1
|
Skubica P, Hoffmanova I, Dankova P. Chronically increased osteoclastogenesis in adult celiac disease patients does not hinder improvement in bone health induced by gluten-free diet: Role of vitamin D, OPG and IL-6. J Nutr Biochem 2025; 139:109871. [PMID: 39978647 DOI: 10.1016/j.jnutbio.2025.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The etiology of bone loss in celiac disease (CeD) remains a clinical challenge, with uncertainties present such as the extent of involvement of malabsorption and inflammation-induced osteoresorption processes in development of osteopenia/osteoporosis (OPN/OP), or reasons for failure to achieve healthy bone mass (BMD) even after long-term gluten-free diet (GFD) treatment. This observational prospective study explores the in vitro osteoclastogenic potential of peripheral blood precursors originating from adult active (newly diagnosed and untreated) celiac disease patients (aCeD) and describes the longitudinal changes in osteoclastogenesis after long-term adherence to GFD. To find connections between in vitro observations and in vivo bone metabolism changes, serum levels of 25(OH)D3, PTH, bCTX, PINP, CRP, IL-6, RANKL and OPG were measured before and after GFD and levels of these markers were correlated with the rate of osteoclastogenesis in vitro. OPG and IL-6 showed associations with BMD and/or presence of OPN/OP. Patients after GFD (CeD-GFD) exhibited improved BMD and increased serum 25(OH)D3 levels, alongside reduced bCTX and PINP levels. Compared to healthy donors, aCeD osteoclast genesis in vitro was higher and, surprisingly, remained elevated even in CeD-GFD patients. Negative correlation was found between osteoclastogenesis rate and serum OPG in aCeD, while osteoclastogenesis rate positively correlated with PTH in CeD-GFD. These results highlight OPG as marker for risk of OPN/OP in CeD and suggest that improvement of BMD after GFD is a result of uncoupling between bone metabolism and osteoresorptive action of osteoclasts after GFD.
Collapse
Affiliation(s)
- Patrik Skubica
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iva Hoffmanova
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Pavlina Dankova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Spoladore R, Ciampi CM, Ossola P, Sultana A, Spreafico LP, Farina A, Fragasso G. Heart Failure and Osteoporosis: Shared Challenges in the Aging Population. J Cardiovasc Dev Dis 2025; 12:69. [PMID: 39997503 PMCID: PMC11856909 DOI: 10.3390/jcdd12020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
In clinical practice, heart failure (HF) and osteoporosis (OP) are commonly paired conditions. This association is particularly relevant in patients over the age of 50, among whom its prevalence increases dramatically with every decade of life. This can be especially impactful since patient prognosis when facing both conditions is poorer than that of each disease alone. Clinical studies suggest that prior fractures increase the risk for heart failure hospitalization and, conversely, an episode of heart failure increases the risk of subsequent fractures. In other words, the relationship between osteoporosis and heart failure seems to be two-way, meaning that each condition may influence or contribute to the development of the other. However, the details of the pathophysiological relationship between HF and OP have yet to be revealed. The two conditions share multiple pathological mechanisms that seem to be intertwined. Patients affected by OP are more prone to develop HF because of vitamin D deficiency, elevation of parathyroid hormone (PTH) plasma levels, and increased Fibroblast Growth Factor 23 (FGF-23) activity. On the other hand, HF patients are more prone to develop OP and pathological fractures because of low vitamin D level, high PTH, chronic renal failure, alteration of renin-angiotensin-aldosterone system, reduced testosterone level, and metabolic effects derived from commonly used medications. Considering the increasingly aging worldwide population, clinicians can expect to see more often an overlap between these two conditions. Thus, it becomes crucial to recognize how HF and OP mutually influence the patient's clinical condition. Clinicians attending these patients should utilize an integrated approach and, in order to improve prognosis, aim for early diagnosis and treatment initiation. The aim of this paper is to perform a review of the common pathophysiological mechanisms of OP and HF and identify potentially new treatment targets.
Collapse
Affiliation(s)
- Roberto Spoladore
- Heart Failure Clinic, Division of Cardiology, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy;
| | - Claudio Mario Ciampi
- Health Science Department, University of Milan Bicocca, 20126 Milan, Italy; (C.M.C.); (P.O.); (A.S.)
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, 20126 Milan, Italy; (C.M.C.); (P.O.); (A.S.)
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, 20126 Milan, Italy; (C.M.C.); (P.O.); (A.S.)
