1
|
Liu C, Fukui E, Matsumoto H. Molecular and cellular regulators of embryo implantation and their application in improving the implantation potential of IVF-derived blastocysts. Reprod Med Biol 2025; 24:e12633. [PMID: 39866379 PMCID: PMC11759885 DOI: 10.1002/rmb2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background In vitro fertilization (IVF) and embryo transfer (ET) are widely used in reproductive biology. Despite the transfer of high-quality blastocysts, the implantation rate of IVF-derived blastocysts remains low after ET. Methods This article provides a comprehensive review of current research on embryo implantation regulators and their application to improve the implantation potential of IVF-derived blastocysts. Main Findings The in vivo mouse model revealed selective proteolysis immediately after expression in activated blastocysts, that is, degradation of ERα expression in activated blastocysts regulated by the ubiquitin-proteasome pathway, followed by completion of blastocyst implantation. Treatment of blastocysts to induce appropriate protein expression during in vitro culture prior to ET is a useful approach for improving implantation rates. This approach showed that combined treatment with PRL, EGF, and 4-OH-E2 (PEC) improved the blastocyst implantation rates. Furthermore, arginine and leucine drive reactive oxygen species (ROS)-mediated integrin α5β1 expression and promote blastocyst implantation. Conclusion Findings based on analysis of molecular and cellular regulators are useful for improving the implantation potential of IVF-derived blastocysts. These approaches may help to elucidate the mechanisms underlying the completion of the blastocyst implantation, although further investigation is required to improve the success of implantation and pregnancy.
Collapse
Affiliation(s)
- Chunyan Liu
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiyaTochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigiJapan
| |
Collapse
|
2
|
Ye J, Xu Y, Ren Q, Liu L, Sun Q. Nutrient deprivation induces mouse embryonic diapause mediated by Gator1 and Tsc2. Development 2024; 151:dev202091. [PMID: 38603796 DOI: 10.1242/dev.202091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.
Collapse
Affiliation(s)
- Jiajia Ye
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Ren
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Huang P, Ou Y, Tang N, Chen J, Wen Q, Li J, Zeng D. Peri-implantation estradiol level has no effect on pregnancy outcome in vitro fertilization- embryo transfer. Front Endocrinol (Lausanne) 2024; 15:1326098. [PMID: 38405138 PMCID: PMC10885798 DOI: 10.3389/fendo.2024.1326098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Background The necessity of monitoring luteal endocrine functions in in vitro fertilization- embryo transfer (IVF-ET) remains uncertain. Specifically, the significance of luteal phase estradiol (E2) levels is a matter of debate in current literature. Objective To assess the impact of luteal phase (day 11 after HCG trigger) estradiol levels on IVF-ET outcomes. Design Twelve thousand five hundred and thirty-five (n = 12,535) IVF-ET cycles performed in our center between 2015 and 2021 were divided into 5 groups based on the middle and late luteal phase serum E2 (MllPSE2) level percentiles as follows: Group A < 50 pg/mL (N=500), group B 50 pg/mL≤E2<150 pg/mL (N=2545), group C 150 pg/mL≤E2<250 pg/mL (N=1327), group D 250 pg/mL≤E2<500 pg/mL (N=925), group E E2≥500 pg/mL (n=668). The clinical pregnancy rates, abortion rates, and live birth rates of each group were compared. Binary logistic regression analysis was carried out to assess the potential impact of MllPSE2 on the live birth rate (LBR). Results No significant differences were found in various parameters when comparing the five groups. The level of MllPSE2 showed no significant difference between the pregnant group and the non-pregnant group. The binary logistic regression analysis model demonstrated that MllPSE2 was not significantly related to LBR. Conclusion The influence of E2 during the peri-implantation period (day 11) on clinical outcome in IVF-ET is not affected, even if E2<50 pg/mL. It is speculated that ovarian-derived E2 in MllPSE2 is not deemed necessary for endometrial receptivity. Although caution is warranted due to the retrospective nature of the analysis and the potential for unmeasured confounding, it is argued that the need for luteal E2 monitoring in IVF-ET may be of questionable value.
Collapse
Affiliation(s)
- Pinxiu Huang
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| | - Yuan Ou
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| | - Ni Tang
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| | - Jing Chen
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| | - Qiuyue Wen
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| | - Jingjing Li
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| | - Dingyuan Zeng
- Center of Reproductive Medicine, Guangzhou Women and Children’s Medical Center-Liuzhou Hospital, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
- Center of Reproductive Medicine, Liuzhou Institute of Reproduction and Genetics, Liuzhou, Guangxi, China
- Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi, University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
4
|
Johnson GA, Burghardt RC, Bazer FW, Seo H, Cain JW. Integrins and their potential roles in mammalian pregnancy. J Anim Sci Biotechnol 2023; 14:115. [PMID: 37679778 PMCID: PMC10486019 DOI: 10.1186/s40104-023-00918-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Integrins are a highly complex family of receptors that, when expressed on the surface of cells, can mediate reciprocal cell-to-cell and cell-to-extracellular matrix (ECM) interactions leading to assembly of integrin adhesion complexes (IACs) that initiate many signaling functions both at the membrane and deeper within the cytoplasm to coordinate processes including cell adhesion, migration, proliferation, survival, differentiation, and metabolism. All metazoan organisms possess integrins, and it is generally agreed that integrins were associated with the evolution of multicellularity, being essential for the association of cells with their neighbors and surroundings, during embryonic development and many aspects of cellular and molecular biology. Integrins have important roles in many aspects of embryonic development, normal physiology, and disease processes with a multitude of functions discovered and elucidated for integrins that directly influence many areas of biology and medicine, including mammalian pregnancy, in particular implantation of the blastocyst to the uterine wall, subsequent placentation and conceptus (embryo/fetus and associated placental membranes) development. This review provides a succinct overview of integrin structure, ligand binding, and signaling followed with a concise overview of embryonic development, implantation, and early placentation in pigs, sheep, humans, and mice as an example for rodents. A brief timeline of the initial localization of integrin subunits to the uterine luminal epithelium (LE) and conceptus trophoblast is then presented, followed by sequential summaries of integrin expression and function during gestation in pigs, sheep, humans, and rodents. As appropriate for this journal, summaries of integrin expression and function during gestation in pigs and sheep are in depth, whereas summaries for humans and rodents are brief. Because similar models to those illustrated in Fig. 1, 2, 3, 4, 5 and 6 are present throughout the scientific literature, the illustrations in this manuscript are drafted as Viking imagery for entertainment purposes.
Collapse
Affiliation(s)
- Gregory A Johnson
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA.
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| | - Fuller W Bazer
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4459, USA
| |
Collapse
|
5
|
Xu QX, Madhavan M, Wei SW, Zhang WQ, Lu L, Wang KZ, Genna M, Song Y, Zhao Y, Shao HT, Kang JW, Fazleabas AT, Arora R, Su RW. Aberrant activation of Notch1 signaling in the mouse uterine epithelium promotes hyper-proliferation by increasing estrogen sensitivity. FASEB J 2023; 37:e22983. [PMID: 37249327 PMCID: PMC10263383 DOI: 10.1096/fj.202201868rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
In mammals, the endometrium undergoes dynamic changes in response to estrogen and progesterone to prepare for blastocyst implantation. Two distinct types of endometrial epithelial cells, the luminal (LE) and glandular (GE) epithelial cells play different functional roles during this physiological process. Previously, we have reported that Notch signaling plays multiple roles in embryo implantation, decidualization, and postpartum repair. Here, using the uterine epithelial-specific Ltf-iCre, we showed that Notch1 signaling over-activation in the endometrial epithelium caused dysfunction of the epithelium during the estrous cycle, resulting in hyper-proliferation. During pregnancy, it further led to dysregulation of estrogen and progesterone signaling, resulting in infertility in these animals. Using 3D organoids, we showed that over-activation of Notch1 signaling increased the proliferative potential of both LE and GE cells and reduced the difference in transcription profiles between them, suggesting disrupted differentiation of the uterine epithelium. In addition, we demonstrated that both canonical and non-canonical Notch signaling contributed to the hyper-proliferation of GE cells, but only the non-canonical pathway was involved with estrogen sensitivity in the GE cells. These findings provided insights into the effects of Notch1 signaling on the proliferation, differentiation, and function of the uterine epithelium. This study demonstrated the important roles of Notch1 signaling in regulating hormone response and differentiation of endometrial epithelial cells and provides an opportunity for future studies in estrogen-dependent diseases, such as endometriosis.
