suggesting involvement of glutarate-dependent transporters such as OAT4. In the HEK293 cells overexpressing individual uptake transporters, OATP2A1, OATP1A2 and OAT4 were determined to accept pravastatin as a substrate at physiological pH, while the uptake of pravastatin by OATP2B1 (known to interact with pravastatin at acidic pH) and OATP5A1 was not detected at pH 7.4. These findings led us to propose that OATP1A2 and OATP2A1 are responsible for the placental uptake of pravastatin from the maternal circulation, while OAT4 mediates the passage of the drug across placental basolateral membrane in the fetal-to-maternal direction.
Collapse
Affiliation(s)
- Valentina M Fokina
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiao-ming Wang
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen
| | - Mahmoud S Ahmed
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Zhang Y, Chen Y, Dai B, Bai M, Lu S, Lin N, Zhou H, Jiang H. Bilirubin Reduces the Uptake of Estrogen Precursors and the Followed Synthesis of Estradiol in Human Placental Syncytiotrophoblasts via Inhibition and Down-regulation of OAT4. Drug Metab Dispos 2022; 50:341-350. [DOI: 10.1124/dmd.121.000685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
|
7
|
Mirdamadi K, Kwok J, Nevo O, Berger H, Piquette-Miller M. Impact of Th-17 Cytokines on the Regulation of Transporters in Human Placental Explants. Pharmaceutics 2021; 13:881. [PMID: 34203644 PMCID: PMC8232183 DOI: 10.3390/pharmaceutics13060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Activated T helper 17 (Th-17) cytokines play a role in the pathophysiology of autoimmune and infectious diseases. While these diseases affect many women of childbearing age, little is known about the effect of these cytokines on placental transporters. As several pro-inflammatory cytokines impact the expression of ABC and SLC placental transporters, we hypothesized that these transporters may be similarly altered by elevated levels of circulating Th-17 cytokines. Cultured term human villous explants were treated with IL-17A, IL-22, or IL-23, alone or in combination. Samples were analyzed using qRT-PCR and Western blotting. The mRNA expression of OATP2B1 was significantly downregulated in explants by all individual cytokines and combination treatments, while decreased protein expression was seen with IL-23 and combination (p < 0.01). Combination treatment decreased the mRNA expression of BCRP and OAT4 but increased that of OCT3 (p < 0.01). Decreased accumulation of the OATP substrate, cascade blue, was seen in IL-23-treated choriocarcinoma JAr cells (p < 0.01). Elevated Th-17 cytokines, which are seen in infectious and autoimmune diseases, affect the expression and activity of OATP2B1, as well as mRNA expression of placental BCRP, OAT4, and OCT3. This dysregulation could impact the fetal exposure to endogenous and exogenous substrates.
Collapse
Affiliation(s)
- Kamelia Mirdamadi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (K.M.); (J.K.); (O.N.)
| | - Jacinda Kwok
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (K.M.); (J.K.); (O.N.)
| | - Ori Nevo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (K.M.); (J.K.); (O.N.)
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Howard Berger
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (K.M.); (J.K.); (O.N.)
| |
Collapse
|
8
|
Gonçalves PVB, Moreira FDL, Benzi JRDL, Duarte G, Lanchote VL. A Pilot Study of the Maternal-Fetal Pharmacokinetics of Furosemide in Plasma, Urine, and Amniotic Fluid of Hypertensive Parturient Women Under Cesarean Section. J Clin Pharmacol 2020; 60:1655-1661. [PMID: 32562572 DOI: 10.1002/jcph.1681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 11/05/2022]
Abstract
The third trimester of pregnancy is related to physiological changes that can modify the process of absorption, distribution, metabolism, and excretion and, consequently, the efficacy and toxicity of drugs. However, little is known about furosemide pharmacokinetics and placental transfer in pregnancy. This study evaluated the maternal-fetal pharmacokinetics and distribution to amniotic fluid of furosemide in hypertensive parturient women under cesarean section. Twelve hypertensive parturient women under methyldopa (250 mg/8 h) and/or pindolol (10 mg/12 h) treatment received a 40-mg single oral dose of furosemide 1 to 10 hours before delivery by cesarean section. Blood and urine samples were collected for 12 hours after furosemide administration. At delivery, samples were obtained from maternal and umbilical cord blood (n = 8) to assess the transplacental transfer. Amniotic fluid (n = 4) was collected at the time of delivery. The following furosemide pharmacokinetic parameters were obtained as median (interquartile range): Cmax , 403 ng/mL (229 to 715 ng/mL); Tmax , 2.00 hours (1.50 to 4.83 hours); elimination half-life (t1/2 ), 2.50 hours (1.77 to 2.97 hours); AUC0-12 h , 1366 ng⋅h/mL (927 to 2531 ng⋅h/mL); AUC0-∞ , 1580 ng⋅h/mL (1270 to 2881 ng⋅h/mL); CL/F 25.3 L/h (13.8 to 31.4 L/h); CLR, 2.50 L/h (1.77 to 2.97 L/h); CLNR, 22.7 L/h (12.1 to 25.6 L/h); and Vd /F 82.8 L (34.4 to 173 L). The transplacental transfer of furosemide was 0.43 (0.10 to 0.73), and the amniotic fluid concentration was 11.0 ng/mL (5.51 to 14.6 ng/mL). From a clinical point of view, these results suggest that substrates of uridine diphosphate-glucuronosyltransferase isoenzymes such as furosemide may have increased clearance during pregnancy and could require dose adjustment in this population.