| | - Luigi Paolo Spreafico
- Orthopedics and Traumatology Unit, San Paolo University Hospital, 20142 Milan, Italy;
| | - Andrea Farina
- Heart Failure Clinic, Division of Cardiology, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy;
| | - Gabriele Fragasso
- Heart Failure Clinic, Division of Cardiology, IRCCS San Raffaele University Hospital, 20132 Milan, Italy;
| |
Collapse
|
3
|
Kitazawa S, Haraguchi R, Kitazawa R. Roles of osteoclasts in pathological conditions. Pathol Int 2025; 75:55-68. [PMID: 39704061 PMCID: PMC11849001 DOI: 10.1111/pin.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU. Osteoclasts, derived from the monocyte-macrophage lineage, are regulated by the RANKL-RANK-OPG system, which is a key factor in osteoclast differentiation. RANKL activates osteoclasts through its receptor RANK, while OPG acts as a decoy receptor that inhibits RANKL. In trabecular bone, high turnover involves rapid bone formation and resorption, influenced by conditions such as malignancy and inflammatory cytokines that increase RANKL expression. Cortical bone remodeling, regulated by aged osteocytes expressing RANKL, is less understood, despite ongoing research into how Rett syndrome, characterized by MeCP2 abnormalities, affects RANKL expression. Balancing trabecular and cortical bone involves mechanisms that preserve cortical bone, despite overall bone mass reduction due to aging or oxidative stress. Research into genes like sFRP4, which modulates bone mass, highlights the complex regulation by BMUs. The roles of the RANKL-RANK-OPG system extend beyond bone, affecting processes such as aortic valve formation and temperature regulation, which highlight the interconnected nature of biological research.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
| | - Ryuma Haraguchi
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
| | - Riko Kitazawa
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
- Division of Diagnostic PathologyEhime University Hospital, ShitsukawaToon CityJapan
| |
Collapse
|
4
|
Zhang S, Gao M, Song S, Zhao T, Zhou B, Wang H, Tian W, Zhao W, Zhao J. Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances. Genesis 2025; 63:e70012. [PMID: 39959950 DOI: 10.1002/dvg.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
Osteoporosis is a metabolic bone disease primarily caused by a decreased bone formation and increased bone resorption. Osteoclasts are a special class of terminally differentiated cells that play an important role in normal bone remodeling and bone loss in osteoporosis as well as in a variety of osteolytic diseases. Osteoclasts can be differentiated from monocyte-macrophage cells of the hematopoietic system; they are the key cells in bone resorption. Osteoclast formation and differentiation are regulated by various cytokines and transcription factors. In this review, we summarize recent advances in research on the regulation of osteoclast differentiation and function by factors such as M-CSF, RANKL, AP-1, NFATC1, MITF, and PU.1. Understanding these cytokines and transcription factors can not only help identify targets for osteoclast differentiation but also aid in intervening in the treatment of osteoclast-related diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Meng Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Shuzhe Song
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Tongdan Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Wenpeng Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, People's Republic of China
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
5
|
Lin TY, Huang TY, Chiu HC, Chung YY, Lin WC, Lin HY, Lee SY. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside-stimulated dental pulp stem cells-derived exosomes for wound healing and bone regeneration. J Dent Sci 2025; 20:154-163. [PMID: 39873051 PMCID: PMC11762248 DOI: 10.1016/j.jds.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses. Therefore, we aimed to unveil the potential of THSG-Exo and evaluate its regenerative capabilities through the in vitro experiment and rat bone defect model. Materials and methods The effects of hDPSC-derived exosomes, with or without THSG treatment, on repair and bone regeneration were evaluated through in vitro and in vivo studies. Finally, we conducted a proteomic analysis to meticulously compare the compositional contents of the two types of exosomes. Results In vitro data showed that 10 and 100 μM THSG-Exo enhanced cell proliferation and osteogenic differentiation, reducing wound size to 40 % of its original size. In our maxillary bone defect rat model, THSG-Exo significantly increased bone volume, trabecular thickness, and bone density in the bone defect area. In addition, proteomic analysis of THSG-Exo revealed diverse proteins linked to bone differentiation and tissue repair, including bone morphogenetic protein-1 (BMP-1) and tumor necrosis factor (TNF)-α-stimulated gene 6 (TNFAIP6). Our searches in functional databases revealed that THSG-Exo is involved in numerous biological pathways. Conclusion THSG-Exo enhanced cell proliferation, wound healing, and osteogenesis in vitro, while also expediting tissue repair and bone regeneration in vivo. The protein diversity of THSG-Exo contributes significant value in both basic and regenerative medicine.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yao-Yu Chung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Lin
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Halupczok-Żyła J, Jawiarczyk-Przybyłowska A, Bolanowski M. Sclerostin and OPG/RANK-L system take part in bone remodeling in patients with acromegaly. Front Endocrinol (Lausanne) 2024; 15:1472680. [PMID: 39741885 PMCID: PMC11685073 DOI: 10.3389/fendo.2024.1472680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Acromegaly is a disease characterized by enhanced bone turnover with persistently high vertebral fracture risk. Sclerostin is a glycoprotein, which acts as an inhibitor of bone formation and activates osteoclast-mediated bone resorption. The osteoprotegerin (OPG)/receptor activator for the nuclear factor κ B ligand (RANK-L) system is crucial for controlling bone metabolism. Objective The study aimed primarily at evaluating sclerostin, OPG, and RANK-L concentrations in patients at different stages of acromegaly activity. The secondary aim was to identify an association of sclerostin with the OPG/RANK-L system and bone mineral density (BMD). Materials and methods The study enrolled 126 patients aged 40 to 80 years, including 72 patients with acromegaly and 54 controls (CG). The acromegaly patients were further classified into the following subgroups: active acromegaly (AA), controlled acromegaly (CTA), and cured acromegaly (CA). Blood samples were taken from the participants to measure sclerostin, OPG, RANK-L, growth hormone (GH), and insulin-like growth factor-1 (IGF-1). Dual-energy X-ray absorptiometry was performed at the lumbar spine and hip. Results Significantly lower sclerostin concentrations were observed in acromegaly patients compared with CG (AA, CTA, CA, CTA+CA, AA+CTA+CA vs CG; p < 0.001). Significant differences in OPG concentrations were revealed between the following groups: CTA vs CA (p=0.002), CTA vs CG (p<0.001), CTA+CA vs. CG (p<0.001), and AA+CTA+CA vs. CG (p<0.001). There were no significant differences in RANK-L concentrations between studied groups, regardless of the adopted classification (p>0.05). There were no statistically significant correlations between sclerostin and GH/IGF-1 or BMD. In the AA+CTA+CA group, there was a statistically significant positive correlation between SCL and OPG concentrations (r=0.271; p=0.022). A significant negative correlation between SCL and RANK-L was found in the AA group (r=-0.738; p=0.046). Conclusions Patients with acromegaly have lower sclerostin concentrations than healthy controls, which may be a result of a compensatory mechanism to increased bone loss. The influence of the GH/IGF-I axis on bone remodeling may be mediated in part by the OPG/RANK-L system. The interaction between SCL and OPG/RANK-L system in acromegaly should be further elucidated.
