1
|
Zhu K, Liu S, Huang Y, Zhang B, Houssein N, Wu J. Chrna2-driven CRE Is Expressed in Beige Adipocytes. Endocrinology 2024; 166:bqae153. [PMID: 39540707 PMCID: PMC11630559 DOI: 10.1210/endocr/bqae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Significant research interest has been focused on beige adipocytes, the activation of which improves glucose and lipid homeostasis, therefore representing new therapeutic opportunities for metabolic diseases. Various Cre/Lox-based strategies have been used to investigate the developmental history of beige adipocytes and how these cells adapt to environmental changes. Despite the significant advancement of our understanding of beige adipocyte biology, much of the molecular insights of the beige adipocyte, including its origin and cell type-specific function, remain to be further illustrated. It has previously been shown that Chrna2 (cholinergic receptor nicotinic alpha 2 subunit) has selective functionality in beige adipocytes. In this study, we explore the Chrna2-Cre-driven reporter expression in mouse beige adipocytes in vivo and in vitro. Our findings indicate that Chrna2-Cre expression is present selectively in multiple locular beige adipocytes in subcutaneous inguinal white adipose tissue (iWAT) and differentiated stromal vascular fraction from iWAT. Chrna2-Cre expression was detected in iWAT of young pups and mice after cold exposure where a significant number of beige adipocytes are present. Chrna2-Cre-driven reporter expression is permanent in iWAT postlabeling and can be detected in the iWAT of adult mice or mice that have been housed extensively at thermoneutrality after cold exposure, even though only "inactive dormant" beige adipocytes are present in these mice. Chrna2-Cre expression can also be increased by rosiglitazone treatment and β-adrenergic activation. This research, therefore, introduces the Chrna2-Cre line as a valuable tool for tracking the development of beige adipocytes and investigating beige fat function.
Collapse
Affiliation(s)
- Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Biyang Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nadia Houssein
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Wang Q, Yan H, Zhang J, Tian B, Li W, Xiao J. Agarose-collagen composite microsphere implants: A biocompatible and robust approach for skin tissue regeneration. Int J Biol Macromol 2024; 277:134510. [PMID: 39111473 DOI: 10.1016/j.ijbiomac.2024.134510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Photoaged skin, a consequence of UV radiation-induced collagen degradation, presents a significant challenge for skin rejuvenation. Synthetic polymer microspheres, while offering collagen regeneration potential, carry risks like granulomas. To overcome this, we developed a novel agarose-collagen composite microsphere implant for skin tissue regeneration. Fabricated using an emulsification-crosslinking method, these microspheres exhibited excellent uniformity and sphericity (with a diameter of ~38.5 μm), as well as attractive injectability. In vitro studies demonstrated their superior biocompatibility, promoting cell proliferation, adhesion, and migration. Further assessments revealed favorable biosafety and blood compatibility. In vivo experiments in photoaged mice showed that implantation of these microspheres effectively reduced wrinkles, increased skin density, and improved elasticity by stimulating fibroblast encapsulation and collagen regeneration. These findings highlight the potential of agarose-collagen microspheres in dermatological and tissue engineering applications, offering a safer alternative for skin rejuvenation.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Bei Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
3
|
Xuan X, Zhang Y, Song Y, Zhang B, Liu J, Liu D, Lu S. Role of protein arginine methyltransferase 1 in obesity-related metabolic disorders: Research progress and implications. Diabetes Obes Metab 2024; 26:3491-3500. [PMID: 38747214 DOI: 10.1111/dom.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.
