1
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Wang M, Czernik PJ, Lecka-Czernik B, Xu Y, Hill JW. IGF-1 and insulin receptors in LepRb neurons jointly regulate body growth, bone mass, reproduction, and metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614140. [PMID: 39345425 PMCID: PMC11429997 DOI: 10.1101/2024.09.20.614140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Leptin receptor (LepRb)-expressing neurons are known to link body growth and reproduction, but whether these functions are mediated via insulin-like growth factor 1 receptor (IGF1R) signaling is unknown. IGF-1 and insulin can bind to each other's receptors, permitting IGF-1 signaling in the absence of IGF1R. Therefore, we created mice lacking IGF1R exclusively in LepRb neurons (IGF1RLepRb mice) and simultaneously lacking IGF1R and insulin receptor (IR) in LepRb neurons (IGF1R/IRLepRb mice) and then characterized their body growth, bone morphology, reproductive and metabolic functions. We found that IGF1R and IR in LepRb neurons were required for normal timing of pubertal onset, while IGF1R in LepRb neurons played a predominant role in regulating adult fertility and exerted protective effects against reproductive aging. Accompanying these reproductive deficits, IGF1RLepRb mice and IGF1R/IRLepRb mice had transient growth retardation. Notably, IGF1R in LepRb neurons was indispensable for normal trabecular and cortical bone mass accrual in both sexes. These findings suggest that IGF1R in LepRb neurons is involved in the interaction among body growth, bone development, and reproduction. Though only mild changes in body weight were detected, simultaneous deletion of IGF1R and IR in LepRb neurons caused dramatically increased fat mass composition, decreased lean mass composition, lower energy expenditure, and locomotor activity in both sexes. Male IGF1R/IRLepRb mice exhibited impaired insulin sensitivity. These findings suggest that IGF1R and IR in LepRb neurons jointly regulated body composition, energy balance, and glucose homeostasis. Taken together, our studies identified the sex-dependent complex roles of IGF1R and IR in LepRb neurons in regulating body growth, reproduction, and metabolism.
Collapse
Affiliation(s)
- Mengjie Wang
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Piotr J Czernik
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Beata Lecka-Czernik
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Orthopedic Surgery, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer W Hill
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
3
|
Rodríguez-Vázquez E, Aranda-Torrecillas Á, López-Sancho M, Castellano JM, Tena-Sempere M. Emerging roles of lipid and metabolic sensing in the neuroendocrine control of body weight and reproduction. Front Endocrinol (Lausanne) 2024; 15:1454874. [PMID: 39290326 PMCID: PMC11405246 DOI: 10.3389/fendo.2024.1454874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The hypothalamus lies at the intersection of brain and hormonal mechanisms governing essential bodily functions, including metabolic/body weight homeostasis and reproduction. While metabolism and fertility are precisely regulated by independent neuroendocrine axes, these are tightly connected, as reflection of the bidirectional interplay between the energy status of the organisms and their capacity to reproduce; a connection with important pathophysiological implications in disorders affecting these two crucial systems. Beyond the well-characterized roles of key hormones (e.g., leptin, insulin, ghrelin) and neuropeptides (e.g., melanocortins, kisspeptins) in the integral control of metabolism and reproduction, mounting evidence has pointed out a relevant function of cell energy sensors and lipid sensing mechanisms in the hypothalamic control of metabolism, with prominent roles also for metabolic sensors, such as mTOR, AMPK and SIRT1, in the nutritional regulation of key aspects of reproduction, such as pubertal maturation. We provide herein a synoptic overview of these novel regulatory pathways, with a particular focus on their putative function in the metabolic control of puberty, and delineate new avenues for further exploration of the intricate mechanisms whereby metabolism and reproduction are tightly connected.