Collapse
Affiliation(s)
- Jowita Halupczok-Żyła
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wrocław, Poland
| | | | | |
Collapse
|
7
|
Stefanova K, Delcheva G, Stankova T. Are the Soluble Receptors sRAGE, sRANKL, and Osteoprotegerin Associated with Anemia in Rheumatoid Arthritis? Int J Mol Sci 2024; 25:12729. [PMID: 39684440 DOI: 10.3390/ijms252312729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with articular and systemic manifestations, and one of the most common is anemia. This study aims to investigate whether the levels of the soluble receptors sRAGE, sRANKL, and OPG are affected by the distribution of RA patients in subgroups according to soluble transferrin receptor/log ferritin (sTfR-F index) and hemoglobin (Hb) levels and to examine their correlation with indicators of iron metabolism, disease activity, and autoimmune and inflammatory changes. The levels of sRANKL and sRAGE were significantly higher in the subgroup of anemia of chronic disease combined with iron deficiency anemia (ACD/IDA) compared to the ACD group: p < 0.0001 and p < 0.0001. The level of OPG tended to decrease in ACD/IDA (p = 0.053). sRAGE was positively correlated with prohepcidin, RF and anti-CCP antibodies, sRANKL, CRP, and IL-6 only in the ACD group. A negative correlation was found between sRAGE, sRANKL, and serum iron only in the ACD/IDA group. sRANKL was positively correlated with OPG, prohepcidin, CRP, IL-6, RF, anti-CCP antibodies, and DAS28 only in the ACD group. Positive correlations were observed between OPG and ferritin, sTfR, CRP, IL-6, RF, and DAS28, and a negative correlation was observed with serum iron only in the ACD group. Therefore, the investigated soluble receptors may serve as reliable biomarkers involved in the pathogenesis of RA and may contribute to the identification of patients at risk of developing combined anemia.
Collapse
Affiliation(s)
- Katya Stefanova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Ginka Delcheva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Candow DG, Moriarty T. Effects of Creatine Monohydrate Supplementation on Muscle, Bone and Brain- Hope or Hype for Older Adults? Curr Osteoporos Rep 2024; 23:1. [PMID: 39509039 DOI: 10.1007/s11914-024-00895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE OF REVIEW Sarcopenia, generally characterized by the age-related reduction in muscle strength, lean/muscle mass and functional ability, is also associated with reduced bone mass and strength and impaired brain health and function. One potential intervention which has received much 'hype' over the past few decades to countermeasure these negative consequences of biological aging is creatine monohydrate supplementation. RECENT FINDINGS From a skeletal muscle perspective, the combination of creatine monohydrate supplementation and resistance training provides 'hope' for older adults as it improves measures of lean mass, regional (limb) muscle thickness, upper- and lower-body muscle strength and functional ability. Further, there is some evidence that creatine (supplementation or habitual diet) provides a ray of 'hope' for improving some aspects of cognitive function. The majority of research suggests that creatine is more 'hype' than 'hope' for improving measures of bone mass in older adults. Creatine monohydrate supplementation provides some anti-sarcopenic benefits for older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Terence Moriarty
- Department of Kinesiology and Athletic Training, University of Northern Iowa, Cedar Falls, IA, USA
| |
Collapse
|
9
|
Li H, Xu WX, Tan JC, Hong YM, He J, Zhao BP, Zhou JA, Zheng YM, Lei M, Zheng XQ, Ding J, Liu NN, Gao JJ, Zhang CQ, Wang H. Single-cell multi-omics identify novel regulators required for osteoclastogenesis during aging. iScience 2024; 27:110734. [PMID: 39280596 PMCID: PMC11401210 DOI: 10.1016/j.isci.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Age-related osteoporosis manifests as a complex pathology that disrupts bone homeostasis and elevates fracture risk, yet the mechanisms facilitating age-related shifts in bone marrow macrophages/osteoclasts (BMMs/OCs) lineage are not fully understood. To decipher these mechanisms, we conducted an investigation into the determinants controlling BMMs/OCs differentiation. We performed single-cell multi-omics profiling on bone marrow samples from mice of different ages (1, 6, and 20 months) to gain a holistic understanding of cellular changes across time. Our analysis revealed that aging significantly instigates OC differentiation. Importantly, we identified Cebpd as a vital gene for osteoclastogenesis and bone resorption during the aging process. Counterbalancing the effects of Cebpd, we found Irf8, Sox4, and Klf4 to play crucial roles. By thoroughly examining the cellular dynamics underpinning bone aging, our study unveils novel insights into the mechanisms of age-related osteoporosis and presents potential therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan-Xing Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Mei Hong
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben-Peng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Min Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Jabari E, Choe RH, Kuzemchak B, Venable-Croft A, Choi JY, McLoughlin S, Packer JD, Fisher JP. Strategies for the Codelivery of Osteoclasts and Mesenchymal Stem Cells in 3D-Printable Osteochondral Scaffolds. Tissue Eng Part C Methods 2024; 30:323-334. [PMID: 39078319 DOI: 10.1089/ten.tec.2024.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Osteochondral defects, characterized by structural compromises to articular cartilage and subchondral bone, can cause pain and lead to progressive cartilage damage and eventual osteoarthritis. Unfortunately, repairing these defects remains difficult because of the poor regenerative properties of cartilage and complex mechanical demands of the joint. As such, the field of tissue engineering aims to develop multiphasic implants that replace pathological cartilage and bone tissue and restore mechanical functionality to the joint. Recent bone physiology investigations have demonstrated that osteoclast (OC) lineage cells are inextricably involved in osteoblastic bone formation through an extensive network of anabolic signaling pathways, and so the codelivery OC and osteoblast (OB) lineage cells within scaffolds is being actively explored for bone tissue engineering purposes. However, it remains unclear how these cells can be incorporated into the design of multiphasic osteochondral scaffolds to potentially enhance subchondral bone formation and subsequent implant osseointegration. To explore this question, we examined direct surface seeding and hydrogel encapsulation as potential scaffold cellularization strategies. First, we examined how OC precursor cells and peripheral blood monocytes (PBMCs) influence early-stage bone matrix development and osteogenesis in 2D coculture. Then, we evaluated the osteogenic potential of mesenchymal stem cells (MSCs) and PBMCs cocultures encapsulated within a gelatin methacrylate (GelMA) hydrogel system. Our findings demonstrate that coculturing PBMCs with MSCs in 2D cultures significantly enhanced cell proliferation, early bone matrix deposition, and the formation of cell clusters by Day 28. However, we observed no significant difference in type I collagen deposition between GelMA hydrogel scaffolds cultured in basal and OC conditions during the same period. In addition, we found that the GelMA hydrogel system with MSC/PBMC cocultures in OC conditions exhibited decreased osteogenic activity by Day 28. Collectively, our findings support the osteogenic potential of OC-lineage cells in 2D culture conditions, and the potential benefits of surface-seeding for the codelivery of OC-lineage cells and MSCs in osteo-scaffolds for enhanced osteochondral regeneration and broader bone tissue engineering purposes.
