1
|
Hong L, Xiao S, Diao L, Lian R, Chen C, Zeng Y, Liu S. Decreased AMPK/SIRT1/PDK4 induced by androgen excess inhibits human endometrial stromal cell decidualization in PCOS. Cell Mol Life Sci 2024; 81:324. [PMID: 39080028 PMCID: PMC11335245 DOI: 10.1007/s00018-024-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.
Collapse
Affiliation(s)
- Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Shan Xiao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China.
| |
Collapse
|
2
|
Ryan GE, Bohaczuk SC, Cassin J, Witham EA, Shojaei S, Ho EV, Thackray VG, Mellon PL. Androgen receptor positively regulates gonadotropin-releasing hormone receptor in pituitary gonadotropes. Mol Cell Endocrinol 2021; 530:111286. [PMID: 33872733 PMCID: PMC8177864 DOI: 10.1016/j.mce.2021.111286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
Within pituitary gonadotropes, the gonadotropin-releasing hormone receptor (GnRHR) receives hypothalamic input from GnRH neurons that is critical for reproduction. Previous studies have suggested that androgens may regulate GnRHR, although the mechanisms remain unknown. In this study, we demonstrated that androgens positively regulate Gnrhr mRNA in mice. We then investigated the effects of androgens and androgen receptor (AR) on Gnrhr promoter activity in immortalized mouse LβT2 cells, which represent mature gonadotropes. We found that AR positively regulates the Gnrhr proximal promoter, and that this effect requires a hormone response element (HRE) half site at -159/-153 relative to the transcription start site. We also identified nonconsensus, full-length HREs at -499/-484 and -159/-144, which are both positively regulated by androgens on a heterologous promoter. Furthermore, AR associates with the Gnrhr promoter in ChIP. Altogether, we report that GnRHR is positively regulated by androgens through recruitment of AR to the Gnrhr proximal promoter.
Collapse
Affiliation(s)
- Genevieve E Ryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Stephanie C Bohaczuk
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jessica Cassin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Emily A Witham
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Shadi Shojaei
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Emily V Ho
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Dagar M, Singh JP, Dagar G, Tyagi RK, Bagchi G. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. J Biol Chem 2019; 294:8699-8710. [PMID: 30992362 PMCID: PMC6552429 DOI: 10.1074/jbc.ra119.007420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is often activated in prostate cancer patients undergoing androgen-ablative therapy because of the activation of cellular pathways that stimulate the AR despite low androgen levels. In many of these tumors, the cAMP-dependent protein kinase A (PKA) pathway is activated. Previous studies have shown that PKA can synergize with low levels of androgen to enhance androgen signaling and consequent cell proliferation, leading to castration-resistant prostate cancer. However, the mechanism by which PKA causes AR stimulation in the presence of low/no androgen is not established yet. Here, using immunofluorescence immunoblotting assays, co-immunoprecipitation, siRNA-mediated gene silencing, and reporter gene assays, we demonstrate that PKA activation is necessary for the phosphorylation of heat shock protein (HSP90) that binds to unliganded AR in the cytoplasm, restricting its entry into the nucleus. We also found that PKA-mediated phosphorylation of the Thr89 residue in HSP90 releases AR from HSP90, enabling AR binding to HSP27 and its migration into the nucleus. Substitution of the Thr89 in HSP90 prevented its phosphorylation by PKA and significantly reduced AR transactivation and cellular proliferation. We further observed that the transcription of AR target genes, such as prostate-specific antigen (PSA), is also lowered in the HSP90 Thr89 variant. These results suggest that using a small-molecule inhibitor against the HSP90 Thr89 residue in conjunction with existing androgen-ablative therapy may be more effective than androgen-ablative therapy alone in the treatment of prostate cancer patients.
Collapse
Affiliation(s)
- Manisha Dagar
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Julie Pratibha Singh
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Gunjan Dagar
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Rakesh K Tyagi
- the Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gargi Bagchi
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| |
Collapse
|
4
|
The Importance of Time to Prostate-Specific Antigen (PSA) Nadir after Primary Androgen Deprivation Therapy in Hormone-Naïve Prostate Cancer Patients. J Clin Med 2018; 7:jcm7120565. [PMID: 30567361 PMCID: PMC6306761 DOI: 10.3390/jcm7120565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prostate-specific antigen (PSA) is currently the most useful biomarker for detection of prostate cancer (PCa). The ability to measure serum PSA levels has affected all aspects of PCa management over the past two decades. The standard initial systemic therapy for advanced PCa is androgen-deprivation therapy (ADT). Although PCa patients with metastatic disease initially respond well to ADT, they often progress to castration-resistant prostate cancer (CRPC), which has a high mortality rate. We have demonstrated that time to PSA nadir (TTN) after primary ADT is an important early predictor of overall survival and progression-free survival for advanced PCa patients. In in vivo experiments, we demonstrated that the presence of fibroblasts in the PCa tumor microenvironment can prolong the period for serum PSA decline after ADT, and enhance the efficacy of ADT. Clarification of the mechanisms that affect TTN after ADT could be useful to guide selection of optimal PCa treatment strategies. In this review, we discuss recent in vitro and in vivo findings concerning the involvement of stromal–epithelial interactions in the biological mechanism of TTN after ADT to support the novel concept of “tumor regulating fibroblasts”.
Collapse
|
5
|
Seregni E, Botti C, Ballabio G, Bombardieri E. Biochemical Characteristics and Recent Biological Knowledge on Prostate-Specific Antigen. TUMORI JOURNAL 2018; 82:72-7. [PMID: 8623511 DOI: 10.1177/030089169608200116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since its identification in seminal fluid in 1971, much new information has been obtained about the biology and expression of prostate-specific antigen (PSA). PSA is a glycoprotein composed of 93% amino acids and 7% carbohydrates, with a molecular weight of about 30,000 Da. Functionally and structurally PSA is a kallikrein-like serine protease, and its physiologic role is degradation of the major proteins of seminal coagulum (semenogelin I and II, fibronectin), which leads to semen liquefaction. The PSA gene is located on the 13q region of chromosome 19, and it has a high degree of homology (more than 80%) with genes of the human glandular kallikrein (hKGK1). PSA production and expression are preferentially but not exclusively associated to the normal, benign hyperplastic and cancerous tissues of the prostate. In fact, it has been demonstrated that PSA is also present in accessory male sex glands and breast cancer. It was recently reported that PSA was also present in milk of lactating women. Many factors may influence PSA synthesis and production, and among them the most important are androgen, retinoic acid and growth factor stimulation. Significant advances have been recently made as regards the molecular isoforms of PSA. In the seminal fluid PSA seems partially bound to a serpine (protein C inhibitor), whereas in serum it is predominantly associated to α-1-antichymotrypsin and in a small quantity to α-2-macroglobulin. These new findings will have implications for the clinical application of PSA as a tumor marker for prostate cancer.
Collapse
Affiliation(s)
- E Seregni
- Nuclear Medicine Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
| | | | | | | |
Collapse
|
6
|
Cha S, Shin DH, Seok JR, Myung JK. Differential proteome expression analysis of androgen-dependent and -independent pathways in LNCaP prostate cancer cells. Exp Cell Res 2017; 359:215-225. [DOI: 10.1016/j.yexcr.2017.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
|
7
|
|
8
|
Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV. Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol 2016; 2:187-96. [PMID: 26816736 PMCID: PMC4708176 DOI: 10.3978/j.issn.2223-4683.2013.09.07] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Androgen receptor (AR)-mediated signaling is necessary for prostate cancer cell proliferation and an important target for therapeutic drug development. Canonically, AR signals through a genomic or transcriptional pathway, involving the translocation of androgen-bound AR to the nucleus, its binding to cognate androgen response elements on promoter, with ensuing modulation of target gene expression, leading to cell proliferation. However, prostate cancer cells can show dose-dependent proliferation responses to androgen within minutes, without the need for genomic AR signaling. This proliferation response known as the non-genomic AR signaling is mediated by cytoplasmic AR, which facilitates the activation of kinase-signaling cascades, including the Ras-Raf-1, phosphatidyl-inositol 3-kinase (PI3K)/Akt and protein kinase C (PKC), which in turn converge on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation, leading to cell proliferation. Further, since activated ERK may also phosphorylate AR and its coactivators, the non-genomic AR signaling may enhance AR genomic activity. Non-genomic AR signaling may occur in an ERK-independent manner, via activation of mammalian target of rapamycin (mTOR) pathway, or modulation of intracellular Ca2+ concentration through plasma membrane G protein-coupled receptors (GPCRs). These data suggest that therapeutic strategies aimed at preventing AR nuclear translocation and genomic AR signaling alone may not completely abrogate AR signaling. Thus, elucidation of mechanisms that underlie non-genomic AR signaling may identify potential mechanisms of resistance to current anti-androgens and help developing novel therapies that abolish all AR signaling in prostate cancer.