Collapse
Affiliation(s)
- Qi-Xin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Manoj Madhavan
- Department of Biomedical Engineering, Michigan State University, East Lansing, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, USA
| | - Shu-Wen Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wang-Qing Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lei Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ke-Zhi Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Moldovan Genna
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, USA
| | - Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, USA
| | - Yu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huan-Ting Shao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin-Wen Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, USA
| | - Ripla Arora
- Department of Biomedical Engineering, Michigan State University, East Lansing, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, USA
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Logsdon DM, Churchwell A, Schoolcraft WB, Krisher RL, Yuan Y. Estrogen signaling encourages blastocyst development and implantation potential. J Assist Reprod Genet 2023; 40:1003-1014. [PMID: 37017886 PMCID: PMC10239412 DOI: 10.1007/s10815-023-02783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
PURPOSE Estrogen is well-known for preparing uterine receptivity. However, its roles in regulating embryo development and implantation are unclear. Our objective was to characterize estrogen receptor 1 (ESR1) in human and mouse embryos and determine the effect of estradiol (E2) supplementation on pre- and peri-implantation blastocyst development. METHODS Mouse embryos, 8-cell through hatched blastocyst stages, and human embryonic days 5-7 blastocysts were stained for ESR1 and imaged using confocal microscopy. We then treated 8-cell mouse embryos with 8 nM E2 during in vitro culture (IVC) and examined embryo morphokinetics, blastocyst development, and cell allocation into the inner cell mass (ICM) and trophectoderm (TE). Finally, we disrupted ESR1, using ICI 182,780, and evaluated peri-implantation development. RESULTS ESR1 exhibits nuclear localization in early blastocysts followed by aggregation, predominantly in the TE of hatching and hatched blastocysts, in human and mouse embryos. During IVC, most E2 was absorbed by the mineral oil, and no effect on embryo development was found. When IVC was performed without an oil overlay, embryos treated with E2 exhibited increased blastocyst development and ICM:TE ratio. Additionally, embryos treated with ICI 182,780 had significantly decreased trophoblast outgrowth during extended embryo culture. CONCLUSION Similar ESR1 localization in mouse and human blastocysts suggests a conserved role in blastocyst development. These mechanisms may be underappreciated due to the use of mineral oil during conventional IVC. This work provides important context for how estrogenic toxicants may impact reproductive health and offers an avenue to further optimize human-assisted reproductive technology (ART) to treat infertility.
Collapse
Affiliation(s)
- Deirdre M. Logsdon
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124 USA
| | - Ashlyn Churchwell
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124 USA
| | - William B. Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124 USA
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124 USA
| |
Collapse
|
7
|
Deng W, Wang H. Efficient cell chatting between embryo and uterus ensures embryo implantation. Biol Reprod 2022; 107:339-348. [PMID: 35774025 PMCID: PMC9310511 DOI: 10.1093/biolre/ioac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation is one of the hottest topics during female reproduction since it is the first dialogue between maternal uterus and developing embryo whose disruption will contribute to adverse pregnancy outcome. Numerous achievements have been made to decipher the underlying mechanism of embryo implantation by genetic and molecular approaches accompanied with emerging technological advances. In recent decades, raising concepts incite insightful understanding on the mechanism of reciprocal communication between implantation competent embryos and receptive uterus. Enlightened by these gratifying evolvements, we aim to summarize and revisit current progress on the critical determinants of mutual communication between maternal uterus and embryonic signaling on the perspective of embryo implantation to alleviate infertility, enhance fetal health, and improve contraceptive design.
Collapse
Affiliation(s)
- Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
8
|
Delayed Implantation Induced by Letrozole in Mice. Reprod Sci 2022; 29:2864-2875. [PMID: 35257352 DOI: 10.1007/s43032-022-00902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
Implantation timing is critical for a successful pregnancy. A short delay in embryo implantation caused by targeted gene ablation produced a cascading problem in the later stages of the pregnancy. Although several delayed implantation models have been established in wild mice, almost none of them is suitable for investigating the early delay's effects on the late events of pregnancy. Here, we report a new delayed implantation model established by the intraperitoneal administration of letrozole at 5 mg/kg body weight on day 3 of pregnancy. In these mice, initiation of implantation was induced at will by the injection of estradiol (E2). When the estradiol (3 ng) was injected on day 4 of pregnancy (i.e., without delay), the embryo implantation restarted, and the pregnancy continued normally. However, 25 ng estrogen caused compromised implantation. We also found that 67% of the female mice could be pregnant normally and finally gave birth when the estradiol injection (3 ng) was on day 5 of pregnancy (i.e., 1-day delay). Most failed pregnancies had impaired decidualization, decreased serum progesterone levels, and compromised angiogenesis. Progesterone supplementation could rescue decidualization failure in the mice. Collectively, we established a new model of delayed implantation by letrozole, which can be easily applied to study the effect and mechanisms of delay of embryo implantation on the progression of late pregnancy events.
Collapse
|
9
|
Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause. Proc Natl Acad Sci U S A 2021; 118:2100500118. [PMID: 34452997 PMCID: PMC8536382 DOI: 10.1073/pnas.2100500118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In mammals, embryo development can halt at the hatched blastocyst stage. Uniquely, proliferation of diapausing embryonic roe deer cells decelerates to a doubling time of 2 to 3 wk over a period of 4 mo. We highlight nutrient sensing as an important factor regulating embryonic developmental pace. The resumption of embryo development is characterized by an increase in uterine fluid mTORC1-activating amino acids, embryonic mTORC1 activity, and expression of metabolism and cell cycle genes. We propose selective mTORC1 inhibition via reduced estrogen signaling and high let-7 levels as mechanisms for slow cell cycle progression. We hypothesize that it is the lack of embryonic mTORC2 inhibition during embryonic diapause in the roe deer that enables the continuous decelerated rate of proliferation. Embryonic diapause in mammals leads to a reversible developmental arrest. While completely halted in many species, European roe deer (Capreolus capreolus) embryos display a continuous deceleration of proliferation. During a 4-mo period, the cell doubling time is 2 to 3 wk. During this period, the preimplantation blastocyst reaches a diameter of 4 mm, after which it resumes a fast developmental pace to subsequently implant. The mechanisms regulating this notable deceleration and reacceleration upon developmental resumption are unclear. We propose that amino acids of maternal origin drive the embryonic developmental pace. A pronounced change in the abundance of uterine fluid mTORC1-activating amino acids coincided with an increase in embryonic mTORC1 activity prior to the resumption of development. Concurrently, genes related to the glycolytic and phosphate pentose pathway, the TCA cycle, and one carbon metabolism were up-regulated. Furthermore, the uterine luminal epithelial transcriptome indicated increased estradiol-17β signaling, which likely regulates the endometrial secretions adapting to the embryonic needs. While mTORC1 was predicted to be inactive during diapause, the residual embryonic mTORC2 activity may indicate its involvement in maintaining the low yet continuous proliferation rate during diapause. Collectively, we emphasize the role of nutrient signaling in preimplantation embryo development. We propose selective mTORC1 inhibition via uterine catecholestrogens and let-7 as a mechanism regulating slow stem cell cycle progression.
Collapse
|
10
|
Lee J, Park H, Moon S, Do JT, Hong K, Choi Y. Expression and Regulation of CD73 during the Estrous Cycle in Mouse Uterus. Int J Mol Sci 2021; 22:ijms22179403. [PMID: 34502315 PMCID: PMC8431015 DOI: 10.3390/ijms22179403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 73 (CD73, also known as ecto-5′-nucleotidase) is an enzyme that converts AMP into adenosine. CD73 is a surface enzyme bound to the outside of the plasma membrane expressed in several cells and regulates immunity and inflammation. In particular, it is known to inhibit T cell-mediated immune responses. However, the regulation of CD73 expression by hormones in the uterus is not yet clearly known. In this study, we investigated the expression of CD73 in ovariectomized mice treated with estrogen or progesterone and its regulation in the mouse uterus during the estrous cycle. The level of CD73 expression was dynamically regulated in the uterus during the estrous cycle. CD73 protein expression was high in proestrus, estrus, and diestrus, whereas it was relatively low in the metestrus stage. Immunofluorescence revealed that CD73 was predominantly expressed in the cytoplasm of the luminal and glandular epithelium and the stroma of the endometrium. The expression of CD73 in ovariectomized mice was gradually increased by progesterone treatment. However, estrogen injection did not affect its expression. Moreover, CD73 expression was increased when estrogen and progesterone were co-administered and was inhibited by the pretreatment of the progesterone receptor antagonist RU486. These findings suggest that the expression of CD73 is dynamically regulated by estrogen and progesterone in the uterine environment, and that there may be a synergistic effect of estrogen and progesterone.
Collapse
|
11
|
Sun Z, Gao R, Chen X, Liu X, Ding Y, Geng Y, Mu X, Liu T, Li F, Wang Y, He J. Exposure to butylated hydroxytoluene compromises endometrial decidualization during early pregnancy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42024-42036. [PMID: 33792845 DOI: 10.1007/s11356-021-13720-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Butylated hydroxytoluene (BHT), one of the most widely used synthetic phenolic antioxidants, is a popular food additive. Previous studies have reported the possible health hazards of BHT. However, BHT effects on female reproduction, especially on endometrial decidualization, are still unknown. During early pregnancy, decidualization plays important roles for embryo implantation and pregnancy establishment. This study aimed to explore the effects of BHT on endometrial decidualization in pregnant mice. The pregnant mice received BHT via intraperitoneal injection at doses of 0, 200, and 400 mg/kg/day from day 1 (D1) of pregnancy until sacrifice. Under BHT exposure, maternal body weight was significantly decreased during early pregnancy. Compared with the control group, the number of implantation sites and uterine weight were significantly reduced in the BHT groups. The uterine lumen failed to close after BHT exposure, and the decidual morphology of endometrial stromal cells was inhibited by BHT. Furthermore, BHT significantly decreased the expression of endometrial decidual markers including COX2, HOXA10, and MMP9. Notably, the levels of serum estrogen (E2) and progesterone (P4) and expression levels of uterus estrogen receptor α (ERα) and progesterone receptor (PR) during early pregnancy were significantly upregulated following BHT exposure. In conclusion, these results demonstrated that gestational BHT exposure could inhibit decidualization of mouse endometrium during early pregnancy. The disorders of reproductive hormones and changes of hormone receptor signals could be responsible for the impaired decidualization. This study provided new evidence for the deleterious effects of BHT on female reproduction and revealed the potential reproductive toxicity of synthetic phenolic antioxidants.