Collapse
Affiliation(s)
- Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Blake Kuzemchak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Alejandro Venable-Croft
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Ji Young Choi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Jonathan D Packer
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
11
|
Chiluveru S, Gundelly M, Pusuluri SV, Tummanepally M, Chandaka M, Koduganti RR. Resolvins in Periodontitis and Possible Periodontal Regeneration: A Literature Review. Cureus 2024; 16:e68187. [PMID: 39347277 PMCID: PMC11439191 DOI: 10.7759/cureus.68187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Periodontitis is a rampant global disease with multifactorial etiology. The main harbinger of periodontitis is the plaque biofilm. The mature biofilm in turn interacts with the micro-organisms and the host, with environmental and genetic factors as additional initiators to cause disease. There are several strategies of preventive periodontics which include host modulation therapy to ameliorate the disease. Recently a lot of research has been done related to the role of resolvins in periodontitis. This article showcases the role of resolvins in periodontal health and disease.
Collapse
Affiliation(s)
- Sneha Chiluveru
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Mrunalini Gundelly
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Santosh V Pusuluri
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Manasa Tummanepally
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Meenakshi Chandaka
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| | - Rekha R Koduganti
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, IND
| |
Collapse
|
12
|
Peng Y, Zhao H, Hu S, Ma Y, Han T, Meng C, Tong X, Zou H, Liu Z, Song R. Exploring the impact of osteoprotegerin on osteoclast and precursor fusion: Mechanisms and modulation by ATP. Differentiation 2024; 138:100789. [PMID: 38896972 DOI: 10.1016/j.diff.2024.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.
Collapse
Affiliation(s)
- Yunwen Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Sinan Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuang Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
13
|
Uzar I, Bogacz A, Łuszczyńska M, Wolek M, Kotrych K, Modrzejewski A, Czerny B, Ziętek P, Kamiński A. The Analysis of ECE1 and PPARG Variants in the Development of Osteopenia and Osteoporosis in Postmenopausal Women. Biomedicines 2024; 12:1440. [PMID: 39062013 PMCID: PMC11274254 DOI: 10.3390/biomedicines12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis is a multifactorial systemic skeletal disease that is characterized by a low bone mineral density (BMD) and the microarchitectural deterioration of bone tissue, leading to bone fragility. The search for new genes that may play an important role in the regulation of bone mass and the development of osteoporosis is ongoing. Recently, it was found that altering the activity of the endothelin-1-converting enzyme encoded by the ECE1 gene may affect bone mineral density (BMD). Another gene involved in the process of osteoblast differentiation and maturation is believed to be PPARG (peroxisome proliferator-activated receptor gamma). This participates in regulating the transformation of stem cells and affects the process of bone formation and resorption. Therefore, we analyzed the association of the ECE1 and PPARG variants with osteopenia and osteoporosis risk in the Polish population. This study included a group (n = 608) of unrelated Polish women (245 individuals with osteoporosis (aged: 57 ± 9), 109 individuals with osteopenia (aged: 53 ± 8) and 254 healthy controls (aged: 54 ± 8)). The real-time PCR technique was used to determine the genetic variants for rs213045 (-338G>T) and rs213046 (-839A>C) of the ECE1 gene and rs1801282 (Pro12Ala, C>G) of the PPARG gene. Analysis of the PPARG rs1801282 variants did not show any association with the risk of osteoporosis and osteopenia. However, in the densitometric results, lower median Z-score values were observed for the T allele compared to the G allele for the rs213045 variant of the ECE1 gene (-1.11 ± 1.07 vs. -0.78 ± 1.21, p = 0.021). Moreover, the TT genotype for the rs213045 variant was more common in women with osteopenia (13.8%, OR = 2.82, p < 0.05) and osteoporosis (7.8%, OR = 1.38, p > 0.05) compared to the control group (5.5%). Additionally, our results suggested that the T allele of rs213045 was more common in women with osteopenia compared to the controls. We further observed that the haplotype containing two major GA alleles of ECE1 (rs213045, rs213046) could reduce the risk of osteopenia in our population. Finally, we found that women with osteoporosis had statistically significantly lower body mass and BMI values compared to the control group. Our results suggest that the ECE1 rs213045 variant may increase the risk of osteopenia. However, the data obtained require confirmation in further studies.
Collapse
Affiliation(s)
- Izabela Uzar
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-230 Szczecin, Poland; (I.U.); (B.C.)
- Department of Pharmacology and Toxicology, Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-048 Zielona Góra, Poland
| | - Anna Bogacz
- Department of Personalized Medicine and Cell Therapy, Regional Blood Center, Marcelinska 44, 60-354 Poznan, Poland
| | - Małgorzata Łuszczyńska
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland; (M.Ł.); (M.W.)
| | - Marlena Wolek
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland; (M.Ł.); (M.W.)
| | - Katarzyna Kotrych
- Department of General and Dental Radiology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Andrzej Modrzejewski
- Clinical Department of General Surgery, Pomeranian Medical University in Szczecin, Piotra Skargi 9−11, 70-965 Szczecin, Poland;
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-230 Szczecin, Poland; (I.U.); (B.C.)
