1
|
Fujiwara Y, Miyasaka Y, Ninomiya A, Miyazaki W, Iwasaki T, Ariyani W, Amano I, Koibuchi N. Effects of Perfluorooctane Sulfonate on Cerebellar Cells via Inhibition of Type 2 Iodothyronine Deiodinase Activity. Int J Mol Sci 2023; 24:12765. [PMID: 37628946 PMCID: PMC10454525 DOI: 10.3390/ijms241612765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRβ1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Yuhei Miyasaka
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan;
| | - Ayane Ninomiya
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Wataru Miyazaki
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, Hirosaki 036-8564, Japan;
| | | | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| |
Collapse
|
2
|
Xia B, Shi XC, Xie BC, Zhu MQ, Chen Y, Chu XY, Cai GH, Liu M, Yang SZ, Mitchell GA, Pang WJ, Wu JW. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol 2020; 18:e3000688. [PMID: 32218572 PMCID: PMC7141696 DOI: 10.1371/journal.pbio.3000688] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 04/08/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.
Collapse
Affiliation(s)
- Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Cai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guo He Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Grant A. Mitchell
- Division of Medical Genetics, Department of Paediatrics, Université de Montréal and Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Wei Jun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Weiner J, Kranz M, Klöting N, Kunath A, Steinhoff K, Rijntjes E, Köhrle J, Zeisig V, Hankir M, Gebhardt C, Deuther-Conrad W, Heiker JT, Kralisch S, Stumvoll M, Blüher M, Sabri O, Hesse S, Brust P, Tönjes A, Krause K. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci Rep 2016; 6:38124. [PMID: 27941950 PMCID: PMC5150531 DOI: 10.1038/srep38124] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo14C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.
Collapse
Affiliation(s)
- Juliane Weiner
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Nora Klöting
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Anne Kunath
- German Center for Diabetes Research (DZD), Leipzig, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Eddy Rijntjes
- Institute of Experimental Endocrinology, Charité University Hospital, Berlin, Germany
| | - Josef Köhrle
- Institute of Experimental Endocrinology, Charité University Hospital, Berlin, Germany
| | - Vilia Zeisig
- Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Mohammed Hankir
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Claudia Gebhardt
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - John T Heiker
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Susan Kralisch
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany.,University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Osama Sabri
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Swen Hesse
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Anke Tönjes
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| |
Collapse
|
4
|
Aoki T, Tsunekawa K, Araki O, Ogiwara T, Nara M, Sumino H, Kimura T, Murakami M. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells. Endocrinology 2015; 156:4312-24. [PMID: 26284425 PMCID: PMC4606755 DOI: 10.1210/en.2014-1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/12/2015] [Indexed: 02/06/2023]
Abstract
Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration.
Collapse
Affiliation(s)
- Tomoyuki Aoki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takayuki Ogiwara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Makoto Nara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroyuki Sumino
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
5
|
Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, Mittag J, Köhrle J. Biosynthesis of 3-Iodothyronamine From T4 in Murine Intestinal Tissue. Endocrinology 2015; 156:4356-64. [PMID: 26348473 DOI: 10.1210/en.2014-1499] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The endogenous metabolite 3-iodothyronamine (3-T1AM) induces strong hypothermia and bradycardia at pharmacological doses. Although its biosynthesis from thyroid hormone precursors appears likely, the sequence and sites of reactions are still controversial: studies in T4-substituted thyroid cancer patients lacking functional thyroid tissue suggested extrathyroidal 3-T1AM production, whereas studies using labeled T4 in mice indicated intrathyroidal formation. However, because the patients received T4 orally, whereas the mice were injected ip, we hypothesized that 3-T1AM synthesis requires the intestinal passage of T4. Using the everted gut sac model in combination with mass spectrometry, we demonstrate 3-T1AM production from T4 in mouse intestine via several deiodination and decarboxylation steps. Gene expression analysis confirmed the expression of all 3 deiodinases as well as ornithine decarboxylase (ODC) in intestine. Subsequent experiments employing purified human ODC revealed that this enzyme can in fact mediate decarboxylation of 3,5-T2 and T4 to the respective thyronamines (TAMs), demonstrating that the intestine expresses the entire molecular machinery required for 3-T1AM biosynthesis. Interestingly, TAM production was strongly affected by the antithyroid treatment methimazole and perchlorate independently of thyroid status, limiting the validity of the respective mouse models in this context. Taken together, our data demonstrate intestinal 3-T1AM biosynthesis from T4 involving decarboxylation through ODC with subsequent deiodination, and explain the apparent discrepancy between 3-T1AM serum levels in patients substituted orally and mice injected ip with T4. Identifying ODC as the first enzyme capable of decarboxylating thyroid hormone, our findings open the path to further investigations of TAM metabolism on molecular and cellular levels.
Collapse
Affiliation(s)
- Carolin S Hoefig
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Tilo Wuensch
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Ina Lehmphul
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Hannelore Daniel
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Ulrich Schweizer
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Jens Mittag
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie (C.S.H., E.R., I.L., U.S., J.K.), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Karolinska Institutet (C.S.H., T.W., J.M.), Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Ziel Research Center of Nutrition and Food Science (T.W., H.D.), Abteilung Biochemie, Technische Universität München, 85354 Freising, Germany; Institut für Biochemie und Molekularbiologie (U.S.), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; and Center of Brain, Behavior and Metabolism (J.M.), Medizinische Klinik 1, Universität zu Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
6
|
Wirth EK, Rijntjes E, Meyer F, Köhrle J, Schweizer U. High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase. Eur Thyroid J 2015; 4:87-91. [PMID: 26601078 PMCID: PMC4640264 DOI: 10.1159/000381021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/16/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). OBJECTIVE To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). METHODS We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. RESULTS Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. CONCLUSIONS Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated.
Collapse
Affiliation(s)
- Eva K. Wirth
- *Dr. Eva K. Wirth, Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail
| | | | | | | | | |
Collapse
|
7
|
Ogiwara T, Araki O, Morimura T, Tsunekawa K, Mori M, Murakami M. A novel mechanism for the inhibition of type 2 iodothyronine deiodinase by tumor necrosis factor α: involvement of proteasomal degradation. Endocr J 2013; 60:1035-45. [PMID: 23719846 DOI: 10.1507/endocrj.ej11-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thyroxine (T₄) needs to be converted to 3,5,3'-triiodothyronine (T₃) by iodothyronine deiodinase to exert its biological activity. Recent studies revealed the presence of type 2 iodothyronine deiodinase (D2) in human thyroid tissue, human skeletal muscle and other tissues, suggesting that D2 is involved in maintaining plasma T₃ level in human. Tumor necrosis factor α (TNFα) is an inflammatory cytokine of which production is elevated in patients with nonthyroidal illness. Although several lines of evidence suggest the causal role of TNFα in nonthyroidal illness, detailed nature of the effect of TNFα on D2 remains unclear. In the present study, we identified D2 activity and D2 mRNA in TCO-1 cells, which were derived from human anaplastic thyroid carcinoma, and studied the mechanisms involved in the regulation of D2 expression by TNFα. The characteristics of the deiodinating activity in TCO-1 cells were compatible with those of D2 and Northern analysis demonstrated that D2 mRNA was expressed in TCO-1cells. D2 activity and D2 mRNA expression were rapidly increased by dibutyryl cAMP ((Bu)₂cAMP). TNFα showed an inhibitory effect on (Bu)₂cAMP-stimulated D2 activity in spite of little effect on (Bu)₂cAMP-stimulated D2 mRNA expression. MG132, a proteasome inhibitor abolished TNFα suppression of D2 activity whereas BAY11-7082 or 6-amino-4-(4-phenoxyphenylethylamino) quinazoline, inhibitors of nuclear factor-κB (NF-κB) failed to attenuate the effect of TNFα on D2 activity. These data suggest that a posttranslational mechanism through proteasomal degradation but not NF-κB activation is involved in the suppression of D2 by TNFα.
Collapse
Affiliation(s)
- Takayuki Ogiwara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MML, Furlow JD, Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 2013; 27:1320-46. [PMID: 23453986 DOI: 10.1016/j.tiv.2013.02.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 11/16/2022]
Abstract
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems, sexual behaviour and fertility and cardiovascular function. Therefore, concern about TH disruption (THD) has resulted in strategies being developed to identify THD chemicals (THDCs). Information on potential of chemicals causing THD is typically derived from animal studies. For the majority of chemicals, however, this information is either limited or unavailable. It is also unlikely that animal experiments will be performed for all THD relevant chemicals in the near future for ethical, financial and practical reasons. In addition, typical animal experiments often do not provide information on the mechanism of action of THDC, making it harder to extrapolate results across species. Relevant effects may not be identified in animal studies when the effects are delayed, life stage specific, not assessed by the experimental paradigm (e.g., behaviour) or only occur when an organism has to adapt to environmental factors by modulating TH levels. Therefore, in vitro and in silico alternatives to identify THDC and quantify their potency are needed. THDC have many potential mechanisms of action, including altered hormone production, transport, metabolism, receptor activation and disruption of several feed-back mechanisms. In vitro assays are available for many of these endpoints, and the application of modern '-omics' technologies, applicable for in vivo studies can help to reveal relevant and possibly new endpoints for inclusion in a targeted THDC in vitro test battery. Within the framework of the ASAT initiative (Assuring Safety without Animal Testing), an international group consisting of experts in the areas of thyroid endocrinology, toxicology of endocrine disruption, neurotoxicology, high-throughput screening, computational biology, and regulatory affairs has reviewed the state of science for (1) known mechanisms for THD plus examples of THDC; (2) in vitro THD tests currently available or under development related to these mechanisms; and (3) in silico methods for estimating the blood levels of THDC. Based on this scientific review, the panel has recommended a battery of test methods to be able to classify chemicals as of less or high concern for further hazard and risk assessment for THD. In addition, research gaps and needs are identified to be able to optimize and validate the targeted THD in vitro test battery for a mechanism-based strategy for a decision to opt out or to proceed with further testing for THD.
