1
|
Umatani C. Neuromodulation in the fish brain for reproductive success. Gen Comp Endocrinol 2024:114658. [PMID: 39701428 DOI: 10.1016/j.ygcen.2024.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In most teleosts, appropriate sexual behaviors and sexual maturation are essential for reproductive success. Most fish display their unique behavioral patterns for mating. These behaviors are thought to be regulated in the brain by sex steroid hormones since sexual behaviors are displayed only by sexually mature fish. In addition, recent studies have reported that neuropeptides, which are peptides released from neurons and modulate neural activities via their specific receptors in the brain, also play a key role in regulating sexual behavior. On the other hand, not only sexual behavior but also feeding behavior is important for reproductive function since sexual maturation requires sufficient nutrition. Especially feeding-related peptides, a type of neuropeptides, are thought to modulate feeding behavior. Thus, it is conceivable that neuropeptides are crucial modulators in the brain for reproductive success. This review summarizes recent advances in the knowledge of the neuromodulatory systems involved in sexual and feeding behaviors by neuropeptides and gonadal hormones.
Collapse
Affiliation(s)
- Chie Umatani
- Division of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Mitsunaga K, Shohag S, Ming CJ, Yap CK, Horie Y. Phenytoin causes behavioral abnormalities and suppresses kisspeptin expression, reducing reproductive performance in Japanese medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107007. [PMID: 38943866 DOI: 10.1016/j.aquatox.2024.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Phenytoin, an antiepileptic drug, induces neurotoxicity and abnormal embryonic development and reduces spontaneous locomotor activity in fish. However, its effects on other endpoints remain unclear. Therefore, we investigated the effects of phenytoin on the swimming behavior and reproductive ability of Japanese medaka. Abnormalities in swimming behavior, such as imbalance, rotation, rollover, and vertical swimming, were observed. However, when phenytoin exposure was discontinued, the behavioral abnormality rates decreased. Phenytoin exposure also significantly reduced reproductive ability. By investigating reproduction-related gene expression of gnrh1, gnrh2, fshb, and lhb remained unchanged in males and females. In contrast, kiss1 expression was significantly suppressed due to phenytoin exposure in males and females. kiss2 expression was also significantly suppressed in females but not in males. We filmed videos to examine phenytoin exposure effects on sexual behavior. Females showed no interest in the male's courtship. As the kisspeptin 1 system controls sexual behavior in Japanese medaka, phenytoin exposure may have decreased kiss1 expression, which decreased female reproductive motivation; hence, they did not spawn eggs. This is the first study to show that phenytoin exposure induces behavioral abnormalities, and suppresses kiss1 expression and reproductive performance in Japanese medaka.
Collapse
Affiliation(s)
- Kensuke Mitsunaga
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka 1216, Bangladesh
| | - Chew Jia Ming
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yoshifumi Horie
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| |
Collapse
|
3
|
Kumar TP, Gireesh-Babu P, Vasudevan D, Pavan-Kumar A, Chaudhari A. Characterization of Kiss/Kissr system and expression profiling through developmental stages indicate kiss1 to be the active isotype in Clarias magur. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1353-1373. [PMID: 38647980 DOI: 10.1007/s10695-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Kisspeptin (Kiss) and kisspeptin receptor (Kissr) system is a key regulator of GnRH expression in several vertebrates. The Indian catfish, Clarias magur, is popular in the Indian sub-continent, and a neo-type of the Asian catfish, C. batrachus. Catfish breeding is constrained as males do not release milt captivity with/without stimulation. Magur Kiss/Kissr system comprising of kiss1, kiss2, kissr1, and kissr2 genes was characterized for the first time. Full-length mRNA was sequenced using RACE PCR. Neighbor-joining tree of predicted proteins shows one clade of teleost orthologs. Magur whole genome (NCBI GenBank) has single copies of each gene, though yet unannotated/misannotated. Anomalies in the nomenclature of earlier sequences in GenBank were noted. Relative gene expression was profiled during various ontogenic stages, in six tissues including brain and gonads at maturity, and also in brains and gonads of premature and spent fish. Expression of gnrh1, gnrhr1, and gnrhr2 was estimated concomitantly. The kiss1 was the first to be twofold upregulated (P < 0.05) at 12 h post fertilization. Kiss/Kissr genes expressed primarily in the brain, ovary, and testis. Though kiss2 was 10 times higher than kiss1, only kiss1 showed significant modulation across stages and appears to be the active isotype that regulates GnRH in magur.
Collapse
Affiliation(s)
- Thushar P Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Dileep Vasudevan
- RGCB-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Annam Pavan-Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
4
|
Chen J, Zhao W, Cao L, Martins RST, Canário AVM. Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish. BMC Biol 2024; 22:163. [PMID: 39075492 PMCID: PMC11288053 DOI: 10.1186/s12915-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism. RESULTS We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic α-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic β-cells, improved glucose clearance and reduced adipocyte mass. CONCLUSIONS We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Wenting Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lei Cao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rute S T Martins
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Adelino V M Canário
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
5
|
Uehara SK, Nishiike Y, Maeda K, Karigo T, Kuraku S, Okubo K, Kanda S. Identification of the FSH-RH as the other gonadotropin-releasing hormone. Nat Commun 2024; 15:5342. [PMID: 38937445 PMCID: PMC11211334 DOI: 10.1038/s41467-024-49564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.
Collapse
Affiliation(s)
- Shun Kenny Uehara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Tomomi Karigo
- Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
6
|
Hasunuma I. Central regulation of reproduction in amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:219-229. [PMID: 38084833 DOI: 10.1002/jez.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
This review article includes a literature review of synteny analysis of the amphibian gonadotropin-releasing hormone (GnRH) genes, the distribution of GnRH 1 and GnRH2 neurons in the central nervous system of amphibians, the function and regulation of hypophysiotropic GnRH1, and the function of GnRH1 in amphibian reproductive behaviors. It is generally accepted that GnRH is the key regulator of the hypothalamic-pituitary-gonadal axis. Three independent GnRH genes, GnRH1, GnRH2, and GnRH3, have been identified in vertebrates. Previous genome synteny analyses suggest that there are likely just two genes, gnrh1 and gnrh2, in amphibians. In three groups of amphibians: Anura, Urodela, and Gymnophiona, the distributions of GnRH1 and GnRH2 neurons in the central nervous system have also been previously reported. Moreover, these neuronal networks were determined to be structurally independent in all species examined. The somata of GnRH1 neurons are located in the terminal nerve, medial septum (MS), and preoptic area (POA), and some GnRH1 neurons in the MS and POA project into the median eminence. In contrast, the somata of GnRH2 neurons are located in the midbrain tegmentum. In amphibians, GnRH1 neurons originate from the embryonic olfactory placode, while GnRH2 neurons originate from the midbrain. The characterization and feedback regulation mechanisms of hypophysiotropic GnRH1 neurons in amphibians, the involvement of GnRH1 in amphibian reproductive behavior, and its possible mechanism of action should be elucidated in future.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
7
|
Nakajo M, Kanda S, Oka Y. Involvement of the kisspeptin system in regulation of sexual behaviors in medaka. iScience 2024; 27:108971. [PMID: 38333699 PMCID: PMC10850746 DOI: 10.1016/j.isci.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
In mammals, kisspeptin (Kiss1) neurons are generally considered as a sex steroid-dependent key regulator of hypothalamic-pituitary-gonadal (HPG) axis. In contrast, previous studies in non-mammalian species, especially in teleosts, propose that Kiss1 is not directly involved in the HPG axis regulation, which suggests some sex-steroid-dependent functions of kisspeptin(s) other than the HPG axis regulation in non-mammals. Here, we used knockout (KO) medaka of kisspeptin receptor-coding genes (gpr54-1 and gpr54-2) and examined possible roles of kisspeptin in the regulation of sexual behaviors. We found that the KO pairs of gpr54-1, but not gpr54-2, spawned fewer eggs and exhibited delayed spawning than wild type pairs. Detailed behavior analysis suggested that the KO females are responsible for the delayed spawning and that the KO males showed hyper-motivation for courtship. Taken together, the present finding suggests that one of the reproductive-state-dependent functions of the Kiss1 may be the control of successful sexual behaviors.