Collapse
Affiliation(s)
- Zhifang Sun
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Hernández N, López-Morató M, Perianes MJ, Sánchez-Mateos S, Casas-Rua V, Domínguez-Arroyo JA, Sánchez-Margallo FM, Álvarez IS. 4-Hydroxyestradiol improves mouse embryo quality, epidermal growth factor-binding capability in vitro and implantation rates. Mol Hum Reprod 2021; 27:gaaa075. [PMID: 33237288 DOI: 10.1093/molehr/gaaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/30/2020] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation in the uterus is a critical step to achieve success following ART. Despite favorable uterine conditions, a great number of good quality embryos fail to implant, often for reasons that are unknown. Hence, improving the implantation potential of embryos is a subject of great interest. 4-Hydroxyestradiol (4-OH-E2), a metabolic product of estradiol produced by endometrial cells, plays a key role in endometrial-embryonic interactions that are necessary for implantation. Nonetheless, the effects of 4-OH-E2 on embryos obtained in vitro have not been yet described. This study was designed to determine whether culture media enriched in 4-OH-E2 could improve the quality and implantation rate of embryos obtained in vitro, using both in vitro and in vivo models. We also analyzed its effects on the epidermal growth factor (EGF)-binding capability of the embryos. Our results showed that the presence of 4-OH-E2 in the culture media of embryos during the morula to blastocyst transition increases embryo quality and attachment to endometrial cells in vitro. 4-OH-E2 can also improve viable pregnancy rates of mouse embryos produced in vitro, reaching success rates that are similar to those from embryos obtained directly from the uterus. 4-OH-E2 improved the embryos' ability to bind EGF, which could be responsible for the increased embryo implantation potential observed. Therefore, our results strongly suggest that 4-OH-E2 is a strong candidate molecule to supplement human IVF culture media in order to improve embryo implantation. However, further research is required before these findings can be translated with efficacy and safety to fertility clinics.
Collapse
Affiliation(s)
- Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Marta López-Morató
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Mario J Perianes
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
| | - Soledad Sánchez-Mateos
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Vanessa Casas-Rua
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
| | | | | | - Ignacio S Álvarez
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
- Instituto Extremeño de Reproducción Asistida-Quirónsalud, Badajoz, Spain
| |
Collapse
|
13
|
van der Weijden VA, Rüegg AB, Bernal-Ulloa SM, Ulbrich SE. Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model. Reprod Fertil Dev 2021; 33:76-81. [PMID: 38769673 DOI: 10.1071/rd20256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4-5 months to reach a diameter of approximately 4mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy.
Collapse
Affiliation(s)
- Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Sandra M Bernal-Ulloa
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland; and Corresponding author
| |
Collapse
|
14
|
Nałęcz KA. Amino Acid Transporter SLC6A14 (ATB 0,+) - A Target in Combined Anti-cancer Therapy. Front Cell Dev Biol 2020; 8:594464. [PMID: 33195271 PMCID: PMC7609839 DOI: 10.3389/fcell.2020.594464] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by quick growth and proliferation, demanding constant supply of various nutrients. Several plasma membrane transporters delivering such compounds are upregulated in cancer. Solute carrier family 6 member 14 (SLC6A14), known as amino acid transporter B0,+ (ATB0,+) transports all amino acids with exception of the acidic ones: aspartate and glutamate. Its malfunctioning is correlated with several pathological states and it is upregulated in solid tumors. The high expression of SLC6A14 is prognostic and unfavorable in pancreatic cancer, while in breast cancer it is expressed in estrogen receptor positive cells. As many plasma membrane transporters it resides in endoplasmic reticulum (ER) membrane after translation before further trafficking through Golgi to the cell surface. Transporter exit from ER is strictly controlled. The proper folding of SLC6A14 was shown to be controlled from the cytoplasmic side by heat shock proteins, further exit from ER and formation of coatomer II (COPII) coated vesicles depends on specific interaction with COPII cargo-recognizing subunit SEC24C, phosphorylated by kinase AKT. Inhibition of heat shock proteins, known to be upregulated in cancer, directs SLC6A14 to degradation. Targeting proteins regulating SLC6A14 trafficking is proposed as an additional pharmacological treatment of cancer.
Collapse
Affiliation(s)
- Katarzyna A Nałęcz
- Laboratory of Transport Through Biomembranes, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
15
|
Meyer AE, Pfeiffer CA, Brooks KE, Spate LD, Benne JA, Cecil R, Samuel MS, Murphy CN, Behura S, McLean MK, Ciernia LA, Smith MF, Whitworth KM, Wells KD, Spencer TE, Prather RS, Geisert RD. New perspective on conceptus estrogens in maternal recognition and pregnancy establishment in the pig†. Biol Reprod 2020; 101:148-161. [PMID: 31066888 DOI: 10.1093/biolre/ioz058] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The proposed signal for maternal recognition of pregnancy in pigs is estrogen (E2), produced by the elongating conceptuses between days 11 to 12 of pregnancy with a more sustained increase during conceptus attachment and placental development on days 15 to 30. To understand the role of E2 in porcine conceptus elongation and pregnancy establishment, a loss-of-function study was conducted by editing aromatase (CYP19A1) using CRISPR/Cas9 technology. Wild-type (CYP19A1+/+) and (CYP19A1-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer, which were transferred into recipient gilts. Elongated and attaching conceptuses were recovered from gilts containing CYP19A1+/+ or CYP19A1-/- embryos on day 14 and 17 of pregnancy. Total E2 in the uterine flushings of gilts with CYP19A1-/- embryos was lower than recipients containing CYP19A1+/+ embryos with no difference in testosterone, PGF2α, or PGE2 on either day 14 or 17. Despite the loss of conceptus E2 production, CYP19A1-/- conceptuses were capable of maintaining the corpora lutea. However, gilts gestating CYP19A1-/- embryos aborted between days 27 and 31 of gestation. Attempts to rescue the pregnancy of CYP19A1-/- gestating gilts with exogenous E2 failed to maintain pregnancy. However, CYP19A1-/- embryos could be rescued when co-transferred with embryos derived by in vitro fertilization. Endometrial transcriptome analysis revealed that ablation of conceptus E2 resulted in disruption of a number biological pathways. Results demonstrate that intrinsic E2 conceptus production is not essential for pre-implantation development, conceptus elongation, and early CL maintenance, but is essential for maintenance of pregnancy beyond 30 days .
Collapse
Affiliation(s)
- Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kelsey E Brooks
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Raissa Cecil
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Clifton N Murphy
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susanta Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Megan K McLean
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Lauren A Ciernia
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Michael F Smith
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kristin M Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Liu WM, Cheng RR, Niu ZR, Chen AC, Ma MY, Li T, Chiu PC, Pang RT, Lee YL, Ou JP, Yao YQ, Yeung WSB. Let-7 derived from endometrial extracellular vesicles is an important inducer of embryonic diapause in mice. SCIENCE ADVANCES 2020; 6:eaaz7070. [PMID: 32917695 PMCID: PMC11206465 DOI: 10.1126/sciadv.aaz7070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Embryonic diapause is a maternally controlled phenomenon. The molecule controlling the onset of the phenomenon is unknown. We demonstrated that overexpression of microRNA let-7a or incubation with let-7g-enriched extracellular vesicles from endometrial epithelial cells prolonged the in vitro survival of mouse blastocysts, which developed into live pups after having been transferred to foster mothers. Similar to in vivo dormant blastocysts, let-7-induced dormant blastocysts exhibited low level of proliferation, apoptosis, and nutrient metabolism. Let-7 suppressed c-myc/mTORC1 and mTORC2 signaling to induce embryonic diapause. It also inhibited ODC1 expression reducing biosynthesis of polyamines, which are known to reactivate dormant embryos. Furthermore, the overexpression of let-7 blocked trophoblast differentiation and implantation potential of human embryo surrogates, and prolonged survival of human blastocysts in vitro, supporting the idea that embryonic diapause was an evolutionary conserved phenomenon. In conclusion, let-7 is the main factor inducing embryonic diapause.
Collapse
Affiliation(s)
- W M Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - R R Cheng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Z R Niu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - A C Chen
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - M Y Ma
- Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - T Li
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou P.R. China
| | - P C Chiu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - R T Pang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Y L Lee
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - J P Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou P.R. China
| | - Y Q Yao
- Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - W S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 1, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
- University of Hong Kong Shenzhen Institute of Research and Innovation, Key Laboratory Platform Building, Shenzhen Virtual University Park, No. 6, Yuexing 2nd Road, Shenzhen 518057, P.R. China
| |
Collapse
|
17
|
Ochiai A, Kuroda K, Ozaki R, Ikemoto Y, Murakami K, Muter J, Matsumoto A, Itakura A, Brosens JJ, Takeda S. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 2019; 10:276. [PMID: 30894514 PMCID: PMC6427032 DOI: 10.1038/s41419-019-1511-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Pregnancy critically depends on the transformation of the human endometrium into a decidual matrix that controls embryo implantation and placenta formation, a process driven foremost by differentiation and polarization of endometrial stromal cells into mature and senescent decidual cells. Perturbations in the decidual process underpin a spectrum of prevalent reproductive disorders, including implantation failure and early pregnancy loss, emphasizing the need for new therapeutic interventions. Resveratrol is a naturally occurring polyphenol, widely used for its antioxidant and anti-inflammatory properties. Using primary human endometrial stromal cell (HESC) cultures, we demonstrate that resveratrol has anti-deciduogenic properties, repressing not only the induction of the decidual marker genes PRL and IGFBP1 but also abrogating decidual senescence. Knockdown of Sirtuin 1, a histone deacetylase activated by resveratrol, restored the expression of IGFBP1 but not the induction of PRL or senescence markers in decidualizing HESCs, suggesting involvement of other pathways. We demonstrate that resveratrol interferes with the reprogramming of the retinoic acid signaling pathway in decidualizing HESCs by accelerating down-regulation of cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor (RAR). Notably, knockdown of CRABP2 or RAR in HESCs was sufficient to recapitulate the anti-deciduogenic effects of resveratrol. Thus, while resveratrol has been advanced as a potential fertility drug, our results indicate it may have detrimental effects on embryo implantation by interfering with decidual remodeling of the endometrium.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keiji Kuroda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, 116-0023, Japan.