Collapse
Affiliation(s)
- AlberTinka J Murk
- Wageningen University, Sub-department of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Manna D, Mugesh G. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J Am Chem Soc 2012; 134:4269-79. [PMID: 22352472 DOI: 10.1021/ja210478k] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that catalyze the conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) by the outer- and inner-ring deiodination pathways, respectively. These enzymes also catalyze further deiodination of T3 and rT3 to produce a variety of di- and monoiodo derivatives. In this paper, the deiodinase activity of a series of peri-substituted naphthalenes having different amino groups is described. These compounds remove iodine selectively from the inner-ring of T4 and T3 to produce rT3 and 3,3'-diiodothyronine (3,3'-T2), respectively. The naphthyl-based compounds having two selenols in the peri-positions exhibit much higher deiodinase activity than those having two thiols or a thiol-selenol pair. Mechanistic investigations reveal that the formation of a halogen bond between the iodine and chalcogen (S or Se) and the peri-interaction between two chalcogen atoms (chalcogen bond) are important for the deiodination reactions. Although the formation of a halogen bond leads to elongation of the C-I bond, the chalcogen bond facilitates the transfer of more electron density to the C-I σ* orbitals, leading to a complete cleavage of the C-I bond. The higher activity of amino-substituted selenium compounds can be ascribed to the deprotonation of thiol/selenol moiety by the amino group, which not only increases the strength of halogen bond but also facilitates the chalcogen-chalcogen interactions.
Collapse
Affiliation(s)
- Debasish Manna
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
10
|
Tebourbi O, Hallègue D, Yacoubi MT, Sakly M, Rhouma KB. Subacute toxicity of p,p'-DDT on rat thyroid: Hormonal and histopathological changes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:271-279. [PMID: 21787613 DOI: 10.1016/j.etap.2010.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 05/31/2023]
Abstract
The purpose of this study is to assess the effect of p,p'-DDT on thyroid activity of male Wistar rats. Pesticide was administered intraperitoneally (i.p.) for 10 consecutive days at doses of 50 and 100mg/kg/day. At the end of the treatment, the endpoints examined included serum total levels of triiodothyronine (T(3)), total thyroxine (T(4)), and thyroid stimulating hormone (TSH). Thyroid gland histopathology and tissue metabolism of thyroid hormone (T(4) UDP-glucuronyltransferase UDP-GT and 5'-deiodinases) were determined. DDT treatment altered thyroid function namely by increasing hepatic excretion of T(4) glucuronide. At the dose of 50mg/kg it decreased T(4) circulating levels and increased thyroid 5'-deiodinase type I (5'-D-I) and brown adipose tissue (BAT) 5'-deiodinase type II (5'-D-II) activities but it did not affect liver 5'-D-I activity which might contribute to the maintenance of the serum T(3) level. Treatment with 100mgDDT/kg decreased serum thyroid hormone concentration and tissue 5'-D-I activity without affecting BAT 5'-D-II activity. Gland histomorphological analysis showed hyperplasia and squamous metaplasia with abundant colloid. These observations associated to the elevated serum TSH levels and gland hypertrophy suggest that DDT exposure induced an hypothyroidism state with a colloid goiter in rats.
Collapse
Affiliation(s)
- Olfa Tebourbi
- Laboratory of Integrated Physiology, Faculty of Sciences, Bizerte 7021, Jarzouna, Tunisia
| | | | | | | | | |
Collapse
|
11
|
Goemann IM, Gereben B, Harney JW, Zhu B, Maia AL, Larsen PR. Substitution of serine for proline in the active center of type 2 iodothyronine deiodinase substantially alters its in vitro biochemical properties with dithiothreitol but not its function in intact cells. Endocrinology 2010; 151:821-9. [PMID: 19966180 PMCID: PMC2817617 DOI: 10.1210/en.2009-0980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T(4) must be activated by its monodeiodination to T(3) by type 1 or 2 iodothyronine deiodinase (D1 and D2). Recent studies show that despite an approximately 2000-fold higher Michaelis constant (K(m); T(4)) for D1 than for D2 using dithiothreitol (DTT) as cofactor, D1 expressed in intact cells produces T(3) at free T(4) concentrations many orders of magnitude below its K(m). To understand the factors regulating D1 and D2 catalysis in vivo, we studied a mutant D2 with a proline at position 135 of the active center of D2 replaced with a serine, as found in D1. The P135S D2 enzyme has many D1-like properties, a K(m) (T(4)) in the micromolar range, ping-pong kinetics with DTT, and sensitivity to 6n-propylthiouracil (PTU) in vitro. Unexpectedly, when the P135S D2 was expressed in HEK-293 cells and exposed to 2-200 pm free T(4), the rate of T(4) to T(3) conversion was identical with D2 and conversion was insensitive to PTU. Using glutathione as a cofactor in vitro resulted in a marked decrease in the K(m) (T(4)) (as also occurs for D1), it showed sequential kinetics with T(4) and it was sensitive to PTU but was resistant when HEK-293 cytosol was used as a cofactor. Thus, the in vivo catalytic properties of the P135S D2 mutant are more accurately predicted from in vitro studies with weak reducing agents, such as glutathione or endogenous cofactors, than by those with DTT.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-90035-903, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Ondkova S, Bakos J, Macejova D, Jezova D, Brtko J. Changes in retinoic acid receptor status, 5'-deiodinase activity and neuroendocrine response to voluntary wheel running. Gen Comp Endocrinol 2010; 165:304-8. [PMID: 19646447 DOI: 10.1016/j.ygcen.2009.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/06/2009] [Accepted: 07/23/2009] [Indexed: 11/16/2022]
Abstract
Little information is available on the involvement of retinoic acid in processes related to physical activity. The aim of this study was to test the hypotheses that long-term voluntary wheel running (1) modifies RARs concentration as well as the expression of RAR subtypes and (2) alters Iiodothyronine deiodinase (5'-DI) activity in rat liver. To evaluate relevant mechanisms, hepatic gene expression of specific nuclear receptor coregulators and stress hormone levels in plasma have also been measured. Sprague-Dawley rats were housed either in standard cages or in cages with access to running wheel attached for 3 weeks. RAR maximal binding capacity in the liver was found to be significantly lower while gene expression of RAR beta increased in rats exposed to voluntary running compared to that in sedentary controls. Gene expression of RAR alpha, RXR alpha and RXR beta was found to be unaffected. Voluntary running led to a significant decrease of 5'-DI activity in the liver. No significant changes in the gene expression of specific nuclear receptor coregulators in the liver were observed. Significant elevation of aldosterone while no changes in ACTH and corticosterone concentrations were observed in rats exposed to wheel running compared to those in controls. In conclusion, this study provided first evidence on the reduction of liver RAR concentrations and 5'-DI activity in response to long-term voluntary wheel running. Neuroendocrine mechanisms involved in these changes may include adrenal mineralo- and glucocorticoids.
Collapse
Affiliation(s)
- Slavomira Ondkova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, Bratislava 83306, Slovak Republic
| | | | | | | | | |
Collapse
|
13
|
Farwell AP, Leonard JL. Effect of methyl iodide on deiodinase activity. Inhal Toxicol 2009; 21:497-504. [PMID: 19519149 DOI: 10.1080/08958370802597577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Methyl iodide (MeI) has been proposed as an alternative for methyl bromide in pre-plant soil fumigation applications that does not affect stratospheric ozone. Preliminary studies in rabbits noted fetal resorptions if the pregnant does were exposed to MeI during a critical period during gestation. In addition, abnormalities in thyroid hormone parameters were also observed in animals exposed to MeI. Since monodeiodination is the major metabolic pathway of the thyroid hormones, we examined the effect of MeI on deiodinase activity as a possible etiology for the alteration in thyroid hormone parameters and ultimate fetal demise. In vitro studies using tissue microsomes and cell culture showed that MeI has no effect on type I 5'-deiodinase (D1) or type II 5'-deiodinase (D2) at physiologically relevant concentrations. At high concentrations (>10 mM,>10,000 ppm), MeI caused a nonspecific inactivation of D1 and D2. Analysis of D1 and D2 activity in rats exposed by inhalation to increasing concentrations of MeI showed a significant decrease in enzyme activity at 100 ppm, while brain type III 5'-deiodinase (D3) was unaffected by MeI at the exposures studied. While the drop in D1 can be explained by the induction of a hypothyroid state in the exposed rats, there is no clear explanation for the fall in D2 levels. In the rabbit studies, there was a significant decrease in kidney D1 in the adult rabbits exposed to 20 ppm MeI. However, there was no effect on liver D1, brain D2, or placental D3 in the MeI-exposed rabbits. Similarly, there was no effect of MeI on fetal D1 or D2 activity. The lack of a significant direct effect of MeI on deiodinase activity and the absence of a change in placental or fetal deiodinase activity make it unlikely that alterations in deiodinase activity plays a role in the fetal resorptions in the MeI-exposed rabbits.
Collapse
Affiliation(s)
- Alan P Farwell
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
14
|
Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PRS, Birnbaum LS. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci 2008; 107:27-39. [PMID: 18978342 DOI: 10.1093/toxsci/kfn230] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies demonstrated that perinatal exposure to polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of the commercial penta mixture, DE-71, on genes related to TH metabolism at different developmental time points in male rats. DE-71 is predominately composed of PBDE congeners 47, 99, 100, 153, 154 with low levels of brominated dioxin and dibenzofuran contaminants. Pregnant Long-Evans rats were orally administered 1.7 (low), 10.2 (mid), or 30.6 (high) mg/kg/day of DE-71 in corn oil from gestational day (GD) 6 to postnatal day (PND) 21. Serum and liver were collected from male pups at PND 4, 21, and 60. Total serum thyroxine (T(4)) decreased to 57% (mid) and 51% (high) on PND 4, and 46% (mid) dose and 25% (high) on PND 21. Cyp1a1, Cyp2b1/2, and Cyp3a1 enzyme and mRNA expression, regulated by aryl hydrocarbon receptor, constitutive androstane receptor, and pregnane xenobiotic receptor, respectively, increased in a dose-dependent manner. UGT-T(4) enzymatic activity significantly increased, whereas age and dose-dependent effects were observed for Ugt1a6, 1a7, and 2b mRNA. Sult1b1 mRNA expression increased, whereas that of transthyretin (Ttr) decreased as did both the deiodinase I (D1) enzyme activity and mRNA expression. Hepatic efflux transporters Mdr1 (multidrug resistance), Mrp2 (multidrug resistance-associated protein), and Mrp3 and influx transporter Oatp1a4 mRNA expression increased. In this study the most sensitive responses to PBDEs following DE-71 exposure were CYP2B and D1 activities and Cyb2b1/2, d1, Mdr1, Mrp2, and Mrp3 gene expression. All responses were reversible by PND 60. In conclusion, deiodination, active transport, and sulfation, in addition to glucuronidation, may be involved in disruption of TH homeostasis due to perinatal exposure to DE-71 in male rat offspring.