Collapse
Affiliation(s)
- Mikoto Nakajo
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
8
|
Meng F, Li J, Han X, Li L, Li T, Du X, Cao X, Liang Q, Huang A, Kong F, Zeng X, Bu G. TAC3 regulates GnRH/gonadotropin synthesis in female chickens. Theriogenology 2024; 215:302-311. [PMID: 38128223 DOI: 10.1016/j.theriogenology.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHβ and cLHβ expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHβ and cFSHβ expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.
Collapse
Affiliation(s)
- Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Jinxuan Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Lingyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tianyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|
9
|
Tamagawa K, Sunobe T, Makino T, Kawata M. Transcriptomic signatures associated with underlying rapid changes in the early phase brain of bi-directional sex change in Trimma okinawae. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231450. [PMID: 38077214 PMCID: PMC10698487 DOI: 10.1098/rsos.231450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
Teleost fish exhibit remarkable sexual plasticity and divergent developmental systems, including sequential hermaphroditism. One of the more fascinating models of sexual plasticity is socially controlled sex change, which is often observed in coral reef fish. The Okinawa rubble goby, Trimma okinawae, is a bi-directional sex-changing fish. It can rapidly change sex in either direction based on social circumstances. Although behavioural and neuroendocrine sex change occurs immediately and is believed to trigger gonadal changes, the underlying mechanisms remain poorly understood. In this study, we conducted a de novo transcriptome analysis of the T. okinawae brain and identified genes that are differentially expressed between the sexes and genes that were immediately controlled by social stimulation implicating sex change. Several genes showed concordant expression shifts regardless of the sex change direction and were associated with histone modification in nerve cells. These genes are known to function in the neuroendocrine control of reproduction in nerve cells. Overall, we identified genes associated with the initiation of sex change, which provides insight into the regulation of sex change and sexual plasticity.
Collapse
Affiliation(s)
- Katsunori Tamagawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoki Sunobe
- Laboratory of Fish Behavioral Ecology, Tateyama Station, Field Science Center, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba 294-0308, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
10
|
Horie Y, Uaciquete D. Influence of phthalate and non-phthalate plasticizers on reproductive endocrine system-related gene expression profiles in Japanese medaka ( Oryzias latipes). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:954-962. [PMID: 37897219 DOI: 10.1080/10934529.2023.2273690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Plasticizers containing phthalates have the potential to alter endocrine function in vertebrates. While non-phthalate plasticizers were previously considered to be environmentally friendly and safe, our research team discovered that bis-(2-ethylhexyl) adipate (DEHA) and acetyl tributyl citrate (ATBC) disrupt thyroid hormones in Japanese medaka (Oryzias latipes). We assessed reproductive- and estrogen-responsive gene expression patterns in Japanese medaka to determine whether the phthalate plasticizers bis-(2-ethylhexyl) phthalate (DEHP, positive control) and the non-phthalate plasticizers DEHA and ATBC disrupt endocrine signaling. The results showed that the levels of choriogenin H (chgH) and vitellogenin (vtg) genes increased after exposure to DEHP and ATBC, suggesting that these plasticizers may have estrogenic activity. Exposure to DEHP and DEHA resulted in the upregulation of kisspeptin (kiss), gonadotropin-releasing hormone (gnrh), and follicle-stimulating hormone beta (fshβ) genes, suggesting that these plasticizers may interfere with reproductive function. To the best of our knowledge, this is the first study to demonstrate that the non-phthalate plasticizers DEHA and ATBC can disrupt reproduction-related hormonal activity in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Kobe, Japan
| | - Dorcas Uaciquete
- Research Center for Inland Seas (KURCIS), Kobe University, Kobe, Japan
| |
Collapse
|
11
|
Tanaka A, Umatani C, Oka Y. Acetylcholine Inhibits Spontaneous Firing Activity of Terminal Nerve GnRH Neurons in Medaka. Zoolog Sci 2023; 40:151-159. [PMID: 37042694 DOI: 10.2108/zs220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/04/2023] [Indexed: 03/17/2023]
Abstract
Vertebrates generally possess hypophysiotropic and non-hypophysiotropic gonadotropin releasing hormone (GnRH) neurons. The terminal nerve (TN) GnRH neurons are known to belong to the non-hypophysiotropic neurons and have been suggested to modulate sexual behaviors. These neurons show spontaneous pacemaker firing activity and release neuropeptides GnRH and neuropeptide FF. Since the spontaneous firing activities of peptidergic neurons, including GnRH neurons, are believed to play important roles in the release of neuropeptides, understanding the regulatory mechanisms of these spontaneous firing activities is important. Here, we analyzed firing activities of the TN-GnRH neurons in medaka during application of acetylcholine (ACh), which is one of the essential neuromodulators in the brain. Whole cell patch clamp recording of TN-GnRH neurons demonstrated that ACh induces hyperpolarization and inhibits their pacemaker firing. Electrophysiological analysis using an antagonist for acetylcholine receptors and in situ hybridization analysis showed that firing of TN-GnRH neurons is inhibited via M2-type muscarinic acetylcholine receptor. These findings, taken together with literature from several other fish species (including teleosts and elasmobranchs), indicate that ACh may generally play an inhibitory role in modulating spontaneous activities of TN-GnRH neurons and thereby sexual behaviors in fish.
Collapse
Affiliation(s)
- Aiki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H. Effects of non-phthalate plasticizer bis(2-ethylhexyl) sebacate (DEHS) on the endocrine system in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109531. [PMID: 36470400 DOI: 10.1016/j.cbpc.2022.109531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Water pollution due to plasticizers is one of the most severe environmental problems worldwide. Phthalate plasticizers can act as endocrine disruptors in vertebrates. In this study, we investigated whether the non-phthalate bis(2-ethylhexyl) sebacate (DEHS) plasticizer can act as an endocrine disruptor by evaluating changes in the expression levels of thyroid hormone-related, reproduction-related, and estrogen-responsive genes of Japanese medaka (Oryzias latipes) exposed to the plasticizer. Following the exposure, the gene expression levels of thyroid-stimulating hormone subunit beta (tshβ), deiodinase 1 (dio1), and thyroid hormone receptor alpha (trα) did not change. Meanwhile, DEHS suppressed dio2 expression, did not induce swim bladder inflation, and eventually reduced the swimming performance of Japanese medaka. These findings indicate that DEHS can potentially disrupt the thyroid hormone-related gene expression and metabolism of these fish. However, exposure to DEHS did not induce changes in the gene expression levels of kisspeptin 1 (kiss1), gonadotropin-releasing hormone (gnrh), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg) in a dose-dependent manner. This is the first report providing evidence that DEHS can disrupt thyroid hormone-related metabolism in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Miho Nomura
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo, Iwate 662-8505, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
13
|