Collapse
Affiliation(s)
- Elvira Rodríguez-Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Álvaro Aranda-Torrecillas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - María López-Sancho
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Juan M Castellano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
4
|
Wang M, Pugh SM, Daboul J, Miller D, Xu Y, Hill JW. IGF-1 Acts through Kiss1-expressing Cells to Influence Metabolism and Reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601722. [PMID: 39005405 PMCID: PMC11244982 DOI: 10.1101/2024.07.02.601722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective Kisspeptin, encoded by the Kiss1 gene, ties puberty and fertility to energy status; however, the metabolic factors that control Kiss1-expressing cells need to be clarified. Methods To evaluate the impact of IGF-1 on the metabolic and reproductive functions of kisspeptin producing cells, we created mice with IGF-1 receptor deletion driven by the Kiss1 promoter (IGF1RKiss1 mice). Previous studies have shown IGF-1 and insulin can bind to each other's receptor, permitting IGF-1 signaling in the absence of IGF1R. Therefore, we also generated mice with simultaneous deletion of the IGF1R and insulin receptor (IR) in Kiss1-expressing cells (IGF1R/IRKiss1 mice). Results Loss of IGF1R in Kiss1 cells caused stunted body length. In addition, female IGF1RKiss1 mice displayed lower body weight and food intake plus higher energy expenditure and physical activity. This phenotype was linked to higher proopiomelanocortin (POMC) expression and heightened brown adipose tissue (BAT) thermogenesis. Male IGF1RKiss1 mice had mild changes in metabolic functions. Moreover, IGF1RKiss1 mice of both sexes experienced delayed puberty. Notably, male IGF1RKiss1 mice had impaired adulthood fertility accompanied by lower gonadotropin and testosterone levels. Thus, IGF1R in Kiss1-expressing cells impacts metabolism and reproduction in a sex-specific manner. IGF1R/IRKiss1 mice had higher fat mass and glucose intolerance, suggesting IGF1R and IR in Kiss1-expressing cells together regulate body composition and glucose homeostasis. Conclusions Overall, our study shows that IGF1R and IR in Kiss1 have cooperative roles in body length, metabolism, and reproduction.
Collapse
Affiliation(s)
- Mengjie Wang
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seamus M. Pugh
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Judy Daboul
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - David Miller
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
5
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Male-transmitted transgenerational effects of the herbicide linuron on DNA methylation profiles in Xenopus tropicalis brain and testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:170949. [PMID: 38365020 DOI: 10.1016/j.scitotenv.2024.170949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The herbicide linuron can cause endocrine disrupting effects in Xenopus tropicalis frogs, including offspring that were never exposed to the contaminant. The mechanisms by which these effects are transmitted across generations need to be further investigated. Here, we examined transgenerational alterations of brain and testis DNA methylation profiles paternally inherited from grandfathers developmentally exposed to an environmentally relevant concentration of linuron. Reduced representation bisulfite sequencing (RRBS) revealed numerous differentially methylated regions (DMRs) in brain (3060 DMRs) and testis (2551 DMRs) of the adult male F2 generation. Key genes in the brain involved in somatotropic (igfbp4) and thyrotropic signaling (dio1 and tg) were differentially methylated and correlated with phenotypical alterations in body size, weight, hind limb length and plasma glucose levels, indicating that these methylation changes could be potential mediators of the transgenerational effects of linuron. Testis DMRs were found in genes essential for spermatogenesis, meiosis and germ cell development (piwil1, spo11 and tdrd9) and their methylation levels were correlated with the number of germ cells nests per seminiferous tubule, an endpoint of disrupted spermatogenesis. DMRs were also identified in several genes central for the machinery that regulates the epigenetic landscape including DNA methylation (dnmt3a and mbd2) and histone acetylation (hdac8, ep300, elp3, kat5 and kat14), which may at least partly drive the linuron-induced transgenerational effects. The results from this genome-wide DNA methylation profiling contribute to better understanding of potential transgenerational epigenetic inheritance mechanisms in amphibians.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
6
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Ruiz-Cruz M, Torres-Granados C, Tena-Sempere M, Roa J. Central and peripheral mechanisms involved in the control of GnRH neuronal function by metabolic factors. Curr Opin Pharmacol 2023; 71:102382. [PMID: 37307655 DOI: 10.1016/j.coph.2023.102382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.