Collapse
Affiliation(s)
- David T Szabo
- University of North Carolina Curriculum in Toxicology, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
15
|
Anguiano B, Aranda N, Delgado G, Aceves C. Epididymis expresses the highest 5'-deiodinase activity in the male reproductive system: kinetic characterization, distribution, and hormonal regulation. Endocrinology 2008; 149:4209-17. [PMID: 18467445 PMCID: PMC2488221 DOI: 10.1210/en.2007-1679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We characterized the enzymes that catalyze the deiodination of T(4) to T(3) in the male reproductive tract. Testis, epididymis (EPI), seminal vesicles, prostate, bulbourethral glands, spermatozoa, and semen were taken from sexually mature rats (300 g). Iodothyronine 5'-deiodinase (5'-D) activity was quantified by the radiolabeled-iodide-release method. 5'-D activity was 10-fold higher in EPI and semen than in the rest of the tissues. In EPI, semen, and prostate, the enzymatic activity was completely inhibited by 1 mm 6-n-propyl-2-thiouracil, whereas in the other tissues the inhibition was partial (50%). The high susceptibility to 6-n-propyl-2-thiouracil inhibition, a ping-pong kinetic pattern, and low cofactor (Michaelis Menten constant for dithiothreitol=0.7 mm) and high substrate (Michaelis Menten constant for reverse T(3)=0.4 microm) requirements indicate that EPI 5'-D corresponds to type 1 deiodinase (D1). Real-time RT-PCR amplification of D1 mRNA in this tissue confirms this conclusion. The highest EPI D1 expression occurred at the onset of puberty and sexual maturity, and in the adult, this activity was more abundant in corpus and caput than in the caudal region. EPI D1 expression was elevated under conditions of hyperthyroidism and with addition of 17beta-estradiol. Our data also showed a direct association between D1 and a functional epididymis marker, the neutral alpha-glucosidase enzyme, suggesting that local generation of T(3) could be associated with the development and function of EPI and/or spermatozoa maturation. Further studies are necessary to analyze the possible physiological relevance of 5'-D in the male reproductive system.
Collapse
Affiliation(s)
- Brenda Anguiano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | | | | | | |
Collapse
|
16
|
Piehl S, Heberer T, Balizs G, Scanlan TS, Smits R, Koksch B, Köhrle J. Thyronamines are isozyme-specific substrates of deiodinases. Endocrinology 2008; 149:3037-45. [PMID: 18339710 PMCID: PMC2734495 DOI: 10.1210/en.2007-1678] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
3-Iodothyronamine (3-T 1 AM) and thyronamine (T AM) are novel endogenous signaling molecules that exhibit great structural similarity to thyroid hormones but apparently antagonize classical thyroid hormone (T(3)) actions. Their proposed biosynthesis from thyroid hormones would require decarboxylation and more or less extensive deiodination. Deiodinases (Dio1, Dio2, and Dio3) catalyze the removal of iodine from their substrates. Because a role of deiodinases in thyronamine biosynthesis requires their ability to accept thyronamines as substrates, we investigated whether thyronamines are converted by deiodinases. Thyronamines were incubated with isozyme-specific deiodinase preparations. Deiodination products were analyzed using a newly established method applying liquid chromatography and tandem mass spectrometry (LC-MS/MS). Phenolic ring deiodinations of 3,3',5'-triiodothyronamine (rT3AM), 3',5'-diiodothyronamine (3',5'-T2AM), and 3,3'-diiodothyronamine (3,3'-T2AM) as well as tyrosyl ring deiodinations of 3,5,3'-triiodothyronamine (T3AM) and 3,5-diiodothyronamine (3,5-T2AM) were observed with Dio1. These reactions were completely inhibited by the Dio1-specific inhibitor 6n-propyl-2-thiouracil (PTU). Dio2 containing preparations also deiodinated rT(3)AM and 3',5'-T2AM at the phenolic rings but in a PTU-insensitive fashion. All thyronamines with tyrosyl ring iodine atoms were 5(3)-deiodinated by Dio3-containing preparations. In functional competition assays, the newly identified thyronamine substrates inhibited an established iodothyronine deiodination reaction. By contrast, thyronamines that had been excluded as deiodinase substrates in LC-MS/MS experiments failed to show any effect in the competition assays, thus verifying the former results. These data support a role for deiodinases in thyronamine biosynthesis and contribute to confining the biosynthetic pathways for 3-T 1 AM and T 0 AM.
Collapse
Affiliation(s)
- S Piehl
- Institut für Experimentelle Endokrinologie und Endokrinologisches Forschungszentrum der Charité EnForCé, Charité-Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Eybl V, Kotyzová D, Sýkora J, Topolcan O, Pikner R, Mihaljevic M, Brtko J, Glattre E. Effects of selenium and tellurium on the activity of selenoenzymes glutathione peroxidase and type I iodothyronine deiodinase, trace element thyroid level, and thyroid hormone status in rats. Biol Trace Elem Res 2007; 117:105-14. [PMID: 17873396 DOI: 10.1007/bf02698087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/24/2006] [Accepted: 09/30/2006] [Indexed: 11/26/2022]
Abstract
Tellurium (Te) and selenium (Se) belong chemically to the VIa group of elements. Se represents an essential element closely related to thyroid function. Te has growing application in industrial processes. Little is known about the Te biological activity, particularly with respect to potential chemical interactions with Se-containing components in the organism. In this study, female Wistar rats (body weight: 115-120 g) received sodium selenite pentahydrate (10 mg/L) or sodium tellurite (9.4 mg/L) in drinking water for 6 wk. Additional groups of rats received their combination with zinc sulfate heptahydrate (515 mg/L). The stimulation of 5'-DI-I activity due to selenite (to 158%, p<0.01) or tellurite treatment (to 197%, p<0.01) was seen; however, no effect on glutathione peroxidase was demonstrated in this experiment. An elevation of T4, T3, and rT3 serum levels was measured in the Se+Te-treated group; T4 and rT3 levels were elevated in the Te+Zn-treated group. Te accumulates in the thyroid gland and influences the zinc thyroid level. Te treatment alone and in combination with Se or Zn decreased the iodine thyroid concentration to 65-70% of the control value. Further studies are needed to clarify the nature and effects of these events.
Collapse
Affiliation(s)
- Vladislav Eybl
- Department of Pharmacology and Toxicology, Charles University Faculty of Medicine in Pilsen, and Charles University Hospital, Karlovarská 48, Pilsen, CZ-301 66, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Perello M, Friedman T, Paez-Espinosa V, Shen X, Stuart RC, Nillni EA. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology 2006; 147:2705-16. [PMID: 16497799 DOI: 10.1210/en.2005-1609] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the last few years, our laboratory has demonstrated that different physiological conditions or stressors affect the posttranslational processing of hypophysiotropic and nonhypophysiotropic proTRH and, consequently, the output of TRH and other proTRH-derived peptides. These alterations in proTRH processing are generally associated with parallel changes in the levels of two members of the family of prohormone convertases 1/3 and 2 (PC1/3 and PC2). An important regulator of proTRH is thyroid hormone, which is the peripheral end product of the hypothalamic (TRH)-pituitary (TSH)-thyroid (T3/4) (HPT) axis. In this study we investigated the effect of thyroid status on the processing of proTRH inside and outside the HPT axis. Our data showed that high levels of thyroid hormone down-regulated PC1/3 and PC2 and TRH synthesis, which led to an accumulation of intermediate forms of proTRH processing. Conversely, low levels of thyroid hormone up-regulated proTRH synthesis and PC1/3 and PC2 levels. Control of the activity of PCs and proTRH processing occurred specifically in the paraventricular nucleus, whereas no change due to thyroid status was found in the lateral hypothalamus or preoptic area. The posttranslational regulation of proTRH processing in the paraventricular nucleus by thyroid status is a novel aspect of the regulation of the HPT axis, which may have important implications for the pathophysiology of hypo- and hyperthyroidism.
Collapse
Affiliation(s)
- Mario Perello
- Division of Endocrinology, Department of Medicine Brown University/Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
19
|
Glatt CM, Ouyang M, Welsh W, Green JW, Connor JO, Frame SR, Everds NE, Poindexter G, Snajdr S, Delker DA. Molecular characterization of thyroid toxicity: anchoring gene expression profiles to biochemical and pathologic end points. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1354-61. [PMID: 16203246 PMCID: PMC1281279 DOI: 10.1289/ehp.7690] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic iodides have been shown to induce thyroid hypertrophy and increase alterations in colloid in rats, although the mechanism involved in this toxicity is unclear. To evaluate the effect that free iodide has on thyroid toxicity, we exposed rats for 2 weeks by daily gavage to sodium iodide (NaI). To compare the effects of compounds with alternative mechanisms (increased thyroid hormone metabolism and decreased thyroid hormone synthesis, respectively), we also examined phenobarbital (PB) and propylthiouracil (PTU) as model thyroid toxicants. Follicular cell hypertrophy and pale-staining colloid were present in thyroid glands from PB-treated rats, and more severe hypertrophy/colloid changes along with diffuse hyperplasia were present in thyroid glands from PTU-treated rats. In PB- and PTU-treated rats, thyroid-stimulating hormone (TSH) levels were significantly elevated, and both thyroxine and triiodothyronine hormone levels were significantly decreased. PB induced hepatic uridine diphosphate-glucuronyltransferase (UDPGT) activity almost 2-fold, whereas PTU reduced hepatic 5 -deiodinase I (5 -DI) activity to < 10% of control in support of previous reports regarding the mechanism of action of each chemical. NaI also significantly altered liver weights and UDPGT activity but did not affect thyroid hormone levels or thyroid pathology. Thyroid gene expression analyses using Affymetrix U34A GeneChips, a regularized t-test, and Gene Map Annotator and Pathway Profiler demonstrated significant changes in rhodopsin-like G-protein-coupled receptor transcripts from all chemicals tested. NaI demonstrated dose-dependent changes in multiple oxidative stress-related genes, as also determined by principal component and linear regression analyses. Differential transcript profiles, possibly relevant to rodent follicular cell tumor outcomes, were observed in rats exposed to PB and PTU, including genes involved in Wnt signaling and ribosomal protein expression.