Collapse
Affiliation(s)
- Paulo Vinicius Bernardes Gonçalves
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda de Lima Moreira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jhohann Richard de Lima Benzi
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21:ijms21051791. [PMID: 32150922 PMCID: PMC7084758 DOI: 10.3390/ijms21051791] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The SLC22 family of OATs, OCTs, and OCTNs is emerging as a central hub of endogenous physiology. Despite often being referred to as “drug” transporters, they facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups, with four new subgroups arising from the previously defined OAT subclade: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Using data from GWAS, in vivo models, and in vitro assays, we developed an SLC22 transporter-metabolite network and similar subgroup networks, which suggest how multiple SLC22 transporters with mono-, oligo-, and multi-specific substrate specificity interact to regulate metabolites. Subgroup associations include: OATS1 with signaling molecules, uremic toxins, and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. Our data suggest that the SLC22 family can work among itself, as well as with other ADME genes, to optimize levels of numerous metabolites and signaling molecules, involved in organ crosstalk and inter-organismal communication, as proposed by the remote sensing and signaling theory.
Collapse
|
10
|
Li TT, An JX, Xu JY, Tuo BG. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver. World J Clin Cases 2019; 7:3915-3933. [PMID: 31832394 PMCID: PMC6906560 DOI: 10.12998/wjcc.v7.i23.3915] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Organic anion transporters (OATs) and organic anion transporter polypeptides (OATPs) are classified within two SLC superfamilies, namely, the SLC22A superfamily and the SLCO superfamily (formerly the SLC21A family), respectively. They are expressed in many tissues, such as the liver and kidney, and mediate the absorption and excretion of many endogenous and exogenous substances, including various drugs. Most are composed of 12 transmembrane polypeptide chains with the C-terminus and the N-terminus located in the cell cytoplasm. OATs and OATPs are abundantly expressed in the liver, where they mainly promote the uptake of various endogenous substrates such as bile acids and various exogenous drugs such as antifibrotic and anticancer drugs. However, differences in the locations of glycosylation sites, phosphorylation sites, and amino acids in the OAT and OATP structures lead to different substrates being transported to the liver, which ultimately results in their different roles in the liver. To date, few articles have addressed these aspects of OAT and OATP structures, and we study further the similarities and differences in their structures, tissue distribution, substrates, and roles in liver diseases.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jia-Xing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Bi-Guang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| |
Collapse
|
11
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Zeng Q, Bai M, Li C, Lu S, Ma Z, Zhao Y, Zhou H, Jiang H, Sun D, Zheng C. Multiple Drug Transporters Contribute to the Placental Transfer of Emtricitabine. Antimicrob Agents Chemother 2019; 63:e00199-19. [PMID: 31160284 PMCID: PMC6658773 DOI: 10.1128/aac.00199-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Emtricitabine (FTC) is a first-line antiviral drug recommended for the treatment of AIDS during pregnancy. We hypothesized that transporters located in the placenta contribute to FTC transfer across the blood-placenta barrier. BeWo cells, cell models with stable or transient expression of transporter genes, primary human trophoblast cells (PHTCs), and small interfering RNAs (siRNAs) were applied to demonstrate which transporters were involved. FTC accumulation in BeWo cells was reduced markedly by inhibitors of equilibrative nucleoside transporters (ENTs), concentrative nucleoside transporters (CNTs), organic cation transporters (OCTs), and organic cation/carnitine transporter 1 (OCTN1) and increased by inhibitors of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs). ENT1, CNT1, OCTN1, MRP1/2/3, and BCRP, but not ENT2, CNT3, OCTN2, or multidrug resistance protein 1 (MDR1), were found to transport FTC. FTC accumulation in PHTCs was decreased significantly by inhibitors of ENTs and OCTN1. These results suggest that ENT1, CNT1, and OCTN1 probably contribute to FTC uptake from maternal circulation to trophoblasts and that ENT1, CNT1, and MRP1 are likely involved in FTC transport between trophoblasts and fetal blood, whereas BCRP and MRP1/2/3 facilitate FTC transport from trophoblasts to maternal circulation. Coexistence of tenofovir or efavirenz with FTC in the cell medium did not influence FTC accumulation in BeWo cells or PHTCs.