Collapse
Affiliation(s)
- Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
8
|
Cara AL, Burger LL, Beekly BG, Allen SJ, Henson EL, Auchus RJ, Myers MG, Moenter SM, Elias CF. Deletion of Androgen Receptor in LepRb Cells Improves Estrous Cycles in Prenatally Androgenized Mice. Endocrinology 2023; 164:bqad015. [PMID: 36683455 PMCID: PMC10091504 DOI: 10.1210/endocr/bqad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Androgens are steroid hormones crucial for sexual differentiation of the brain and reproductive function. In excess, however, androgens may decrease fertility as observed in polycystic ovary syndrome, a common endocrine disorder characterized by oligo/anovulation and/or polycystic ovaries. Hyperandrogenism may also disrupt energy homeostasis, inducing higher central adiposity, insulin resistance, and glucose intolerance, which may exacerbate reproductive dysfunction. Androgens bind to androgen receptors (ARs), which are expressed in many reproductive and metabolic tissues, including brain sites that regulate the hypothalamo-pituitary-gonadal axis and energy homeostasis. The neuronal populations affected by androgen excess, however, have not been defined. We and others have shown that, in mice, AR is highly expressed in leptin receptor (LepRb) neurons, particularly in the arcuate (ARH) and the ventral premammillary nuclei (PMv). Here, we assessed if LepRb neurons, which are critical in the central regulation of energy homeostasis and exert permissive actions on puberty and fertility, have a role in the pathogenesis of female hyperandrogenism. Prenatally androgenized (PNA) mice lacking AR in LepRb cells (LepRbΔAR) show no changes in body mass, body composition, glucose homeostasis, or sexual maturation. They do show, however, a remarkable improvement of estrous cycles combined with normalization of ovary morphology compared to PNA controls. Our findings indicate that the prenatal androgenization effects on adult reproductive physiology (ie, anestrus and anovulation) are mediated by a subpopulation of LepRb neurons directly sensitive to androgens. They also suggest that the effects of hyperandrogenism on sexual maturation and reproductive function in adult females are controlled by distinct neural circuits.
Collapse
Affiliation(s)
- Alexandra L Cara
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Laura L Burger
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bethany G Beekly
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Susan J Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emily L Henson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martin G Myers
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Suzanne M Moenter
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Saleh FL, Joshi AA, Tal A, Xu P, Hens JR, Wong SL, Flannery CA. Hyperinsulinemia induces early and dyssynchronous puberty in lean female mice. J Endocrinol 2022; 254:121-135. [PMID: 35904489 PMCID: PMC9837806 DOI: 10.1530/joe-21-0447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023]
Abstract
Girls with obesity are at increased risk of early puberty. Obesity is associated with insulin resistance and hyperinsulinemia. We hypothesized that insulin plays a physiological role in pubertal transition, and super-imposed hyperinsulinemia due to childhood obesity promotes early initiation of puberty in girls. To isolate the effect of hyperinsulinemia from adiposity, we compared pre-pubertal and pubertal states in hyperinsulinemic, lean muscle (M)-insulin-like growth factor 1 receptor (IGF-1R)-lysine (K)-arginine (R) (MKR) mice to normoinsulinemic WT, with puberty onset defined by vaginal opening (VO). Our results show MKR had greater insulin resistance and higher insulin levels (P < 0.05) than WT despite lower body weight (P < 0.0001) and similar IGF-1 levels (P = NS). Serum luteinizing hormone (LH) levels were higher in hyperinsulinemic MKR (P = 0.005), and insulin stimulation induced an increase in LH levels in WT. VO was earlier in hyperinsulinemic MKR vs WT (P < 0.0001). When compared on the day of VO, kisspeptin expression was higher in hyperinsulinemic MKR vs WT (P < 0.05), and gonadotropin-releasing hormone and insulin receptor isoform expression was similar (P = NS). Despite accelerated VO, MKR had delayed, disordered ovarian follicle and mammary gland development. In conclusion, we found that hyperinsulinemia alone without adiposity triggers earlier puberty. In our study, hyperinsulinemia also promoted dyssynchrony between pubertal initiation and progression, urging future studies in girls with obesity to assess alterations in transition to adulthood.