Collapse
|
20
|
Ambroziak M, Pachucki J, Stachlewska-Nasfeter E, Nauman J, Nauman A. Disturbed expression of type 1 and type 2 iodothyronine deiodinase as well as titf1/nkx2-1 and pax-8 transcription factor genes in papillary thyroid cancer. Thyroid 2005; 15:1137-46. [PMID: 16279847 DOI: 10.1089/thy.2005.15.1137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 and type 2 iodothyronine 5' deiodinases (D1 and D2, respectively) catalyze the conversion of thyroxine (T(4)) to triiodothyronine (T(3)). Similar to other genes crucial for T(3) generation, D1 and D2 expression might be disturbed in papillary thyroid cancer (PTC) possible as a result of impairments in thyroid transcription factors Titf1/Nkx2-1 and Pax-8. The aim of the study was to investigate changes in the expression of D1 and D2 in PTC compared to changes in the expression of Titf1/Nkx2-1 and Pax-8. Although D1 and D2 activities were decreased in tumor samples (PTC) compared to control C samples (tissues from a nontumorous part of the gland), the differences were not statistically significant. Contrary to that, their mRNA levels were significantly decreased in PTC samples compared to C samples (p = 0.017 and p = 0.012, respectively). Interestingly there was clear discrepancy between enzymatic activity and mRNA level of both deiodinases. There was a statistically significant correlation between D1 and Pax-8 (r = 0.464, p = 0.039), D2 and Pax-8 (r = 0.461, p = 0.041), D2 and Titf1/Nkx2-1 mRNA levels (r = 0.526, p = 0.017). Our results show that changes in D1 and D2 expression in PTC, including the discrepancy between deiodinases activity and mRNA level, might possibly related to impaired Titf1/Nkx2-1 and Pax-8 action.
Collapse
Affiliation(s)
- Michal Ambroziak
- Department of Biochemistry, Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
21
|
Arroyo-Helguera O, Mejía-Viggiano C, Varela-Echavarría A, Cajero-Juárez M, Aceves C. Regulatory role of the 3' untranslated region (3'UTR) of rat 5' deiodinase (D1). effects on messenger RNA translation and stability. Endocrine 2005; 27:219-25. [PMID: 16230777 DOI: 10.1385/endo:27:3:219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/31/2005] [Accepted: 06/02/2005] [Indexed: 11/11/2022]
Abstract
The previous findings that both a long and a short type 1 deiodinase (D1) mRNA are present in different tissues and that the D1 gene contains two potential polyA signals suggest that the two mRNAs result from differential polyA signal usage. In this study, we examined the properties of the two D1 mRNAs generated in HEK 293 cells by the alternative use of each of the poly A signals in order to ascertain the potential regulatory role of the 3'UTR of this gene. Our results showed that the long mRNA is less stable, but that it is translated more efficiently than the short mRNA. The net result of these differences is a higher D1 activity with the long message. These data suggest that the D1 3'UTR may play an important role in regulating the stability and translational efficiency of the D1 mRNA, both of which could be physiologically relevant when the demand for D1 activity is high.
Collapse
Affiliation(s)
- Omar Arroyo-Helguera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Km 15 Carretera Qro-SLP, Juriquilla, Qro. 76230, Mexico
| | | | | | | | | |
Collapse
|
22
|
Menth M, Schmutzler C, Mentrup B, Hoang-Vu C, Takahashi K, Honjoh T, Köhrle J. Selenoprotein expression in Hürthle cell carcinomas and in the human Hürthle cell carcinoma line XTC.UC1. Thyroid 2005; 15:405-16. [PMID: 15929660 DOI: 10.1089/thy.2005.15.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hürthle cell carcinomas (HTC) are characterized by mitochondrial amplification and enhanced oxygen metabolism. To clarify if defects in enzymes scavenging reactive oxygen species are involved in the pathogenesis of HTC, we analyzed selenium (Se)-dependent expression of various detoxifying selenoproteins in the HTC cell line XTC.UC1. Glutathione peroxidase and thioredoxin reductase activity was found both in cell lysates and conditioned media of XTC.UC1 cells and was increased by Na(2)SeO(3). Western blot analysis demonstrated the presence of thioredoxin reductase both in cell lysates and conditioned media and of glutathione peroxidase 3 in conditioned media. Type I 5'-deiodinase, another selenoprotein that catalyzes thyroid hormone metabolism, was detectable only in cell lysates by enzyme assay and Western blot, and responded to stimulation by both Na(2)SeO(3) and retinoic acid. A selenoprotein P signal was detected in conditioned media by Western blot, but was not enhanced by Na(2)SeO(3) treatment. In situ hybridization revealed glutathione peroxidase mRNAs in HTC specimen; glutathione peroxidase 3 mRNA levels were reduced. These data suggest adequate expression and Se-dependent regulation of a couple of selenoproteins involved in antioxidant defense and thyroid hormone metabolism in XTC.UC1 cells, so far giving no evidence of a role of these proteins in the pathogenesis of HTCs.
Collapse
Affiliation(s)
- Marianne Menth
- Abteilung für Molekulare Innere Medizin und Klinische Forschergruppe der Medizinischen Poliklinik, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Morimura T, Tsunekawa K, Kasahara T, Seki K, Ogiwara T, Mori M, Murakami M. Expression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin. Endocrinology 2005; 146:2077-84. [PMID: 15650076 DOI: 10.1210/en.2004-1432] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones play important roles in bone growth, development, and turnover. To exert its biological activity, T(4) needs to be converted to T(3) by iodothyronine deiodinase. In human thyroid gland as well as rat brown adipose tissue, type 2 iodothyronine deiodinase (D2) expression is regulated by a TSH receptor-cAMP-mediated mechanism. TSH receptor knockout mice demonstrated the direct effects of TSH on bone via TSH receptors found on osteoblast and osteoclast precursors. In the present study we investigated the possible expression and function of iodothyronine deiodinase and TSH receptors in human osteoblast-like osteosarcoma (SaOS-2) cells and normal human osteoblast (NHOst) cells. Iodothyronine deiodinase activity was detected in SaOS-2 cells and NHOst cells, and all of the characteristics of deiodinating activity were compatible with those of D2. Northern analysis demonstrated D2 mRNA expression in SaOS-2 cells and NHOst cells. D2 mRNA levels as well as D2 activities were rapidly increased by dibutyryl cAMP or forskolin in SaOS-2 cells and NHOst cells. TSH receptor mRNA was demonstrated in SaOS-2 cells and NHOst cells, and D2 mRNA and D2 activity were stimulated by TSH in both cells. In addition, all T(3) receptor isoforms were detected by RT-PCR in SaOS-2 cells and NHOst cells. The present results indicate the expression of functional TSH receptors and D2 in human osteoblasts and suggest previously unrecognized roles of TSH receptors and local T(3) production by D2 in the pathophysiology of human osteoblasts.
Collapse
Affiliation(s)
- Tadashi Morimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Leonard JL, Simpson G, Leonard DM. Characterization of the protein dimerization domain responsible for assembly of functional selenodeiodinases. J Biol Chem 2005; 280:11093-100. [PMID: 15659403 DOI: 10.1074/jbc.m500011200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone metabolism is catalyzed by a small family of selenoenzymes. Type I deiodinase (D1) is the best characterized family member and is an integral membrane protein composed of two 27-kDa subunits that assemble to a functional holoenzyme after translation. To characterize the protein domain(s) responsible for this post-translational assembly event, we used deletion/truncation analysis coupled with immune depletion assays to map the dimerization domain of D1. The results of our studies show that a highly conserved sequence of 16 amino acids in the C-terminal half of the D1 subunit, -D148FL-YI-EAH-DGW163-, serves as the dimerization domain. Based on the high conservation of this domain, we synthesized a novel bait peptide-green fluorescent protein fusion probe (DDD(GFP)) to examine holoenzyme assembly of other family members. Overexpression of either the DDD(GFP) or an inert D1 subunit (M4) into SeD2 (accession number U53505)-expressing C6 cells specifically led to the loss of >90% of the catalytic activity. Catalytically inactive D2 heterodimers composed of SeD2: DDD(GFP) subunits were rescued by specific immune precipitation with anti-SeD2 IgG, suggesting that SeD2 requires two functional subunits to assemble a catalytically active holoenzyme. These findings identify and characterize the essential dimerization domain responsible for post-translational assembly of selenodeiodinases and show that family members can intermingle through this highly conserved protein domain.