Collapse
Affiliation(s)
- Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yufan Song
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingyang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junjun Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
4
|
Ye C, Jiang W, Hu T, Liang J, Chen Y. The Regulatory Impact of CFLAR Methylation Modification on Liver Lipid Metabolism. Int J Mol Sci 2024; 25:7897. [PMID: 39063139 PMCID: PMC11277202 DOI: 10.3390/ijms25147897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease worldwide. Caspase 8 and FADD-like apoptosis regulator (CFLAR) has been identified as a potent factor in mitigating non-alcoholic steatohepatitis (NASH) by inhibiting the N-terminal dimerization of apoptosis signal-regulating kinase 1 (ASK1). While arginine methyltransferase 1 (PRMT1) was previously reported to be associated with increased hepatic glucose production, its involvement in hepatic lipid metabolism remains largely unexplored. The interaction between PRMT1 and CFLAR and the methylation of CFLAR were verified by Co-IP and immunoblotting assays. Recombinant adenoviruses were generated for overexpression or knockdown of PRMT1 in hepatocytes. The role of PRMT1 in NAFLD was investigated in normal and high-fat diet-induced obese mice. In this study, we found a significant upregulation of PRMT1 and downregulation of CFLAR after 48h of fasting, while the latter significantly rebounded after 12h of refeeding. The expression of PRMT1 increased in the livers of mice fed a methionine choline-deficient (MCD) diet and in hepatocytes challenged with oleic acid (OA)/palmitic acid (PA). Overexpression of PRMT1 not only inhibited the expression of genes involved in fatty acid oxidation (FAO) and promoted the expression of genes involved in fatty acid synthesis (FAS), resulting in increased triglyceride accumulation in primary hepatocytes, but also enhanced the gluconeogenesis of primary hepatocytes. Conversely, knockdown of hepatic PRMT1 significantly alleviated MCD diet-induced hepatic lipid metabolism abnormalities and liver injury in vivo, possibly through the upregulation of CFLAR protein levels. Knockdown of PRMT1 suppressed the expression of genes related to FAS and enhanced the expression of genes involved in FAO, causing decreased triglyceride accumulation in OA/PA-treated primary hepatocytes in vitro. Although short-term overexpression of PRMT1 had no significant effect on hepatic triglyceride levels under physiological conditions, it resulted in increased serum triglyceride and fasting blood glucose levels in normal C57BL/6J mice. More importantly, PRMT1 was observed to interact with and methylate CFLAR, ultimately leading to its ubiquitination-mediated protein degradation. This process subsequently triggered the activation of c-Jun N-terminal kinase 1 (JNK1) and lipid deposition in primary hepatocytes. Together, these results suggested that PRMT1-mediated methylation of CFLAR plays a critical role in hepatic lipid metabolism. Targeting PRMT1 for drug design may represent a promising strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | - Jichao Liang
- National & Local Joint Engineering Research Center of High throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; (C.Y.); (W.J.); (T.H.)
| | - Yong Chen
- National & Local Joint Engineering Research Center of High throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; (C.Y.); (W.J.); (T.H.)
| |
Collapse
|
5
|
Jun H, Liu S, Knights AJ, Zhu K, Ma Y, Gong J, Lenhart AE, Peng X, Huang Y, Ginder JP, Downie CH, Ramos ET, Kullander K, Kennedy RT, Xu XZS, Wu J. Signaling through the nicotinic acetylcholine receptor in the liver protects against the development of metabolic dysfunction-associated steatohepatitis. PLoS Biol 2024; 22:e3002728. [PMID: 39028754 PMCID: PMC11290650 DOI: 10.1371/journal.pbio.3002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.