Horie Y, Ramaswamy BR, Ríos JM, Yap CK, Okamura H. Effects of plasticizer diisobutyl adipate on the Japanese medaka (Oryzias latipes) endocrine system. J Appl Toxicol 2023. [PMID: 36647207 DOI: 10.1002/jat.4437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Plasticizer pollution of the water environment is one of the world's most serious environmental issues. Phthalate plasticizers can disrupt endocrine function in vertebrates. Therefore, this study analyzed thyroid-related, reproduction-related, and estrogen-responsive genes in Japanese medaka (Oryzias latipes) to determine whether non-phthalate diisobutyl adipate (DIBA) plasticizer could affect endocrine hormone activity or not. Developmental toxicity during fish embryogenesis was also evaluated. At a concentration of 11.57 mg/l, embryonic exposure to DIBA increased the mortality rate. Although abnormal development, including body curvature, edema, and lack of swim bladder inflation, was observed at 3.54 and 11.57 mg/l DIBA, growth inhibition and reduced swimming performance were also observed. In addition, DIBA exposure increased the levels of thyroid-stimulating hormone beta-subunit (tshβ) and deiodinase 1 (dio1) but decreased the levels of thyroid hormone receptor alpha (trα) and beta (trβ). These results suggest that DIBA has thyroid hormone-disrupting activities in fish. However, kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormone (gnrh1), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg1) expression did not change dose-dependently in response to DIBA exposure, whereas gnrh2 and vtg2 expression was elevated. These results indicate that DIBA has low estrogenic activity and does not disrupt the endocrine reproduction system in fish. Overall, this is the first report indicating that non-phthalate DIBA plasticizer is embryotoxic and disrupt thyroid hormone activity in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan.,Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Juan Manuel Ríos
- Laboratorio de Ecotoxicología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CCT-CONICET), 5500, Mendoza, Argentina
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
14
|
Wang B, Cui A, Xu Y, Zhang Y, Jiang Y, Liu X. Food deprivation differentially modulates gene expression of LPXRFa and kisspeptin systems in the brain-pituitary axis of half-smooth tongue sole ( Cynoglossus semilaevis). Front Endocrinol (Lausanne) 2023; 14:1099832. [PMID: 37033260 PMCID: PMC10081681 DOI: 10.3389/fendo.2023.1099832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
LPXRFa, also known as gonadotropin-inhibitory hormone (GnIH), and kisspeptin (Kiss) are two major hypothalamic peptides that modulate the reproductive axis of vertebrates, including teleosts. However, little information is available regarding the actions of nutritional status on the regulation of these two neuroendocrine systems in fish. Herein, we assessed the effects of starvation and refeeding on the expression of lpxrfa, kiss2 and their receptors (lpxrfa-r and kiss2r respectively) at the brain-pituitary level of half-smooth tongue sole (Cynoglossus semilaevis). Food deprivation for 4 weeks induced a rise in brain lpxrfa as well as brain and pituitary lpxrfa-r mRNA levels, and refeeding restored brain lpxrfa and lpxrfa-r expression back to normal. However, pituitary lpxrfa-r mRNA levels still remained high after 1 week of refeeding. Neither lpxrfa nor kiss2 transcripts in the pituitary were altered by fasting, but their mRNA levels increased significantly after 1 week of refeeding, and declined back to the control levels after 2 weeks of refeeding. None of brain kiss2 and kiss2r along with pituitary kiss2r transcripts were modified by the nutritional status. In summary, our results revealed an interaction between energy status and the elements of LPXRFa and Kiss systems in the brain-pituitary axis of half-smooth tongue sole. Food deprivation and refeeding differentially regulated the two systems, which provided additional evidence for the involvement of the LPXRFa and Kiss systems in the regulation of reproduction by energy balance in non-mammalian species.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yongjiang Xu,
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
15
|
Roundup in the Reproduction of Crucian Carp ( Carassius carassius): An In Vitro Effect on the Pituitary Gland and Ovary. Animals (Basel) 2022; 13:ani13010105. [PMID: 36611714 PMCID: PMC9817507 DOI: 10.3390/ani13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Roundup, the most popular herbicide in global agriculture, is regarded as an endocrine disruptor causing alterations of important hormones at the hypothalamic-pituitary-gonadal axis as well as impairment of gametogenesis. The whole pituitary glands of crucian carp (Carassius carassius) were incubated for 3 h in the medium containing Roundup (0-control, 1 and 10 ng/mL). The level of luteinizing hormone (LH), and mRNA transcript abundance of kisspeptin (kiss-1) and its receptor (gpr54), were determined. The isolated ovarian fragments were incubated for 24 h in the presence of Roundup and the following effects on reproductive parameters were determined: the final oocyte maturation and ovulation, structural changes in follicles, secretion of 17,20β-progesterone (17,20β-P) as well as mRNA transcript abundance of the luteinizing hormone receptor (lhr), estrogen receptors (erα, erβ1, erβ2), and zona radiata (chorion) proteins (zp2 and zp3). Roundup inhibited final oocyte maturation and decreased the percentage of ovulated eggs, and furthermore, caused structural changes in the ovarian follicular components. There were no significant changes in the measured hormone levels and analyzed genes mRNA transcript abundance. Summing up, obtained results indicate that Roundup may adversely affect oocyte maturation and the quality of eggs, suggesting that exposure to this herbicide can lead to reproductive disorders in fish.
Collapse
|
16
|
Prostaglandin E2 receptor Ptger4b regulates female-specific peptidergic neurons and female sexual receptivity in medaka. Commun Biol 2022; 5:1215. [PMID: 36357668 PMCID: PMC9649691 DOI: 10.1038/s42003-022-04195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity. Prostaglandin E2 signaling mediates the estrogenic regulation of peptidergic neuronal activity and female receptivity via the ptger4b gene pathway in Japanese rice fish.
Collapse
|
17
|
Zahangir MM, Rahman ML, Ando H. Anomalous Temperature Interdicts the Reproductive Activity in Fish: Neuroendocrine Mechanisms of Reproductive Function in Response to Water Temperature. Front Physiol 2022; 13:902257. [PMID: 35685278 PMCID: PMC9171195 DOI: 10.3389/fphys.2022.902257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 01/30/2023] Open
Abstract
Fish are poikilotherm and small changes in water temperature can greatly affect physiological processes including reproduction, which is regulated by complex neuroendocrine mechanisms that respond to climatic events. This review provides evidence that anomalous high and low temperature may directly affect reproduction in fish by suppressing the expression of genes in the reproductive neuroendocrine system. The grass puffer, Takifugu alboplumbeus, is an excellent animal model for studying the thermal regulation of reproduction, for they exhibit periodic spawning activities, which are synchronized with seasonal, lunar and daily cycles. In the grass puffer, the expression of the genes encoding gonadotropin-releasing hormone (GnRH) 1, kisspeptin, gonadotropin-inhibitory hormone (GnIH) and their receptors were markedly suppressed in the diencephalon of fish exposed to high temperature (28°C) when compared to normal temperature (21°C), followed by the decrease in the pituitary mRNA levels for follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH). On the other hand, the exposure to low temperature (14°C) also inhibited the expression of gnrh1, kiss2, gnih and their receptor genes in the brain and fshb, lhb, gh and prl in the pituitary. Taken together, it is plausible that anomalous high and low temperature may be a proximate driver of termination of reproduction by suppressing the activity of the reproductive GnRH/kisspeptin/GnIH system, possibly through direct action of temperature signals at transcription level.
Collapse
Affiliation(s)
- Md. Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Japan
- Department of Fish Biology and Biotechnology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammad Lutfar Rahman
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Japan
- Department of Genetics and Fish Breeding, Faculty of Fisheries, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Japan
| |
Collapse
|
18
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Chemogenetic Depletion of Hypophysiotropic GnRH Neurons Does Not Affect Fertility in Mature Female Zebrafish. Int J Mol Sci 2022; 23:ijms23105596. [PMID: 35628411 PMCID: PMC9143870 DOI: 10.3390/ijms23105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.
Collapse
Affiliation(s)
- Sakura Tanaka
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
- Correspondence:
| |
Collapse
|
19
|
Ogawa S, Yamamoto N, Hagio H, Oka Y, Parhar IS. Multiple gonadotropin-releasing hormone systems in non-mammalian vertebrates: Ontogeny, anatomy, and physiology. J Neuroendocrinol 2022; 34:e13068. [PMID: 34931380 DOI: 10.1111/jne.13068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023]
Abstract
Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).