Collapse
Affiliation(s)
- Ross S Liao
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Lu Miao
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Rui Li
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yi Yin
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
9
|
Ta HQ, Ivey ML, Frierson HF, Conaway MR, Dziegielewski J, Larner JM, Gioeli D. Checkpoint Kinase 2 Negatively Regulates Androgen Sensitivity and Prostate Cancer Cell Growth. Cancer Res 2015; 75:5093-105. [PMID: 26573794 DOI: 10.1158/0008-5472.can-15-0224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the second leading cause of cancer death in American men, and curing metastatic disease remains a significant challenge. Nearly all patients with disseminated prostate cancer initially respond to androgen deprivation therapy (ADT), but virtually all patients will relapse and develop incurable castration-resistant prostate cancer (CRPC). A high-throughput RNAi screen to identify signaling pathways regulating prostate cancer cell growth led to our discovery that checkpoint kinase 2 (CHK2) knockdown dramatically increased prostate cancer growth and hypersensitized cells to low androgen levels. Mechanistic investigations revealed that the effects of CHK2 were dependent on the downstream signaling proteins CDC25C and CDK1. Moreover, CHK2 depletion increased androgen receptor (AR) transcriptional activity on androgen-regulated genes, substantiating the finding that CHK2 affects prostate cancer proliferation, partly, through the AR. Remarkably, we further show that CHK2 is a novel AR-repressed gene, suggestive of a negative feedback loop between CHK2 and AR. In addition, we provide evidence that CHK2 physically associates with the AR and that cell-cycle inhibition increased this association. Finally, IHC analysis of CHK2 in prostate cancer patient samples demonstrated a decrease in CHK2 expression in high-grade tumors. In conclusion, we propose that CHK2 is a negative regulator of androgen sensitivity and prostate cancer growth, and that CHK2 signaling is lost during prostate cancer progression to castration resistance. Thus, perturbing CHK2 signaling may offer a new therapeutic approach for sensitizing CRPC to ADT and radiation.
Collapse
Affiliation(s)
- Huy Q Ta
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Melissa L Ivey
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia. Cancer Center Member, University of Virginia, Charlottesville, Virginia
| | - Mark R Conaway
- Cancer Center Member, University of Virginia, Charlottesville, Virginia. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Jaroslaw Dziegielewski
- Cancer Center Member, University of Virginia, Charlottesville, Virginia. Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - James M Larner
- Cancer Center Member, University of Virginia, Charlottesville, Virginia. Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Daniel Gioeli
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. Cancer Center Member, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Perner S, Cronauer MV, Schrader AJ, Klocker H, Culig Z, Baniahmad A. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget 2015; 6:35542-55. [PMID: 26325261 PMCID: PMC4742123 DOI: 10.18632/oncotarget.4689] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Prostate Cancer (PCa) is an important age-related disease being the most common cancer malignancy and the second leading cause of cancer mortality in men in Western countries. Initially, PCa progression is androgen receptor (AR)- and androgen-dependent. Eventually advanced PCa reaches the stage of Castration-Resistant Prostate Cancer (CRPC), but remains dependent on AR, which indicates the importance of AR activity also for CRPC. Here, we discuss various pathways that influence the AR activity in CRPC, which indicates an adaptation of the AR signaling in PCa to overcome the treatment of PCa. The adaptation pathways include interferences of the normal regulation of the AR protein level, the expression of AR variants, the crosstalk of the AR with cytokine tyrosine kinases, the Src-Akt-, the MAPK-signaling pathways and AR corepressors. Furthermore, we summarize the current treatment options with regard to the underlying molecular basis of the common adaptation processes of AR signaling that may arise after the treatment with AR antagonists, androgen deprivation therapy (ADT) as well as for CRPC, and point towards novel therapeutic strategies. The understanding of individualized adaptation processes in PCa will lead to individualized treatment options in the future.
Collapse
Affiliation(s)
- Sven Perner
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | | | | | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Austria
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Germany
| |
Collapse
|
11
|
Brayman MJ, Pepa PA, Mellon PL. Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1. Mol Cell Endocrinol 2012; 363:92-9. [PMID: 22877652 PMCID: PMC3447085 DOI: 10.1016/j.mce.2012.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/27/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a major role in the hypothalamic-pituitary-gonadal (HPG) axis, and synthesis and secretion of GnRH are regulated by gonadal steroid hormones. Disruptions in androgen levels are involved in a number of reproductive defects, including hypogonadotropic hypogonadism and polycystic ovarian syndrome. Androgens down-regulate GnRH mRNA synthesis in vivo and in vitro via an androgen receptor (AR)-dependent mechanism. Methyltrienolone (R1881), a synthetic AR agonist, represses GnRH expression through multiple sites in the proximal promoter. In this study, we show AR also represses GnRH transcription via the major enhancer (GnRH-E1). A multimer of the -1800/-1766 region was repressed by R1881 treatment. Mutation of two bases, -1792 and -1791, resulted in decreased basal activity and a loss of AR-mediated repression. AR bound to the -1796/-1791 sequence in electrophoretic mobility shift assays, indicating a direct interaction with DNA or other transcription factors in this region. We conclude that AR repression of GnRH-E1 acts via multiple AR-responsive regions, including the site at -1792/-1791.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | | | | |
Collapse
|
12
|
Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen. PLoS One 2012; 7:e38950. [PMID: 22761715 PMCID: PMC3384611 DOI: 10.1371/journal.pone.0038950] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/15/2012] [Indexed: 01/10/2023] Open
Abstract
As prostate cancer progresses to castration-resistant disease, there is an increase in signal transduction activity. Most castration-resistant prostate tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes, despite the near absence of circulating androgen in these patients. The AR is regulated not only by its cognate steroid hormone, but also by interactions with a constellation of co-regulatory and signaling molecules. Thus, the elevated signaling activity that occurs during progression to castration resistance can affect prostate cancer cell growth either through the AR or independent of the AR. In order to identify signaling pathways that regulate prostate cancer cell growth, we screened a panel of shRNAs targeting 673 human kinases against LNCaP prostate cancer cells grown in the presence and absence of hormone. The screen identified multiple shRNA clones against known and novel gene targets that regulate prostate cancer cell growth. Based on the magnitude of effect on growth, we selected six kinases for further study: MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1. Knockdown of these kinases decreased cell growth in both androgen-dependent and castration-resistant prostate cancer cells. However, these kinases had different effects on basal or androgen-induced transcriptional activity of AR target genes. MAP3K11 knockdown most consistently altered transcription of AR target genes, suggesting that MAP3K11 affected its growth inhibitory effect by modulating the AR transcriptional program. Consistent with MAP3K11 acting on the AR, knockdown of MAP3K11 inhibited AR Ser 650 phosphorylation, further supporting stress kinase regulation of AR phosphorylation. This study demonstrates the applicability of lentiviral-based shRNA for conducting phenotypic screens and identifies MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1 as regulators of prostate cancer cell growth. The thorough evaluation of these kinase targets will pave the way for developing more effective treatments for castration-resistant prostate cancer.
Collapse
|
13
|
Brayman MJ, Pepa PA, Berdy SE, Mellon PL. Androgen receptor repression of GnRH gene transcription. Mol Endocrinol 2012; 26:2-13. [PMID: 22074952 PMCID: PMC3248321 DOI: 10.1210/me.2011-1015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at -106/-91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and The Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
14
|
Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011; 12:332-47. [PMID: 20955148 DOI: 10.2174/138945011794815356] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
15
|
Merkle D, Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor. Cell Signal 2010; 23:507-15. [PMID: 20813184 DOI: 10.1016/j.cellsig.2010.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/14/2010] [Accepted: 08/20/2010] [Indexed: 01/22/2023]
Abstract
Prostate carcinomas are among the most frequently diagnosed and death causing cancers affecting males in the developed world. It has become clear that the molecular mechanisms that drive the differentiation of normal prostate cells towards neoplasia involve multiple signal transduction cascades that often overlap and interact. A critical mediator of cellular proliferation and differentiation in various cells (and cancers) is the cAMP-dependent protein kinase, also known as protein kinase A (PKA), and its activating secondary messenger, cAMP. PKA and cAMP have been shown to play critical roles in prostate carcinogenesis and are the subject of this review. In particular we will focus on the cross-talk between PKA/cAMP signaling and that of the androgen receptor.