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland; (M.Ł.); (M.W.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| |
Collapse
|
14
|
周 铎, 杨 德. [miRNA Is Involved in the Pathogenesis of Multiple Diseases by Targeting Osteoprotegerin]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:777-782. [PMID: 38948285 PMCID: PMC11211783 DOI: 10.12182/20240560607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 07/02/2024]
Abstract
As a member of the tumor necrosis factor receptor family, osteoprotegerin (OPG) is highly expressed in adults in the lung, heart, kidney, liver, spleen, thymus, prostate, ovary, small intestines, thyroid gland, lymph nodes, trachea, adrenal gland, the testis, and bone marrow. Together with the receptor activator of nuclear factor-κB (RANK) and the receptor activator of nuclear factor-κB ligand (RANKL), it forms the RANK/RANKL/OPG pathway, which plays an important role in the molecular mechanism of the development of various diseases. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs performing regulatory functions in eukaryotes, with a size of about 20-25 nucleotides. miRNA genes are transcribed into primary transcripts by RNA polymerase, bind to RNA-induced silencing complexes, identify target mRNAs through complementary base pairing, with a single miRNA being capable of targeting hundreds of mRNAs, and influence the expression of many genes through pathways involved in functional interactions. In recent years, a large number of studies have been done to explore the mechanism of action of miRNA in diseases through miRNA isolation, miRNA quantification, miRNA spectrum analysis, miRNA target detection, in vitro and in vivo regulation of miRNA levels, and other technologies. It was found that miRNA can play a key role in the pathogenesis of osteoporosis, rheumatoid arthritis, and other diseases by targeting OPG. The purpose of this review is to explore the interaction between miRNA and OPG in various diseases, and to propose new ideas for studying the mechanism of action of OPG in diseases.
Collapse
Affiliation(s)
- 铎 周
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - 德琴 杨
- 重庆医科大学附属口腔医院 牙体牙髓科 (重庆 401147)Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
15
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. Pleurotus sajor-caju (Fr.) Singer β-1,3-Glucanoligosaccharide (Ps-GOS) Suppresses RANKL-Induced Osteoclast Differentiation and Function in Pre-Osteoclastic RAW 264.7 Cells by Inhibiting the RANK/NFκB/cFOS/NFATc1 Signalling Pathway. Molecules 2024; 29:2113. [PMID: 38731604 PMCID: PMC11085266 DOI: 10.3390/molecules29092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Edible grey oyster mushroom, Pleurotus sajor-caju, β (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom β-glucan using Hevea β-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; (P.R.); (A.A.)
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand;
| |
Collapse
|
16
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
17
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Sun W, Xie W, Hu K, Yang Z, Han L, Li L, Qi Y, Wei Y. Three-Dimensional Bioprinting of Strontium-Modified Controlled Assembly of Collagen Polylactic Acid Composite Scaffold for Bone Repair. Polymers (Basel) 2024; 16:498. [PMID: 38399876 PMCID: PMC10891933 DOI: 10.3390/polym16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the incidence of bone defects has been increasing year by year. Bone transplantation has become the most needed surgery after a blood transfusion and shows a rising trend. Three-dimensional-printed implants can be arbitrarily shaped according to the defects of tissues and organs to achieve perfect morphological repair, opening a new way for non-traumatic repair and functional reconstruction. In this paper, strontium-doped mineralized collagen was first prepared by an in vitro biomimetic mineralization method and then polylactic acid was homogeneously blended with the mineralized collagen to produce a comprehensive bone repair scaffold by a gas extrusion 3D printing method. Characterization through scanning electron microscopy, X-ray diffraction, and mechanical testing revealed that the strontium-functionalized composite scaffold exhibits an inorganic composition and nanostructure akin to those of human bone tissue. The scaffold possesses uniformly distributed and interconnected pores, with a compressive strength reaching 21.04 MPa. The strontium doping in the mineralized collagen improved the biocompatibility of the scaffold and inhibited the differentiation of osteoclasts to promote bone regeneration. This innovative composite scaffold holds significant promise in the field of bone tissue engineering, providing a forward-thinking solution for prospective bone injury repair.
Collapse
Affiliation(s)
- Weiwei Sun
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenyu Xie
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zongwen Yang
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Lu Han
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Luhai Li
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuansheng Qi
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Pascual-García S, Martínez-Peinado P, Pujalte-Satorre C, Navarro-Sempere A, Esteve-Girbés J, López-Jaén AB, Javaloyes-Antón J, Cobo-Velacoracho R, Navarro-Blasco FJ, Sempere-Ortells JM. Exosomal Osteoclast-Derived miRNA in Rheumatoid Arthritis: From Their Pathogenesis in Bone Erosion to New Therapeutic Approaches. Int J Mol Sci 2024; 25:1506. [PMID: 38338785 PMCID: PMC10855630 DOI: 10.3390/ijms25031506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | | - Alicia Navarro-Sempere
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Jorge Esteve-Girbés
- Department of Legal Studies of the State, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Juan Javaloyes-Antón
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Raúl Cobo-Velacoracho
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | | |
Collapse
|
20
|
Gómez-Alonso IS, Betanzos-Cabrera G, Moreno-Lafont MC, Cancino-Diaz ME, García-Pérez BE, Cancino-Diaz JC. Non-biofilm-forming Staphylococcus epidermidis planktonic cell supernatant induces alterations in osteoblast biological function. Sci Rep 2024; 14:1807. [PMID: 38245549 PMCID: PMC10799936 DOI: 10.1038/s41598-024-51899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Staphylococcal biofilms significantly contribute to prosthetic joint infection (PJI). However, 40% of S. epidermidis PJI isolates do not produce biofilms, which does not explain the role of biofilms in these cases. We studied whether the supernatant from planktonic S. epidermidis alters osteoblast function. Non-biofilm-forming S. epidermidis supernatants (PJI- clinical isolate, healthy skin isolate (HS), and ATCC12228 reference strain) and biofilm-forming supernatants (PJI+ clinical isolate, ATCC35984 reference strain, and Staphylococcus aureus USA300 reference strain) were included. Osteoblasts stimulated with supernatants from non-biofilm-forming isolates for 3, 7, and 14 days showed significantly reduced cellular DNA content compared with unstimulated osteoblasts, and apoptosis was induced in these osteoblasts. Similar results were obtained for biofilm-forming isolates, but with a greater reduction in DNA content and higher apoptosis. Alkaline phosphatase activity and mineralization were significantly reduced in osteoblasts treated with supernatants from non-biofilm-forming isolates compared to the control at the same time points. However, the supernatants from biofilm-forming isolates had a greater effect than those from non-biofilm-forming isolates. A significant decrease in the expression of ATF4, RUNX2, ALP, SPARC, and BGLAP, and a significant increase in RANK-L expression were observed in osteoblasts treated with both supernatants. These results demonstrate that the supernatants of the S. epidermidis isolate from the PJI- and HS (commensal) with a non-biofilm-forming phenotype alter the function of osteoblasts (apoptosis induction, failure of cell differentiation, activation of osteoblasts, and induction of bone resorption), similar to biofilm-forming isolates (PJI+, ATCC35984, and S. aureus USA300), suggesting that biofilm status contributes to impaired osteoblast function and that the planktonic state can do so independently of biofilm production.