Collapse
Affiliation(s)
- Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ishwar S Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
20
|
Ikegami K, Kajihara S, Umatani C, Nakajo M, Kanda S, Oka Y. Estrogen upregulates the firing activity of hypothalamic gonadotropin-releasing hormone (GnRH1) neurons in the evening in female medaka. J Neuroendocrinol 2022; 34:e13101. [PMID: 35132714 DOI: 10.1111/jne.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
The reproductive function of vertebrates is regulated by the hypothalamic-pituitary-gonadal axis. In sexually mature females, gonadotropin-releasing hormone (GnRH) neurons in the preoptic area (POA) are assumed to be responsible for a cyclic large increase in GnRH release, the GnRH surge, triggering a luteinizing hormone (LH) surge, which leads to ovulation. Precise temporal regulation of the preovulatory GnRH/LH surge is important for successful reproduction because ovulation should occur after follicular development. The time course of the circulating level of estrogen is correlated with the ovulatory cycle throughout vertebrates. However, the neural mechanisms underlying estrogen-induced preovulatory GnRH surge after folliculogenesis still remain unclear, especially in non-mammals. Here, we used a versatile non-mammalian model medaka for the analysis of the involvement of estrogen in the regulation of POA-GnRH (GnRH1) neurons. Electrophysiological analysis using a whole brain-pituitary in vitro preparation, which maintains the hypophysiotropic function of GnRH1 neurons intact, revealed that 17β-estradiol (E2 ) administration recovers the ovariectomy-induced lowered GnRH1 neuronal activity in the evening, indicating the importance of E2 for upregulation of GnRH1 neuronal activity. The importance of E2 was also confirmed by the fact that GnRH1 neuronal activity was low in short-day photoperiod-conditioned females (low E2 model). However, E2 failed to upregulate the firing activity of GnRH1 neurons in the morning, suggesting the involvement of additional time-of-day signal(s) for triggering GnRH/LH surges at an appropriate timing. We also provide morphological evidence for the localization of estrogen receptor subtypes in GnRH1 neurons. In conclusion, we propose a working hypothesis in which both estrogenic and time-of-day signals act in concert to timely upregulate the firing activity of GnRH1 neurons that trigger the GnRH surge at an appropriate timing in a female-specific manner. This neuroendocrinological mechanism is suggested to be responsible for the generation of ovulatory cycles in female teleosts in general.
Collapse
Affiliation(s)
- Kana Ikegami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sho Kajihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikoto Nakajo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Characterization and Distribution of Kisspeptins, Kisspeptin Receptors, GnIH, and GnRH1 in the Brain of the Protogynous Bluehead Wrasse (Thalassoma bifasciatum). J Chem Neuroanat 2022; 121:102087. [DOI: 10.1016/j.jchemneu.2022.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
22
|
Hatef A, Rajeswari JJ, Unniappan S. Kisspeptin stimulates oocyte maturation, and food deprivation modulates the abundance of kisspeptin system in zebrafish gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
24
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
25
|
Campo A, Dufour S, Rousseau K. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts. Front Endocrinol (Lausanne) 2022; 13:1056939. [PMID: 36589829 PMCID: PMC9800884 DOI: 10.3389/fendo.2022.1056939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, the tachykinin system includes tachykinin genes, which encode one or two peptides each, and tachykinin receptors. The complexity of this system is reinforced by the massive conservation of gene duplicates after the whole-genome duplication events that occurred in vertebrates and furthermore in teleosts. Added to this, the expression of the tachykinin system is more widespread than first thought, being found beyond the brain and gut. The discovery of the co-expression of neurokinin B, encoded by the tachykinin 3 gene, and kisspeptin/dynorphin in neurons involved in the generation of GnRH pulse, in mammals, put a spotlight on the tachykinin system in vertebrate reproductive physiology. As food intake and reproduction are linked processes, and considering that hypothalamic hormones classically involved in the control of reproduction are reported to regulate also appetite and energy homeostasis, it is of interest to look at the potential involvement of tachykinins in these two major physiological functions. The purpose of this review is thus to provide first a general overview of the tachykinin system in mammals and teleosts, before giving a state of the art on the different levels of action of tachykinins in the control of reproduction and food intake. This work has been conducted with a comparative point of view, highlighting the major similarities and differences of tachykinin systems and actions between mammals and teleosts.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Volcani Institute, Agricultural Research Organization, Rishon LeTsion, Israel
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Muséum National d’Histoire Naturelle, Research Unit PhyMA Physiologie Moléculaire et Adaptation CNRS, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
26
|
Mills EG, Yang L, Abbara A, Dhillo WS, Comninos AN. Current Perspectives on Kisspeptins Role in Behaviour. Front Endocrinol (Lausanne) 2022; 13:928143. [PMID: 35757400 PMCID: PMC9225141 DOI: 10.3389/fendo.2022.928143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide kisspeptin is now well-established as the master regulator of the mammalian reproductive axis. Beyond the hypothalamus, kisspeptin and its cognate receptor are also extensively distributed in extra-hypothalamic brain regions. An expanding pool of animal and human data demonstrates that kisspeptin sits within an extensive neuroanatomical and functional framework through which it can integrate a range of internal and external cues with appropriate neuroendocrine and behavioural responses. In keeping with this, recent studies reveal wide-reaching effects of kisspeptin on key behaviours such as olfactory-mediated partner preference, sexual motivation, copulatory behaviour, bonding, mood, and emotions. In this review, we provide a comprehensive update on the current animal and human literature highlighting the far-reaching behaviour and mood-altering roles of kisspeptin. A comprehensive understanding of this important area in kisspeptin biology is key to the escalating development of kisspeptin-based therapies for common reproductive and related psychological and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| |
Collapse
|
27
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
28
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
29
|
Zhao C, Wang B, Liu Y, Feng C, Xu S, Wang W, Liu Q, Li J. New Evidence for the Existence of Two Kiss/Kissr Systems in a Flatfish Species, the Turbot ( Scophthalmus maximus), and Stimulatory Effects on Gonadotropin Gene Expression. Front Endocrinol (Lausanne) 2022; 13:883608. [PMID: 35784551 PMCID: PMC9240279 DOI: 10.3389/fendo.2022.883608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Seasonal reproduction is generally controlled by the hypothalamus-pituitary-gonadal (HPG) axis in fish. Previous studies have demonstrated that the kisspeptin (Kiss)/kisspeptin receptor (Kissr) system, a positive regulator of the HPG axis, mediates the responses to environmental cues. Turbot (Scophthalmus maximus), a representative species of Pleuronectiformes, is one of the most commercially important fish species cultured in Europe and North China. However, the mechanisms by which the Kiss/Kissr system regulates the reproductive axis of turbot according to seasonal changes, especially photoperiod, have not been clearly characterized. In the current study, the cDNA sequences of kiss2/kissr2, along with kiss1/kissr3 which was thought to be lost in flatfish species, were cloned and functionally characterized. The kiss1, kiss2, and kissr3 transcripts were highly detected in the brain and gonad, while kissr2 mRNA was only abundantly expressed in the brain. Moreover, kiss/kissr mRNAs were further examined in various brain areas of both sexes. The kiss1, kissr2, kissr3 mRNAs were highly expressed in the mesencephalon, while a substantial degree of kiss2 transcripts were observed in the hypothalamus. During annual reproductive cycle, both kiss and kissr transcript levels declined significantly from the immature to mature stages and increased at the degeneration stage in the brains of both sexes, especially in the mesencephalon and hypothalamus. The ovarian kiss1, kiss2, and kissr2 mRNA levels were highest at the vitellogenic stage (mature stage), while expression of kissr3 was highest at the immature stage. The testicular kiss and kissr transcripts were highest in the immature and degeneration stages, and lowest at the mature stage. In addition, intraperitoneal injection of Kiss1-10 and Kiss2-10 significantly stimulated mRNA levels of pituitary lhβ, fhsβ, and gthα. In summary, two Kiss/Kissr systems were firstly proven in a flatfish species of turbot, and it has a positive involvement in controlling the reproduction of the Kiss/Kissr system in turbot. The results will provide preliminary information regarding how the Kiss/Kissr system controls seasonal reproduction in turbot broodstock.