Collapse
Affiliation(s)
- Jack L Leonard
- Molecular Endocrinology Laboratory, Department of Cell and Molecular Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
25
|
Slebodziński AB, Twardon J. Thyroid hormones (TH) and 5'-monodeiodinase (5'-MD) activity in goat's milk from the early, mid- and late lactation period. Acta Vet Hung 2004; 52:349-59. [PMID: 15379449 DOI: 10.1556/avet.52.2004.3.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The physiological significance of thyroid hormones (TH) present in colostrum and milk is still under consideration. The present study was aimed at determining milk thyroxine (T4) and triiodothyronine (T3) levels in three lactation phases (early, mid- and late) of the goat, and to measure activity of the milk 5'-deiodinase (5'-MD) enzyme responsible for the intramammary conversion of prohormone T4 to its metabolically highly active form T3. Thirty-two milk goats (Polish White breed) fed a standard diet were used for milk sampling. The highest TH levels in mammary secretion were recorded during the first 2-3 days post partum. Then the hormone levels decreased, and by about Day 7 fluctuated around the overall mean for the early-lactation phase (Days 1 to 24 of lactation), recording 0.134+/-0.059 microg T4 and 150.8+/-2.80 ng T3 in 100 ml of the milk. Such T4 concentrations appeared to be comparable to those in the rabbit and human, whereas the concentration of T3 was higher than in the cow, pig and mare's milk. Milk 5'-MD activity was higher (P < 0.01) during early and late lactation, compared to the mid-lactation phase. It coincided with low T4 and high T3 milk levels during early lactation, and with high milk T4 and low T3 concentrations during late lactation. The quantity of T4 and T3 available to newborn kids in milk suggests that TH ingested with the colostrum may have a physiological role during the early postnatal life of suckling goats.
Collapse
Affiliation(s)
- A B Slebodziński
- ENDO-CANIS, Endocrine Research and Diagnostics, ul Grunwaldzka 250, 60-166 Poznań, Poland.
| | | |
Collapse
|
26
|
Brtko J, Macejová D, Knopp J, Kvetnanský R. Stress Is Associated with Inhibition of Type I Iodothyronine 5′-Deiodinase Activity in Rat Liver. Ann N Y Acad Sci 2004; 1018:219-23. [PMID: 15240372 DOI: 10.1196/annals.1296.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type I iodothyronine deiodinase (5'-DI) generates the thyromimetically active hormone 3,5,3'-triiodothyronine (T(3)) by reductive monodeiodination of the phenolic ring of L-thyroxine (T(4)). The present study was undertaken to compare the effects of cold stress (4 degrees C) alone or in combination with immobilization stress (IMO), insulin treatment (5 IU/kg, i.p.) or 2-deoxy-D-glucose (2DG)-induced intracellular glucopenia on the activity of 5'-DI in rat liver. Cold stress either for 24 h or 28 days when compared to that in the nonstressed group of rats significantly reduced (P < 0.001) the activity of 5'-DI in liver. In comparison with cold stressed rats for 28 days, an additional decrease in 5'-DI activity was observed when those rats underwent 1 x IMO in cold for 2 h (P < 0.001) or insulin treatment (P < 0.05). A significant decrease in 5'-DI activity was found also in rats maintained at room temperature that underwent a single 1 x IMO for 2 h (P < 0.001) or insulin treatment (P < 0.01) when compared to nonstressed animals. In comparison with nonstressed rats, no significant change of the 5'-DI activity was observed after 2DG application (500 mg/kg, i.p.) at room temperature. In conclusion, cold stress and/or 1 x IMO, insulin treatment, or 1 x IMO at room temperature markedly affects reductive monodeiodination of T(4), and thus reduces the concentration of biologically active T(3) in liver.
Collapse
Affiliation(s)
- Július Brtko
- D.Sc., Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, 833 06 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
27
|
Araki O, Morimura T, Ogiwara T, Mizuma H, Mori M, Murakami M. Expression of type 2 iodothyronine deiodinase in corticotropin-secreting mouse pituitary tumor cells is stimulated by glucocorticoid and corticotropin-releasing hormone. Endocrinology 2003; 144:4459-65. [PMID: 12960076 DOI: 10.1210/en.2003-0419] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We identified the presence of iodothyronine deiodinase in AtT-20 mouse pituitary tumor cells that secrete corticotropin. Iodothyronine deiodinating activity in AtT-20 cells fulfills all the characteristics of type 2 iodothyronine deiodinase (D2), including the inhibition by thyroid hormones, the insensitivity to inhibition by 6-propyl-2-thiouracil, and the low Michaelis-Menten constant value for T4. Northern analysis using mouse D2 cRNA probe demonstrated the hybridization signal of approximately 7.0 kb in size in AtT-20 cells. D2 activity and D2 mRNA were stimulated by glucocorticoid in a dose-dependent manner but were not stimulated by testosterone or beta-estradiol. D2 expression was stimulated by (Bu)2cAMP, and CRH in a dose-dependent manner in the presence of dexamethasone. These results suggest the previously unrecognized role of local thyroid hormone activation by D2 in the regulation of pituitary corticotrophs.
Collapse
Affiliation(s)
- Osamu Araki
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Ambroziak M, Pachucki J, Chojnowski K, Wiechno W, Nauman J, Nauman A. Pax-8 expression correlates with type II 5' deiodinase expression in thyroids from patients with Graves' disease. Thyroid 2003; 13:141-8. [PMID: 12699588 DOI: 10.1089/105072503321319440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transcription factors TTF-1 and Pax-8 control the expression of thyroid-specific genes crucial for thyroid function. It has been postulated that they may play a role in thyrotropin (TSH)-mediated augmentation of gene expression observed in some thyroid diseases including Grave's hyperthyroidism. Recently, we and others described the expression of two genes participating in thyroid hormone metabolism type I and type II deiodinase (D1 and D2, respectively) that are upregulated by TSH, although the mechanisms responsible for this effect are likely to be different. The aim of this study was to investigate whether there is a correlation between TTF-1 and Pax-8 mRNA levels and type I or type II 5' deiodinases expression in Graves' disease. D1 activity and mRNA level, as well as D2 activity and mRNA level, were significantly increased in Graves' disease in comparison to control tissues. D1, but not D2, activity correlated with its mRNA level in Graves' disease and toxic multinodular goitre. The TTF-1 mRNA level was not different between Graves' disease and control thyroids and no correlation between TTF-1 mRNA level and either D1 or D2 mRNA levels were found. The Pax-8 mRNA level was significantly increased in Graves' disease in comparison to control tissues and correlated with D2, but not D1, mRNA levels among all investigated groups of tissues. Our data suggest that transcription factor Pax-8 could be involved in the upregulation of D2 expression in the thyroid of Graves' patients.
Collapse
Affiliation(s)
- Michał Ambroziak
- Department of Biochemistry, Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
29
|
Pezzi C, Accorsi PA, Vigo D, Govoni N, Gaiani R. 5'-deiodinase activity and circulating thyronines in lactating cows. J Dairy Sci 2003; 86:152-8. [PMID: 12613860 DOI: 10.3168/jds.s0022-0302(03)73595-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the correlation between lactation and thyroid hormone metabolism, the authors studied concentrations of total and free thyroxine (T4 and fT4), triiodothyronine (T3 and fT3), and reverse triiodothyronine (rT3) in plasma and milk, as well as liver and mammary gland 5'-deiodinase (5'D) activity in dry, early, middle, and late lactating dairy cows. Cows in early lactation show lower plasma levels of T4 and rT3 than dry, middle, and late lactating animals, whereas T3 shows the lowest plasma levels in the dry period; free T4 and T3 show a similar pattern. In early lactation there is a clear decrease in liver 5'D associated with a notable increase in mammary 5'D. Concentrations of T4 and T3 in milk drop significantly in the first few days after delivery, whereas rT3 increases up to the fourth month. The findings suggest a relationship between the hypothyroid status of lactating cows and the rearrangement of organ-specific 5'-deiodinase activity related to the maintenance of the udder's function.
Collapse
Affiliation(s)
- C Pezzi
- Dipartimento di Morfofisiologia Veterinaria e Produzioni Animali, Facoltà di Medicina Veterinaria, Università di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italia.
| | | | | | | | | |
Collapse
|
30
|
Ferreira ACF, Lisboa PC, Oliveira KJ, Lima LP, Barros IA, Carvalho DP. Inhibition of thyroid type 1 deiodinase activity by flavonoids. Food Chem Toxicol 2002; 40:913-7. [PMID: 12065212 DOI: 10.1016/s0278-6915(02)00064-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Some dietary flavonoids inhibit thyroperoxidase and hepatic deiodinase activity, indicating that these compounds could be classified as anti-thyroid agents. In this study, we evaluated the in vitro effect of various flavonoids on thyroid type 1 iodothyronine deiodinase activity (D1). D1 activity was measured in murine thyroid microsome fractions by the release of 125I from 125I-reverse T3. D1 activity was significantly inhibited by all the flavonoids tested; however, the inhibitory potencies on thyroid D1 activity differed greatly among them. A 50% inhibition of D1 activity (IC(50)) was obtained at 11 microM baicalein, 13 microM quercetin, 17 microM catechin, 55 microM morin, 68 microM rutin, 70 microM fisetin, 72 microM kaempferol and 77 microM biochanin A. Our data reinforce the concept that dietary flavonoids might behave as antithyroid agents, and possibly their chronic consumption could alter thyroid function.
Collapse
Affiliation(s)
- A C F Ferreira
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Hepatic 5′ deiodinase activity in the broiler chicken: effects of diet and prior thyroid status. Nutr Res 2002. [DOI: 10.1016/s0271-5317(01)00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Affiliation(s)
- Josef Köhrle
- Division of Molecular Internal Medicine, Medizinische Poliklinik, University of Wuerzburg, D-97070 Wuerzburg, Germany
| |
Collapse
|
33
|
Pachucki J, Ambroziak M, Tanski Z, Luczak J, Nauman J, Nauman A. Type I 5'-iodothyronine deiodinase activity and mRNA are remarkably reduced in renal clear cell carcinoma. J Endocrinol Invest 2001; 24:253-61. [PMID: 11383912 DOI: 10.1007/bf03343855] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to compare thyroid hormone metabolism between non-cancerous tumor-surrounding human kidney tissues and renal clear cell carcinomas (RCCC). The material consisted of samples taken from 10 RCCC patients of both sexes and three grades of differentiation, G1 to G3. We showed that, similar to rat tissue, type I 5' monodeiodinase (5'DI) expression is heterogeneous within the human kidney. We also found a poor correlation between 5'DI activity and mRNA level in non-cancerous tumor-surrounding tissue suggesting significant post-transcriptional regulation of 5'DI expression by an unidentified process in the human kidney. In all RCCC tissues both 5'DI activity and mRNA levels were undetectable. This suggests either loss of human 5'DI gene expression during neoplastic transformation or the origination of RCCC from a tubular cell type that does not express 5'DI.