Collapse
Affiliation(s)
- Dennis Merkle
- Philips Research, High Tech Campus, 5656AE, Eindhoven,The Netherlands.
| | | |
Collapse
|
16
|
Norris JD, Chang CY, Wittmann BM, Kunder RS, Cui H, Fan D, Joseph JD, McDonnell DP. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell 2010; 36:405-16. [PMID: 19917249 DOI: 10.1016/j.molcel.2009.10.020] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/11/2009] [Accepted: 09/24/2009] [Indexed: 01/10/2023]
Abstract
HOXB13 is a member of the homeodomain family of sequence-specific transcription factors and, together with the androgen receptor (AR), plays a critical role in the normal development of the prostate gland. We demonstrate here that, in prostate cancer cells, HOXB13 is a key determinant of the response to androgens. Specifically, it was determined that HOXB13 interacts with the DNA-binding domain of AR and inhibits the transcription of genes that contain an androgen-response element (ARE). In contrast, the AR:HOXB13 complex confers androgen responsiveness to promoters that contain a specific HOXB13-response element. Further, HOXB13 and AR synergize to enhance the transcription of genes that contain a HOX element juxtaposed to an ARE. The profound effects of HOXB13 knockdown on androgen-regulated proliferation, migration, and lipogenesis in prostate cancer cells highlight the importance of the observed changes in gene expression.
Collapse
Affiliation(s)
- John D Norris
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen S, Kesler CT, Paschal BM, Balk SP. Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem 2009; 284:25576-84. [PMID: 19622840 DOI: 10.1074/jbc.m109.043133] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Androgen receptor (AR) is phosphorylated at multiple sites in response to ligand binding, but the functional consequences and mechanisms regulating AR phosphorylation remain to be established. We observed initially that okadaic acid, an inhibitor of the major PPP family serine/threonine phosphatases PP2A and protein phosphatase 1 (PP1), had cell type-dependent effects on AR expression. More specific inhibitors of PP2A (fostriecin) and PP1 (tautomycin and siRNA against the PP1alpha catalytic subunit) demonstrated that PP1 and protein phosphatase 2A had opposite effects on AR protein and transcriptional activity. PP1 inhibition enhanced proteasome-mediated AR degradation, while PP1alpha overexpression increased AR expression and markedly enhanced AR transcriptional activity. Coprecipitation experiments demonstrated an AR-PP1 interaction, while immunofluorescence and nuclear-cytoplasmic fractionation showed androgen-stimulated nuclear translocation of both AR and PP1 in prostate cancer cells. Studies with phosphospecific AR antibodies showed that PP1 inhibition dramatically increased phosphorylation of Ser-650, a site in the AR hinge region shown to mediate nuclear export. Significantly, PP1 inhibition caused a marked decrease in nuclear localization of the wild-type AR, but did not alter total or nuclear levels of a S650A mutant AR. These findings reveal a critical role of PP1 in regulating AR protein stability and nuclear localization through dephosphorylation of Ser-650. Moreover, AR may function as a PP1 regulatory subunit and mediate PP1 recruitment to chromatin, where it can modulate transcription and splicing.
Collapse
Affiliation(s)
- Shaoyong Chen
- Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
18
|
Jin F, Fondell JD. A novel androgen receptor-binding element modulates Cdc6 transcription in prostate cancer cells during cell-cycle progression. Nucleic Acids Res 2009; 37:4826-38. [PMID: 19520769 PMCID: PMC2724301 DOI: 10.1093/nar/gkp510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The androgen receptor (AR) plays a pivotal role in the onset and progression of prostate cancer by promoting cellular proliferation. Recent studies suggest AR is a master regulator of G1-S progression and possibly a licensing factor for DNA replication yet the mechanisms remain poorly defined. Here we report that AR targets the human Cdc6 gene for transcriptional regulation. Cdc6 is an essential regulator of DNA replication in eukaryotic cells and its mRNA expression is inversely modulated by androgen or antiandrogen treatment in androgen-sensitive prostate cancer cells. AR binds at a distinct androgen-response element (ARE) in the Cdc6 promoter that is functionally required for androgen-dependent Cdc6 transcription. We found that peak AR occupancy at the novel ARE occurs during the G1/S phase concomitant with peak Cdc6 mRNA expression. We also identified several of the coactivators and corepressors involved in AR-dependent Cdc6 transcriptional regulation in vivo and further characterized ligand-induced alterations in histone acetylation and methylation at the Cdc6 promoter. Significantly, AR silencing in prostate cancer cells markedly decreases Cdc6 expression and androgen-dependent cellular proliferation. Collectively, our results suggest that Cdc6 is a key regulatory target for AR and provide new insights into the mechanisms of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | - Joseph D. Fondell
- *To whom correspondence should be addressed. Tel: +1 732 235 3348; Fax: +1 732 235 5823;
| |
Collapse
|
19
|
Wang G, Sadar MD. Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J Cell Biochem 2009; 98:36-53. [PMID: 16440300 DOI: 10.1002/jcb.20802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.
Collapse
Affiliation(s)
- Gang Wang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z1L3, Canada
| | | |
Collapse
|
20
|
Kung HJ, Evans CP. Oncogenic activation of androgen receptor. Urol Oncol 2009; 27:48-52. [PMID: 19111798 DOI: 10.1016/j.urolonc.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/17/2008] [Accepted: 06/20/2008] [Indexed: 12/29/2022]
Abstract
BACKGROUND There is considerable evidence implicating the aberrant activation or "reactivation" of androgen receptor in the course of androgen-ablation therapy as a potential cause for the development of castration-resistant prostate cancer. Several non-mutually exclusive mechanisms including the inappropriate activation of androgen receptor (AR) by non-steroids have been postulated. The present work is aimed to understand the role of neuropeptides released by neuroendocrine transdifferentiated prostate cancer cells in the aberrant activation of AR. OBJECTIVES The study was designed to study how neuropeptides such as gastrin-releasing peptide activate AR and to define the crucial signal pathways involved, in the hope to identify therapeutic targets. METHODS AND MATERIALS Androgen-dependent LNCaP cell line was used to study the effects of bombesin/gastrin-releasing peptide on the growth of the cell line and the transactivation of AR. The neuropeptide was either added to the media or introduced as a transgene in LNCaP cells to study its paracrine or autocrine effect on LNCaP growth under androgen-deprived conditions. The activation of AR was monitored by reporter assay, chromatin immunoprecipitation (ChIP) of AR, translocation into the nucleus and cDNA microarray of the AR response genes. RESULTS Bombesin/gastrin releasing peptides induce androgen-independent growth of LNCaP in vitro and in vivo. It does so by activating AR, which is accompanied by the activation of Src tyrosine kinase and its target c-myc oncogene. The bombesin or Src-activated AR induces an overlapping set of AR response genes as androgen, but they also a unique set of genes. Intriguingly, the Src-activated and androgen-bound ARs differ in their binding specificity toward AR response elements, indicating the receptors activated by these 2 mechanisms are not conformationally identical. Finally, Src inhibitor was shown to effectively block the activation of AR and the growth effects induced by bombesin. CONCLUSION The results showed that AR can be activated by neuropeptide, a ligand for G-protein coupled receptor, in the absence of androgen. The activation goes through Src-tyrosine kinase pathway, and tyrosine kinase inhibitor is a potentially useful adjunctive therapy during androgen ablation.