Collapse
Affiliation(s)
- Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yifan Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Chengcheng Feng
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenqi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Jun Li,
| |
Collapse
|
30
|
Zahangir MM, Shahjahan M, Ando H. Kisspeptin Exhibits Stimulatory Effects on Expression of the Genes for Kisspeptin Receptor, GnRH1 and GTH Subunits in a Gonadal Stage-Dependent Manner in the Grass Puffer, a Semilunar-Synchronized Spawner. Front Endocrinol (Lausanne) 2022; 13:917258. [PMID: 35909525 PMCID: PMC9334799 DOI: 10.3389/fendo.2022.917258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Kisspeptin has an important role in the regulation of reproduction by directly stimulating the secretion of gonadotropin-releasing hormone (GnRH) in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and kisspeptin receptor types, and the two kisspeptins in teleosts have different effects depending on fish species and reproductive stages, serving reproductive and non-reproductive functions. In the grass puffer, Takifugu alboplumbeus, which has only a single pair of kiss2 and kissr2, both genes display seasonal, diurnal, and circadian oscillations in expression in association with the periodic changes in reproductive functions. To elucidate the role of kisspeptin in this species, homologous kisspeptin peptide (gpKiss2) was administered at different reproductive stages (immature, mature and regressed) and the expression levels of the genes that constitute hypothalamo-pituitary-gonadal axis were examined in male grass puffer. gpKiss2 significantly elevated the expression levels of kissr2 and gnrh1 in the brain and kissr2, fshb and lhb in the pituitary of the immature and mature fish. No noticeable effect was observed for kiss2, gnih, gnihr, gnrh2 and gnrh3 in the brain and gpa in the pituitary. In the regressed fish, gpKiss2 was ineffective in stimulating the expression of the gnrh1 and GTH subunit genes, while it stimulated and downregulated the kissr2 expression in the brain and pituitary, respectively. The present results indicate that Kiss2 has a stimulatory role in the expression of GnRH1/GTH subunit genes by upregulating the kissr2 expression in the brain and pituitary at both immature and mature stages, but this role is mostly ineffective at regressed stage in the grass puffer.
Collapse
Affiliation(s)
- Md. Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Md. Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
- *Correspondence: Hironori Ando,
| |
Collapse
|
31
|
Trudeau VL. Neuroendocrine Control of Reproduction in Teleost Fish: Concepts and Controversies. Annu Rev Anim Biosci 2021; 10:107-130. [PMID: 34788545 DOI: 10.1146/annurev-animal-020420-042015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the teleost radiation, extensive development of the direct innervation mode of hypothalamo-pituitary communication was accompanied by loss of the median eminence typical of mammals. Cells secreting follicle-stimulating hormone and luteinizing hormone cells are directly innervated, distinct populations in the anterior pituitary. So far, ∼20 stimulatory and ∼10 inhibitory neuropeptides, 3 amines, and 3 amino acid neurotransmitters are implicated in the control of reproduction. Positive and negative sex steroid feedback loops operate in both sexes. Gene mutation models in zebrafish and medaka now challenge our general understanding of vertebrate neuropeptidergic control. New reproductive neuropeptides are emerging. These include but are not limited to nesfatin 1, neurokinin B, and the secretoneurins. A generalized model for the neuroendocrine control of reproduction is proposed. Hopefully, this will serve as a research framework on diverse species to help explain the evolution of neuroendocrine control and lead to the discovery of new hormones with novel applications. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; ,
| |
Collapse
|
32
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
33
|
Atre I, Mizrahi N, Levavi-Sivan B. Characteristics of Neurokinin-3 Receptor and Its Binding Sites by Mutational Analysis. BIOLOGY 2021; 10:biology10100968. [PMID: 34681067 PMCID: PMC8533089 DOI: 10.3390/biology10100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
NKB (Neurokinin B) is already known to play a crucial role in fish reproduction, but little is known about the structure and function of NKB receptors. Based on an in silico model of the tilapia NKB receptor Tachykinin 3 receptor a (tiTac3Ra) found in the current study, we determined the key residues involved in binding to tilapia NKB and its functional homologue NKF (Neurokinin F). Despite studies in humans suggesting the crucial role of F2516.44 and M2897.43 in NKB binding, no direct peptide interaction was observed in tilapia homologs. In-silico, Ala mutations on residues F2516.44 and M2897.43 did not influence binding affinity, but significantly affected the stability of tiTac3Ra. Moreover, in vitro studies indicated them to be critical to tiNKB/tiNKF-induced receptor activity. The binding of NKB antagonists to tiTac3Ra both in-vitro and in vivo inhibits FSH (follicle stimulating hormone) and LH (luteinizing hormone) release and sperm production in mature tilapia males. Non-peptide NKB antagonist SB-222200 had a strong inhibitory effect on the Tac3Ra activation. SB-222200 also decreased LH plasma levels; two hours post intraperitoneal injection, changed sperm volume and the ratios of the different stages along the spermatogenesis in tilapia testes.
Collapse
|
34
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Interplay of KNDy and nNOS neurons: A new possible mechanism of GnRH secretion in the adult brain. Reprod Biol 2021; 21:100558. [PMID: 34509713 DOI: 10.1016/j.repbio.2021.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023]
Abstract
Reproduction in mammals is favoured when there is sufficient energy available to permit the survival of offspring. Neuronal nitric oxide synthase expressing neurons produce nitric oxide in the proximity of the gonadotropin-releasing hormone neurons in the preoptic region. nNOS neurons are an integral part of the neuronal network controlling ovarian cyclicity and ovulation. Nitric oxide can directly regulate the activity of the GnRH neurons and play a vital role neuroendocrine axis. Kisspeptin neurons are essential for the GnRH pulse and surge generation. The anteroventral periventricular nucleus (AVPV), kisspeptin neurons are essential for GnRH surge generation. KNDy neurons are present in the hypothalamus's arcuate nucleus (ARC), co-express NKB and dynorphin, essential for GnRH pulse generation. Kisspeptin-neurokinin B-dynorphin (KNDy) neuroendocrine molecules of the hypothalamus are key components in the central control of GnRH secretion. The hypothalamic neurons kisspeptin, KNDy, nitric oxide synthase (NOS), and other mediators such as leptin, adiponectin, and ghrelin, play an active role in attaining puberty. Kisspeptin signalling is mediated by NOS, which further results in the secretion of GnRH. Neuronal nitric oxide is critical for attaining puberty, but its direct role in adult GnRH secretion is poorly understood. This review mainly focuses on the role of nNOS and its interplay with KNDy neurons in the hormonal regulation of reproduction.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
35
|
Li W, Hu J, Sun C, Dong J, Liu Z, Yuan J, Tian Y, Zhao J, Ye X. Characterization of kiss2/kissr2 system in largemouth bass (Micropterus salmoides) and Kiss2-10 peptide regulation of the hypothalamic-pituitary-gonadal axis. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110671. [PMID: 34450276 DOI: 10.1016/j.cbpb.2021.110671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The kisspeptin system, which lies upstream of the hypothalamic-pituitary-gonadal (HPG) axis, is believed to function as a regulator of reproduction in teleosts. In this study, we isolated and characterized kiss2 and its receptor kissr2 in largemouth bass (Micropterus salmoides). The complete coding sequences of kiss2 and kissr2 were 375 and 1134 bp long and encoded precursor proteins 124 and 377 amino acid long, respectively. Real-time PCR showed that kiss2 and kissr2 were primarily expressed in the HPG axis. The expression profile of kiss2 and kissr2 varied with gonadal development, with the highest and lowest expression levels being detected during the immature and final maturation stages, respectively. Intraperitoneal injection of exogenous Kiss2-10 peptide increased the transcript levels of gnrh3, kissr2, fshβ, lhβ, ar, and er2 within 24 h (p < 0.05), as well as plasma levels of 17β-estradiol and testosterone. Histological analysis indicated that chronic administration of exogenous Kiss2-10 peptide accelerated vitellogenesis in females and spermatogenesis in males. Further, in situ hybridization revealed that kiss2 is expressed in the ooplasm and vitelline envelope of oocytes and the spermatocytes of testes. In addition, experiments using gonad tissue primary cell cultures indicated that exogenous Kiss2-10 peptide stimulates the expression of reproduction-related genes. Collectively, our findings indicate that the kiss2/kissr2 system in largemouth bass is involved in regulating gonadal development through the HPG axis.