| | - Rie Ozaki
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuko Ikemoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keisuke Murakami
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Joanne Muter
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
| | - Akemi Matsumoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Jan J Brosens
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
18
|
Ka H, Seo H, Choi Y, Yoo I, Han J. Endometrial response to conceptus-derived estrogen and interleukin-1β at the time of implantation in pigs. J Anim Sci Biotechnol 2018; 9:44. [PMID: 29928500 PMCID: PMC5989395 DOI: 10.1186/s40104-018-0259-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
The establishment of pregnancy is a complex process that requires a well-coordinated interaction between the implanting conceptus and the maternal uterus. In pigs, the conceptus undergoes dramatic morphological and functional changes at the time of implantation and introduces various factors, including estrogens and cytokines, interleukin-1β2 (IL1B2), interferon-γ (IFNG), and IFN-δ (IFND), into the uterine lumen. In response to ovarian steroid hormones and conceptus-derived factors, the uterine endometrium becomes receptive to the implanting conceptus by changing its expression of cell adhesion molecules, secretory activity, and immune response. Conceptus-derived estrogens act as a signal for maternal recognition of pregnancy by changing the direction of prostaglandin (PG) F2α from the uterine vasculature to the uterine lumen. Estrogens also induce the expression of many endometrial genes, including genes related to growth factors, the synthesis and transport of PGs, and immunity. IL1B2, a pro-inflammatory cytokine, is produced by the elongating conceptus. The direct effect of IL1B2 on endometrial function is not fully understood. IL1B activates the expression of endometrial genes, including the genes involved in IL1B signaling and PG synthesis and transport. In addition, estrogen or IL1B stimulates endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively in priming the endometrial function of conceptus-produced IFNG and IFND that, in turn, modulate endometrial immune response during early pregnancy. This review addresses information about maternal-conceptus interactions with respect to endometrial gene expression in response to conceptus-derived factors, focusing on the roles of estrogen and IL1B during early pregnancy in pigs.
Collapse
Affiliation(s)
- Hakhyun Ka
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| | - Heewon Seo
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea.,2Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX 77843-2471 USA
| | - Yohan Choi
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea.,3Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298 USA
| | - Inkyu Yoo
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| | - Jisoo Han
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| |
Collapse
|
19
|
Takeuchi M, Seki M, Furukawa E, Takahashi A, Saito K, Kobayashi M, Ezoe K, Fukui E, Yoshizawa M, Matsumoto H. Improvement of implantation potential in mouse blastocysts derived from IVF by combined treatment with prolactin, epidermal growth factor and 4-hydroxyestradiol. Mol Hum Reprod 2018; 23:557-570. [PMID: 28810691 DOI: 10.1093/molehr/gax035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Can supplementation of medium with prolactin (PRL), epidermal growth factor (EGF) and 4-hydroxyestradiol (4-OH-E2) prior to embryo transfer improve implantation potential in mouse blastocysts derived from IVF? SUMMARY ANSWER Combined treatment with PRL, EGF and 4-OH-E2 improves mouse blastocyst implantation rates, while alone, each factor is ineffective. WHAT IS KNOWN ALREADY Blastocyst dormancy during delayed implantation caused by ovariectomy is maintained by continued progesterone treatment in mice, and estrogen injection rapidly activates blastocysts to implantation-induced status in vivo. While the expression of many proteins is upregulated in implantation-induced blastocysts, selective proteolysis by proteasomes, such as estrogen receptor α (ESR1), occurs in implantation-induced blastocysts to achieve implantation-competent status. It is worth evaluating the proteins expressed during these periods to identify humoral factors that might improve the implantation potential of IVF-derived blastocysts because the poor quality of embryos obtained by IVF is one of the major causes of implantation failure. STUDY DESIGN, SIZE, DURATION Superovulated oocytes from ICR mice were fertilized with spermatozoa and then cultured in vitro in potassium simplex optimized medium (KSOM) without phenol red (KSOM-P) for 90-96 h. Blastocysts were treated with PRL (10 or 20 mIU/mL), EGF (5 or 10 ng/mL) or 4-OH-E2 (1 or 10 nM) in KSOM-P for 24 h. PARTICIPANTS/MATERIALS, SETTING, METHODS Levels of breast cancer 1 (BRCA1), EGF receptor (EGFR, also known as ERBB1), ERBB4, tubulointerstitial nephritis antigen-like 1 (TINAGL1) and ESR1 protein were examined with immunohistochemical analysis using immunofluorescence methods and confocal laser scanning microscopy. For embryo transfer, six blastocysts were suspended in HEPES-buffered KSOM-P medium and transferred into the uteri of recipient mice on the morning of Day 4 (0900-1000 h) of pseudopregnancy (Day 1 = vaginal plug). The number of implantation sites was then recorded on Day 6 using the blue dye method. MAIN RESULTS AND THE ROLE OF CHANCE PRL, EGF and 4-OH-E2 each promoted BRCA1 protein level in the trophectoderm (TE). While PRL treatment resulted in an increase in EGFR, EGF increased both EGFR and ERBB4 in the blastocyst TE. TINAGL1 in the TE was enhanced by 4-OH-E2, which also increased localization of this protein to the basement membrane. Treatment with PRL, EGF or 4-OH-E2 alone did not improve blastocyst implantation rates. Combined treatment with PRL, EGF and 4-OH-E2 resulted in increased levels of EGFR, ERBB4, TINAGL1 and BRCA1 in the TE, whereas ESR1 was not upregulated in the treated blastocysts. Furthermore, combined treatment with PRL, EGF and 4-OH-E2 improved blastocyst implantation rates versus control (P = 0.009). LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Our studies were carried out in a mouse model, and the conclusions were drawn from limited results obtained from one species. Whether the increase in EGFR, ERBB4 and TINAGL1 protein in the TE improves implantation potential of blastocysts needs to be further studied experimentally by assessing other expressed proteins. The influence of combined supplementation in vitro of PRL, EGF and 4-OH-E2 on implantation also requires further examination and optimization in human blastocysts before it can be considered for clinical use in ART. WIDER IMPLICATIONS OF THE FINDINGS Enhanced implantation potential by combined treatment with PRL, EGF and 4-OH-E2 appears to result in the upregulation of at least two distinct mechanisms, namely signaling via EGF receptors and basement membrane formation during the peri-implantation period in mice. While PRL, EGF and 4-OH-E2 each promoted BRCA1 protein level in the TE, treatment with each alone did not improve blastocyst implantation. Therefore, BRCA1 protein appears to be unnecessary for the attachment reaction in blastocysts in mice Combined supplementation of PRL, EGF and 4-OH-E2 might also be of relevance for embryo transfer of human IVF-derived blastocysts for ART. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by the JSPS KAKENHI [Grant numbers 22580316 and 25450390 (to H.M.)] and the Joint Research Project of Japan-U.S. Cooperative Science Program (to H.M.). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Miki Takeuchi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Misato Seki
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Etsuko Furukawa
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Akihito Takahashi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kyosuke Saito
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Mitsuru Kobayashi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kenji Ezoe
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan.,Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Midori Yoshizawa
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan.,Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan.,Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
20
|
Liu JL, Zhang WQ, Zhao M, Huang MY. Integration of Transcriptomic and Metabolomic Data Reveals Enhanced Steroid Hormone Biosynthesis in Mouse Uterus During Decidualization. Proteomics 2018; 17. [PMID: 28857456 DOI: 10.1002/pmic.201700059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Indexed: 01/16/2023]
Abstract
It has been long recognized that decidualization is accompanied by significant changes in metabolic pathways. In the present study, we used the GC-TOF-MS approach to investigate the global metabolite profile changes associated with decidualization of mouse uterus on day 8 of pregnancy. We identified a total of 20 differentially accumulated metabolites, of which nine metabolites were down-regulated and 11 metabolites were up-regulated. As expected, seven differentially accumulated metabolites were involved in carbohydrate metabolism. We observed statistically significant changes in polyamines, putrescine and spermidine. Interestingly, the pantothenic acid, also known as vitamin B5 , was up-regulated. Finally, by integrating with transcriptomic data obtained by RNA-seq, we revealed enhanced steroid hormone biosynthesis during decidualization. Our study contributes to an increase in the knowledge on the molecular mechanisms of decidualization.