Collapse
Affiliation(s)
- Hsing-Jien Kung
- Department of Basic Sciences, University of California, Davis Cancer Center, Sacramento, CA 95817, USA.
| | | |
Collapse
|
21
|
Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol 2008; 29:169-81. [PMID: 18093638 PMCID: PMC2386261 DOI: 10.1016/j.yfrne.2007.10.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/12/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
Abstract
Previous work in the endocrine and neuroendocrine fields has viewed the androgen receptor (AR) as a transcription factor activated by testosterone or one of its many metabolites. The bound AR acts as transcription regulatory element by binding to specific DNA response elements in target gene promoters, causing activation or repression of transcription and subsequently protein synthesis. Over the past two decades evidence at the cellular and organismal level has accumulated to implicate rapid responses to androgens, dependent or independent of the AR. Androgen's rapid time course of action; its effects in the absence or inhibition of the cellular machinery necessary for transcription/translation; and in the absence of translocation to the nucleus suggest a method of androgen action not initially dependent on genomic mechanisms (i.e. non-genomic in nature). In the present paper, the non-genomic effects of androgens are reviewed, along with a discussion of the possible role non-genomic androgen actions have on animal physiology and behavior.
Collapse
Affiliation(s)
- C D Foradori
- Department of Biomedical Sciences, Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
22
|
Chen J, Ahn KC, Gee NA, Ahmed MI, Duleba AJ, Zhao L, Gee SJ, Hammock BD, Lasley BL. Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 2008; 149:1173-9. [PMID: 18048496 PMCID: PMC2275366 DOI: 10.1210/en.2007-1057] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many xenobiotics have been associated with endocrine effects in a wide range of biological systems. These associations are usually between small nonsteroid molecules and steroid receptor signaling systems. In this report, triclocarban (TCC; 3,4,4'-trichlorocarbanilide), a common ingredient in personal care products that is used as an antimicrobial agent was evaluated and found to represent a new category of endocrine-disrupting substance. A cell-based androgen receptor-mediated bioassay was used to demonstrate that TCC and other urea compounds with a similar structure, which have little or no endocrine activity when tested alone, act to enhance testosterone (T)-induced androgen receptor-mediated transcriptional activity in vitro. This amplification effect of TCC was also apparent in vivo when 0.25% TCC was added to the diet of castrated male rats that were supported by exogenous testosterone treatment for 10 d. All male sex accessory organs increased significantly in size after the T+TCC treatment, compared with T or TCC treatments alone. The data presented here suggest that the bioactivity of endogenous hormones may be amplified by exposure to commercial personal care products containing sufficient levels of TCC.
Collapse
Affiliation(s)
- Jiangang Chen
- Center for Health and the Environment, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schlomm T, Erbersdobler A, Mirlacher M, Sauter G. Molecular staging of prostate cancer in the year 2007. World J Urol 2007; 25:19-30. [PMID: 17334767 DOI: 10.1007/s00345-007-0153-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 01/27/2007] [Indexed: 01/30/2023] Open
Abstract
Numerous attempts towards improving patient management by molecular staging have been fruitless so far. No single molecular parameter is routinely analyzed in prostate cancer tissue. This may be partly due to genuine properties of prostate cancer that may make this tumor a difficult target. Furthermore, inherent logistical problems result in a shortage of prostate cancer tissue for research purposes. For the future, it can be hoped that the availability of more powerful molecular techniques in combination with better tissue archives will allow more rapid progress. Powerful DNA array and proteomics methods allow the systematic analysis of virtually all genes of a cancer on the DNA, RNA, and protein level. Although such approaches are sometimes labeled as "fishing expeditions," it cannot be totally disregarded that the simultaneous analysis of all genes has a high likelihood of identifying significant new information. In future, one of the major scientific challenges will be the validation of several potential biomarkers in large enough and clinically well-characterized patient cohorts. In particular, studies on needle core biopsies and hormone refractory cancers are imperatively needed for investigating the natural history of the disease or to discover potential predictive markers for radiation therapy and new therapeutic target genes to answer the clinically most important questions for optimal clinical decision making in prostate cancer patients: which patients will not require local therapy? If local therapy is needed, what is the treatment of choice? What medications should be given if metastases are present?
Collapse
Affiliation(s)
- Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
24
|
Ong VYC, Tan BKH. Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides. Altern Ther Health Med 2007; 7:3. [PMID: 17261169 PMCID: PMC1797194 DOI: 10.1186/1472-6882-7-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/29/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Plants containing compounds such as the isoflavonoids, with female hormone-like effects that bind to human estrogen receptors, are known. But none has been previously shown to have corresponding male hormone-like effects that interact with the human androgen receptor. Here, we report that the tree bark (cortex) of the Gutta-Percha tree Eucommia ulmoides possesses bimodal phytoandrogenic and hormone potentiating effects by lipidic components. METHODS The extracts of E. ulmoides were tested using in-vitro reporter gene bioassays and in-vivo animal studies. Key compounds responsible for the steroidogenic effects were isolated and identified using solid phase extraction (SPE), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), gas chromatography-mass spectroscopy (GC-MS), electron spray ionisation-mass spectroscopy (ESI-MS) and nuclear magnetic resonance (NMR). RESULTS The following bioactivities of E. ulmoides were found: (1) a phenomenal tripartite synergism exists between the sex steroid receptors (androgen and estrogen receptors), their cognate steroidal ligands and lipidic augmenters isolated from E. ulmoides, (2) phytoandrogenic activity of E. ulmoides was mediated by plant triterpenoids binding cognately to the androgen receptor (AR) ligand binding domain. CONCLUSION In addition to well-known phytoestrogens, the existence of phytoandrogens is reported in this study. Furthermore, a form of tripartite synergism between sex steroid receptors, sex hormones and plant-derived lipids is described for the first time. This could have contrasting clinical applications for hypogonadal- and hyperlipidaemic-related disorders.
Collapse
|
25
|
Ma AH, Xia L, Desai SJ, Boucher DL, Guan Y, Shih HM, Shi XB, deVere White RW, Chen HW, Tepper CG, Kung HJ. Male Germ Cell–Associated Kinase, a Male-Specific Kinase Regulated by Androgen, Is a Coactivator of Androgen Receptor in Prostate Cancer Cells. Cancer Res 2006; 66:8439-47. [PMID: 16951154 DOI: 10.1158/0008-5472.can-06-1636] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) is a ligand-induced transcriptional factor, which plays an important role in the normal development of prostate as well as in the progression of prostate cancer. Numerous coactivators, which associate with AR and function to remodel chromatin and recruit RNA polymerase II to enhance the transcriptional potential of AR, have been identified. Among these coactivators, few are protein kinases. In this study, we describe the characterization of a novel protein kinase, male germ cell-associated kinase (MAK), which serves as a coactivator of AR. We present evidence, which indicates that (a) MAK physically associates with AR (MAK and AR are found to be coprecipitated from cell extracts, colocalized in nucleus, and corecruited to prostate-specific antigen promoter in LNCaP as well as in transfected cells); (b) MAK is able to enhance AR transactivation potential in an androgen- and kinase-dependent manner in several prostate cancer cells and synergize with ACTR/steroid receptor coactivator-3 coactivator; (c) small hairpin RNA (shRNA) knocks down MAK expression resulting in the reduction of AR transactivation ability; (d) MAK-shRNA or kinase-dead mutant, when introduced into LNCaP cells, reduces the growth of the cells; and (e) microarray analysis of LNCaP cells carrying kinase-dead MAK mutant showed a significant impediment of AR signaling, indicating that endogenous MAK plays a general role in AR function in prostate cancer cells and likely to be a general coactivator of AR in prostate tissues. The highly restricted expression of this kinase makes it a potentially useful target for intervention of androgen independence.