Collapse
Affiliation(s)
- Wuhui Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Junjian Dong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Ju Yuan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Jinliang Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
36
|
Sakae Y, Tanaka M. Metabolism and Sex Differentiation in Animals from a Starvation Perspective. Sex Dev 2021; 15:168-178. [PMID: 34284403 DOI: 10.1159/000515281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
Animals determine their sex genetically (GSD: genetic sex determination) and/or environmentally (ESD: environmental sex determination). Medaka (Oryzias latipes) employ a XX/XY GSD system, however, they display female-to-male sex reversal in response to various environmental changes such as temperature, hypoxia, and green light. Interestingly, we found that 5 days of starvation during sex differentiation caused female-to-male sex reversal. In this situation, the metabolism of pantothenate and fatty acid synthesis plays an important role in sex reversal. Metabolism is associated with other biological factors such as germ cells, HPG axis, lipids, and epigenetics, and supplys substances and acts as signal transducers. In this review, we discuss the importance of metabolism during sex differentiation and how metabolism contributes to sex differentiation.
Collapse
Affiliation(s)
- Yuta Sakae
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
37
|
Takahashi T, Ogiwara K. Roles of melatonin in the teleost ovary: A review of the current status. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110907. [PMID: 33482340 DOI: 10.1016/j.cbpa.2021.110907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Melatonin, the neurohormone mainly synthesized in and secreted from the pineal gland of vertebrates following a circadian rhythm, is an important factor regulating various physiological processes, including reproduction. Recent data indicate that melatonin is also synthesized in the ovary and that it acts directly at the level of the ovary to modulate ovarian physiology. In some teleosts, melatonin is reported to affect ovarian steroidogenesis. The direct action of melatonin on the ovary could be a possible factor promoting oocyte maturation in teleosts. A role for melatonin in follicle rupture during ovulation in the teleost medaka has recently emerged. In addition, melatonin is suggested to affect oocyte maturation by its antioxidant activity. However, the molecular mechanisms underlying these direct effects of melatonin are largely unknown.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
38
|
Zahangir MM, Matsubara H, Ogiso S, Suzuki N, Ueda H, Ando H. Expression dynamics of the genes for the hypothalamo-pituitary-gonadal axis in tiger puffer (Takifugu rubripes) at different reproductive stages. Gen Comp Endocrinol 2021; 301:113660. [PMID: 33189658 DOI: 10.1016/j.ygcen.2020.113660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/27/2022]
Abstract
Tiger puffer, Takifugu rubripes, a commercially important long-distance migratory fish, return to specific spawning grounds for reproduction. To clarify reproductive neuroendocrine system of the tiger puffer, the changes in the expression levels of the genes encoding three gonadotropin-releasing hormones (GnRHs), gonadotropin-inhibitory hormone (GnIH), GnIH receptor (GnIH-R), kisspeptin and kisspeptin receptor in the brain and gonadotropin (GTH) subunits, growth hormone (GH) and prolactin (PRL) in the pituitary were examined in the tiger puffer captured in the wild at different reproductive stages, namely immature and mature fish of both sexes, and post-ovulatory females that were obtained by hormonal treatment. The amounts of three gnrh mRNAs, gnih, gnih-r, fshb and lhb were substantially increased in the mature fish compared to the immature fish, especially in the females, and these augmented expressions were drastically decreased in the post-ovulatory females. gh expression showed a slight increase in the mature males. In contrast, kiss2, kiss2r and prl did not show significant changes in the males but significantly decreased in the post-ovulatory females. The present results demonstrate the expression dynamics of the hypothalamo-pituitary-gonadal axis genes associated with the reproductive conditions and the possible involvement of the GnRH/GnIH/GTH system in the regulation of the sexual maturation and spawning in the wild tiger puffer.
Collapse
Affiliation(s)
- Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa 927-0552, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Hiroshi Ueda
- Hokkaido University and Hokkaido Aquaculture Promotion Corporation, Sapporo 003-0874, Japan
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
39
|
Chaube R, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Expression profile of kisspeptin2 and gonadotropin-releasing hormone2 mRNA during photo-thermal and melatonin treatments in the female air-breathing catfish Heteropneustes fossilis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2403-2419. [PMID: 33030711 DOI: 10.1007/s10695-020-00888-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
In seasonally breeding vertebrates, extrinsic factors like photoperiod and temperature are major determinants, controlling the annual reproductive cycle. In teleosts, kisspeptin, which occurs in two molecular forms: kisspeptin1 (Kiss1) and kisspetin2 (Kiss2), has been reported to alter gonadotropin (Lh and Fsh) secretion but its effect on gonadotropin-releasing hormone (Gnrh) secretion is not unequivocally proved. In the catfish Heteropneustes fossilis, we isolated and characterized kiss2 and gnrh2 cDNAs and the present work reports effects of altered photo-thermal conditions and melatonin (MT, a pineal hormone) on their expressions in the brain. The exposure of the catfish to long photoperiod (LP, 16 h light) at normal temperature (NT) or high temperature (HT, 28 °C) at normal photoperiod (NP) for 14 or 28 days stimulated both kiss2 and gnrh2 expression in both gonad resting and preparatory phases with the combination of LP + HT eliciting maximal effects. Short photoperiod (SP, 8 h light) under NT or HT altered the gene expression according to the reproductive phase and temperature. MT that mediates photo-thermal signals to the brain inhibited brain kiss2 and gnrh2 gene expression in the NP + HT, LP + NT, and SP + NT groups. The altered photo-thermal conditions elicited changes in steroidogenic pathway as evident from changes in plasma E2, progesterone, and testosterone levels. The results show that brain kiss2-gnrh2 signaling is involved in photo-thermal-mediated mechanisms controlling reproduction.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - S G Bhat
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India
| | - K P Joy
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
40
|
Oliveira CCV, Fatsini E, Fernández I, Anjos C, Chauvigné F, Cerdà J, Mjelle R, Fernandes JMO, Cabrita E. Kisspeptin Influences the Reproductive Axis and Circulating Levels of microRNAs in Senegalese Sole. Int J Mol Sci 2020; 21:E9051. [PMID: 33260781 PMCID: PMC7730343 DOI: 10.3390/ijms21239051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.