Collapse
Affiliation(s)
- Farrah L Saleh
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Frank H. Netter School of Medicine, Quinnipiac University, North Haven, Connecticut, USA
| | - Aditi A Joshi
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aya Tal
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patricia Xu
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julie R Hens
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena L Wong
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Clare A Flannery
- Section of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Sobrino V, Avendaño MS, Perdices-López C, Jimenez-Puyer M, Tena-Sempere M. Kisspeptins and the neuroendocrine control of reproduction: Recent progress and new frontiers in kisspeptin research. Front Neuroendocrinol 2022; 65:100977. [PMID: 34999056 DOI: 10.1016/j.yfrne.2021.100977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
In late 2003, a major breakthrough in our understanding of the mechanisms that govern reproduction occurred with the identification of the reproductive roles of kisspeptins, encoded by the Kiss1 gene, and their receptor, Gpr54 (aka, Kiss1R). The discovery of this unsuspected reproductive facet attracted an extraordinary interest and boosted an intense research activity, in human and model species, that, in a relatively short period, established a series of basic concepts on the physiological roles of kisspeptins. Such fundamental knowledge, gathered in these early years of kisspeptin research, set the scene for the more recent in-depth dissection of the intimacies of the neuronal networks involving Kiss1 neurons, their precise mechanisms of regulation and the molecular underpinnings of the function of kisspeptins as pivotal regulators of all key aspects of reproductive function, from puberty onset to pulsatile gonadotropin secretion and the metabolic control of fertility. While no clear temporal boundaries between these two periods can be defined, in this review we will summarize the most prominent advances in kisspeptin research occurred in the last ten years, as a means to provide an up-dated view of the state of the art and potential paths of future progress in this dynamic, and ever growing domain of Neuroendocrinology.
Collapse
Affiliation(s)
- Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Maria Soledad Avendaño
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Cecilia Perdices-López
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Manuel Jimenez-Puyer
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland.
| |
Collapse
|
11
|
Multiple Leptin Signalling Pathways in the Control of Metabolism and Fertility: A Means to Different Ends? Int J Mol Sci 2021; 22:ijms22179210. [PMID: 34502119 PMCID: PMC8430761 DOI: 10.3390/ijms22179210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
The adipocyte-derived ‘satiety promoting’ hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an ‘adipostat’, whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin deficiency is rare, obesity-related leptin resistance is becoming increasingly common. In the absence of adequate leptin sensitivity, leptin is unable to exert its ‘anti-obesity’ effects, thereby exacerbating obesity. Furthermore, extreme leptin resistance and consequent low or absent leptin signalling resembles a state of starvation and can thus lead to infertility. However, leptin resistance occurs on a spectrum, and it is possible to be resistant to leptin’s metabolic effects while retaining leptin’s permissive effects on fertility. This may be because leptin exerts its modulatory effects on energy homeostasis and reproductive function through discrete intracellular signalling pathways, and these pathways are differentially affected by the molecules that promote leptin resistance. This review discusses the potential mechanisms that enable leptin to exert differential control over metabolic and reproductive function in the contexts of healthy leptin signalling and of diet-induced leptin resistance.