Collapse
Affiliation(s)
- Itzia Sidney Gómez-Alonso
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla S/N., Pueblo San Juan Tilcuautla, 42160, Pachuca Hidalgo, Mexico
| | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico.
| |
Collapse
|
21
|
Yu T, Liu X, Jiang M, Li Y, Su H, Niu B. Cucumber seed polypeptides regulate RANKL-induced osteoclastogenesis through OPG/RANKL/RANK and NF-κB. In Vitro Cell Dev Biol Anim 2024; 60:54-66. [PMID: 38123756 PMCID: PMC10858069 DOI: 10.1007/s11626-023-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a common disease that endangers the health of elderly women. Cucumber seeds have shown excellent therapeutic effects on PMOP, but the mechanism of cucumber seed peptide (CSP) remains unclear. The expression levels of NF-κB and osteoclast-related genes were detected by RT-qPCR. The levels of apoptosis-related proteins were detected by Western blotting. Nuclear translocation of NF-κB p65 and osteoclast formation were detected by immunofluorescence and tartrate-resistant acid phosphatase (TRAP) staining, respectively. ELISA was used to detect the expression levels of OPG, M-CSF, and RANKL. Hematoxylin-eosin (H&E) and TRAP staining were used to observe the effects of CSP on bone formation. In RAW264.7 cells, CSP (0.4 mg/L, 4 mg/L, and 40 mg/L) effectively inhibited the expression of osteoclast-related genes (Cathepsin-K, MT1-MMP, MMP-9, and TRAP). TRAP-positive multinucleated giant cells gradually decreased. Furthermore, NF-κB pathway activation downstream of RANK was inhibited. In bone marrow stromal cells (BMSCs), the expression levels of M-CSF and RANKL gradually decreased, and OPG gradually increased with increasing CSP concentrations. Treatment of RAW264.7 cells with pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) prevented the formation of osteoclasts. Treatment with different concentrations of CSP effectively decreased the levels of RANKL and M-CSF in rat serum and increased the expression of OPG in the oophorectomy (OVX) rat model. Furthermore, different concentrations of CSP could ameliorate the loss of bone structure and inhibit the formation of osteoclasts in rats. CSP inhibits osteoclastogenesis by regulating the OPG/RANKL/RANK pathway and inhibiting the NF-kB pathway.
Collapse
Affiliation(s)
- Tao Yu
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Xiao Liu
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Meng Jiang
- Yunnan University of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yuanyue Li
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, KunmingYunnan, 650032, China
| | - Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, KunmingYunnan, 650032, China.
| |
Collapse
|
22
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Przerwa F, Uzar I, Bogacz A, Kotrych K, Sulikowski T, Wolek M, Kamiński A, Ziętek P, Czerny B. Osteoprotegerin Gene as a Biomarker in the Development of Osteoporosis in Postmenopausal Women. Biomedicines 2023; 11:3218. [PMID: 38137439 PMCID: PMC10740651 DOI: 10.3390/biomedicines11123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoporosis is a multifactorial and polygenic disease caused by an imbalance between osteoclastogenesis and osteoblastogenesis, leading to a decrease in bone mineral density and the occurrence of disorders in the microarchitecture and metabolism of bone tissue. In postmenopausal women, there is a significant decrease in the production of estrogens, which play a key role in maintaining proper bone mineral density. Estrogens have an inhibitory effect on the development and activity of osteoclasts by reducing the synthesis of pro-resorption cytokines and stimulating the expression of osteoprotegerin (OPG). Osteoprotegerin is a cytokine that prevents bone loss by inhibiting the process of osteoclastogenesis, reducing bone resorption. The aim of our study was to determine the influence of the rs3102735 (-163A>G), rs3134070 (-245T>G), rs207361 (-950T>C), rs7844539 (6890A>C), and rs2073618 (1181G>C) polymorphisms of the OPG gene on the risk of osteoporosis and osteopenia in postmenopausal Polish women. The study included 802 unrelated women (osteoporosis: n = 317, osteopenia: n = 110, controls: n = 375) at postmenopausal age (54.7 ± 8.6 years). Genetic analysis was performed using real-time PCR. BMD values as well as clinical and bone parameters with the tested polymorphisms were analyzed among the study population. Analysis of the PPARG rs1801282 variants did not show any association with the risk of osteoporosis and osteopenia. However, for the OPG rs207361 polymorphism, we observed a statistically significant association with the risk of osteoporosis, suggesting that the OPG rs207361 variant may be one of the genetic markers associated with the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Filip Przerwa
- Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-230 Szczecin, Poland; (F.P.); (I.U.); (B.C.)
| | - Izabela Uzar
- Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-230 Szczecin, Poland; (F.P.); (I.U.); (B.C.)
| | - Anna Bogacz
- Department of Personalized Medicine and Cell Therapy, Regional Blood Center, Marcelińska 44, 60-354 Poznan, Poland
| | - Katarzyna Kotrych
- Department of General and Dental Radiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskch 72, 70-111 Szczecin, Poland;
| | - Tadeusz Sulikowski
- General, Mini-Invasive and Gastroenterogical Surgery Clinic, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Marlena Wolek
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Bogusław Czerny
- Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-230 Szczecin, Poland; (F.P.); (I.U.); (B.C.)