Collapse
Affiliation(s)
- J Pachucki
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
34
|
Amma LL, Campos-Barros A, Wang Z, Vennström B, Forrest D. Distinct tissue-specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression. Mol Endocrinol 2001; 15:467-75. [PMID: 11222747 DOI: 10.1210/mend.15.3.0605] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Type 1 deiodinase (D1) metabolizes different forms of thyroid hormones to control levels of T3, the active ligand for thyroid hormone receptors (TR). The D1 gene is itself T3-inducible and here, the regulation of D1 expression by TRalpha1 and TRbeta, which act as T3-dependent transcription factors, was investigated in receptor-deficient mice. Liver and kidney D1 mRNA and activity levels were reduced in TRbeta(-/-) but not TRalpha1(-/-) mice. Liver D1 remained weakly T3 inducible in TRbeta(-/-) mice whereas induction was abolished in double mutant TRalpha1(-/-)TRbeta(-/-) mice. This indicates that TRbeta is primarily responsible for regulating D1 expression whereas TRalpha1 has only a minor role. In kidney, despite the expression of both TRalpha1 and TRbeta, regulation relied solely on TRbeta, thus revealing a marked tissue restriction in TR isotype utilization. Although TRbeta and TRalpha1 mediate similar functions in vitro, these results demonstrate differential roles in regulating D1 expression in vivo and suggest that tissue-specific factors and structural distinctions between TR isotypes contribute to functional specificity. Remarkably, there was an obligatory requirement for a TR, whether TRbeta or TRalpha1, for any detectable D1 expression in liver. This suggests a novel paradigm of gene regulation in which the TR sets both basal expression and the spectrum of induced states. Physiologically, these findings suggest a critical role for TRbeta in regulating the thyroid hormone status through D1-mediated metabolism.
Collapse
Affiliation(s)
- L L Amma
- Department of Human Genetics, Mount Sinai School of Medicine New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
35
|
Murakami M, Kamiya Y, Morimura T, Araki O, Imamura M, Ogiwara T, Mizuma H, Mori M. Thyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology 2001; 142:1195-201. [PMID: 11181535 DOI: 10.1210/endo.142.3.8012] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been demonstrated that TSH receptors are expressed not only in thyroid gland but also in extrathyroidal tissues. Brown adipose tissue of guinea pig has been reported to express TSH receptor messenger RNA (mRNA), but the physiological roles of TSH receptors in brown adipose tissue have not been understood. We studied the expression and function of TSH receptors in rat brown adipose tissue and cultured rat brown adipocytes. Northern analysis demonstrated the expression of TSH receptor mRNA in rat brown adipose tissue and cultured rat brown adipocytes. TSH receptor mRNA in rat brown adipose tissue was decreased by cold exposure of the rat, and its mRNA in cultured rat brown adipocytes was also decreased by incubation with TSH or (Bu)(2)cAMP. TSH increased the intracellular cAMP concentration in cultured rat brown adipocytes in a dose dependent manner. Type II iodothyronine deiodinase mRNA, its activity, and uncoupling protein-1 mRNA in cultured rat brown adipocytes were significantly increased by incubation with TSH in a dose-dependent manner. These results suggest the expression of functional TSH receptors in brown adipose tissue, which may be involved in regulation of the expression of type II iodothyronine deiodinase and uncoupling protein-1.
Collapse
Affiliation(s)
- M Murakami
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371-8511, Japan. .-u.ac.jp
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mizuma H, Murakami M, Mori M. Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deiodinase. Circ Res 2001; 88:313-8. [PMID: 11179199 DOI: 10.1161/01.res.88.3.313] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid hormone has been reported to have significant effects on the peripheral vascular system, including relaxation of vascular smooth muscle cells and antiatherosclerotic effects. To exert its biological activity, thyroxine, which is a major secretory product of thyroid gland, needs to be converted to 3,5,3'-triiodothyronine (T(3)) by iodothyronine deiodinase. Type I iodothyronine deiodinase (DI) is widely distributed and maintains circulating T(3) level, whereas type II iodothyronine deiodinase (DII) is present in a limited number of tissues to provide local intracellular T(3). In the present study, we have identified iodothyronine deiodinase in cultured human coronary artery smooth muscle cells (hCASMCs) and human aortic smooth muscle cells (hASMCs). All of the characteristics of the deiodinating activity in hCASMCs and hASMCs were compatible with DII. Northern analysis demonstrated that DII mRNA was expressed in both hCASMCs and hASMCs, and DII mRNA levels as well as DII activities were rapidly increased by dibutyryl-cAMP or forskolin. These data demonstrate, for the first time, the expression of DII in human vascular smooth muscle cells, which is regulated by a cAMP-mediated mechanism. The present results suggest a previously unrecognized role of local T(3) production by DII in the pathophysiology of human vascular smooth muscle cells.
Collapse
MESH Headings
- Blotting, Northern
- Bucladesine/pharmacology
- Cells, Cultured
- Colforsin/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Iodide Peroxidase/drug effects
- Iodide Peroxidase/genetics
- Iodide Peroxidase/metabolism
- Kinetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thyroid Gland
- Thyroid Hormones/metabolism
- Thyroid Hormones/pharmacology
- Time Factors
Collapse
Affiliation(s)
- H Mizuma
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
37
|
Leonard JL, Visser TJ, Leonard DM. Characterization of the subunit structure of the catalytically active type I iodothyronine deiodinase. J Biol Chem 2001; 276:2600-7. [PMID: 11044448 DOI: 10.1074/jbc.m006973200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I iodothyronine deiodinase is a approximately 50-kDa, integral membrane protein that catalyzes the outer ring deiodination of thyroxine. Despite the identification and cloning of a 27-kDa selenoprotein with the catalytic properties of the type I enzyme, the composition and the physical nature of the active deiodinase are unknown. In this report, we use a molecular approach to determine holoenzyme composition, the role of the membrane anchor on enzyme assembly, and the contribution of individual 27-kDa subunits to catalysis. Overexpression of an immunologically unique rat 27-kDa protein in LLC-PK1 cells that contain abundant catalytically active 27-kDa selenoprotein decreased deiodination by approximately 50%, and > 95% of the LLC-PK1 derived 27-kDa selenoprotein was specifically immune precipitated by the anti-rat enzyme antibody. The hybrid enzyme had a molecular mass of 54 kDa and an s(20,w) of approximately 3.5 S indicating that every native 27-kDa selenoprotein partnered with an inert rat 27-kDa subunit in a homodimer. Enzyme assembly did not depend on the presence of the N-terminal membrane anchor of the 27-kDa subunit. Direct visualization of the deiodinase dimer showed that the holoenzyme was sorted to the basolateral plasma membrane of the renal epithelial cell.
Collapse
Affiliation(s)
- J L Leonard
- Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA. jack
| | | | | |
Collapse
|
38
|
Brzezińska-Slebodzińska E, Slebodziński AB, Kowalska K. Evidence for the presence of 5'-deiodinase in mammalian seminal plasma and for the increase in enzyme activity in the prepubertal testis. INTERNATIONAL JOURNAL OF ANDROLOGY 2000; 23:218-24. [PMID: 10886424 DOI: 10.1046/j.1365-2605.2000.00233.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thyroid hormones are critical for structural and functional development of the testis and Sertoli cells are considered true target cells for triiodothyronine (T3). However, the role of thyroid hormones in the adult testis seems to be minimal and the mechanism by which they affect testicular function is not known. Due to the existing blood-testis barrier the concentration of thyroid hormones in seminal plasma is kept lower than in blood plasma. We have found that T3 may reach the testis not only from the circulation but also from local enzymic conversion of thyroxine to T3. The presence of the enzymic activity responsible for thyroxine 5'deiodination and for generating T3 locally was also found in boar's seminal plasma. The seminal plasma 5'-deiodinase (5'-D) appeared to be predominantly the propylthiouracil (PTU)-insensitive type II isoenzyme found, so far, in tissues where it plays a role in paracrine signalling. It contains selenocysteine in its molecule (inhibition by aurothioglucose), and has an apparent Km for reverse-T3 as substrate of 0.36 nM and a Vmax 23.8 fmol I-/mg protein/min. Because the seminal plasma 5'-D is partially, but uncompetitively, inhibited by PTU, the presence in seminal plasma of two 5'-D isoenzymes (type I and II) cannot be excluded. The 5'-D activity in testes increased significantly between week 3 and 4, and this increase was concomitant with increase in testicular size. The relationship between testicular weight gain and age showed a similar characteristic change and corresponded to the change in 5'-D activity. Unlike in rodents, the testis of the prepubertal pig has thyroid hormone receptors in Sertoli cells, and suggests that in growing piglets, testicular 5'-D is a key factor regulating local supply of biologically active T3, and is an essential factor in testicular paracrine function. The present results are the first demonstration and characterization of the 5'-deiodinase in seminal plasma.