Collapse
|
12
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
13
|
Franssen D, Barroso A, Ruiz-Pino F, Vázquez MJ, García-Galiano D, Castellano JM, Onieva R, Ruiz-Cruz M, Poutanen M, Gaytán F, Diéguez C, Pinilla L, Lopez M, Roa J, Tena-Sempere M. AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism 2021; 115:154460. [PMID: 33285180 DOI: 10.1016/j.metabol.2020.154460] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/08/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reproduction is tightly coupled to body energy and metabolic status. GnRH neurons, master elements and final output pathway for the brain control of reproduction, directly or indirectly receive and integrate multiple metabolic cues to regulate reproductive function. Yet, the molecular underpinnings of such phenomenon remain largely unfolded. AMP-activated protein kinase (AMPK), the fundamental cellular sensor that becomes activated in conditions of energy deficit, has been recently shown to participate in the control of Kiss1 neurons, essential gatekeepers of the reproductive axis, by driving an inhibitory valence in situations of energy scarcity at puberty. However, the contribution of AMPK signaling specifically in GnRH neurons to the metabolic control of reproduction remains unknown. METHODS Double immunohistochemistry (IHC) was applied to evaluate expression of active (phosphorylated) AMPK in GnRH neurons and a novel mouse line, named GAMKO, with conditional ablation of the AMPK α1 subunit in GnRH neurons, was generated. GAMKO mice of both sexes were subjected to reproductive characterization, with attention to puberty and gonadotropic responses to kisspeptin and metabolic stress. RESULTS A vast majority (>95%) of GnRH neurons co-expressed pAMPK. Female (but not male) GAMKO mice displayed earlier puberty onset and exaggerated LH (as surrogate marker of GnRH) responses to kisspeptin-10 at the prepubertal age. In adulthood, GAMKO females retained increased LH responsiveness to kisspeptin and showed partial resilience to the inhibitory effects of conditions of negative energy balance on the gonadotropic axis. The modulatory role of AMPK in GnRH neurons required preserved ovarian function, since the differences in LH pulsatility detected between GAMKO and control mice subjected to fasting were abolished in ovariectomized animals. CONCLUSIONS Altogether, our data document a sex-biased, physiological role of AMPK signaling in GnRH neurons, as molecular conduit of the inhibitory actions of conditions of energy deficit on the female reproductive axis.
Collapse
Affiliation(s)
- D Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - A Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - F Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - D García-Galiano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - J M Castellano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - R Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - M Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - M Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - F Gaytán
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - C Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - L Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M Lopez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
14
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol 2020; 16:407-420. [PMID: 32427949 PMCID: PMC8852368 DOI: 10.1038/s41574-020-0363-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Hypothalamic kisspeptin neurons serve as the nodal regulatory centre of reproductive function. These neurons are subjected to a plethora of regulatory factors that ultimately affect the release of kisspeptin, which modulates gonadotropin-releasing hormone (GnRH) release from GnRH neurons to control the reproductive axis. The presence of sufficient energy reserves is critical to achieve successful reproduction. Consequently, metabolic factors impose a very tight control over kisspeptin synthesis and release. This Review offers a synoptic overview of the different steps in which kisspeptin neurons are subjected to metabolic regulation, from early developmental stages to adulthood. We cover an ample array of known mechanisms that underlie the metabolic regulation of KISS1 expression and kisspeptin release. Furthermore, the novel role of kisspeptin neurons as active players within the neuronal circuits that govern energy balance is discussed, offering evidence of a bidirectional role of these neurons as a nexus between metabolism and reproduction.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Graduate Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
16
|
Cara AL, Myers MG, Elias CF. Lack of AR in LepRb Cells Disrupts Ambulatory Activity and Neuroendocrine Axes in a Sex-Specific Manner in Mice. Endocrinology 2020; 161:bqaa110. [PMID: 32609838 PMCID: PMC7383963 DOI: 10.1210/endocr/bqaa110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022]
Abstract
Disorders of androgen imbalance, such as hyperandrogenism in females or hypoandrogenism in males, increase risk of visceral adiposity, type 2 diabetes, and infertility. Androgens act upon androgen receptors (AR) which are expressed in many tissues. In the brain, AR are abundant in hypothalamic nuclei involved in regulation of reproduction and energy homeostasis, yet the role of androgens acting via AR in specific neuronal populations has not been fully elucidated. Leptin receptor (LepRb)-expressing neurons coexpress AR predominantly in hypothalamic arcuate and ventral premammillary nuclei (ARH and PMv, respectively), with low colocalization in other LepRb neuronal populations, and very low colocalization in the pituitary gland and gonads. Deletion of AR from LepRb-expressing cells (LepRbΔAR) has no effect on body weight, energy expenditure, and glucose homeostasis in male and female mice. However, LepRbΔAR female mice show increased body length later in life, whereas male LepRbΔAR mice show an increase in spontaneous ambulatory activity. LepRbΔAR mice display typical pubertal timing, estrous cycles, and fertility, but increased testosterone levels in males. Removal of sex steroid negative feedback action induced an exaggerated rise in luteinizing hormone in LepRbΔAR males and follicle-stimulating hormone in LepRbΔAR females. Our findings show that AR can directly affect a subset of ARH and PMv neurons in a sex-specific manner and demonstrate specific androgenic actions in the neuroendocrine hypothalamus.