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland;
| |
Collapse
|
24
|
Junxian L, Mehrabanian M, Mivehchi H, Banakar M, Etajuri EA. The homeostasis and therapeutic applications of innate and adaptive immune cells in periodontitis. Oral Dis 2023; 29:2552-2564. [PMID: 36004490 DOI: 10.1111/odi.14360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Periodontitis (PD) is one of the most common dental disorders. This chronic oral inflammation is caused by complicated interrelations between bacterial infections, dysregulated immune reactions, and environmental risk factors. A dysregulated immune response can lead to inflammatory bone resorption by allowing the recruitment of pro-inflammatory immune cells to the periodontal tissues. SUBJECTS The recruitment of innate and adaptive immune cells in PD initiates the acute and following chronic inflammatory processes. The inflamed tissues, on the other hand, can be restored if the anti-inflammatory lineages are predominantly established in the periodontal tissues. Therefore, we aimed to review the published literature to provide an overview of the existing knowledge about the role of immune cells in PD, as well as their possible therapeutic applications. RESULTS Experimental studies showed that drugs/systems that negatively regulate inflammatory cells in the body, as well as interventions aimed at increasing the number of anti-inflammatory cells such as Tregs and Bregs, can both help in the healing process of PD. CONCLUSION Targeting immune cells or their positive/negative manipulations has been demonstrated to be an effective therapeutic method. However, to use this sort of immunotherapy in humans, further pre-clinical investigations, as well as randomized clinical trials, are required.
Collapse
Affiliation(s)
- Li Junxian
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Mojtaba Mehrabanian
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Hassan Mivehchi
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Morteza Banakar
- Saveetha Dental College, Chennai, India
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Malaya, Malaysia
| |
Collapse
|
25
|
Lee SM, Meyer MB, Benkusky NA, Pike JW. Genome-wide analyses of gene expression profile identify key genes and pathways involved in skeletal response to phosphate and 1,25-dihydroxyvitamin D 3 in vivo. J Steroid Biochem Mol Biol 2023; 232:106335. [PMID: 37245694 PMCID: PMC10527973 DOI: 10.1016/j.jsbmb.2023.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Phosphate (P) is an essential element involved in various biological actions, such as bone integrity, energy production, cell signaling and molecular component. P homeostasis is modulated by 4 main tissues; intestine, kidney, bone, and parathyroid gland, where 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), parathyroid hormone and fibroblast growth factor 23 (FGF23) are produced and/or have an influence. In bone, serum P level modulates the production of FGF23 which then controls not only P excretion but also vitamin D metabolism in kidney in an endocrine manner. The hormonally active form of vitamin D, 1,25(OH)2D3, also has a significant effect on skeletal cells via its receptor, the vitamin D receptor, to control gene expression which mediates bone metabolism as well as mineral homeostasis. In this study, we adopted RNA-seq analysis to understand genome-wide skeletal gene expression regulation in response to P and 1,25(OH)2D3. We examined lumbar 5 vertebrae from the mice that were fed P deficient diet for a week followed by an acute high P diet for 3, 6, and 24 h as well as mice treated with 1,25(OH)2D3 intraperitoneally for 6 h. Further identification and exploration of the genes regulated by P and 1,25(OH)2D3 showed that P dynamically modulates the expression of skeletal genes involved in various biological processes while 1,25(OH)2D3 regulates genes highly related to bone metabolism. Our in vivo data were then compared with in vitro data that we previously obtained, which suggests that the gene expression profiles presented in this report mainly represent those of osteocytes. Interestingly, it was found that even though the skeletal response to P is distinguished from that to 1,25(OH)2D3, both factors have an effect on Wnt signaling pathway to modulate bone homeostasis. Taken together, this report presents genome-wide data that provide a foundation to understand molecular mechanisms by which skeletal cells respond to P and 1,25(OH)2D3.
Collapse
Affiliation(s)
- Seong Min Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
26
|
Feng M, Liu L, Wang J, Zhang J, Qu Z, Wang Y, He B. The Molecular Mechanisms Study of Engeletin Suppresses RANKL-Induced Osteoclastogenesis and Inhibits Ovariectomized Murine Model Bone Loss. J Inflamm Res 2023; 16:2255-2270. [PMID: 37250105 PMCID: PMC10225148 DOI: 10.2147/jir.s401519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Osteoclastogenesis, the process of osteoclast differentiation, plays a critical role in bone homeostasis. Overexpression of osteoclastogenesis can lead to pathological conditions, such as osteoporosis and osteolysis. This study aims to investigate the role of Engelitin in the process of RAW264.7 cell differentiation into osteoclasts induced by RANKL, as well as in a mouse model of bone loss following ovariectomy. Methods We used RANKL-stimulated RAW264.7 cells as an in vitro osteoclast differentiation model. The effects of Eng on morphological changes during osteoclast differentiation were evaluated using TRAP and F-actin staining. The effects of Eng on the molecular level of osteoclast differentiation were evaluated using Western blot and q-PCR. The level of reactive oxygen species was evaluated using the DCFH-DA staining method. We then used ovariectomized mice as a bone loss animal model. The effects of Eng on changes in bone loss in vivo were evaluated using micro-CT and histological analysis staining. Results In the in vitro experiments, Eng exhibited dose-dependent inhibition of osteoclast formation and F-actin formation. At the molecular level, Eng dose-dependently suppressed the expression of specific RNAs (NFATc1, c-Fos, TRAP, Cathepsin K, MMP-9) involved in osteoclast differentiation, and inhibited the phosphorylation of proteins such as IκBα, P65, ERK, JNK, and P38. Additionally, Eng dose-dependently suppressed ROS levels and promoted the expression of antioxidant enzymes such as Nrf2, HO-1, and NQO1. In the in vivo experiments, Eng improved bone loss in ovariectomized mice. Conclusion Our study found that Eng inhibited RANKL-induced osteoclast differentiation through multiple signaling pathways, including MAPKs, NF-κB, and ROS aggregation. Furthermore, Eng improved bone loss in ovariectomized mice.