Collapse
Affiliation(s)
- Ji-Long Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Wen-Qian Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Ming-Yu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
21
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev 2017. [PMID: 28638003 PMCID: PMC5649093 DOI: 10.1262/jrd.2017-047] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The success of implantation is an interactive process between the blastocyst and the uterus. Synchronized development of embryos with uterine differentiation to a receptive state is necessary to complete pregnancy. The period of uterine receptivity for implantation is limited and referred to as the “implantation window”, which is regulated by ovarian steroid hormones. Implantation process is complicated due to the many signaling molecules in the hierarchical mechanisms with the embryo-uterine dialogue. The mouse is widely used in animal research, and is uniquely suited for reproductive studies, i.e., having a large litter size and brief estrous cycles. This review first describes why the mouse is the preferred model for implantation studies, focusing on uterine morphology and physiological traits, and then highlights the knowledge on uterine receptivity and the hormonal regulation of blastocyst implantation in mice. Our recent study revealed that selective proteolysis in the activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. Furthermore, in the context of blastocyst implantation in the mouse, this review discusses the window of uterine receptivity, hormonal regulation, uterine vascular permeability and angiogenesis, the delayed-implantation mouse model, morphogens, adhesion molecules, crosslinker proteins, extracellular matrix, and matricellular proteins. A better understanding of uterine and blastocyst biology during the peri-implantation period should facilitate further development of reproductive technology.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan.,Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
23
|
Sarsmaz K, Goker A, Micili SC, Ergur BU, Kuscu NK. Immunohistochemical and ultrastructural analysis of the effect of omega-3 on embryonic implantation in an experimental mouse model. Taiwan J Obstet Gynecol 2017; 55:351-6. [PMID: 27343314 DOI: 10.1016/j.tjog.2016.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2015] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Implantation is the first step to a healthy pregnancy. Omega-3 supplementation is common to use during pregnancy, for its antioxidant and membrane stabilising effect. In this study we have aimed to study the effect of Omega-3 supplementation on implantation in a mouse model by immunohistochemical methods and electron microscopic evaluation. MATERIALS AND METHODS Mice were randomized into three groups to receive standard food, Omega-3 400 mg/kg and Omega-3 1000 mg/kg one menstrual cycle before mating. Mice were sacrificed on third day of estimated implantation and uterine horns were evaluated immunohistochemically for staining of Laminin and Leukemia Inhibitory Factor (LIF) and ultrastructural morphology. RESULTS Laminin and LIF immunoreactivity were increased signifcantly in the high dose group when compared to the control and low-dose groups in lumen epithelium basal membrane, gland epithelium basal membrane and endometrial stroma. Electron-microscopic evaluation showed a decrease in epithelial height and microvilli loss in the high dose groups. CONCLUSION Omega-3 supplementation increased implantation markers Laminin and LIF and decreased epithelial height and microvilli thus seems to prepare the endometrium for a favorable environment of implantation.
Collapse
Affiliation(s)
- Kemal Sarsmaz
- Department of Obstetrics and Gynecology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University Faculty of Medicine, Manisa, Turkey.
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Bekir Ugur Ergur
- Department of Histology and Embryology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Naci Kemal Kuscu
- Department of Obstetrics and Gynecology, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
24
|
Nayeem SB, Arfuso F, Dharmarajan A, Keelan JA. Role of Wnt signalling in early pregnancy. Reprod Fertil Dev 2017; 28:525-44. [PMID: 25190280 DOI: 10.1071/rd14079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
The integration of a complex network of signalling molecules promotes implantation of the blastocyst and development of the placenta. These processes are crucial for a successful pregnancy and fetal growth and development. The signalling network involves both cell-cell and cell-extracellular matrix communication. The family of secreted glycoprotein ligands, the Wnts, plays a major role in regulating a wide range of biological processes, including embryonic development, cell fate, proliferation, migration, stem cell maintenance, tumour suppression, oncogenesis and tissue homeostasis. Recent studies have provided evidence that Wnt signalling pathways play an important role in reproductive tissues and in early pregnancy events. The focus of this review is to summarise our present knowledge of expression, regulation and function of the Wnt signalling pathways in early pregnancy events of human and other model systems, and its association with pathological conditions. Despite our recent progress, much remains to be learned about Wnt signalling in human reproduction. The advancement of knowledge in this area has applications in the reduction of infertility and the incidence and morbidity of gestational diseases.
Collapse
Affiliation(s)
- Sarmah B Nayeem
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Arun Dharmarajan
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jeffrey A Keelan
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| |
Collapse
|
25
|
Frankenberg SR, de Barros FR, Rossant J, Renfree MB. The mammalian blastocyst. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:210-32. [DOI: 10.1002/wdev.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Flavia R.O. de Barros
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | | |
Collapse
|
26
|
Molecular and cellular events involved in the completion of blastocyst implantation. Reprod Med Biol 2015; 15:53-58. [PMID: 29259421 DOI: 10.1007/s12522-015-0222-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Blastocyst implantation is an interactive process between the embryo and the uterus. The synchronization of embryonic development with uterine differentiation to a receptive state is essential for a successful pregnancy. The period of uterine receptivity for implantation is limited. Although implantation involves the interaction of numerous signaling molecules, our understanding of the hierarchical mechanisms that coordinate with the embryo-uterine dialogue is not yet sufficient to prevent infertility caused by implantation failure. This review highlights our knowledge on uterine receptivity and hormonal regulation of blastocyst implantation in mice. We also discuss the adhesion molecules, cross-linker proteins, extracellular proteins, and matricellular proteins involved in blastocyst implantation. Furthermore, our recent study reveals that selective proteolysis in an activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. A better understanding of uterine and blastocyst biology during the peri-implantation period would facilitate further development of reproductive technology.
Collapse
|
27
|
Cha JM, Dey SK. Reflections on Rodent Implantation. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:69-85. [DOI: 10.1007/978-3-319-15856-3_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Cha J, Dey SK. Cadence of procreation: orchestrating embryo-uterine interactions. Semin Cell Dev Biol 2014; 34:56-64. [PMID: 24862857 DOI: 10.1016/j.semcdb.2014.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/06/2014] [Accepted: 05/06/2014] [Indexed: 01/07/2023]
Abstract
Embryo implantation in eutherian mammals is a highly complex process and requires reciprocal communication between different cell types of the embryo at the blastocyst stage and receptive uterus. The events of implantation are dynamic and highly orchestrated over a species-specific period of time with distinctive and overlapping expression of many genes. Delayed implantation in different species has helped elucidate some of the intricacies of implantation timing and different modes of the implantation process. How these events are coordinated in time and space are not clearly understood. We discuss potential regulators of the precise timing of these events with respect to central and local clock mechanisms. This review focuses on the timing and synchronization of early pregnancy events in mouse and consequences of their aberrations at later stages of pregnancy.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| |
Collapse
|
29
|
Sahin H, Akpak YK, Berber U, Gün I, Demirel D, Ergür AR. Expression of P-cadherin (cadherin-3) and E-selectin in the villous trophoblast of first trimester human placenta. J Turk Ger Gynecol Assoc 2014; 15:13-7. [PMID: 24790510 DOI: 10.5152/jtgga.2014.56563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/21/2013] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Although trophoblastic invasion has a critical role in human placental development, very little is known about them. The aim of the present study was to localise the expression of P-cadherin (cadherin-3) and E-selectin in first trimester placenta. MATERIAL AND METHODS This study was conducted on 140 patients who had applied to Gülhane Military Medical Academy, Haydarpaşa Education Hospital, Department of Obstetrics and Gynaecology between 2005 and 2006. The patients were divided into three groups: ectopic pregnancy group (Group 1), spontaneous abortion group (group 2) and curettage group (group 3 and/or control group). Patients with a history of systemic diseases (such as thrombophilia), a disease or anatomical diagnosis that may cause recurrent abortion or an aetiological factor for ectopic pregnancy were excluded from the study. Paraffin blocks were stained with E-selectin and P-cadherin in accordance with the procedure. Demographic characteristics of patients (patient age, gravida, parity, number of previous abortions, and last menstrual period) and staining intensities were compared using Analysis of Variance (ANOVA) among groups. RESULTS According to the average scale score of P-cadherin staining of cells, the three groups were statistically different from each other (p=0.0001). This difference stems from statistically significantly lower scores in the spontaneous abortion group than in both the ectopic pregnancy group (p<0.001) and the control group (p<0.001). E-selectin immunostaining showed no positive staining in the groups. CONCLUSION In placental trophoblasts, decreased P-cadherin immunoreactivity plays a role in the aetiopathogenesis of spontaneous abortion.
Collapse
Affiliation(s)
- Hüseyin Sahin
- Department of Obstetrics and Gynaecology, Kasımpaşa Military Hospital, İstanbul, Turkey
| | - Yaşam Kemal Akpak
- Department of Obstetrics and Gynaecology, Ankara Military Hospital, Ankara, Turkey
| | - Ufuk Berber
- Department of Pathology, Haydarpaşa Education Hospital, Gülhane Military Medical Academy, İstanbul, Turkey
| | - Ismet Gün
- Department of Obstetrics and Gynaecology, Haydarpaşa Education Hospital, Gülhane Military Medical Academy, İstanbul, Turkey
| | - Dilaver Demirel
- Department of Pathology, Haydarpaşa Education Hospital, Gülhane Military Medical Academy, İstanbul, Turkey
| | - Ali Rüştü Ergür
- Department of Obstetrics and Gynaecology, Haydarpaşa Education Hospital, Gülhane Military Medical Academy, İstanbul, Turkey
| |
Collapse
|
30
|
Saito K, Furukawa E, Kobayashi M, Fukui E, Yoshizawa M, Matsumoto H. Degradation of estrogen receptor α in activated blastocysts is associated with implantation in the delayed implantation mouse model. Mol Hum Reprod 2014; 20:384-91. [PMID: 24442344 DOI: 10.1093/molehr/gau004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Implantation of a blastocyst into a receptive uterus involves a series of highly coordinated cellular and molecular events directed by ovarian estrogen and progesterone. In particular, estrogen is essential for on-time uterine receptivity and blastocyst activation in mice. Although estrogen receptor α (ERα) is expressed in blastocysts, its targeted disruption leaves embryonic development and implantation unaffected. Therefore, the role of ERα in implanting blastocysts remains unclear. Using a delayed implantation model in mice, we showed increased expression of ERα in implantation-induced (activated) blastocysts; however, this ERα expression in activated blastocysts decreased within 6-h culture. In contrast, breast cancer 1 (Brca1) was maintained in the blastocysts during the culture. The treatment of activated blastocysts with the proteasome inhibitor MG132 demonstrated that proteolysis is associated with down-regulation of ERα expression in activated blastocysts. Embryo transfer of MG132-treated activated blastocysts into recipient mice on the morning of Day 4 of pseudopregnancy (Day 1 = vaginal plug) showed a decreased implantation rate, whereas combined treatment with MG132 and the ER antagonist, ICI 182,780, resulted in recovery of the rate of implantation. This study has revealed that down-regulation of ERα in activated blastocyst is associated with completion of blastocyst implantation after embryo transfer on the morning of Day 4 of pseudopregnancy. Our results also suggest that selective protein turnover, such as that of ERα, occurs in activated blastocysts, while expression of other proteins, including Brca1, is maintained at the same stage.