Collapse
Affiliation(s)
- Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander J. Knights
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Sciences and Technology, and Huazhong University of Science and Technology, Wuhan, China
| | - Ashley E. Lenhart
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jared P. Ginder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher H. Downie
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erika Thalia Ramos
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Park MJ, Lee J, Bagon BB, Matienzo ME, Lim S, Kim K, Lee CM, Wu J, Kim DI. N G ,N G -Dimethylarginine Dimethylaminohydrolase 1 Expression Is Dispensable for Cold- or Diet-Induced Thermogenesis. Adv Biol (Weinh) 2024; 8:e2300192. [PMID: 38164809 DOI: 10.1002/adbi.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The strategy to activate thermogenic adipocytes has therapeutic potential to overcome obesity as they dissipate surplus energy as heat through various mechanisms. NG,NG-dimethylarginine dimethylaminohydrolases (DDAHs) are enzymes involved in the nitric oxide-protein kinase G signaling axis which increases thermogenic gene expression. However, the role of DDAHs in thermogenic adipocytes has not been elucidated. The adipocyte-specific Ddah1 knockout mice are generated by crossing Ddah1fl/fl mice with adiponectin Cre recombinase mice. Adipocyte-specific DDAH1 overexpressing mice are generated using adeno-associated virus-double-floxed inverse open reading frame (AAV-DIO) system. These mice are analyzed under basal, cold exposure, or high-fat diet (HFD) conditions. Primary inguinal white adipose tissue cells from adipocyte-specific Ddah1 knockout mice expressed comparable amounts of Ucp1 mRNA. Adipocyte-specific DDAH1 overexpressing mice do not exhibit enhanced activation of thermogenic adipocytes. In addition, when these mice are exposed to cold environment or fed an HFD, their body temperature/weight and thermogenesis-related gene and protein expressions are unchanged. These findings indicate that DDAH1 does not play a role in either cold- or diet-induced thermogenesis. Therefore, adipocyte targeting DDAH1 gene therapy for the treatment of obesity is unlikely to be effective.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Sangyi Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
7
|
Dominici C, Villarreal OD, Dort J, Heckel E, Wang YC, Ragoussis I, Joyal JS, Dumont N, Richard S. Inhibition of type I PRMTs reforms muscle stem cell identity enhancing their therapeutic capacity. eLife 2023; 12:RP84570. [PMID: 37285284 PMCID: PMC10328524 DOI: 10.7554/elife.84570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
| | - Oscar D Villarreal
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Emilie Heckel
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | | | | | | | - Nicolas Dumont
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
- Gerald Bronfman, Department of Oncology, McGill UniversityMontréalCanada
- Departments of Medicine, McGill UniversityMontrealCanada
- Departments of Biochemistry, McGill UniversityMontréalCanada
| |
Collapse
|
8
|
Oflaz FE, Koshenov Z, Hirtl M, Bachkoenig OA, Graier WF, Gottschalk B. Synergy of Uncoupling Proteins (1 and 2) with Mitochondrial Ca2+ Uptake Machinery Potentiate Mitochondrial Uncoupling. Cell Calcium 2023; 112:102736. [PMID: 37031662 DOI: 10.1016/j.ceca.2023.102736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
Mitochondrial uncoupling proteins UCP1 and UCP2 have a structural homology of app. 60%. They execute their mitochondria uncoupling function through different molecular mechanisms. Non-shivering thermogenesis by UCP1 is mediated through a transmembrane dissipation of the proton motive force to create heat during sympathetic stimulation. UCP2, on the other hand, modulates through the interaction with methylated MICU1 the permeability of the cristae junction, which acts as an isolator for the cristae-located mitochondrial membrane potential. In this mini-review, we discuss and compare the recently described molecular mechanism of UCP1 in brown adipose tissue and UCP2 in aged and cancer non-excitable cells that contribute to mitochondrial uncoupling, and the synergistic effects of both UCPs with the mitochondrial Ca2+ uptake machinery.
Collapse
Affiliation(s)
- Furkan E Oflaz
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria
| | - Martin Hirtl
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria
| | - Olaf A Bachkoenig
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria; BioTechMed, Graz, Austria.
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/4, Graz, 8010 Austria
| |
Collapse
|
9
|
Sannigrahi MK, Rajagopalan P, Lai L, Liu X, Sahu V, Nakagawa H, Jalaly JB, Brody RM, Morgan IM, Windle BE, Wang X, Gimotty PA, Kelly DP, White EA, Basu D. HPV E6 regulates therapy responses in oropharyngeal cancer by repressing the PGC-1α/ERRα axis. JCI Insight 2022; 7:159600. [PMID: 36134662 PMCID: PMC9675449 DOI: 10.1172/jci.insight.159600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023] Open
Abstract
Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator-activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6's interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.