Collapse
Affiliation(s)
- Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine and University of California Davis Cancer Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Koutsilieris M, Bogdanos J, Milathianakis C, Dimopoulos P, Dimopoulos T, Karamanolakis D, Halapas A, Tenta R, Katopodis H, Papageorgiou E, Pitulis N, Pissimissis N, Lembessis P, Sourla A. Combination therapy using LHRH and somatostatin analogues plus dexamethasone in androgen ablation refractory prostate cancer patients with bone involvement: a bench to bedside approach. Expert Opin Investig Drugs 2006; 15:795-804. [PMID: 16787142 DOI: 10.1517/13543784.15.7.795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of resistance to anticancer therapies is a major hurdle in preventing long-lasting clinical responses to conventional therapies in hormone-refractory prostate cancer. Herein, the molecular evidence documenting that bone metastasis microenvironment survival factors (mainly the paracrine growth hormone-independent, urokinase-type plasminogen activator-mediated increase of IGF-1 and the endocrine production of growth hormone-dependent IGF-1, mainly liver-derived IGF-1 production) produce an epigenetic form of prostate cancer cells that are resistant to proapoptotic therapies is reviewed. Consequently, the authors present the conceptual framework of a novel antibone microenvironment survival factor, mainly an anti-IGF-1 hormonal manipulation for androgen ablation refractory prostate cancer (a combination of conventional androgen ablation therapy [luteinising hormone-releasing hormone agonist-A or orchiectomy]) with dexamethasone plus somatostatin analogue, which yielded durable objective responses and major improvement of bone pain and performance status in stage D3 prostate cancer patients.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/secondary
- Adenocarcinoma/surgery
- Androgen Antagonists/therapeutic use
- Androgens/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis
- Bone Neoplasms/drug therapy
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- Clinical Trials, Phase II as Topic
- Combined Modality Therapy
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm
- Estramustine/administration & dosage
- Etoposide/administration & dosage
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/therapeutic use
- Growth Substances/metabolism
- Humans
- Leuprolide/administration & dosage
- Male
- Neoplasm Proteins/metabolism
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/secondary
- Neoplasms, Hormone-Dependent/surgery
- Orchiectomy
- Osteoblasts/metabolism
- Osteoclasts/metabolism
- Paracrine Communication
- Peptides, Cyclic/administration & dosage
- Prospective Studies
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/surgery
- Randomized Controlled Trials as Topic
- Receptors, Androgen/drug effects
- Receptors, Androgen/metabolism
- Salvage Therapy
- Somatostatin/administration & dosage
- Somatostatin/analogs & derivatives
- Survival Analysis
- Triptorelin Pamoate/administration & dosage
Collapse
Affiliation(s)
- Michael Koutsilieris
- University of Athens, Department of Basic Sciences, Medical School, 75 Micras Asias, Goudi-Athens 11527, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST, Paschal BM, Weber MJ. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 2005; 20:503-15. [PMID: 16282370 DOI: 10.1210/me.2005-0351] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activation of signal transduction kinase cascades is known to alter androgen receptor (AR) activity, but the molecular mechanisms are still poorly defined. Here we show that stress kinase signaling regulates Ser 650 phosphorylation and AR nuclear export. In LNCaP prostate cancer cells, activation of either MAPK kinase (MKK) 4:c-Jun N-terminal kinase (JNK) or MKK6:p38 signaling pathways increased Ser 650 phosphorylation, whereas pharmacologic inhibition of JNK or p38 signaling led to a reduction of AR Ser 650 phosphorylation. Both p38alpha and JNK1 phosphorylated Ser 650 in vitro. Small interfering RNA-mediated knockdown of either MKK4 or MKK6 increased endogenous prostate-specific antigen (PSA) transcript levels, and this increase was blocked by either bicalutamide or AR small interfering RNA. Stress kinase inhibition of PSA transcription is, therefore, dependent on the AR. Similar experiments involving either activation or inhibition of MAPK/ERK kinase:ERK signaling had little effect on Ser 650 phosphorylation or PSA mRNA levels. Ser 650 is proximal to the DNA binding domain that contains a nuclear export signal. Mutation of Ser 650 to alanine reduced nuclear export of the AR, whereas mutation of Ser 650 to the phosphomimetic amino acid aspartate restored AR nuclear export. Pharmacologic inhibition of stress kinase signaling reduced wild-type AR nuclear export equivalent to the S650A mutant without affecting nuclear export of the S650D mutant. Our data suggest that stress kinase signaling and nuclear export regulate AR transcriptional activity.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, P.O. Box 800734, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gregory CW, Whang YE, McCall W, Fei X, Liu Y, Ponguta LA, French FS, Wilson EM, Earp HS. Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res 2005; 11:1704-12. [PMID: 15755991 DOI: 10.1158/1078-0432.ccr-04-1158] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The androgen receptor (AR) is a ligand-dependent transcription factor that mediates gene expression and growth of normal and malignant prostate cells. In prostate tumors that recur after androgen withdrawal, the AR is highly expressed and transcriptionally active in the absence of testicular androgens. In these "androgen-independent" tumors, alternative means of AR activation have been invoked, including regulation by growth factors and their receptors in prostate cancer recurrence. EXPERIMENTAL DESIGN AND RESULTS In this report, we show that HER receptor tyrosine kinases 1 through 4 are expressed in the CWR-R1 recurrent prostate cancer cell line; their stimulation by epidermal growth factor (EGF) and heregulin activates downstream signaling, including mitogen-activated protein kinase and phosphatidylinositol-3 kinase and Akt pathways. We show that heregulin activates HER2 and HER3 and increases androgen-dependent AR transactivation of reporter genes in CWR-R1 cells. Tyrosine phosphorylation of HER2 and HER3, AR transactivation, and cell proliferation induced by heregulin were more potently inhibited by the EGFR/HER2 dual tyrosine kinase inhibitor GW572016 (lapatinib) than the EGFR-specific inhibitor ZD1839 (gefitinib). Basal proliferation in the absence of growth factors was also inhibited by GW572016 to a greater extent than ZD1839, suggesting that low level HER2/HER3 activation perhaps by an autocrine pathway contributes to the proliferation signal. CONCLUSIONS These data indicate that heregulin signaling through HER2 and HER3 increases AR transactivation and alters growth in a recurrent prostate cancer cell line. Therefore, inhibition of low-level HER2 signaling may be a potential novel therapeutic strategy in prostate cancer.
Collapse
Affiliation(s)
- Christopher W Gregory
- Department of Pathology and Laboratory Medicine, University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Willemsen P, Scippo ML, Maghuin-Rogister G, Martial JA, Muller M. Enhancement of steroid receptor-mediated transcription for the development of highly responsive bioassays. Anal Bioanal Chem 2005; 382:894-905. [PMID: 15906006 DOI: 10.1007/s00216-005-3253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/25/2005] [Accepted: 04/08/2005] [Indexed: 02/02/2023]
Abstract
We have previously generated several transformed human mammary cell lines for the detection of steroid receptor-mediated activities and used these cell lines to detect and characterize steroid hormone (ant)agonistic compounds. In this report, we describe the specific optimization procedures used to enhance receptor-mediated transcription through the human glucocorticoid, progesterone and androgen receptors, respectively. Sodium arsenite-induced chemical stress leads to a substantial and specific increase in the glucocorticoid receptor-mediated transcription, resulting in maximal stimulations of more than 2000-fold by the agonist dexamethasone. Similarly, a combined treatment with forskolin (an activator of adenylate cyclase) and trichostatin A (an inhibitor of histone deacetylases) leads to a synergistic enhancement of progesterone or androgen stimulation, resulting in a maximal induction of more than 200-fold or about 100-fold, respectively. The enhanced responses to specific steroids are mediated by the corresponding nuclear receptor. We show that by using these enhanced transcriptional stimulation protocols, it is possible to detect lower amounts of steroid hormones without substantially affecting the relative biological activities of various agonists. Finally, the application of these enhanced reporter cell assays to real biological samples from meat-producing animals is evaluated, and some validation parameters are presented.
Collapse
Affiliation(s)
- Philippe Willemsen
- Laboratoire de Biologie Molèculaire et de Génie Génétique, Université de Liège, Bâtiment de Chimie B-6, Sart Tilman, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
30
|
Abstract
Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths in the United States. When prostate cancer initially presents in the clinic, the tumour is dependent on androgen for growth and, therefore, responsive to the surgical or pharmacological ablation of circulating androgens. However, there is a high rate of treatment failure because the disease often recurs as androgen-independent metastases. Surprisingly, this late-stage androgen-independent prostate cancer almost always retains expression of the AR (androgen receptor), despite the near absence of circulating androgens. Although late-stage prostate cancer is androgen-independent, the AR still seems to play a role in cancer cell growth at this stage of disease. Therefore a key to understanding hormone-independent prostate cancer is to determine the mechanism(s) by which the AR can function even in the absence of physiological levels of circulating androgen. This review will focus on the role of growth factor signalling in prostate cancer progression to androgen independence and thus outline potential molecular areas of intervention to treat prostate cancer progression.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, University of Virginia Health System, PO Box 800734, Charlottesville, VA 22908, U.S.A.