Collapse
Affiliation(s)
- Kyosuke Saito
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Zhao LH, Cui XZ, Yuan HJ, Liang B, Zheng LL, Liu YX, Luo MJ, Tan JH. Restraint stress inhibits mouse implantation: temporal window and the involvement of HB-EGF, estrogen and progesterone. PLoS One 2013; 8:e80472. [PMID: 24244689 PMCID: PMC3828244 DOI: 10.1371/journal.pone.0080472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/11/2013] [Indexed: 12/03/2022] Open
Abstract
It is known that psychological stress affects reproduction in women, but it is unknown whether the effect is by impairing implantation. Although studies suggest that long periods of auditory or restraint stress may inhibit implantation in rats and mice, the exact stage of pregnancy at which stress impairs implantation is unclear. Furthermore, whether stress impairs implantation by decreasing the heparin-binding epidermal growth factor-like growth factor (HB-EGF), estrogen and/or progesterone and whether by acting on embryos or on the uterus need further investigations. In this study, a 24-h restraint stress was initiated at 15:30 of day 3 (regimen 1) or at 07:30 (regimen 2) or 15:30 of day 4 (regimen 3) of pregnancy (vaginal plug = day 1) to observe effects of restraint stress applied at different peri-implantation stages on implantation. Among the three regimens, whereas regimens 1 and 3 affected neither term pregnancy nor litter size, regimen 2 reduced both. Further observations indicated that regimen 2 of restraint stress also delayed blastocyst hatching and the attachment reaction, decreased serum concentrations of progesterone and estradiol, and down regulated the expression of HB-EGF in both the endometrium and blastocysts. Taken together, the results suggested that restraint stress inhibited mouse implantation in a temporal window-dependent manner and by impairing blastocyst activation and hatching and uterine receptivity via down-regulating HB-EGF, estrogen and progesterone. Thus, the stress applied within the implantation window impaired implantation by acting on both embryos and the uterus.
Collapse
Affiliation(s)
- Li-Hua Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Xiang-Zhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Bo Liang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Yu-Xiang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
- * E-mail:
| |
Collapse
|
32
|
Chung D, Das SK. Mouse primary uterine cell coculture system revisited: ovarian hormones mimic the aspects of in vivo uterine cell proliferation. Endocrinology 2011; 152:3246-58. [PMID: 21693674 PMCID: PMC3138227 DOI: 10.1210/en.2011-0223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, the uterine epithelial-stromal coculture system had limited success mimicking in vivo ovarian hormone-dependent cell-specific proliferation. Here, we established a mouse primary uterine coculture system, in which cells collected in pseudopregnancy specifically on d 4 are conducive to supporting hormone-induced cell-specific proliferation. When two cell types are placed in coculture without direct contact via cell culture inserts (nonadjacent), as opposed to with contact (adjacent), epithelial cells exhibit significant proliferation by estradiol-17β (E2), whereas progesterone in combination with E2 caused inhibition of epithelial cell proliferation and a major shift in proliferation from epithelial to stromal cells. Epithelial cell integrity, with respect to E-cadherin expression, persisted in nonadjacent, but not adjacent, conditions. In subsequent studies of nonadjacent cocultures, localization of estrogen receptor (ER)α and progesterone receptor (PR), but not ERβ, appeared to be abundant, presumably indicating that specific ER or PR coregulator expression might be responsible for this difference. Consistently, an agonist of ERα, but not ERβ, was supportive of proliferation, and antagonists of ER or PR totally eliminated cell-specific proliferation by hormones. RT-PCR analyses also revealed that hormone-responsive genes primarily exhibit appropriate regulation. Finally, suppression of immunoglobulin heavy chain binding protein, a critical regulator of ERα signaling, in epithelial and/or stromal cells caused dramatic inhibition of E2-dependent epithelial cell proliferation, suggesting that a molecular perturbation approach is applicable to mimic in vivo uterine control. In conclusion, our established coculture system may serve as a useful alternative model to explore in vivo aspects of cell proliferation via communication between the epithelial and stromal compartments under the direction of ovarian hormones.
Collapse
Affiliation(s)
- Daesuk Chung
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
33
|
Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, Dey SK, Lim HJ. Autophagy regulates embryonic survival during delayed implantation. Endocrinology 2011; 152:2067-75. [PMID: 21363932 DOI: 10.1210/en.2010-1456] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Delayed implantation, considered a state of suspended animation, is widespread in mammals. Blastocysts under this condition remain dormant for an extended period but resume implantation competence upon favorable conditions. The underlying mechanism by which extended longevity of dormant blastocysts is maintained is not clearly understood. Using autophagy markers and the well-defined delayed implantation model in mice, we show that autophagy is important for the extended longevity of dormant blastocysts in utero during delayed implantation. However, prolonged dormancy leads to reduced developmental competency of blastocysts and cellular damage with compromised pregnancy outcome. Estrogen supplementation, which activates implantation of dormant blastocysts, induces the formation of multivesicular bodies in the trophectoderm in vivo. Collectively, our results suggest that autophagy is a critical cellular mechanism that is utilized for the prolonged survival of dormant blastocysts.
Collapse
Affiliation(s)
- Jong-Eun Lee
- Department of Biomedical Sciences and Technology, Institute of Biomedical Science and Technology, Research Center for Transcription Control, Kwangjin-gu, Seoul 143-701, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gao F, Ma X, Ostmann AB, Das SK. GPR30 activation opposes estrogen-dependent uterine growth via inhibition of stromal ERK1/2 and estrogen receptor alpha (ERα) phosphorylation signals. Endocrinology 2011; 152:1434-47. [PMID: 21303939 PMCID: PMC3060628 DOI: 10.1210/en.2010-1368] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although estradiol-17β (E2)-regulated early and late phase uterine responses have been well defined, the molecular mechanisms linking the phases remain poorly understood. We have previously shown that E2-regulated early signals mediate cross talk with estrogen receptor (ER)-α to elicit uterine late growth responses. G protein-coupled receptor (GPR30) has been implicated in early nongenomic signaling mediated by E2, although its role in E2-dependent uterine biology is unclear. Using selective activation of GPR30 by G-1, we show here a new function of GPR30 in regulating early signaling events, including the inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals and perturbation of growth regulation under the direction of E2 in the mouse uterus. We observed that GPR30 primarily localizes in the uterine epithelial cells, and its activation alters gene expression and mediates inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals in the stromal compartment, suggesting a paracrine signaling is involved. Importantly, viral-driven manipulation of GPR30 or pharmacological inhibition of ERK1/2 activation effectively alters E2-dependent uterine growth responses. Overall, GPR30 is a negative regulator of ERα-dependent uterine growth in response to E2. Our work has uncovered a novel GPR30-regulated inhibitory event, which may be physiologically relevant in both normal and pathological situations to negatively balance ERα-dependent uterine growth regulatory functions induced by E2.
Collapse
Affiliation(s)
- Fei Gao
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
35
|
Rose J, Hunt J, Shelton J, Wyler S, Mecham D. The effects of estradiol and catecholestrogens on uterine glycogen metabolism in mink (Neovison vison). Theriogenology 2010; 75:857-66. [PMID: 21196035 DOI: 10.1016/j.theriogenology.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 09/03/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022]
Abstract
Glycogen is a uterine histotroph nutrient synthesized by endometrial glands in response to estradiol. The effects of estradiol may be mediated, in part, through the catecholestrogens, 2-hydroxycatecholestradiol (2-OHE2) and 4-hydroxycatecholestradiol (4-OHE2), produced by hydroxylation of estradiol within the endometrium. Using ovariectomized mink, our objectives were to determine the effects of estradiol, 4-OHE2, and 2-OHE2 on uterine: 1) glycogen concentrations and tissue localization; 2) gene expression levels for glycogen synthase, glycogen phosphorylase, and glycogen synthase kinase-3B; and 3) protein expression levels for glycogen synthase kinase-3B (total) and phospho-glycogen synthase kinase-3B (inactive). Whole uterine glycogen concentrations (mean ± SEM, mg/g dry wt) were increased by estradiol (43.79 ± 5.35), 4-OHE2 (48.64 ± 4.02), and 2-OHE2 (41.36 ± 3.23) compared to controls (4.58 ± 1.16; P ≤ 0.05). Percent glycogen content of the glandular epithelia was three-fold greater than the luminal epithelia in response to estradiol and 4-OHE2 (P ≤ 0.05). Expression of glycogen synthase mRNA, the rate limiting enzyme in glycogen synthesis, was increased by 4-OHE2 and 2-OHE2 (P ≤ 0.05), but interestingly, was unaffected by estradiol. Expression of glycogen phosphorylase and glycogen synthase kinase-3B mRNAs were reduced by estradiol, 2-OHE2, and 4-OHE2 (P ≤ 0.05). Uterine phospho-glycogen synthase kinase-3B protein was barely detectable in control mink, whereas all three steroids increased phosphorylation and inactivation of the enzyme (P ≤ 0.05). We concluded that the effects of estradiol on uterine glycogen metabolism were mediated in part through catecholestrogens; perhaps the combined actions of these hormones are required for optimal uterine glycogen synthesis in mink.