Collapse
Affiliation(s)
| | | | - Ling Lai
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Varun Sahu
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M. Brody
- Department of Otorhinolaryngology — Head and Neck Surgery and
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology — Head and Neck Surgery and
| |
Collapse
|
10
|
Zhu Q, Wang D, Liang F, Tong X, Liang Z, Wang X, Chen Y, Mo D. Protein arginine methyltransferase PRMT1 promotes adipogenesis by modulating transcription factors C/EBPβ and PPARγ. J Biol Chem 2022; 298:102309. [PMID: 35921899 PMCID: PMC9425039 DOI: 10.1016/j.jbc.2022.102309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) methylates a variety of histone and nonhistone protein substrates to regulate multiple cellular functions such as transcription, DNA damage response, and signal transduction. It has been reported as an emerging regulator of various metabolic pathways including glucose metabolism in the liver, atrophy in the skeletal muscle, and lipid catabolism in the adipose tissue. However, the underlying mechanisms governing how PRMT1 regulates adipogenesis remain elusive. Here, we delineate the roles of PRMT1 in mitotic clonal expansion and adipocyte differentiation. Gain and loss of functions demonstrate that PRMT1 is essential for adipogenesis of 3T3-L1 and C3H10T1/2 cells. Mechanistically, we show PRMT1 promotes the expression of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) by catalyzing histone modification H4R3me2a and impedes the activation of Wnt/β-catenin signaling by increasing the level of Axin to accelerate adipogenic differentiation. In addition, we demonstrate mitotic clonal expansion is suppressed by PRMT1 deficiency. PRMT1 interacts with transcription factor CCATT enhancer-binding protein β (C/EBPβ), and the absence of PRMT1 leads to the depressed phosphorylation of C/EBPβ. Interestingly, we discover PRMT1 acts as a positive regulator of C/EBPβ protein stability through decreasing the level of E3 ubiquitin ligase Smurf2, which promotes the ubiquitination and degradation of C/EBPβ, thus facilitating adipogenesis. Collectively, these discoveries highlight a critical role of PRMT1 in adipogenesis and provide potential therapeutic targets for the treatment of obesity.
Collapse
|
11
|
Knights AJ, Liu S, Ma Y, Nudell VS, Perkey E, Sorensen MJ, Kennedy RT, Maillard I, Ye L, Jun H, Wu J. Acetylcholine-synthesizing macrophages in subcutaneous fat are regulated by β 2 -adrenergic signaling. EMBO J 2021; 40:e106061. [PMID: 34459015 PMCID: PMC8672283 DOI: 10.15252/embj.2020106061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Non-neuronal cholinergic signaling, mediated by acetylcholine, plays important roles in physiological processes including inflammation and immunity. Our group first discovered evidence of non-neuronal cholinergic circuitry in adipose tissue, whereby immune cells secrete acetylcholine to activate beige adipocytes during adaptive thermogenesis. Here, we reveal that macrophages are the cellular protagonists responsible for secreting acetylcholine to regulate thermogenic activation in subcutaneous fat, and we term these cells cholinergic adipose macrophages (ChAMs). An adaptive increase in ChAM abundance is evident following acute cold exposure, and macrophage-specific deletion of choline acetyltransferase (ChAT), the enzyme for acetylcholine biosynthesis, impairs the cold-induced thermogenic capacity of mice. Further, using pharmacological and genetic approaches, we show that ChAMs are regulated via adrenergic signaling, specifically through the β2 adrenergic receptor. These findings demonstrate that macrophages are an essential adipose tissue source of acetylcholine for the regulation of adaptive thermogenesis, and may be useful for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
| | - Shanshan Liu
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Yingxu Ma
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Department of CardiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Victoria S Nudell
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Eric Perkey
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Graduate Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMIUSA
| | | | - Robert T Kennedy
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Department of PharmacologyUniversity of MichiganAnn ArborMIUSA