Collapse
Affiliation(s)
- Qingquan Zeng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengru Bai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cui Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghui Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongli Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caihong Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Fujiki J, Maeda N, Sato M, Ieko T, Inoue H, Iwasaki T, Iwano H, Yokota H. Corticosterone biosynthesis in mouse clonal myoblastic C2C12 cells. Steroids 2018; 138:64-71. [PMID: 30018003 DOI: 10.1016/j.steroids.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/04/2023]
Abstract
Corticosterone (CORT), the major glucocorticoid in rodents, is secreted from the adrenal gland, affects various organs in the body and regulates energy metabolism as a stress response. Although local steroidogenesis of androgens and estrogens in skeletal muscles has been previously reported, local CORT synthesis in skeletal muscle remains unconfirmed. In the present study, we investigated steroidogenic activities in a clonal myoblastic cell line, C2C12 cells. Three enzymes involved in CORT synthesis, 3ß-hydroxysteroid dehydrogenase (3ß-HSD), cytochrome P450c21 and cytochrome P45011ß, were identified in C2C12 cells by detecting the enzymatic reaction products with LC-MS/MS analysis. Only one enzyme that mediates cholesterol cleavage was not detected in the cells. After the addition of pregnenolone-sulfate conjugates to the cell culture medium, pregnenolone was detected and increased according to the incubation time. In conclusion, CORT synthesis occurs in C2C12 cells, and it is suggested that the initial steroidogenesis substrate is the pregnenolone-sulfate conjugate.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Naoyuki Maeda
- Safety Research Institute for Chemical Compounds Co., Ltd., Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan; Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Michiko Sato
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takahiro Ieko
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Inoue
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroshi Yokota
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| |
Collapse
|
14
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J, Papadopoulos D, Sánchez-Guijo A, Scheiner-Bobis G, Schuler G, Shihan M, Wrenzycki C, Wudy SA, Bergmann M. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 2017; 172:207-221. [PMID: 27392637 DOI: 10.1016/j.jsbmb.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany.
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Carina Blaschka
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Yaser Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Katja Hartmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jens Neunzig
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Dimitrios Papadopoulos
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Mazen Shihan
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Christine Wrenzycki
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
Al-Enazy S, Ali S, Albekairi N, El-Tawil M, Rytting E. Placental control of drug delivery. Adv Drug Deliv Rev 2017; 116:63-72. [PMID: 27527665 DOI: 10.1016/j.addr.2016.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
Abstract
The placenta serves as the interface between the maternal and fetal circulations and regulates the transfer of oxygen, nutrients, and waste products. When exogenous substances are present in the maternal bloodstream-whether from environmental contact, occupational exposure, medication, or drug abuse-the extent to which this exposure affects the fetus is determined by transport and biotransformation processes in the placental barrier. Advances in drug delivery strategies are expected to improve the treatment of maternal and fetal diseases encountered during pregnancy.