Collapse
Affiliation(s)
- Jack Rose
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho 83209, USA.
| | | | | | | | | |
Collapse
|
36
|
Banerjee A, Padh H, Nivsarkar M. Hormonal Crosstalk with Calcium Channel Blocker during Implantation. Syst Biol Reprod Med 2010; 57:186-9. [DOI: 10.3109/19396368.2010.539660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Bambang KN, Karasu T, Gebeh A, Taylor AH, Marczylo TH, Lam P, Willets JM, Konje JC. From Fertilisation to Implantation in Mammalian Pregnancy-Modulation of Early Human Reproduction by the Endocannabinoid System. Pharmaceuticals (Basel) 2010; 3:2910-2929. [PMID: 27713383 PMCID: PMC4034104 DOI: 10.3390/ph3092910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 12/14/2022] Open
Abstract
There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol) in early reproduction.
Collapse
Affiliation(s)
- Katerina N Bambang
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Tulay Karasu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Alpha Gebeh
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Timothy H Marczylo
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Patricia Lam
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Jonathon M Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| |
Collapse
|
38
|
|
39
|
|
40
|
Guerrero-Bosagna CM, Sabat P, Valdovinos FS, Valladares LE, Clark SJ. Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC PHYSIOLOGY 2008; 8:17. [PMID: 18793434 PMCID: PMC2556694 DOI: 10.1186/1472-6793-8-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/15/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Developmental effects of exposure to endocrine disruptors can influence adult characters in mammals, but could also have evolutionary consequences. The aim of this study was to simulate an environmental exposure of an experimental population of mice to high amounts of nutritional phytoestrogens and to evaluate parameters of relevance for evolutionary change in the offspring. The effect of a continuous pre- and post-natal exposure to high levels of dietary isoflavones was evaluated on sexual maturity, morphometric parameters and DNA methylation status in mice. Adult mice male/female couples were fed ad libitum either with control diet (standard laboratory chow) or ISF diet (control diet plus a soy isoflavone extract at 2% (w/w) that contained the phytoestrogens genistein and daidzein). In the offspring we measured: i) the onset of vaginal opening (sexual maturation) in females, ii) weight and size in all pups at 7, 14, 21 and 42 days post-natal (dpn) and iii) DNA methylation patterns in skeletal alpha-actin (Acta1), estrogen receptor-alpha and c-fos in adults (42 dpn). RESULTS Vaginal opening was advanced in female pups in the ISF group, from 31.6 +/- 0.75 dpn to 25.7 +/- 0.48. No differences in size or weight at ages 7, 14 or 21 dpn were detected between experimental groups. Nevertheless, at age 42 dpn reduced size and weight were observed in ISF pups, in addition to suppression of normal gender differences in weight seen in the control group (males heavier that females). Also, natural differences seen in DNA methylation at Acta1 promoter in the offspring originated in the control group were suppressed in the ISF group. Acta1 is known to be developmentally regulated and related to morphomotric features. CONCLUSION This study demonstrates in mammals that individuals from a population subjected to a high consumption of isoflavones can show alterations in characters that may be of importance from an evolutionary perspective, such as epigenetic and morphometric characters or sexual maturation, a life history character.
Collapse
Affiliation(s)
- Carlos M Guerrero-Bosagna
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-4231, USA
- Laboratorio de Ecofisiología Animal, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Hormonas y Receptores, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Epigenetics Laboratory, Cancer Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Pablo Sabat
- Laboratorio de Ecofisiología Animal, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center for Advanced Studies in Ecology & Biodiversity and Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, de Chile, Santiago, Chile
| | - Fernanda S Valdovinos
- Laboratorio de Ecofisiología Animal, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Luis E Valladares
- Laboratorio de Hormonas y Receptores, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Susan J Clark
- Epigenetics Laboratory, Cancer Program, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
41
|
Sun X, Dey SK. Aspects of endocannabinoid signaling in periimplantation biology. Mol Cell Endocrinol 2008; 286:S3-11. [PMID: 18294762 PMCID: PMC2435201 DOI: 10.1016/j.mce.2008.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 12/13/2022]
Abstract
Physiological roles of endocannabinoids, a group of endogenously produced cannabinoid-like lipid molecules that activate G protein-coupled cannabinoid receptors, are being increasingly appreciated in female reproduction. Adverse effects of cannabinoids on female fertility have been suspected for decades; however, underlying molecular and genetic bases by which they exert these effects were not clearly understood. The discovery of cannabinoid receptors (CB1 and CB2), endocannabinoid ligands (anandamide and 2-acylglycerol) as well as their key synthetic and hydrolytic pathways has helped to better understand the roles of cannabinoid/endocannabinoid signaling in preimplantation embryo development, oviductal embryo transport, embryo implantation and postimplantation embryonic growth. This review focuses on various aspects of the endocannabinoid system in female fertility based on studies that used knockout mouse models. The information generated from studies in mice is likely to shed deeper insight into fertility regulation in women.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
42
|
Xie H, Tranguch S, Jia X, Zhang H, Das SK, Dey SK, Kuo CJ, Wang H. Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development 2008; 135:717-27. [PMID: 18199579 DOI: 10.1242/dev.015339] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of the blastocyst, a process by which it gains competency to attach with the receptive uterus, is a prerequisite for successful implantation. However, the molecular basis of blastocyst activation remains largely unexplored. Combining molecular, pharmacological and physiological approaches, we show here that silencing of Wnt-beta-catenin signaling in mice does not adversely affect the development of preimplantation embryos to blastocysts and uterine preparation for receptivity, but, remarkably, blocks blastocyst competency to implantation. Using the physiologically relevant delayed implantation model and trophoblast stem cells in culture, we further demonstrate that a coordinated activation of canonical Wnt-beta-catenin signaling with attenuation of the non-canonical Wnt-RhoA signaling pathway ensures blastocyst competency to implantation. These findings constitute novel evidence that Wnt signaling is at least one pathway that determines blastocyst competency for implantation.
Collapse
Affiliation(s)
- Huirong Xie
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Salih SM, Salama SA, Fadl AA, Nagamani M, Al-Hendy A. Expression and cyclic variations of catechol-O-methyl transferase in human endometrial stroma. Fertil Steril 2007; 90:789-97. [PMID: 17418156 PMCID: PMC4477541 DOI: 10.1016/j.fertnstert.2007.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/02/2007] [Accepted: 01/02/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of catechol-O-methyl transferase (COMT) in the regulation of estrogen metabolism in human endometrium. DESIGN Laboratory study. SETTING Academic research laboratory. INTERVENTION(S) Immunohistochemistry was used to localize COMT protein in human endometrial tissues. Catechol-O-methyl transferase promoter-luciferace reporter gene transactivation assay was used to assess COMT promoter activity in response to estrogen and progesterone treatment in primary human endometrial stroma (pHES) cells. Catechol-O-methyl transferase protein and mRNA expression were determined by Western blot and/or real-time polymerase chain reaction. The effect of 2-methoxy estrogen treatment on DNA proliferation, B-cell lymphoma 2, and vascular epithelial growth factor protein expression were assessed by Hoechst and Western blot analyses, respectively. MAIN OUTCOME MEASURE(S) Catechol-O-methyl transferase protein and mRNA subcellular localization and expression in human endometrial tissues and pHES cells. RESULT(S) Catechol-O-methyl transferase protein expression in human endometrial tissues was up-regulated in the proliferative phase and down-regulated in the midsecretory phase of the menstrual cycle. Estrogen induced a dose-dependent increase in COMT proximal promotor-luciferace transactivation in pHES cells whereas progesterone inhibited it. Estrogen up-regulated soluble COMT protein isoform expression whereas the addition of progesterone down-regulated it in pHES cells. High doses of 2-methoxy estrogen inhibited endometrial stroma cell proliferation, and down-regulated B-cell lymphoma 2 and vascular epithelial growth factor protein expression. CONCLUSION(S) Catechol-O-methyl transferase expression is hormonally regulated in human endometrial stroma. Catechol-O-methyl transferase product, 2-methoxy estrogen, inhibited endometrial stroma cell proliferation and decreased vascular epithelial growth factor and B-cell lymphoma 2 protein expression.