Collapse
Affiliation(s)
- Catarina C. V. Oliveira
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Elvira Fatsini
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Ignacio Fernández
- Aquaculture Research Center, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Segovia, Spain;
| | - Catarina Anjos
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Robin Mjelle
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Jorge M. O. Fernandes
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Elsa Cabrita
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| |
Collapse
|
41
|
Somoza GM, Mechaly AS, Trudeau VL. Kisspeptin and GnRH interactions in the reproductive brain of teleosts. Gen Comp Endocrinol 2020; 298:113568. [PMID: 32710898 DOI: 10.1016/j.ygcen.2020.113568] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/09/2023]
Abstract
It is well known that gonadotropin-releasing hormone (Gnrh) has a key role in reproduction by regulating the synthesis and release of gonadotropins from the anterior pituitary gland of all vertebrates. About 25 years ago, another neuropeptide, kisspeptin (Kiss1) was discovered as a metastasis suppressor of melanoma cell lines and then found to be essential for mammalian reproduction as a stimulator of hypothalamic Gnrh and regulator of puberty onset. Soon after, a kisspeptin receptor (kissr) was found in the teleost brain. Nowadays, it is known that in most teleosts the kisspeptin system is composed of two ligands, kiss1 and kiss2, and two receptors, kiss2r and kiss3r. Even though both kisspeptin peptides, Kiss1 and Kiss2, have been demonstrated to stimulate gonadotropin synthesis and secretion in different fish species, their actions appear not to be mediated by Gnrh neurons as in mammalian models. In zebrafish and medaka, at least, hypophysiotropic Gnrh neurons do not express Kiss receptors. Furthermore, kisspeptinergic nerve terminals reach luteinizing hormone cells in some fish species, suggesting a direct pituitary action. Recent studies in zebrafish and medaka with targeted mutations of kiss and/or kissr genes reproduce relatively normally. In zebrafish, single gnrh mutants and additionally those having the triple gnrh3 plus 2 kiss mutations can reproduce reasonably well. In these fish, other neuropeptides known to affect gonadotropin secretion were up regulated, suggesting that they may be involved in compensatory responses to maintain reproductive processes. In this context, the present review explores and presents different possibilities of interactions between Kiss, Gnrh and other neuropeptides known to affect reproduction in teleost fish. Our intention is to stimulate a broad discussion on the relative roles of kisspeptin and Gnrh in the control of teleost reproduction.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (CONICET), Mar del Plata, Buenos Aires 7600, Argentina.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
42
|
Liu R, Du K, Ormanns J, Adolfi MC, Schartl M. Melanocortin 4 receptor signaling and puberty onset regulation in Xiphophorus swordtails. Gen Comp Endocrinol 2020; 295:113521. [PMID: 32470471 DOI: 10.1016/j.ygcen.2020.113521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023]
Abstract
Fish of the genus Xiphophorus provide a prominent example of genetic control of male body size and reproductive tactics. In X.nigrensis and X.multilineatus, puberty onset and body length are determined by melanocortin 4 receptor (Mc4r) allelic and copy number variations which were proposed to fine-tune the signaling output of the system. Accessory protein Mrap2 is required for growth across species by affecting Mc4r signaling. The molecular mechanism how Mc4r signaling controls puberty regulation in Xiphophorus and whether the interaction with Mrap2 is also involved was so far unclear. Hence, we examined Mc4r and Mrap2 in X.nigrensis and X.multilineatus, in comparison to a more distantly related species, X.hellerii. mc4r and mrap2 transcripts co-localized in the hypothalamus and preoptic regions in large males, small males and females of X.nigrensis, with similar signal strength for mrap2 but higher expression of mc4r in large males. This overexpression is constituted by wild-type and one subtype of mutant alleles. In vitro studies revealed that Mrap2 co-expressed with Mc4r increased cAMP production but did not change EC50. Cells co-expressing the wild-type and one mutant allele showed lower cAMP signaling than Mc4r wild-type cells. This indicates a role of Mc4r alleles, but not Mrap2, in puberty signaling. Different from X.nigrensis and X.multilineatus, X.hellerii has only wild-type alleles, but also shows a puberty onset and body length polymorphism, despite the absence of mutant alleles. Like in the two other species, mc4r and mrap2 transcripts colocalized and mc4r is expressed at substantially higher levels in large males. This demonstrates that puberty and growth regulation mechanism may not be identical even within same genus.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Alleles
- Amino Acid Sequence
- Animals
- Cyprinodontiformes/genetics
- Cyprinodontiformes/metabolism
- DNA Copy Number Variations/genetics
- Female
- Gene Expression Regulation, Developmental
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Sexual Maturation/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Ruiqi Liu
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Kang Du
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany; Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Jenny Ormanns
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mateus C Adolfi
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany; Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany; Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
43
|
Etzion T, Zmora N, Zohar Y, Levavi-Sivan B, Golan M, Gothilf Y. Ectopic over expression of kiss1 may compensate for the loss of kiss2. Gen Comp Endocrinol 2020; 295:113523. [PMID: 32470472 DOI: 10.1016/j.ygcen.2020.113523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Kisspeptin (KISS) is a neuropeptide which plays a central role in the regulation of the hypothalamic-pituitary-gonadal axis, and is essential for sexual maturation and fertility in mammals. Unlike mammals, which possess only one KISS gene, two paralogous genes, kiss1 and kiss2, have been identified in zebrafish and other non-mammalian vertebrates. Previous studies suggest that Kiss2, but not Kiss1, is the reproduction relevant form amongst the two. To better understand the role of each of these isoforms in reproduction, a loss of function approach was applied. Two genetic manipulation techniques-clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector nucleases (TALEN)-were used to generate kiss1 and kiss2 knockout (KO) zebrafish lines, respectively. Examination of these KO lines showed that reproductive capability was not impaired, confirming earlier observations. Further analysis revealed that KO of kiss2 caused a significant increase in expression levels of kiss1, kiss2r and tac3a, while KO of kiss1 had no effect on the expression of any of the examined genes. In situ hybridization analysis revealed that kiss1 mRNA is expressed only in the habenula in wild type brains, while in kiss2 KO fish, kiss1 mRNA-expressing cells were identified also in the ventral telencephalon, the ventral part of the entopeduncular nucleus, and the dorsal and ventral hypothalamus. Interestingly, these regions are known to express kiss2r, and the ventral hypothalamus normally expresses kiss2. These results suggest that a compensatory mechanism, involving ectopic kiss1 expression, takes place in the kiss2 KO fish, which may substitute for Kiss2 activity.
Collapse
Affiliation(s)
- Talya Etzion
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Yonatan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Letziyon 7505101, Israel
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
44
|
Song Y, Chen J, Tao B, Luo D, Zhu Z, Hu W. Kisspeptin2 regulates hormone expression in female zebrafish (Danio rerio) pituitary. Mol Cell Endocrinol 2020; 513:110858. [PMID: 32413385 DOI: 10.1016/j.mce.2020.110858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023]
Abstract
Kisspeptin2 is a neuropeptide widely found in the brain and multiple peripheral tissues in the zebrafish. The pituitary is the center of synthesis and secretes various endocrine hormones. However, Kiss2 innervation in the zebrafish pituitary is unknown. In this study, the organization of Kiss2 cells and structures in the zebrafish pituitary by promoter-driving mCherry-labeling Kiss2 neurons were investigated. Kiss2 neurons in the hypothalamus do not project into the pituitary. Kiss2 cells are found in the female pituitary. Unidentified Kiss2 cells and extensions are located in the proximal pars distalis (PPD), similar to the distribution of Gnrh3 fibers. Kiss2 structures reside alongside Gnrh3 fibers. No Kiss2 structures are found in the male pituitary. The transcriptional expression of the kisspeptin receptor kiss1rb is detected in both female and male pituitaries. In situ hybridization shows that kiss1rb-positive cells are located in the PPD and pars intermedia (PI). In vitro Kiss2-10 treatment stimulates Akt and Erk phosphorylation and significantly induces lhβ, fshβ, and prl1 mRNA expression in the female pituitary. The results in this study suggest that Kiss2 and Kiss1rb may form an independent paracrine or autocrine system in the female zebrafish pituitary. Kiss2 and Kiss1rb signaling regulates the expression of pituitary hormones.