| |
Collapse
|
31
|
Rahman M, Miyamoto H, Chang C. Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res 2004; 10:2208-19. [PMID: 15073094 DOI: 10.1158/1078-0432.ccr-0746-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mujib Rahman
- George Whipple Laboratory for Cancer Research, Department of Biochemistry, and the Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
32
|
Willoughby DS, Taylor L. Effects of sequential bouts of resistance exercise on androgen receptor expression. Med Sci Sports Exerc 2004; 36:1499-506. [PMID: 15354030 DOI: 10.1249/01.mss.0000139795.83030.d1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Increased serum testosterone (TST) occurs in response to resistance exercise and is associated with increased muscle mass. However, the effects of elevated TST and sequential resistance exercise bouts on androgen receptor (AR) expression in humans are not well known. This study examined three sequential bouts of heavy-resistance exercise on serum total TST, sex hormone-binding globulin (SHBG) and free androgen index (FAI), skeletal muscle AR mRNA and protein expression, and myofibrillar protein content. METHODS Eighteen untrained males were randomly assigned to either a resistance-training [RST (N = 9)] or control group [CON (N = 9)]. RST performed three lower-body resistance exercise bouts, each separated by 48 h. At each exercise bout, RST performed three sets of 8-10 repetitions at 75-80% one-repetition maximum using the squat, leg press, and leg extension exercises, respectively, whereas CON performed no resistance exercise. Muscle biopsies were obtained immediately before the first exercise bout and 48 h after each of the three bouts, whereas blood samples were obtained immediately before, immediately after, and 30 min after each bout. Data were analyzed with two-way ANOVA and bivariate correlations. RESULTS Serum TST and FAI were significantly increased after each exercise bout (P < 0.05); however, there were no significant changes for SHBG. AR mRNA and protein were significantly increased (P < 0.05) after the second and third exercise bouts, respectively, and were significantly correlated to TST and FAI (P < 0.05). Myofibrillar protein increased after the third bout (P < 0.05). CONCLUSIONS Three sequential bouts of heavy resistance exercise increases serum TST and are effective at up-regulating AR mRNA and protein expression that appears to correspond to subsequent increases in myofibrillar protein.
Collapse
Affiliation(s)
- Darryn S Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of HHPR, Baylor University, Waco, TX 76798, USA.
| | | |
Collapse
|
33
|
Miyamoto H, Messing EM, Chang C. Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 2004; 61:332-53. [PMID: 15389811 DOI: 10.1002/pros.20115] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Androgens play a major role in promoting the development and progression of prostate cancer. As a result, androgen ablation or blockade of androgen action through the androgen receptor (AR) has been the cornerstone of treatment of advanced prostate cancer. Different strategies involving this hormonal therapy produce a significant clinical response in most of the patients, but most responders eventually lose dependency, resulting in mortality. Thus, whether hormonal therapy contributes to the improvement of overall survival rates, especially in patients with advanced prostate cancer, remains controversial. However, patients with advanced disease clearly have a benefit from androgen deprivation-based treatment for palliating their symptoms and for improving the quality of their lives. In order to improve overall survival, novel treatment strategies that prolong the androgen-dependent state and that are useful for androgen-independent disease based on specific molecular mechanisms need to be identified.
Collapse
Affiliation(s)
- Hiroshi Miyamoto
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, and the Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
34
|
Abstract
The normal development and maintenance of the prostate is dependent on androgen acting through the androgen receptor (AR). AR remains important in the development and progression of prostate cancer. AR expression is maintained throughout prostate cancer progression, and the majority of androgen-independent or hormone refractory prostate cancers express AR. Mutation of AR, especially mutations that result in a relaxation of AR ligand specificity, may contribute to the progression of prostate cancer and the failure of endocrine therapy by allowing AR transcriptional activation in response to antiandrogens or other endogenous hormones. Similarly, alterations in the relative expression of AR coregulators have been found to occur with prostate cancer progression and may contribute to differences in AR ligand specificity or transcriptional activity. Prostate cancer progression is also associated with increased growth factor production and an altered response to growth factors by prostate cancer cells. The kinase signal transduction cascades initiated by mitogenic growth factors modulate the transcriptional activity of AR and the interaction between AR and AR coactivators. The inhibition of AR activity through mechanisms in addition to androgen ablation, such as modulation of signal transduction pathways, may delay prostate cancer progression.
Collapse
Affiliation(s)
- Cynthia A Heinlein
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
35
|
Huppunen J, Aarnisalo P. Dimerization modulates the activity of the orphan nuclear receptor ERRgamma. Biochem Biophys Res Commun 2004; 314:964-70. [PMID: 14751226 DOI: 10.1016/j.bbrc.2003.12.194] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor lacking identified natural ligands. However, 4-hydroxytamoxifen and diethylstilbestrol were recently shown to bind to and inhibit ERRgamma activity. ERR activates transcription constitutively as a monomer. We show here that ERRgamma forms also dimers via its ligand-binding domain. Homodimerization enhances the transcriptional activity. In contrast, heterodimerization with the related receptor ERRalpha inhibits the activities of both ERRgamma and ERRalpha. The inverse ERRgamma agonist 4OHT further inhibits the activity of the ERRgamma-ERRalpha heterodimer, indicating that 4OHT may modulate ERRalpha signaling via ERRgamma. Receptor dimerization thus modulates the transcriptional activities of ERRs.
Collapse
Affiliation(s)
- Johanna Huppunen
- Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, Finland
| | | |
Collapse
|
36
|
Rigas AC, Ozanne DM, Neal DE, Robson CN. The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway. J Biol Chem 2003; 278:46087-93. [PMID: 12958311 DOI: 10.1074/jbc.m306219200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR), a member of the nuclear hormone receptor superfamily, functions as a ligand-dependent transcription factor that regulates genes involved in cell proliferation and differentiation. Using a C-terminal region of the human AR in a yeast two-hybrid screen, we have identified RACK1 (receptor for activated C kinase-1) as an AR-interacting protein. In this report we found that RACK1, which was previously shown to be a protein kinase C (PKC)-anchoring protein that determines the localization of activated PKCbetaII isoform, facilitates ligand-independent AR nuclear translocation upon PKC activation by indolactam V. We also observed RACK1 to suppress ligand-dependent and -independent AR transactivation through PKC activation. In chromatin immunoprecipitation assays, we demonstrate a decrease in AR recruitment to the AR-responsive prostate-specific antigen (PSA) promoter following stimulation of PKC. Furthermore, prolonged exposure to indolactam V, a PKC activator, caused a reduction in PSA mRNA expression in prostate cancer LNCaP cells. Finally, we found PKC activation to have a repressive effect on AR and PSA protein expression in androgen-treated LNCaP cells. Our data suggest that RACK1 may function as a scaffold for the association and modification of AR by PKC enabling translocation of AR to the nucleus but rendering AR unable to activate transcription of its target genes.
Collapse
Affiliation(s)
- Anastasia C Rigas
- Prostate Research Group, School of Surgical and Reproductive Sciences, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
37
|
Zagar Y, Chaumaz G, Lieberherr M. Signaling cross-talk from Gbeta4 subunit to Elk-1 in the rapid action of androgens. J Biol Chem 2003; 279:2403-13. [PMID: 14602719 DOI: 10.1074/jbc.m309132200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgens act on transcription via intracellular androgen receptors (ARs), but they also have rapid AR-independent effects. We have identified the multistep processes involved in the rapid actions of androgens in male osteoblasts, which also possess the classical AR. Incubating cells with 5alpha-dihydroxytestosterone (100 pm, DHT) rapidly increased (1 min) the phosphorylation of the transcription factor Elk-1, and this was inhibited by pertussis toxin (PTX). DHT activated ERK1/2, a substrate of Elk-1, within 15 s but had no effect on p38 MAPK or JNK/SAPK. The inhibitors PD98059 (MEK1/2); Gö6976, Gö6983, and chelerythrine (protein kinase C); wortmannin and LY294002 (phosphatidylinositol 3-kinase); PP1 (Src); and PTX all blunted the DHT-stimulated phosphorylation of ERK1/2. DHT increased the phosphorylation of c-Raf-1 within 5 s; this was blocked by conventional protein kinase C and phosphatidylinositol 3-kinase inhibitors. The first activated membrane protein was the PTX-sensitive Gbeta(4) subunit coupled to phospholipase C-beta2, which triggered a rapid (5 s) increase in intracellular calcium and diacylglycerol formation. The androgen antagonist cyproterone acetate did not modify the responses to DHT. Lastly an anti-AR antibody directed against the ligand binding domain recognized a protein at the plasma membrane. The cascade of rapid effects triggered by androgens may involve the classical AR at the plasma membrane or an uncharacterized form of AR that is insensitive to nuclear antagonists.