| | - Ivan Maillard
- Division of Hematology‐OncologyDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Li Ye
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Heejin Jun
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Jun Wu
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
12
|
Bariatric Surgery Improves the Atherogenic Profile of Circulating Methylarginines in Obese Patients: Results from a Pilot Study. Metabolites 2021; 11:metabo11110759. [PMID: 34822417 PMCID: PMC8624057 DOI: 10.3390/metabo11110759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/04/2022] Open
Abstract
Bariatric surgery improves obesity-related comorbidities. Methylarginines are biomarkers of cardiometabolic risk, liver steatosis, and insulin resistance. Here, we aimed to investigate methylarginines in obese patients undergoing bariatric surgery and compared them to age- and sex-matched healthy subjects. Thirty-one obese patients who underwent bariatric surgery and 31 healthy individuals were used for this retrospective study. The basal serum methylarginine levels were determined in the healthy individuals and the obese patients, before surgery and 6 and 12 months after surgery, by mass spectrometry. Compared with the healthy individuals, the obese patients displayed elevated monomethylarginine (mean change: +95%, p < 0.001), asymmetric-dimethylarginine (+105%, p < 0.001), symmetric-dimethylarginine (+25%, p = 0.003), and dimethylguanidino valerate (+32%, p = 0.008) concentrations. Bariatric surgery durably reduced the body mass index by 28% (12 months, 95%CI: 24–33, p = 0.002) and improved plasma lipids, insulin resistance, and liver function. Bariatric surgery reduced the serum levels of monomethylarginine and asymmetric-dimethylarginine by 12% (95%CI: 6–17) and 36% (95%CI: 27–45) (12 months, p = 0.003), respectively, but not symmetric-dimethylarginine or dimethylguanidino valerate. The monomethylarginine and asymmetric-dimethylarginine concentrations were strongly correlated with markers of dyslipidemia, insulin resistance, and a fatty liver. Serum dimethylguanidino valerate was primarily correlated with glycemia and renal function, whereas serum symmetric-dimethylarginine was almost exclusively associated with renal function. In conclusion, the monomethylarginine and asymmetric-dimethylarginine levels are efficiently decreased by bariatric surgery, leading to a reduced atherogenic profile in obese patients. Methylarginines follow different metabolic patterns, which could help for the stratification of cardiometabolic disorders in obese patients.
Collapse
|
13
|
Choi S, Choi D, Lee YK, Ahn SH, Seong JK, Chi SW, Oh TJ, Choi SH, Koo SH. Depletion of Prmt1 in Adipocytes Impairs Glucose Homeostasis in Diet-Induced Obesity. Diabetes 2021; 70:1664-1678. [PMID: 34039627 DOI: 10.2337/db20-1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/21/2021] [Indexed: 11/13/2022]
Abstract
Protein arginine methyltransferase (PRMT) 1 is involved in the regulation of various metabolic pathways such as glucose metabolism in liver and atrophy in the skeletal muscle. However, the role of PRMT1 in the fat tissues under the disease state has not been elucidated to date. In this study, we delineate the function of this protein in adipocytes in vivo. PRMT1 expression was abundant in the white adipose tissues (WAT), which was induced upon a high-fat diet in mice and by obesity in humans. We found that adipocyte-specific depletion of Prmt1 resulted in decreased fat mass without overall changes in body weight in mice. Mechanistically, the depletion of Prmt1 in WAT led to the activation of the AMPK pathway, which was causal to the increased lipophagy, mitochondrial lipid catabolism, and the resultant reduction in lipid droplet size in WAT in vivo. Interestingly, despite the increased energy expenditure, we observed a promotion of adipose tissue inflammation and an ectopic accumulation of triglycerides in the peripheral tissues in Prmt1 adipocyte-specific knockout mice, which promoted the impaired insulin tolerance that is reminiscent of mouse models of lipodystrophy. These data collectively suggest that PRMT1 prevents WAT from excessive degradation of triglycerides by limiting AMPK-mediated lipid catabolism to control whole-body metabolic homeostasis in diet-induced obesity conditions.