Collapse
Affiliation(s)
- E Brzezińska-Slebodzińska
- Department of Developmental and Experimental Endocrinology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Grunwaldzka 250, 60-166 Poznań, Poland.
| | | | | |
Collapse
|
39
|
Orozco A, Linser P, Valverde C. Kinetic characterization of outer-ring deiodinase activity (ORD) in the liver, gill and retina of the killifish Fundulus heteroclitus. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:283-90. [PMID: 11007170 DOI: 10.1016/s0305-0491(00)00186-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conversion of T4 to T3 is the first step in TH action and deiodinases are the major determinants of TH tissue availability and disposal. We here report the kinetic characterization of the outer-ring deiodinating (ORD) enzymes in the liver, gill and retina of sea water-adapted killifish, by using both rT3 and T4 as substrates. In liver, by using rT3, we detected a high Km (84 nM) and a low Km (1.3 nM) component with kinetic characteristics similar to mammalian deiodinases DI and DII. In contrast, T4-ORD only generated a low Km (0.5 nM) component. As judged by its Vmax (920 fmol 125I/mg per h) this DII enzyme is very abundant, approximately five and 20 times higher than that found in trout liver and hypothyroid rat, respectively. Kinetic analysis in killifish gill showed only one enzymatic component, with a high rT3 Km (430 nM) and a relatively low Vmax (4.3 pmol 125I/mg per h). Our results in killifish retina show the expression of a T4-low Km (0.6 nM) deiodinase with high cofactor requirements akin to the mammalian DII. The Vmax value for this enzyme is 182 fmol 125I/mg per h, five times lower than the one found in killifish liver, but comparable to that in hypothyroid rat pituitary. The biochemical similarities between fish and mammalian deiodinases could reflect their high conservation during vertebrate evolution and thus their importance in the regulation of thyroid hormone action.
Collapse
Affiliation(s)
- A Orozco
- Centro de Neurobiologia, Queretaro, Qro, Mexico.
| | | | | |
Collapse
|
40
|
Hood A, Klaassen CD. Effects of microsomal enzyme inducers on outer-ring deiodinase activity toward thyroid hormones in various rat tissues. Toxicol Appl Pharmacol 2000; 163:240-8. [PMID: 10702363 DOI: 10.1006/taap.1999.8883] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsomal enzyme inducers, such as phenobarbital (PB), pregnenolone-16alpha-carbonitrile (PCN), 3-methylcholanthrene (3MC), and Aroclor 1254 (PCB) are more effective at reducing serum thyroxine (T(4)) than serum triiodothyronine (T(3)). It is possible that rats treated with PB and PCN maintain serum T(3) by increasing serum TSH, which stimulates the thyroid gland to synthesize more T(3). However, it is unclear how serum T(3) is maintained in rats treated with 3MC or PCB, because serum TSH is not increased in these rats. We hypothesized that increased conversion of T(4) to T(3), catalyzed by outer-ring deiodinases (ORD) type-I and -II, is the reason serum T(3) is maintained in rats treated with 3MC or PCB. Furthermore, 3MC and PCB do not increase serum TSH, whereas PB and PCN do, because type-II ORD activity in the pituitary of 3MC- and PCB-treated rats is increased greater than in rats treated with PB or PCN. To test these two hypotheses, male Sprague-Dawley rats were fed either a basal diet or a diet containing PB (300, 600, 1200, or 2400 ppm), PCN (200, 400, 800, or 1600 ppm), 3MC (50, 100, 200, or 400 ppm), or PCB (25, 50, 100, or 200 ppm) for 7 days. Type-I ORD activity was measured in thyroid, kidney, and liver, whereas type-II ORD activity was measured in brown adipose tissue, pituitary, and brain. Type-I ORD activity in thyroid was not affected by PB, 3MC, or PCB treatments, and was slightly increased by PCN. Type-I ORD activity in kidney was not affected by PB, PCN, or 3MC treatments, and was reduced by PCB treatment. Type-I ORD activity in liver was reduced by PB, PCN, 3MC, and PCB treatments. Type-II ORD activity in brown adipose tissue was unaffected by any of the four treatments. Type-II ORD activity in pituitary was unaffected by PB or 3MC treatments, and was increased by PCN or PCB treatments. Type-II ORD activity in brain was unaffected by PB treatment, and was increased by PCN, 3MC, and PCB treatments. Overall, total ORD activity, calculated by summation of ORD activities in thyroid, kidney, liver, brown adipose tissue, pituitary, and brain, was reduced rather than increased by the four microsomal enzyme inducers. In conclusion, increased conversion of T(4) to T(3) is not the reason serum T(3) concentration is maintained in 3MC- or PCB-treated rats. Furthermore, the reason serum TSH is not increased in 3MC- and PCB-treated rats is the result of mechanisms other than increased type-II ORD activity in pituitary.
Collapse
Affiliation(s)
- A Hood
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, 66160-7140, USA
| | | |
Collapse
|
41
|
Eravci M, Pinna G, Meinhold H, Baumgartner A. Effects of pharmacological and nonpharmacological treatments on thyroid hormone metabolism and concentrations in rat brain. Endocrinology 2000; 141:1027-40. [PMID: 10698179 DOI: 10.1210/endo.141.3.7358] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activities of the 5'I-deiodinase (5'D-I), 5'II deiodinase (5'D-II) and 5III-deiodinase (5D-III) isoenzymes and tissue concentrations of thyroxine (T4) and triiodothyronine (T3) were measured in up to 10 regions of the rat brain after acute and subchronic nonpharmacological (sleep deprivation, 12 h fasting, 14 days' calorie-reduced diet) and pharmacological (ethanol, haloperidol, clozapine, lithium, carbamazepine, desipramine, fluoxetine, tranylcypromine, and mianserin) treatments. All of these treatments induced significant and sometimes dramatic changes in 5'D-II activities and tissue concentrations of thyroid hormones and, to a lesser extent, in 5D-III activity. The activity of 5'D-I remained unaffected. The results revealed a surprising specificity for each type of treatment in terms of the isoenzyme and hormone affected, the direction of the change, the brain region affected and the time of day. The changes in thyroid hormone concentrations frequently failed to correspond in any way to those in deiodinase activities and unexpected effects such as inhibition of both 5'D-II and 5D-III were seen, indicating that there may be additional pathways of iodothyronine metabolism in the CNS. In conclusion, particularly 5'D-II activity and thyroid hormone concentrations in the CNS are highly sensitive to many different kinds of influence that may induce changes in neuronal activity. However, these changes in deiodinase activities do not ensure stable tissue concentrations of T3, but were, on the contrary, in most cases accompanied by marked changes T3 levels in the tissue. The implications of these findings for the physiological role of thyroid hormones in the CNS are discussed.
Collapse
Affiliation(s)
- M Eravci
- Department of Radiology and Nuclear Medicine, Universitätsklinikum Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Campos-Barros A, Amma LL, Faris JS, Shailam R, Kelley MW, Forrest D. Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing. Proc Natl Acad Sci U S A 2000; 97:1287-92. [PMID: 10655523 PMCID: PMC15599 DOI: 10.1073/pnas.97.3.1287] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1999] [Indexed: 11/18/2022] Open
Abstract
Thyroid hormone signaling during a postnatal period in the mouse is essential for cochlear development and the subsequent onset of hearing. To study the control of this temporal dependency, we investigated the role of iodothyronine deiodinases, which in target tissues convert the prohormone thyroxine into triiodothyronine (T3), the active ligand for the thyroid hormone receptor (TR). Type 2 5'-deiodinase (D2) activity rose dramatically in the mouse cochlea to peak around postnatal day 7 (P7), after which activity declined by P10. This activity peak a few days before the onset of hearing suggests a role for D2 in amplifying local T3 levels at a critical stage of cochlear development. A mouse cochlear D2 cDNA was isolated and demonstrated near identity to rat D2. In situ hybridization localized D2 mRNA in periosteal connective tissue in the modiolus, the cochlear outer capsule and the septal divisions between the turns of the cochlea. Surprisingly, D2 expression in these regions that give rise to the bony labyrinth was complementary to TR expression in the sensory epithelium. Thus, the connective tissue may control deiodination of thyroxine and release of T3 to confer a paracrine-like control of TR activation. These results suggest that temporal and spatial control of ligand availability conferred by D2 provides an unexpectedly important level of regulation of the TR pathways required for cochlear maturation.
Collapse
Affiliation(s)
- A Campos-Barros
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fenton B, Valverde-R C. Hepatic outer-ring deiodinase in a Mexican endemic lizard (Sceloporus grammicus). Gen Comp Endocrinol 2000; 117:77-88. [PMID: 10620425 DOI: 10.1006/gcen.1999.7384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetic characterization of the outer-ring deiodination pathway using rT(3) (rT(3)-ORD) in male, female, and pregnant female livers of an endemic lizard, Sceloporus grammicus, is reported. The ORD pathway does not have the characteristics of deiodinase type II; it is exclusively carried out by deiodinase type I (DI). DI enzymatic activity in lizard liver contains one of the highest activities reported in vertebrates. This activity is sexually dimorphic, with males presenting the highest activity during the reproductive season. The properties of this enzyme correspond to those described in mammals, such as specificity for rT(3), susceptibility to inhibition by 6-n-propyl-2-thiouracil and gold-thioglucose, cofactor requirement, and kinetic pattern. Unlike other vertebrates, the lizard DI exhibits conspicuous stability in the thermal range of 15 to 42 degrees C and in the pH range of 5.0 to 9.0. Male true kinetic constants exhibit a direct correlation with temperature. This is in agreement with short-term adaptation to microenvironmental changes and the feasible expression of enzymatic forms/variants which, together, endow this lizard species with a greater adaptation to natural daily ambient thermal fluctuations.
Collapse
Affiliation(s)
- B Fenton
- Centro de Neurobiología, Campus UNAM-UAQ Juriquilla, Querétaro, Qro., 76001, México
| | | |
Collapse
|
44
|
Slebodziński AB, Brzezińska-Slebodzińska E, Styczyńska E, Szejnoga M. Presence of thyroxine deiodinases in mammary gland: possible modulation of the enzyme-deiodinating activity by somatotropin. Domest Anim Endocrinol 1999; 17:161-9. [PMID: 10527119 DOI: 10.1016/s0739-7240(99)00033-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thyroid hormones (TH) and somatotropin (ST) play critical role in lactation. One explanation of their multiple physiological actions is based on the functional interrelationships among ST, TH, and thyroxin deiodinase (5'D). This enzyme is present in the mammary tissue, milk cellular components, and whole milk and is responsible for intramammary production of triiodothyronine (T3). In rats in which the 5'D isozymes in the mammary gland and in the liver are similarly of type I (5'D-I), an enhancement of mammary 5'D-I causes a reduction of hepatic 5'D-I activities. This opposite rearrangement in the mammary and hepatic deiodinating activities is thought to be a factor of a homeorhetic response characterized by an increased and compartmentalized energy expenditure of the mammary gland. In the cow, the mammary 5'D is the type II (5'D-II) deiodinase. The 5'D-II, owing to its high catalytic efficiency, secures T3 production, making tissues relatively independent from the circulatory levels of TH and from variations in the hepatic 5'D-I activity. No significant alterations of 5'D-II isozymes were found during a low T3 syndrome. Location of tissue deiodinases in the cow, the 5'D-II in the mammary gland, and the 5'D-I in the liver make it so that T3 production in these two tissues can be dissociated in time to secure better local requirement for T3 supporting lactation. To date, attempts to evidence that the alterations in iodothyronines blood levels and in tissues' 5'Ds activity during lactation are due to ST action have not received clear experimental support in either cows or rats.