Collapse
Affiliation(s)
- Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
45
|
Chaube R, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Identification of kisspeptin2 cDNA in the catfish Heteropneustes fossilis: Expression profile, in situ localization and steroid modulation. Gen Comp Endocrinol 2020; 294:113472. [PMID: 32243956 DOI: 10.1016/j.ygcen.2020.113472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/22/2020] [Accepted: 03/28/2020] [Indexed: 01/02/2023]
Abstract
Kisspeptin (Kiss) is considered an upstream regulator of gonadotropin-releasing hormone in mammals but its role in non-mammalian vertebrates is not unequivocally established. In the catfish Heteropneustes fossilis, a 605 bp long cDNA was identified from the brain by cloning as well as by retrieving from the catfish transcriptome database. The open reading frame (ORF, 93-405 bp) codes for a 113 amino acids long precursor protein. Homology and phylogenetic analyses showed that the predicted protein belongs to the vertebrate Kiss2 type with a high degree of conservation in the Kiss2-10 region (FNFNPFGLRF). The kiss2 transcripts were expressed highly in the brain and gonads in a dimorphic manner with a female bias. In the brain, kiss2 transcripts showed regional differences with higher expression in the medulla oblongata and forebrain regions. The kiss2 transcripts showed significant seasonal variations with the highest expression in the brain in spawning phase and in the gonads in prespawning phase. The kiss2 transcripts were localized in the brain (nucleus preopticus, habenular nucleus, nucleus recessus posterioris, nucleus recessus lateralis) and stratum periventriculare (radial glial cells) of optic tectum, pituitary and ovary (follicular layer and germinal vesicle). Ovariectomy (1, 2, 3 and 4 weeks) decreased brain kiss2 mRNA levels and a single injection of estradiol-17β (E2; 0.5 μg/g body weight) in 3- week ovariectomized (OVX) and sham operated fish resulted in an increase in the transcript levels after 24 h. The E2 receptor antagonist Tamoxifen (TMX) produced biphasic effects on the kiss2 expression in the dose- response study. TMX inhibited the expression in the OVX fish, but elicited a stimulatory effect in the OVX + E2-treated fish. Testosterone (T) decreased, and progesterone (P4) inhibited (resting phase) or stimulated (prespawning phase) the transcript level in 3-week OVX fish. In the 3-week sham groups, E2 increased, and TMX, T and P4 inhibited the kiss2 transcript levels. The results suggest that Kiss2 is an important regulator of the brain- pituitary- gonadal- endocrine axis, and in habenular and optic tectum functions.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - S G Bhat
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India
| | - K P Joy
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
46
|
Wang T, Cao Z, Shen Z, Yang J, Chen X, Yang Z, Xu K, Xiang X, Yu Q, Song Y, Wang W, Tian Y, Sun L, Zhang L, Guo S, Zhou N. Existence and functions of a kisspeptin neuropeptide signaling system in a non-chordate deuterostome species. eLife 2020; 9:53370. [PMID: 32513385 PMCID: PMC7282810 DOI: 10.7554/elife.53370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The kisspeptin system is a central modulator of the hypothalamic-pituitary-gonadal axis in vertebrates. Its existence outside the vertebrate lineage remains largely unknown. Here, we report the identification and characterization of the kisspeptin system in the sea cucumber Apostichopus japonicus. The gene encoding the kisspeptin precursor generates two mature neuropeptides, AjKiss1a and AjKiss1b. The receptors for these neuropeptides, AjKissR1 and AjKissR2, are strongly activated by synthetic A. japonicus and vertebrate kisspeptins, triggering a rapid intracellular mobilization of Ca2+, followed by receptor internalization. AjKissR1 and AjKissR2 share similar intracellular signaling pathways via Gαq/PLC/PKC/MAPK cascade, when activated by C-terminal decapeptide. The A. japonicus kisspeptin system functions in multiple tissues that are closely related to seasonal reproduction and metabolism. Overall, our findings uncover for the first time the existence and function of the kisspeptin system in a non-chordate species and provide new evidence to support the ancient origin of intracellular signaling and physiological functions that are mediated by this molecular system.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China.,Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhangfei Shen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China.,Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Xu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Zhen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Ke Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Xiaowei Xiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Qiuhan Yu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Yimin Song
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Su Guo
- Programs in Human Genetics and Biological Sciences, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
48
|
Su S, Li Q, Li X, Rong C, Xie Q. Expression of the kisspeptin/gonadotropin-releasing hormone (GnRH) system in the brain of female Chinese sucker (Myxocyprinus asiaticus) at the onset of puberty. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:293-303. [PMID: 31701283 DOI: 10.1007/s10695-019-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The kisspeptin-kisspeptin receptor (kissr)-gonadotropin-releasing hormone (GnRH) system plays a key role in regulating the onset of puberty in mammals. However, the role of this system in fish is still unclear. We examined the relative gene expression patterns for kiss1, kiss2, kissr2, sGnRH, and pjGnRH in all parts of the brains of Chinese sucker (Myxocyprinus asiaticus) females at the prepubertal and pubertal stages by using real-time PCR. We also analyzed the expression of kiss1 and GnRH1 via immunofluorescence. Two variants of kisspeptin; a variant of kissr (kissr2); and two variants of GnRH, pjGnRH (GnRH1), and sGnRH (GnRH3), were expressed in all parts of the brain. The mRNA expression of kiss1 was higher in the telencephalon, mesencephalon, and diencephalon at the pubertal stage than at the prepubertal stage, and the expression of kiss2 was higher in only the telencephalon. The expression of kissr2 was higher in all parts of the brain, except the medulla, at the pubertal stage than at the prepubertal stage. pjGnRH was highly expressed in all parts of the brain at the pubertal stage, whereas sGnRH expression showed no distinct changes, except in the epencephalon. Strong kiss1 and weak GnRH-1 immunoreactivity was observed in the pineal gland, lateral tuberal nucleus (NLT), and ventral part of the NLT in the diencephalon of the Chinese sucker females at the pubertal stage. Our results suggest that the kiss1-kissr2-pjGnRH system was expressed highly at the onset of pubertal female Chinese sucker.
Collapse
Affiliation(s)
- Shiping Su
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China.
| | - Qingqing Li
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| | - Xilei Li
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| | - Chaozhen Rong
- Hefei Animal Husbandry and Aquatic Extension Technology Center, Fuyang Road, Hefei, Anhui, 230001, People's Republic of China
| | - Qiming Xie
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| |
Collapse
|
49
|
Imamura S, Hur SP, Takeuchi Y, Badruzzaman M, Mahardini A, Rizky D, Takemura A. The mRNA expression patterns of kisspeptins, GnRHs, and gonadotropins in the brain and pituitary gland of a tropical damselfish, Chrysiptera cyanea, during the reproductive cycle. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:277-291. [PMID: 31705423 DOI: 10.1007/s10695-019-00715-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The sapphire devil (Chrysiptera cyanea) is a tropical damselfish that undergoes active reproduction under long-day conditions. To elucidate the physiological regulation of the brain-pituitary-gonadal axis in female sapphire devil, we cloned and characterized the genes of two kisspeptins (kiss1 and kiss2), three gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), and the β-subunit of two gonadotropins (fshβ and lhβ) and investigated the gene expression changes during ovarian development. Quantitative polymerase chain reaction analyses in various brain parts revealed high expression levels of kiss1, kiss2, and gnrh2 in the diencephalon; gnrh2 and gnrh3 in the telencephalon; and fshβ and lhβ in the pituitary. In situ hybridization (ISH) analyses revealed positive signals of kiss1 in the dorsal and ventral habenular nucleus and of kiss2 in the dorsal and ventral parts of the nucleus of the lateral recess. This analysis showed gnrh1 expression in the preoptic area (POA), suggesting that GnRH1 plays a stimulating role in the secretion of gonadotropins from the pituitary of the sapphire devil. High transcription levels of kiss1, kiss2, gnrh1, gnrh2, fshβ, and lhβ were observed in the brain during the late vitellogenic stage, suggesting their involvement in the physiological processes of vitellogenesis. Immersion of fish in estradiol-17β (E2)-containing seawater resulted in increased expression of kiss2 and gnrh1 in their brains. This study showed that kiss-expressing neurons in the diencephalon are influenced by E2, leading to upregulation of gnrh1 in the POA and of fshβ and lhβ in the pituitary during vitellogenesis.
Collapse
Affiliation(s)
- Satoshi Imamura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Sung-Pyo Hur
- Jeju Research Institute, Korea Institute of Ocean Science & Technology, Jeju, 63349, South Korea
| | - Yuki Takeuchi
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- Okinawa Institute of Science and Technology Graduate School, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh
| | - Angka Mahardini
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Dinda Rizky
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
50
|
Kanda S. Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in vertebrates-hypothesis from a comparative view. Gen Comp Endocrinol 2019; 284:113075. [PMID: 30500374 DOI: 10.1016/j.ygcen.2018.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. In addition to wealth of knowledge in mammals, recent studies in non-mammalian species, especially teleosts, have provided evidence that some of the components in the HPG axis are conserved in bony vertebrates. On the other hand, from the comparisons of the recent accumulating knowledge between mammals and teleosts, unique characteristics of the regulatory system in each group have been unveiled. A hypophysiotropic neurotransmitter/hormone, gonadotropin releasing hormone (GnRH), pituitary gonadotropins, follicle stimulating hormone (FSH), and luteinizing hormone (LH) were proven to be common important elements of the HPG axis in teleosts and mammals, although the roles of each vary. Conversely, there are some modulators of GnRH or gonadotropins that are not common to all vertebrates. In this review, I will introduce the mechanism for HPG axis regulation in mammals and teleosts, and describe their evolution from a hypothetical common ancestor.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|