Collapse
Affiliation(s)
- Seri Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Dahee Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yun-Kyung Lee
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung Hyun Ahn
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Korea
| | - Sung Wook Chi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
14
|
Zhang Z, Wen H, Peng B, Weng J, Zeng F. CDKN2A deregulation in fatty liver disease and its accelerative role in the process of lipogenesis. FASEB J 2021; 35:e21230. [PMID: 33769609 DOI: 10.1096/fj.202000683r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023]
Abstract
Previous literature has indicated that cyclin-dependent kinase inhibitor 2 A (CDKN2A) is upregulated, while the Protein Inhibitor of Activated STAT1 (PIAS1) is downregulated in the liver tissues of obese mice. The current study aimed to investigate the relationship between CDKN2A and PIAS1 in the lipogenesis of fatty liver disease. In the C57BL/6J db/db mouse model and hepatocyte model of fatty liver, the expression pattern of CDKN2A, PIAS1, Protein arginine methyltransferase 1 (PRMT1) and CASP8 and FADD-like apoptosis regulator (CFLAR) was characterized by RNA quantitative and Western blot analysis. The lipogenesis-related genes (Srebp1c and Fas) in the liver tissues and cells were employed in the assessment of lipogenesis in response to gain- or loss-of-function of CDKN2A, PIAS1, PRMT1, and CFLAR, while triglyceride and fat content were evaluated in relation to fat accumulation. Western blot analysis was conducted to determine c-Jun amino-terminal kinase (JNK) phosphorylation, while the ubiquitination of CFLAR and SUMOylation of PIAS1 was examined by immunoprecipitation. PIAS1 and CFLAR were downregulated, while CDKN2A, PRMT1, and phosphorylation of JNK was elevated in the tissues and cells of the fatty liver models. Our results suggested that CDKN2A enhanced the SUMOylation of PIAS1 to reduce the expression of PIAS1. PRMT1 downregulated CFLAR by triggering its ubiquitination, while CFLAR repressed phosphorylation of JNK. The in vitro and in vivo results indicated that CDKN2A silencing prevented lipogenesis and fat accumulation by impairing the PRMT1-dependent ubiquitination of CFLAR and blocking the phosphorylation of JNK. Taken together, the central observations of our study demonstrate that targeting CDKN2A contributes to the suppression of lipogenesis and fat accumulation in fatty liver disease. The findings of our study highlight the potential of CDKN2A as a promising target against fatty liver.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Huiqing Wen
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Bangjian Peng
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Olfactory perception of food abundance regulates dietary restriction-mediated longevity via a brain-to-gut signal. NATURE AGING 2021; 1:255-268. [PMID: 33796867 PMCID: PMC8009090 DOI: 10.1038/s43587-021-00039-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of food nutrients in mediating the positive effect of dietary restriction (DR) on longevity has been extensively characterized, but how non-nutrient food components regulate lifespan is not well understood. Here, we show that food-associated odors shorten the lifespan of C. elegans under DR but not those fed ad libitum, revealing a specific effect of food odors on DR-mediated longevity. Food odors act on a neural circuit comprising the sensory neurons ADF and CEP, and the interneuron RIC. This olfactory circuit signals the gut to suppress DR-mediated longevity via octopamine, the invertebrate homolog of norepinephrine, by regulating the energy sensor AMPK through a Gq-PLCβ-CaMKK-dependent mechanism. In mouse primary cells, we find that norepinephrine signaling regulates AMPK through a similar mechanism. Our results identify a brain-gut axis that regulates DR-mediated longevity by relaying olfactory information about food abundance from the brain to the gut.