Collapse
Affiliation(s)
- Alexandra L Cara
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynaecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Wang M, Zhang Y, Miller D, Rehman NO, Cheng X, Yeo JY, Joe B, Hill JW. Microbial Reconstitution Reverses Early Female Puberty Induced by Maternal High-fat Diet During Lactation. Endocrinology 2020; 161:bqz041. [PMID: 31912132 PMCID: PMC7035910 DOI: 10.1210/endocr/bqz041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Abstract
Recent work shows that gut microbial dysbiosis contributes to the risk of obesity in children whose mothers consume a high-fat diet (HFD) during both gestation and lactation or during gestation alone. Obesity predisposes children to developing precocious puberty. However, to date, no study has examined how maternal HFD (MHFD) during lactation regulates the gut microbiota (GM), pubertal timing, and fertility of offspring. Here, we found that MHFD during lactation markedly altered the GM of offspring. The pups developed juvenile obesity, early puberty, irregular estrous cycles, and signs of disrupted glucose metabolism. Remarkably, permitting coprophagia between MHFD and maternal normal chow offspring successfully reversed the GM changes as well as early puberty and insulin insensitivity. Our data suggest that microbial reconstitution may prevent or treat early puberty associated with insulin resistance.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Youjie Zhang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - David Miller
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Naveen O Rehman
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Xi Cheng
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Ji-Youn Yeo
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Bina Joe
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, Ohio, US
- Department of Obstetrics-Gynecology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, US
| |
Collapse
|
18
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
19
|
Metabolic regulation of female puberty via hypothalamic AMPK-kisspeptin signaling. Proc Natl Acad Sci U S A 2018; 115:E10758-E10767. [PMID: 30348767 DOI: 10.1073/pnas.1802053115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conditions of metabolic distress, from malnutrition to obesity, impact, via as yet ill-defined mechanisms, the timing of puberty, whose alterations can hamper later cardiometabolic health and even life expectancy. AMP-activated protein kinase (AMPK), the master cellular energy sensor activated in conditions of energy insufficiency, has a major central role in whole-body energy homeostasis. However, whether brain AMPK metabolically modulates puberty onset remains unknown. We report here that central AMPK interplays with the puberty-activating gene, Kiss1, to control puberty onset. Pubertal subnutrition, which delayed puberty, enhanced hypothalamic pAMPK levels, while activation of brain AMPK in immature female rats substantially deferred puberty. Virogenetic overexpression of a constitutively active form of AMPK, selectively in the hypothalamic arcuate nucleus (ARC), which holds a key population of Kiss1 neurons, partially delayed puberty onset and reduced luteinizing hormone levels. ARC Kiss1 neurons were found to express pAMPK, and activation of AMPK reduced ARC Kiss1 expression. The physiological relevance of this pathway was attested by conditional ablation of the AMPKα1 subunit in Kiss1 cells, which largely prevented the delay in puberty onset caused by chronic subnutrition. Our data demonstrate that hypothalamic AMPK signaling plays a key role in the metabolic control of puberty, acting via a repressive modulation of ARC Kiss1 neurons in conditions of negative energy balance.