Collapse
Affiliation(s)
- Yvrick Zagar
- Laboratoire de Nutrition et de Sécurité Alimentaire, The Institut National de la Recherche Agronomique, 78 350 Jouy-en-Josas, France
| | | | | |
Collapse
|
38
|
Franco OE, Onishi T, Yamakawa K, Arima K, Yanagawa M, Sugimura Y, Kawamura J. Mitogen-activated protein kinase pathway is involved in androgen-independent PSA gene expression in LNCaP cells. Prostate 2003; 56:319-25. [PMID: 12858361 DOI: 10.1002/pros.10258] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate specific antigen (PSA) is regulated by growth factors and hormones through functional androgen responsive elements in the promoter region of the PSA gene. However, the molecular basis for androgen independent PSA elevation in hormone refractory prostate cancer is unknown. The purpose of this study was to investigate the role of MAP kinase activation in androgen independent regulation of PSA expression. METHODS LNCaP cells transfected with MEK1 expression vector with or without the MAP kinase inhibitor U0126 under low androgen conditions were analyzed by luciferase assay and electrophoretic mobility shift assay (EMSA). RESULTS Transfection experiments of the proximal PSA promoter linked to Luc-reporter identified one region designated as "B" motif centered at -60 bp to be essential for basal activation. Co-transfection with the MEK1 activated vector enhanced PSA expression, while mutation of the "B" motif totally abrogated this induction. EMSA showed a specific DNA-protein complex, but Sp1 family members and AR do not interact with the "B" region by supershift analysis. CONCLUSIONS Our data suggest that enhanced androgen-independent PSA gene expression in MAP kinase-induced LNCaP cells is mediated, at least in part, by the "B" motif of the PSA promoter.
Collapse
Affiliation(s)
- Omar E Franco
- Department of Urology, Mie University School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Androgens mediate a wide range of processes during embryogenesis and in the adult. In mammals, although a number of steroids can be shown to exert androgenic effects using in vitro and in vivo assays, testosterone and its 5alpha reduced metabolite, 5alpha-dihydrotestosterone (DHT) are considered to represent the principal physiologic androgens. Furthermore, although the effects that androgens exert differ widely among different tissues and cell types, genetic and biochemical data suggest that these effects are mediated via the protein products of a single androgen receptor gene, which is encoded on the X-chromosome in mammals.
Collapse
Affiliation(s)
- M J McPhaul
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Texas Southwestern Medical Center, Dallas, TX 75390-8857, USA.
| |
Collapse
|
40
|
Abstract
When prostate cancer is first detected it generally is dependent on the presence of androgens for growth, and responds to androgen ablation therapies. However, the disease often recurs in a disseminated and apparently androgen independent (AI) form, and in this state is almost invariably fatal. Considerable evidence indicates that the Androgen receptor (AR) continues to be required even in androgen independent (AI) disease. Thus, a key to understanding hormone independent prostate cancer is to determine the mechanism(s) by which the AR can function even in the absence of physiologic levels of androgen. In this article, we argue that growth factors and receptors that utilize Ras family members drive prostate cancer progression to a state of androgen hypersensitivity; and that post-translational modifications (e.g., phosphorylations) of transcriptional cofactors might be responsible for modulating the function of the AR so that it is active even at low concentrations of androgen.
Collapse
Affiliation(s)
- Michael J Weber
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
41
|
Bott SR, Williamson M, Kirby RS. Genetic Changes and Their Prognostic Significance in Prostate Cancer. Prostate Cancer 2003. [DOI: 10.1016/b978-012286981-5/50013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Abstract
Prostate cancer is one of the leading causes of cancer death in Northern American men. The lethal phenotypes of human prostate cancer are characterized by progression to androgen-independence (Al) and a propensity to form osseous metastases. In approximately 80% of cases, prostate cancer colonizes bone and elicits a characteristic osteoblastic reaction. The bone metastases are initially sensitive to androgen deprivation treatments, but with time the cancer will eventually progress into an Al stage for which there is currently no effective treatment. Once initial hormonal therapy has failed, median survival of prostate cancer patients with bone metastases is less than 1 year (Tu et al. [2001] Lancet 357:336-341). Novel therapeutic and preventive strategies are needed to decrease morbidity and mortality of this disease.
Collapse
Affiliation(s)
- Fan Yeung
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|
43
|
Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002; 16:2181-7. [PMID: 12351684 DOI: 10.1210/me.2002-0070] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The biological activity of testosterone and dihydrotestosterone is thought to occur predominantly through binding to the androgen receptor (AR), a member of the nuclear receptor superfamily that functions as a ligand-activated transcription factor. However, androgens have also been reported to induce the rapid activation of kinase-signaling cascades and modulate intracellular calcium levels. These effects are considered to be nongenomic because they occur in cell types that lack a functional AR, in the presence of inhibitors of transcription and translation, or are observed to occur too rapidly to involve changes in gene transcription. Such nongenomic effects of androgens may occur through AR functioning in the cytoplasm to induce the MAPK signal cascade. In addition, androgens may function through the sex hormone binding globulin receptor and possibly a distinct G protein-coupled receptor to activate second messenger signaling mechanisms. The physiological effect of nongenomic androgen action has yet to be determined. However, it may ultimately contribute to regulation of transcription factor activity, including mediation of the transcriptional activity of AR.
Collapse
Affiliation(s)
- Cynthia A Heinlein
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
44
|
Palma MM, Fernandez M, Vivanco X, Pino AM. Modulation of androgen receptor protein by culture conditions of human skin fibroblasts. INTERNATIONAL JOURNAL OF ANDROLOGY 2002; 25:288-94. [PMID: 12270026 DOI: 10.1046/j.1365-2605.2002.00364.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cultures of skin fibroblasts show variation of androgen binding with culture conditions; binding variations are usually avoided by using confluent cultures. In this work, we analysed the effect of cell density and mitogenic agents on the level of androgen receptor (AR) of cultured human skin fibroblasts. Results demonstrated that in cultures of human skin fibroblasts, cellular binding of dihydrotestosterone was higher in cells grown at low than at high cell density. The reduction in binding resulted from a decrease in the number of high affinity receptors and not from a change in receptor affinity. Immunocytochemistry for AR showed greater staining intensity in cells grown at low than at high cell density. Additionally, immunoblot analysis demonstrated more AR protein in low cell density cultures. On the other hand, it was observed that cells grown at low cell density showed diminished androgen binding capacity after 24 h of treatment with insulin-like growth factor (IGF-l), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), or granulocyte-colony stimulating factor (G-CSF); this effect of growth factors was not observed in cells grown at high cell density. In conclusion, we found that cell density of cultures and mitogenic agents can regulate AR binding activity in human fibroblasts. While we do not yet know how changes in cell density affect the amount of AR, we conclude that the mechanism could be mediated by activation of the tyrosine kinase pathway, as the effect was reproduced by mitogens.