Collapse
|
17
|
Multiple drug transporters mediate the placental transport of sulpiride. Arch Toxicol 2017; 91:3873-3884. [DOI: 10.1007/s00204-017-2008-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
|
18
|
Inagaki M, Nishimura T, Akanuma SI, Nakanishi T, Tachikawa M, Tamai I, Hosoya KI, Nakashima E, Tomi M. Co-localization of microsomal prostaglandin E synthase-1 with cyclooxygenase-1 in layer II of murine placental syncytiotrophoblasts. Placenta 2017; 53:76-82. [PMID: 28487024 DOI: 10.1016/j.placenta.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 11/15/2022]
Abstract
The placenta is an organ that secretes prostaglandin (PG) E2 into the fetal-placental circulation to regulate both vascular tone and remodeling of the fetal ductus arteriosus. Placental PGE2 synthesis might be mediated by microsomal PGE synthase-1 (mPGES-1), in addition to cyclooxygenase (COX) isoforms. Thus, the purpose of this study is to clarify the temporal and spatial expression patterns of mPGES-1, together with COX-1 and COX-2, in murine placenta. We found that mPGES-1 and COX-1 protein levels continuously increased in the placental labyrinth from gestational day (GD) 13.5 to GD19.5, becoming higher than in the decidua or the junctional zone by GD17.5. The PGE2 level at GD17.5 was also highest in the labyrinth. Immunofluorescence stainings for mPGES-1 and COX-1 in the labyrinth at GD17.5 overlapped and were located on the fetal side of the signals for connexin 26, which forms gap junctions between maternal-facing (SynT-I) and fetal-facing (SynT-II) syncytiotrophoblast layers, and on the maternal side of the signals for glucose transporter 1 on the basal plasma membrane of SynT-II. On the other hand, the signals for COX-2 did not overlap with those for mPGES-1. These results indicate that COX-1 and mPGES-1 are co-localized in murine placental SynT-II, facing the fetal-placental circulation. Therefore, SynT-II could contribute to placental synthesis of PGE2 for release into the fetal-placental circulation.
Collapse
Affiliation(s)
- Mai Inagaki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tomohiro Nishimura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
19
|
Noguchi S, Nishimura T, Mukaida S, Benet LZ, Nakashima E, Tomi M. Cellular Uptake of Levocetirizine by Organic Anion Transporter 4. J Pharm Sci 2017; 106:2895-2898. [PMID: 28385546 DOI: 10.1016/j.xphs.2017.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/28/2023]
Abstract
The pharmacokinetics of cetirizine, a nonsedating antihistamine, is profoundly affected by transporter-mediated membrane transport in the kidney. In this study, we aimed to investigate the transport mechanism of levocetirizine, the pharmacologically active enantiomer of cetirizine, via human organic anion transporter 4 (OAT4) expressed in the apical membrane of renal proximal tubules and the basal plasma membrane of placental syncytiotrophoblasts. In cells expressing human OAT4 under the control of tetracycline, levocetirizine uptake was increased by tetracycline treatment. On the other hand, OAT4 expression did not facilitate efflux of preloaded levocetirizine from the cells, either in the presence or absence of extracellular Cl-. The OAT4-mediated levocetirizine uptake was concentration-dependent with a Km of 38 μM. The uptake rate of levocetirizine via OAT4 was approximately twice that of racemic cetirizine, indicating stereoselective uptake of levocetirizine. On the other hand, OAT4-mediated [3H]dehydroepiandrosterone sulfate uptake was inhibited by dextrocetirizine and levocetirizine. Overall, our findings indicate that OAT4 mediates levocetirizine uptake but is unlikely to mediate the efflux.
Collapse
Affiliation(s)
- Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | | | - Saya Mukaida
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | - Leslie Z Benet
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan; Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143-0912
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan.
| |
Collapse
|
20
|
Walker N, Filis P, Soffientini U, Bellingham M, O’Shaughnessy PJ, Fowler PA. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences†. Biol Reprod 2017; 96:733-742. [PMID: 28339967 PMCID: PMC5441296 DOI: 10.1093/biolre/iox012] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ.
Collapse
Affiliation(s)
- Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ugo Soffientini
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peter J O’Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
21
|
Pasqualini JR, Chetrite GS. The formation and transformation of hormones in maternal, placental and fetal compartments: biological implications. Horm Mol Biol Clin Investig 2017; 27:11-28. [PMID: 27567599 DOI: 10.1515/hmbci-2016-0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022]
Abstract
The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.
Collapse
|
22
|
Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E. WITHDRAWN: Human organic anion transporter 4-mediated transport of olmesartan in placenta. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|