Collapse
|
20
|
Mahany EB, Han X, Borges BC, da Silveira Cruz-Machado S, Allen SJ, Garcia-Galiano D, Hoenerhoff MJ, Bellefontaine NH, Elias CF. Obesity and High-Fat Diet Induce Distinct Changes in Placental Gene Expression and Pregnancy Outcome. Endocrinology 2018; 159:1718-1733. [PMID: 29438518 PMCID: PMC6456933 DOI: 10.1210/en.2017-03053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
Abstract
Obese women are at high risk of pregnancy complications, including preeclampsia, miscarriage, preterm birth, stillbirth, and neonatal death. In the current study, we aimed to determine the effects of obesity on pregnancy outcome and placental gene expression in preclinical mouse models of genetic and nutritional obesity. The leptin receptor (LepR) null-reactivatable (LepRloxTB), LepR-deficient (Leprdb/+), and high-fat diet (HFD)-fed mice were assessed for fertility, pregnancy outcome, placental morphology, and placental transcriptome using standard quantitative polymerase chain reaction (qPCR) and qPCR arrays. The restoration of fertility of LepRloxTB was performed by stereotaxic delivery of adeno-associated virus-Cre into the hypothalamic ventral premammillary nucleus. Fertile LepRloxTB females were morbidly obese, whereas the wild-type mice-fed HFD showed only a mild increase in body weight. Approximately 80% of the LepRloxTB females had embryo resorptions (∼40% of the embryos). In HFD mice, the number of resorptions was not different from controls fed a regular diet. Placentas of resorbed embryos from obese mice displayed necrosis and inflammatory infiltrate in the labyrinth and changes in the expression of genes associated with angiogenesis and inflammation (e.g., Vegfa, Hif1a, Nfkbia, Tlr3, Tlr4). In contrast, placentas from embryos of females on HFD showed changes in a different set of genes, mostly associated with cellular growth and response to stress (e.g., Plg, Ang, Igf1, Igfbp1, Fgf2, Tgfb2, Serpinf1). Sexual dimorphism in gene expression was only apparent in placentas from obese LepRloxTB mice. Our findings indicate that an obese environment and HFD have distinct effects on pregnancy outcome and the placental transcriptome.
Collapse
Affiliation(s)
- Erica B Mahany
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Erica B. Mahany, MD, Department of Obstetrics and Gynecology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| | - Xingfa Han
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Isotope Research Laboratory, Sichuan Agricultural University, Ya'an, China
| | - Beatriz C Borges
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Physiology, Institute of Biosciences, Cidade Universitária, University of São Paulo, São Paulo, Brazil
| | - Susan J Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nicole H Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Carol F Elias
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Garcia-Galiano D, Borges BC, Donato J, Allen SJ, Bellefontaine N, Wang M, Zhao JJ, Kozloff KM, Hill JW, Elias CF. PI3Kα inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction. JCI Insight 2017; 2:96728. [PMID: 29212950 PMCID: PMC5752267 DOI: 10.1172/jci.insight.96728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
The role of PI3K in leptin physiology has been difficult to determine due to its actions downstream of several metabolic cues, including insulin. Here, we used a series of mouse models to dissociate the roles of specific PI3K catalytic subunits and of insulin receptor (InsR) downstream of leptin signaling. We show that disruption of p110α and p110β subunits in leptin receptor cells (LRΔα+β) produces a lean phenotype associated with increased energy expenditure, locomotor activity, and thermogenesis. LRΔα+β mice have deficient growth and delayed puberty. Single subunit deletion (i.e., p110α in LRΔα) resulted in similarly increased energy expenditure, deficient growth, and pubertal development, but LRΔα mice have normal locomotor activity and thermogenesis. Blunted PI3K in leptin receptor (LR) cells enhanced leptin sensitivity in metabolic regulation due to increased basal hypothalamic pAKT, leptin-induced pSTAT3, and decreased PTEN levels. However, these mice are unresponsive to leptin's effects on growth and puberty. We further assessed if these phenotypes were associated with disruption of insulin signaling. LRΔInsR mice have no metabolic or growth deficit and show only mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in energy expenditure, growth, and reproduction. These actions are independent from insulin signaling.
Collapse
Affiliation(s)
- David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Beatriz C. Borges
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physiology and
| | - Jose Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Susan J. Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mengjie Wang
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Jean J. Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jennifer W. Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|