Collapse
|
16
|
Bryant JP, Heiss J, Banasavadi-Siddegowda YK. Arginine Methylation in Brain Tumors: Tumor Biology and Therapeutic Strategies. Cells 2021; 10:cells10010124. [PMID: 33440687 PMCID: PMC7827394 DOI: 10.3390/cells10010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.
Collapse
|
17
|
Ma Y, Liu S, Jun H, Wang J, Fan X, Li G, Yin L, Rui L, Weinman SA, Gong J, Wu J. A critical role for hepatic protein arginine methyltransferase 1 isoform 2 in glycemic control. FASEB J 2020; 34:14863-14877. [PMID: 32918517 PMCID: PMC9800170 DOI: 10.1096/fj.202001061r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022]
Abstract
Appropriate control of hepatic gluconeogenesis is essential for the organismal survival upon prolonged fasting and maintaining systemic homeostasis under metabolic stress. Here, we show protein arginine methyltransferase 1 (PRMT1), a key enzyme that catalyzes the protein arginine methylation process, particularly the isoform encoded by Prmt1 variant 2 (PRMT1V2), is critical in regulating gluconeogenesis in the liver. Liver-specific deletion of Prmt1 reduced gluconeogenic capacity in cultured hepatocytes and in the liver. Prmt1v2 was expressed at a higher level compared to Prmt1v1 in hepatic tissue and cells. Gain-of-function of PRMT1V2 clearly activated the gluconeogenic program in hepatocytes via interactions with PGC1α, a key transcriptional coactivator regulating gluconeogenesis, enhancing its activity via arginine methylation, while no effects of PRMT1V1 were observed. Similar stimulatory effects of PRMT1V2 in controlling gluconeogenesis were observed in human HepG2 cells. PRMT1, specifically PRMT1V2, was stabilized in fasted liver and hepatocytes treated with glucagon, in a PGC1α-dependent manner. PRMT1, particularly Prmt1v2, was significantly induced in the liver of streptozocin-induced type 1 diabetes and high fat diet-induced type 2 diabetes mouse models and liver-specific Prmt1 deficiency drastically ameliorated diabetic hyperglycemia. These findings reveal that PRMT1 modulates gluconeogenesis and mediates glucose homeostasis under physiological and pathological conditions, suggesting that deeper understanding how PRMT1 contributes to the coordinated efforts in glycemic control may ultimately present novel therapeutic strategies that counteracts hyperglycemia in disease settings.
Collapse
Affiliation(s)
- Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jine Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoli Fan
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, and Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Guobing Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Steven A. Weinman
- Department of Internal Medicine and the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, and Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Park MJ, Liao J, Kim DI. TC-E 5003, a protein methyltransferase 1 inhibitor, activates the PKA-dependent thermogenic pathway in primary murine and human subcutaneous adipocytes. FEBS Lett 2020; 594:2923-2930. [PMID: 32767856 DOI: 10.1002/1873-3468.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/06/2022]
Abstract
We previously reported the involvement of protein arginine methyltransferase 1 (PRMT1) in adipocyte thermogenesis. Here, we investigate the effects of PRMT1 inhibitors on thermogenesis. Unexpectedly, we find that the PRMT1 inhibitor TC-E 5003 (TC-E) induces the thermogenic properties of primary murine and human subcutaneous adipocytes. TC-E treatment upregulates the expression of Ucp1 and Fgf21 significantly and activates protein kinase A signaling and lipolysis in primary subcutaneous adipocytes from both mouse and humans. We further find that the thermogenic effects of TC-E are independent of PRMT1 and beta-adrenergic receptors. Our data indicate that TC-E exerts strong effects on murine and human subcutaneous adipocytes by activating beige adipocytes via PKA signaling.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Jiling Liao
- Gerontology Department, Beijing Hospital, National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Dong-Il Kim