Collapse
Affiliation(s)
- Marcela M Palma
- Laboratorio de Hormonas y Receptores, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
45
|
Gioeli D, Ficarro SB, Kwiek JJ, Aaronson D, Hancock M, Catling AD, White FM, Christian RE, Settlage RE, Shabanowitz J, Hunt DF, Weber MJ. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 2002; 277:29304-14. [PMID: 12015328 DOI: 10.1074/jbc.m204131200] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of signal transduction kinase cascades has been shown to alter androgen receptor (AR) activity. Although it has been suggested that changes in AR phosphorylation might be directly responsible, the basal and regulated phosphorylations of the AR have not been fully determined. We have identified the major sites of AR phosphorylation on ARs expressed in COS-1 cells using a combination of peptide mapping, Edman degradation, and mass spectrometry. We describe the identification of seven AR phosphorylation sites, show that the phosphopeptides seen with exogenously expressed ARs are highly similar to those seen with endogenous ARs in LNCaP cells and show that specific agonists differentially regulate the phosphorylation state of endogenous ARs in LNCaP prostate cancer cells. Treatment of LNCaP cells with the synthetic androgen, R1881, elevates phosphorylation of serines 16, 81, 256, 308, 424, and 650. Ser-94 appears constitutively phosphorylated. Forskolin, epidermal growth factor, and phorbol 12-myristate 13-acetate increase the phosphorylation of Ser-650. The kinetics of phosphorylation of most sites in response to hormone or forskolin is temporally delayed, reaching a maximum at 2 h post-stimulation. The exception is Ser-81, which continues to display increasing phosphorylation at 6 h. These data provide a basis for analyzing mechanisms of cross-talk between growth factor signaling and androgen in prostate development, physiology, and cancer.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gleave ME, Zellweger T, Chi K, Miyake H, Kiyama S, July L, Leung S. Targeting anti-apoptotic genes upregulated by androgen withdrawal using antisense oligonucleotides to enhance androgen- and chemo-sensitivity in prostate cancer. Invest New Drugs 2002; 20:145-58. [PMID: 12099575 DOI: 10.1023/a:1015694802521] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The main obstacle to improved survival of advanced prostate cancer is our failure to prevent its progression to its lethal and untreatable stage of androgen independence. New therapeutic strategies designed to prevent androgen-independent (AI) progression must be developed before significant impact on survival can be achieved. Characterization of changes in gene expression profiles after androgen ablation and during progression to androgen-independence suggest that the various therapies used to kill neoplastic cells may precipitate changes in gene expression that lead to the resistant phenotype. Castration-induced increases in antiapoptosis genes, Bcl-2 and clusterin, help create a resistant phenotype, while antisense oligonucleotides can inhibit these adaptive cell survival mechanisms and enhance both hormone and chemotherapy. Ongoing efforts are necessary to identify additional molecular pathways mediating AI progression and chemoresistance, since complexities of tumor heterogeneity and adaptability dictate that optimal control over tumor progression will require multi-target systemic therapies.
Collapse
Affiliation(s)
- Martin E Gleave
- The Prostate Centre, Vancouver General Hospital, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 2002; 277:7076-85. [PMID: 11751884 DOI: 10.1074/jbc.m108255200] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that mediates the biological responses of androgens. However, non-androgenic pathways have also been shown to activate the AR. The mechanism of cross-talk between the interleukin-6 (IL-6) and AR signal transduction pathways was investigated in LNCaP human prostate cancer cells. IL-6 induced several androgen-response element-driven reporters that are dependent upon the AR, increased the phosphorylation of mitogen-activated protein kinase (MAPK), and activated the AR N-terminal domain (NTD). Inhibitors to MAPK and JAK decreased the IL-6-induced phosphorylation of MAPK and activation of the AR NTD. Immunoprecipitation and transactivation studies showed a direct interaction between amino acids 234-558 of the AR NTD and STAT3 following IL-6 treatment of LNCaP cells. These results demonstrate that activation of the human AR NTD by IL-6 was mediated through MAPK and STAT3 signal transduction pathways in LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Takeshi Ueda
- Department of Cancer Endocrinology, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada
| | | | | |
Collapse
|
48
|
Kim D, Gregory CW, French FS, Smith GJ, Mohler JL. Androgen receptor expression and cellular proliferation during transition from androgen-dependent to recurrent growth after castration in the CWR22 prostate cancer xenograft. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:219-26. [PMID: 11786415 PMCID: PMC1867122 DOI: 10.1016/s0002-9440(10)64365-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor expression was analyzed in the CWR22 human prostate cancer xenograft model to better understand its role in prostate cancer recurrence after castration. In androgen-dependent tumors, 98.5% of tumor cell nuclei expressed androgen receptor with a mean optical density of 0.26 +/- 0.01. On day 2 after castration androgen deprivation decreased immunostained cells to 2% that stained weakly (mean optical density, 0.16 +/- 0.08). Cellular proliferation measured using Ki-67 revealed <1% immunostained cells on day 6. Androgen receptor immunostained cells increased to 63% on day 6 and 84% on day 32 although immunostaining remained weak. Cellular proliferation was undetectable beyond day 6 after castration until multiple foci of 5 to 20 proliferating cells became apparent on day 120. These foci expressed increased levels of prostate-specific antigen, an androgen receptor-regulated gene product. In tumors recurrent 150 days after castration androgen receptor-immunostaining intensity was similar to CWR22 tumors from intact mice although the percentage of cells immunostained was more variable. The appearance of proliferating tumor cells that expressed androgen receptor and prostate-specific antigen 120 days after castration suggests that these cells represent the origin of recurrent tumors.
Collapse
Affiliation(s)
- Desok Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
49
|
Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica EG, Hebert EJ, Reiter R, Singh B, Danielsen M, Pentecost E, Stoica A. Role of cadmium in the regulation of AR gene expression and activity. Endocrinology 2002; 143:263-75. [PMID: 11751618 DOI: 10.1210/endo.143.1.8581] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatment of human prostate cancer cells, LNCaP, with cadmium stimulated cell growth. There was a 2.4-fold increase in the population of cells in the S + G(2)M phase by d 4 and a 2.7-fold increase in cell number by d 8. The metal decreased the concentration of AR protein and mRNA (80 and 60%, respectively) and increased the expression of prostate-specific antigen and the homeobox gene, NKX 3.1 (6-fold) that was blocked by an antiandrogen. In addition, cadmium activated the AR in mouse L cells containing an MMTV-luciferase reporter gene (4-fold increase) and in COS-1 cells transfected with wild-type AR and an MMTV-CAT reporter gene (7-fold increase). Cadmium also activated a chimeric receptor (GAL-AR) containing the hormone-binding domain of AR. The metal bound to AR with an equilibrium dissociation constant of 1.19 x 10(-10) M. Cadmium blocked the binding of androgen to the receptor but did not alter its affinity (dissociation constant = 2.8 x 10(-10) M), suggesting that the metal is an inhibitor of hormone binding. In castrated animals, a single, low, environmentally relevant dose of cadmium (20 microg/kg body weight) increased the wet weight of the prostate (1.97- to 3-fold) and the seminal vesicle complex (approximately 1.5-fold) and increased the expression of the androgen-regulated gene, probasin (27-fold). The in vivo effects were also blocked by an antiandrogen.
Collapse
Affiliation(s)
- Mary Beth Martin
- Department of Biochemistry and Molecular Biology, Lombardi Cancer Center, E411 Research Building, 3970 Reservoir Road NW, Washington, D.C. 20007.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee LF, Guan J, Qiu Y, Kung HJ. Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 2001; 21:8385-97. [PMID: 11713275 PMCID: PMC100003 DOI: 10.1128/mcb.21.24.8385-8397.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bombesin/gastrin-releasing peptide (GRP) family of neuropeptides has been implicated in various in vitro and in vivo models of human malignancies including prostate cancers. It was previously shown that bombesin and/or neurotensin (NT) acts as a survival and migratory factor(s) for androgen-independent prostate cancers. However, a role in the transition from an androgen-dependent to -refractory state has not been addressed. In this study, we investigate the biological effects and signal pathways of bombesin and NT on LNCaP, a prostate cancer cell line which requires androgen for growth. We show that both neurotrophic factors can induce LNCaP growth in the absence of androgen. Concurrent transactivation of reporter genes driven by the prostate-specific antigen promoter or a promoter carrying an androgen-responsive element (ARE) indicate that growth stimulation is accompanied by androgen receptor (AR) activation. Furthermore, neurotrophic factor-induced gene activation was also present in PC3 cells transfected with the AR but not in the parental line which lacks the AR. Given that bombesin does not directly bind to the AR and is known to engage a G-protein-coupled receptor, we investigated downstream signaling events that could possibly interact with the AR pathway. We found that three nonreceptor tyrosine kinases, focal adhesion kinase (FAK), Src, and Etk/BMX play important parts in this process. Etk/Bmx activation requires FAK and Src and is critical for neurotrophic factor-induced growth, as LNCaP cells transfected with a dominant-negative Etk/BMX fail to respond to bombesin. Etk's activation requires FAK, Src, but not phosphatidylinositol 3-kinase. Likewise, bombesin-induced AR activation is inhibited by the dominant-negative mutant of either Src or FAK. Thus, in addition to defining a new G-protein pathway, this report makes the following points regarding prostate cancer. (i) Neurotrophic factors can activate the AR, thus circumventing the normal growth inhibition caused by androgen ablation. (ii) Tyrosine kinases are involved in neurotrophic factor-mediated AR activation and, as such, may serve as targets of future therapeutics, to be used in conjunction with current antihormone and antineuropeptide therapies.
Collapse
Affiliation(s)
- L F Lee
- Department of Biological Chemistry and Cancer Center, University of California at Davis, 4645 2nd Ave., Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|