Collapse
Affiliation(s)
- Sana M. Salih
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Salama A. Salama
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Amin A. Fadl
- Department of Microbiology & Immunology, Tuskegee University School of Veterinary Medicine, Tuskegee, Alabama
| | - Manubai Nagamani
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
44
|
Tai P, Wang J, Jin H, Song X, Yan J, Kang Y, Zhao L, An X, Du X, Chen X, Wang S, Xia G, Wang B. Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 2007; 214:456-64. [PMID: 17654501 DOI: 10.1002/jcp.21221] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naturally occurring CD4+CD25+ regulatory T cells (Treg) exert an important role in mediating maternal tolerance to the fetus during pregnancy, and this effect might be regulated via maternal estrogen secretion. Although estrogen concentration in the pharmaceutical range has been shown to drive expansion of CD4+CD25+ Treg cells, little is known about how and through what mechanisms E2 within the physiological concentration range of pregnancy affects this expansion. Using in vivo and in vitro mouse models in these experiments, we observed that E2 at physiological doses not only expanded Treg cell in different tissues but also increased expression of the Foxp3 gene, a hallmark for CD4+CD25+ Treg cell function, and the IL-10 gene as well. Importantly, our results demonstrate that E2, at physiological doses, stimulated the conversion of CD4+CD25- T cells into CD4+CD25+ T cells which exhibited enhanced Foxp3 and IL-10 expression in vitro. Such converted CD4+CD25+ T cells had similar regulatory function as naturally occurring Treg cells, as demonstrated by their ability to suppress naïve T cell proliferation in a mixed lymphocyte reaction. We also found that the estrogen receptor (ER) exist in the CD4+CD25- T cells and the conversion of CD4+CD25- T cells into CD4+CD25+ T cells stimulated by E2 could be inhibited by ICI182,780, a specific inhibitor of ER(s). This supports that E2 may directly act on CD4+CD25- T cells via ER(s). We conclude that E2 is a potential physiological regulatory factor for the peripheral development of CD4+CD25+ Treg cells during the implantation period in mice.
Collapse
Affiliation(s)
- Ping Tai
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang H, Xie H, Dey SK. Endocannabinoid signaling directs periimplantation events. AAPS JOURNAL 2006; 8:E425-32. [PMID: 16808046 PMCID: PMC3231559 DOI: 10.1007/bf02854916] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An emerging concept in female reproduction is the role of endocannabinoids, a group of endogenously produced lipid mediators that bind to and activate cannabinoid receptors. Although adverse effects of cannabinoids in female reproduction have been implicated for years, the mechanisms by which they exert these effects remained elusive. With the identification of cannabinoid receptors, endocannabinoid ligands, their key synthetic and hydrolytic pathways, and the generation of knockout mouse models for cannabinoid receptors, a wealth of information is now available regarding the significance of cannabinoid/endocannabinoid signaling in early pregnancy. This review focuses on various aspects of endocannabinoid signaling in preimplantation embryo development and activation, and uterine differentiation during the periimplantation embryo-uterine dialog. It is hoped that a deeper understanding will lead to potential clinical applications of the endocannabinoid system as a target for regulating female fertility.
Collapse
Affiliation(s)
- Haibin Wang
- Departments of Pediatrics, Cell & Developmental Biology and Pharmacology, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, 37232-2678 Nashville, Tennessee
| | - Huirong Xie
- Departments of Pediatrics, Cell & Developmental Biology and Pharmacology, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, 37232-2678 Nashville, Tennessee
| | - Sudhansu K. Dey
- Departments of Pediatrics, Cell & Developmental Biology and Pharmacology, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, 37232-2678 Nashville, Tennessee
| |
Collapse
|
46
|
Abstract
Mammalian reproduction is a complicated process designed to diversify and strengthen the genetic complement of the offspring and to safeguard regulatory systems at various steps for propagating procreation. An emerging concept in mammalian reproduction is the role of endocannabinoids, a group of endogenously produced lipid mediators, that bind to and activate cannabinoid receptors. Although adverse effects of cannabinoids on fertility have been implicated for years, the mechanisms by which they exert these effects were not clearly understood. With the identification of cannabinoid receptors, endocannabinoid ligands, their key synthetic and hydrolytic pathways, and the generation of mouse models missing cannabinoid receptors, a wealth of information on the significance of cannabinoid/endocannabinoid signaling in spermatogenesis, fertilization, preimplantation embryo development, implantation, and postimplantation embryonic growth has been generated. This review focuses on various aspects of the endocannabinoid system in male and female fertility. It is hoped that a deeper insight would lead to potential clinical applications of the endocannabinoid signaling as a target for correcting infertility and improving reproductive health in humans.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
47
|
Abstract
Implantation involves an intricate discourse between the embryo and uterus and is a gateway to further embryonic development. Synchronizing embryonic development until the blastocyst stage with the uterine differentiation that takes place to produce the receptive state is crucial to successful implantation, and therefore to pregnancy outcome. Although implantation involves the interplay of numerous signalling molecules, the hierarchical instructions that coordinate the embryo-uterine dialogue are not well understood. This review highlights our knowledge about the molecular development of preimplantation and implantation and the future challenges of the field. A better understanding of periimplantation biology could alleviate female infertility and help to develop novel contraceptives.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
48
|
Van Winkle LJ, Tesch JK, Shah A, Campione AL. System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood. Hum Reprod Update 2005; 12:145-57. [PMID: 16251251 DOI: 10.1093/humupd/dmi044] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amino acid transport system B(0,+) was first characterized in detail in mouse blastocysts over two decades ago. Since then, this system has been shown to be involved in a wide array of developmental processes from blastocyst implantation in the uterus to adult obesity. Leucine uptake through system B(0,+) in blastocysts triggers mammalian target of rapamycin (mTOR) signalling. This signalling pathway selectively regulates development of trophoblast motility and the onset of the penetration stage of blastocyst implantation about 20 h later. Meanwhile, system B(0,+) becomes inactive in blastocysts a few hours before implantation in vivo. System B(0,+) can, however, be activated in preimplantation blastocysts by physical stimuli. The onset of trophoblast motility should provide the physiological physical stimulus activating system B(0,+) in blastocysts in vivo. Activation of system B(0,+) when trophoblast cells begin to penetrate the uterine epithelium would cause it to accumulate its preferred substrates, which include tryptophan, from uterine secretions. A low tryptophan concentration in external secretions next to trophoblast cells inhibits T-cell proliferation and rejection of the conceptus. Suboptimal system B(0,+) regulation of these developmental processes likely influences placentation and subsequent embryo nutrition, birth weight and risk of developing metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Lon J Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
49
|
Wang H, Tranguch S, Xie H, Hanley G, Das SK, Dey SK. Variation in commercial rodent diets induces disparate molecular and physiological changes in the mouse uterus. Proc Natl Acad Sci U S A 2005; 102:9960-5. [PMID: 15987781 PMCID: PMC1174983 DOI: 10.1073/pnas.0501632102] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although ovarian estrogen, estradiol-17beta, is a key modulator of normal reproductive functions, natural and synthetic compounds with estrogen-like activities can further influence reproductive functions. Plant-derived phytoestrogens specifically have received much attention because of associated health benefits. However, a comprehensive understanding of the beneficial and/or detrimental impacts of phytoestrogen consumption through commercial rodent diets on uterine biology and early pregnancy at the molecular level remains largely unexplored. Using multiple approaches, we demonstrate here that exposure of adult female mice to a commercial rodent diet with higher phytoestrogen levels facilitates uterine growth in the presence or absence of ovarian estrogen, alters uterine expression of estrogen-responsive genes, and advances the timing of implantation compared with a diet with lower phytoestrogen levels. The finding that variability in phytoestrogen content in commercial rodent diets, both within and between brands, influences experimental results stresses the importance of this investigation and raises caution for investigators using rodents as animal models.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
50
|
Desaulniers D, Xiao GH, Leingartner K, Chu I, Musicki B, Tsang BK. Comparisons of brain, uterus, and liver mRNA expression for cytochrome p450s, DNA methyltransferase-1, and catechol-o-methyltransferase in prepubertal female Sprague-Dawley rats exposed to a mixture of aryl hydrocarbon receptor agonists. Toxicol Sci 2005; 86:175-84. [PMID: 15858227 DOI: 10.1093/toxsci/kfi178] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-ortho polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) are ubiquitous environmental contaminants that exert their toxicity mostly through activation of the aryl-hydrocarbon receptor (AhR), and are referred to as AhR agonists. The objective was to study, by real time reverse-transcriptase-polymerase chain reaction (RT-PCR), the effects of postnatal exposure to a reconstituted mixture of AhR agonists present in breast milk (3 non-ortho PCBs, 6 PCDDs, and 7 PCDFs, referred to here-in-after as AhRM) on mRNA expression of estrogen receptor (ERalpha), enzymes involved with the metabolism of estrogens [catechol-o-methyltransferase (Comt), cytochrome P450 (Cyp)1A1, 1B1 and 2B1], and DNA methyltransferase-1 (Dnmt1), in brain areas, liver and uterus of immature female rats. Neonates were exposed by gavage during postnatal day (PND) 1-20 with dosages equivalent to 1, 10, 100, and 1000 times the estimated average human exposure level, and were sacrificed at PND 21. None of the end points were affected in uterine cross-sections, or in samples of uterine tissue layers collected by laser capture microdissection. At 1000x, the AhRM reduced Dnmt1 mRNA abundance to 28% and 32% of control in the liver and hypothalamus, respectively. In the brain, Cyp1A1 was increased (409%) but ERalpha was reduced (66%). Similarly, mRNA abundance for Comt isoforms was reduced in the liver (45%) and brain areas (55-70%). AhRM at 100x, the lowest effective dose, exerted a 220% increase in brain cortex Comt [membrane bound (Mb)], a 219% increase in hepatic Cyp1B1, and a 63% decrease in hepatic Comt (soluble (S)+Mb). These results support the possibility that early exposure to environmental contaminants could lead to effects mediated by changes in DNA methylation and/or estrogen metabolism and signaling.
Collapse
Affiliation(s)
- D Desaulniers
- Health Canada, Healthy Environments and Consumer Safety Branch, Environmental & Occupational Toxicology Division, Ottawa, Ontario, Canada K1A 0L2.
| | | | | | | | | | | |
Collapse
|