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Aquila S, Santoro M, Caputo A, Panno ML, Pezzi V, De Amicis F. The Tumor Suppressor PTEN as Molecular Switch Node Regulating Cell Metabolism and Autophagy: Implications in Immune System and Tumor Microenvironment. Cells 2020; 9:cells9071725. [PMID: 32708484 PMCID: PMC7408239 DOI: 10.3390/cells9071725] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies conducted over the past 10 years evidence the intriguing role of the tumor suppressor gene Phosphatase and Tensin Homolog deleted on Chromosome 10 PTEN in the regulation of cellular energy expenditure, together with its capability to modulate proliferation and survival, thus expanding our knowledge of its physiological functions. Transgenic PTEN mice models are resistant to oncogenic transformation, present decreased adiposity and reduced cellular glucose and glutamine uptake, together with increased mitochondrial oxidative phosphorylation. These acquisitions led to a novel understanding regarding the role of PTEN to counteract cancer cell metabolic reprogramming. Particularly, PTEN drives an “anti-Warburg state” in which less glucose is taken up, but it is more efficiently directed to the mitochondrial Krebs cycle. The maintenance of cellular homeostasis together with reduction of metabolic stress are controlled by specific pathways among which autophagy, a catabolic process strictly governed by mTOR and PTEN. Besides, a role of PTEN in metabolic reprogramming and tumor/stroma interactions in cancer models, has recently been established. The genetic inactivation of PTEN in stromal fibroblasts of mouse mammary glands, accelerates breast cancer initiation and progression. This review will discuss our novel understanding in the molecular connection between cell metabolism and autophagy by PTEN, highlighting novel implications regarding tumor/stroma/immune system interplay. The newly discovered action of PTEN opens innovative avenues for investigations relevant to counteract cancer development and progression.
Collapse
Affiliation(s)
- Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Annalisa Caputo
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria, 87036 Rende, Italy; (S.A.); (M.S.); (M.L.P.); (V.P.)
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
20
|
Qiao X, Kim DI, Jun H, Ma Y, Knights AJ, Park MJ, Zhu K, Lipinski JH, Liao J, Li Y, Richard S, Weinman SA, Wu J. Protein Arginine Methyltransferase 1 Interacts With PGC1α and Modulates Thermogenic Fat Activation. Endocrinology 2019; 160:2773-2786. [PMID: 31555811 PMCID: PMC6853686 DOI: 10.1210/en.2019-00504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are enzymes that regulate the evolutionarily conserved process of arginine methylation. It has been reported that PRMTs are involved in many metabolic regulatory pathways. However, until now, their roles in adipocyte function, especially browning and thermogenesis, have not been evaluated. Even though Prmt1 adipocyte-specific-deleted mice (Prmt1fl/flAQcre) appeared normal at basal level, following cold exposure or β-adrenergic stimulation, impaired induction of the thermogenic program was observed in both the interscapular brown adipose tissue and inguinal white adipose tissue of Prmt1fl/flAQcre mice compared with littermate controls. Different splicing variants of Prmt1 have been reported. Among them, PRMT1 variant 1 and PRMT1 variant 2 (PRMT1V2) are well conserved between humans and mice. Both variants contribute to the activation of thermogenic fat, with PRMT1V2 playing a more dominant role. Mechanistic studies using cultured murine and human adipocytes revealed that PRMT1V2 mediates thermogenic fat activation through PGC1α, a transcriptional coactivator that has been shown to play a key role in mitochondrial biogenesis. To our knowledge, our data are the first to demonstrate that PRMT1 plays a regulatory role in thermogenic fat function. These findings suggest that modulating PRMT1 activity may represent new avenues to regulate thermogenic fat and mediate energy homeostasis. This function is conserved in human primary adipocytes, suggesting that further investigation of this pathway may ultimately lead to therapeutic strategies against human obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Xiaona Qiao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Dong-il Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Min-Jung Park
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jay H Lipinski
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Jiling Liao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Segal Cancer Centre, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
- Department of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Liver Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Jun Wu, PhD, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 5115A, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|