Collapse
Affiliation(s)
- A B Slebodziński
- Institute of Animal Reproduction and Food Research, Polish Academic Science, Department of Developmental and Experimental Endocrinology, Poznan.
| | | | | | | |
Collapse
|
45
|
Aceves C, Pineda O, Ramírez I, de la Luz Navarro M, Valverde C. Mammary type I deiodinase is dependent on the suckling stimulus: differential role of norepinephrine and prolactin. Endocrinology 1999; 140:2948-53. [PMID: 10385385 DOI: 10.1210/endo.140.7.6800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammary deiodinase type I (M-D1) is present only during lactation and exhibits a clear direct correlation with lactation intensity (size of litters). The present work shows that M-D1 is suckling dependent and that intervals between suckling periods no longer than 12 h are essential to maintain this activity. Moreover, we find that with only 15 min of resuckling in 12-h nonsuckled mothers, the 50% decrease in both M-D1 messenger RNA and enzymatic activity could be restored to control values. This restorative effect by suckling may involve pre- and posttranscriptional mechanisms in which norepinephrine and PRL play important roles. Norepinephrine elicits a potent stimulatory effect on M-D1 messenger RNA and enzyme activities, whereas PRL only increases M-D 1 activity and may modulate the enzyme response to norepinephrine. Oxytocin and GH had no effect. These data suggest that the adrenergic nervous system and PRL could directly participate in mammary energetic expenditure, regulating the local T3 supply.
Collapse
Affiliation(s)
- C Aceves
- Departamento de Neuroendocrinología, Centro de Neurobiología, Queretaro, Qro, UNAM Mexico.
| | | | | | | | | |
Collapse
|
46
|
Brtko J, Mostböck S, Scheiblhofer S, Hartl A, Thalhamer J. DNA immunization is associated with increased activity of type I iodothyronine 5'-deiodinase in mouse liver. Mol Cell Endocrinol 1999; 152:85-9. [PMID: 10432226 DOI: 10.1016/s0303-7207(99)00054-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammatory cytokines in vitro are believed to be involved in the regulation of type I iodothyronine 5'-deiodinase (5'-DI) activity. The present study was undertaken to investigate in vivo effects of DNA immunization of mice on the 5'-DI activity in the liver. A mammalian expression vector encoding the beta-galactosidase (pCMV-betagal) was used for intradermal immunization. Furthermore, immunostimulatory CpG motifs, which induce the expression of IL-6, IL-12, IL-18, TNF-alpha/beta and IFN-gamma were coinjected as oligodeoxynucleotides. From our data we conclude that the activity of 5'-DI in mouse liver when compared to non-immunized animals (100%) was found to be significantly enhanced by DNA immunization 2 weeks (175.7%) or 3 weeks (192.6%) after the plasmid injection. In addition, the activity of the 5'-DI in mouse liver was markedly enhanced 2 weeks (252.4%) or 3 weeks (243.3%) after the injection when CpG motifs were applied together with the plasmid DNA.
Collapse
Affiliation(s)
- J Brtko
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
47
|
Hugenberger JL, Licht P. Characterization of thyroid hormone 5'-monodeiodinase activity in the turtle (Trachemys scripta). Gen Comp Endocrinol 1999; 113:343-59. [PMID: 10068496 DOI: 10.1006/gcen.1998.7197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid hormone metabolism by 5'-monodeiodinase enzymes (5'MD) was characterized in peripheral tissues of the turtle, Trachemys scripta, and compared with activity measured in the rat. Based on differences in pH dependence, sensitivity to inhibitors, substrate affinity, and cofactor requirements, at least two types of enzyme activities have been identified in the turtle. A 5'MD activity was measured in liver and kidney microsomal fractions that exhibits inhibition by 2n-propyl-6-thiouracil (PTU), a higher affinity for rT3 (Km = 2 microM) than for T4 (Km = 6.5 microM), a low cofactor dependence, and a high pH optimum for T4 metabolism. The characteristics of this turtle low affinity T4 activity correspond to the mammalian type I monodeiodinase. A second type of monodeiodinase (MD) activity that is less sensitive to PTU, has a higher affinity for T4 (Km = 1 nM), a higher cofactor requirement, and a lower pH optimum was colocalized with the first form. Both turtle MD activities remain active over a range of temperatures, allowing for activity at the preferred body temperature of this species (28 to 37 degrees C compared to the 37 degrees C optimum in the rat). Based on limited comparative data of MD systems from several fish and birds, the turtle most closely resembles avian species. Like birds, turtles possess a mammalian-like type I activity and have colocalized MD forms in the liver. However, the second turtle MD form (MDH) is not comparable to the mammalian or avian MDII-like activity. Analysis of the deiodinase products from both turtle MDs by high-performance liquid chromatography confirmed that the putative turtle MDI produces T3 from T4 as expected. The MDH produces rT3 from T4 as does the mammalian type III form, but MDH has a wider tissue distribution (kidney, liver, pancreas, heart, ovary, and brain) and distinct enzyme kinetics. Moreover, MDH activity in the turtle kidney is 100-fold higher than in the liver, indicating that the kidney may play a critical role in the metabolism of thyroid hormones in the turtle; this high renal activity distinguishes the turtle from all other vertebrates studied.
Collapse
Affiliation(s)
- J L Hugenberger
- Department of Integrative Biology, University of California, 3060 Valley Life Science Building, Berkeley, California, 94720-3140, USA
| | | |
Collapse
|
48
|
Kamiya Y, Murakami M, Araki O, Hosoi Y, Ogiwara T, Mizuma H, Mori M. Pretranslational regulation of rhythmic type II iodothyronine deiodinase expression by beta-adrenergic mechanism in the rat pineal gland. Endocrinology 1999; 140:1272-8. [PMID: 10067853 DOI: 10.1210/endo.140.3.6594] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been demonstrated that type II iodothyronine deiodinase is present in rat pineal gland, and the deiodinase activity markedly increases during the hours of darkness, primarily through beta-adrenergic mechanism. We have studied the relationship between pineal type II iodothyronine deiodinase messenger RNA (mRNA) and the deiodinase activity to elucidate the mechanisms involved in the nocturnal rise in pineal deiodinase activity. Northern analysis has demonstrated that type II iodothyronine deiodinase mRNA is expressed in rat pineal gland, and the mRNA markedly increases during the hours of darkness. The nocturnal increase in pineal type II iodothyronine deiodinase activity is preceded by the increase in its mRNA. Daytime isoproterenol administration resulted in a rapid increase in pineal type II iodothyronine deiodinase mRNA followed by the increase in deiodinase activity. Propranolol treatment, bilateral superior cervical ganglionectomy, or constant light exposure significantly suppressed the nocturnal rise in type II iodothyronine deiodinase mRNA as well as the deiodinase activity. Moreover, isoproterenol or (Bu)2AMP stimulated type II iodothyronine deiodinase mRNA and the deiodinase activity in cultured rat pineal glands. These results suggest that the rhythmic change in pineal type II iodothyronine deiodinase activity is regulated at least in part at the pretranslational level by a beta-adrenergic mechanism transmitted through superior cervical ganglia.
Collapse
Affiliation(s)
- Y Kamiya
- First Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Nikodémová M, Benický J, Brtko J, Strbák V. Chronic ethanol drinking and food deprivation affect rat hypothalamic-pituitary-thyroid axis and TRH in septum. Endocrine 1998; 9:213-8. [PMID: 9867256 DOI: 10.1385/endo:9:2:213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Revised: 07/13/1998] [Accepted: 08/17/1998] [Indexed: 12/21/2022]
Abstract
Because chronic ethanol ingestion may perturb thyroid function, we evaluated the effect of 4-wk of oral 10% ethanol ingestion on the hypothalamic-pituitary-thyroid (HPT) axis and septal thyrotropin-releasing hormone (TRH) in 200-g male Wistar rats. Animals were divided into three groups: absolute control receiving tap water and food ad libitum; ethanol group receiving food ad libitum and 10% ethanol as the sole source of drinking fluid; pair-fed group receiving tap water and an amount of food corresponding to the consumption of ethanol group. After 4-wk of treatment, the body weight of the ethanol group was 7% and of the pair-fed rats 19% lower than that of the absolute controls. Both chronic ethanol treatment and food deprivation produced a decrease in plasma thyroid-stimulating hormone (TSH). Pair-fed rats also had a lower plasma T3. Type I iodothyronine 5'-deiodinase activity in the liver was increased in the pair-fed and even more in the ethanol-treated group. The content and secretion in vitro of TRH from the hypothalamic paraventricular nucleus and median eminence were unchanged. TRH content in the septum was increased in both the ethanol and pair-fed groups. TRH secretion from the septum in vitro was lower in the pair-fed, but unchanged in the ethanol group. These data suggest that 4-wk of peroral ethanol intake affects thyroid function mostly at the extrahypothalamic level and that there is a contribution of concomitant food deprivation. Both ethanol treatment and food deprivation increased TRH content in the septum.
Collapse
Affiliation(s)
- M Nikodémová
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
50
|
Hepatic iodothyronine 5′-monodeiodinase activity in the broiler chicken: Effect of dietary fat and triiodothyronine (T3) supplementation. Nutr Res 1998. [DOI: 10.1016/s0271-5317(98)00086-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|