Collapse
Affiliation(s)
- Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Lin Liu
- Department of Critical Care Medicine, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Jiang Wang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Jialang Zhang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiao Tong University, Xi’an, People’s Republic of China
| |
Collapse
|
27
|
Takahashi K, Amano H, Urano T, Li M, Oki M, Aoki K, Amizuka N, Nakayama KI, Nakayama K, Udagawa N, Higashi N. p57Kip2 is an essential regulator of vitamin D receptor-dependent mechanisms. PLoS One 2023; 18:e0276838. [PMID: 36791055 PMCID: PMC9931147 DOI: 10.1371/journal.pone.0276838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/14/2022] [Indexed: 02/16/2023] Open
Abstract
A cyclin-dependent kinase (CDK) inhibitor, p57Kip2, is an important molecule involved in bone development; p57Kip2-deficient (p57-/-) mice display neonatal lethality resulting from abnormal bone formation and cleft palate. The modulator 1α,25-dihydroxyvitamin D3 (l,25-(OH)2VD3) has shown the potential to suppress the proliferation and induce the differentiation of normal and tumor cells. The current study assessed the role of p57Kip2 in the 1,25-(OH)2VD3-regulated differentiation of osteoblasts because p57Kip2 is associated with the vitamin D receptor (VDR). Additionally, 1,25-(OH)2VD3 treatment increased p57KIP2 expression and induced the colocalization of p57KIP2 with VDR in the osteoblast nucleus. Primary p57-/- osteoblasts exhibited higher proliferation rates with Cdk activation than p57+/+ cells. A lower level of nodule mineralization was observed in p57-/- osteoblasts than in p57+/+ cells. In p57+/+ osteoblasts, 1,25-(OH)2VD3 upregulated the p57Kip2 and opn mRNA expression levels, while the opn expression levels were significantly decreased in p57-/- cells. The osteoclastogenesis assay performed using bone marrow cocultured with 1,25-(OH)2VD3-treated osteoblasts revealed a decreased efficiency of 1,25-(OH)2VD3-stimulated osteoclastogenesis in p57-/- cells. Based on these results, p57Kip2 might function as a mediator of 1,25-(OH)2VD3 signaling, thereby enabling sufficient VDR activation for osteoblast maturation.
Collapse
Affiliation(s)
- Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo
- Department of Anatomy, School of Medicine, Showa University Hatanodai, Shinagawa-ku, Tokyo
| | - Hitoshi Amano
- Department of Biochemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
- * E-mail:
| | - Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Geriatric Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Minqi Li
- Stomatology Department of Jining Medical University, Jining, and Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Norio Amizuka
- Developmental Biology and Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo
| |
Collapse
|
28
|
Kawai R, Sugisaki R, Miyamoto Y, Yano F, Sasa K, Minami E, Maki K, Kamijo R. Cathepsin K degrades osteoprotegerin to promote osteoclastogenesis in vitro. In Vitro Cell Dev Biol Anim 2023; 59:10-18. [PMID: 36689044 DOI: 10.1007/s11626-023-00747-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Osteoblasts produce the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin, the inducer and the suppressor of osteoclast differentiation and activation. We previously proposed that the degradation of osteoprotegerin by lysine-specific gingipain of Porphyromonas gingivalis and neutrophil elastase is one of the mechanisms of bone resorption associated with infection and inflammation. In the present study, we found that cathepsin K (CTSK) also degraded osteoprotegerin in an acidic milieu and the buffer with a pH of 7.4. The 37 k fragment of osteoprotegerin produced by the reaction with CTSK was further degraded into low molecular weight fragments, including a 13 k fragment, depending on the reaction time. The N-terminal amino acid sequence of the 37 k fragment matched that of the intact osteoprotegerin, indicating that CTSK preferentially hydrolyzes the death domain-like region of osteoprotegerin, not its RANKL-binding region. The 13 k fragment of osteoprotegerin was the C-terminal 13 k portion within the RANKL-binding region of the 37 k fragment. Finally, CTSK restored RANKL-dependent osteoclast differentiation that was suppressed by the addition of osteoprotegerin. Collectively, CTSK is a possible positive regulator of osteoclastogenesis.
Collapse
Affiliation(s)
- Ryota Kawai
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan. .,Division of Physiology and Biochemistry, Faculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida, Japan.
| | - Fumiko Yano
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Erika Minami
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
29
|
Zhang R, Peng S, Zhu G. The role of secreted osteoclastogenic factor of activated T cells in bone remodeling. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:227-232. [PMID: 35898473 PMCID: PMC9309401 DOI: 10.1016/j.jdsr.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022] Open
Abstract
The process of bone remodeling is connected with the regulated balance between bone cell populations (including bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte). And the mechanism of bone remodeling activity is related to the major pathway, receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signaling axis. Recently, researchers have found a novel cytokine secreted by activated T cells, which is related to osteoclastogenesis in the absence of osteoblasts or RANKL, leading to bone destruction. They name it the secreted osteoclastogenic factor of activated T cells (SOFAT). SOFAT has been proven to play an essential role in bone remodeling, like mediating the bone resorption in rheumatoid arthritis (RA) and periodontitis. In this review, we outline the latest research concerning SOFAT and discuss the characteristics, location, and regulation of SOFAT. We also summarize the clinical progress of SOFAT and assume the future therapeutic target in some diseases related to bone remodeling.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Peng
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Meneses CCB, Diogenes A, Sipert CR. Endocannabinoids modulate production of osteoclastogenic factors by stem cells of the apical papilla in vitro. J Endod 2022; 48:1511-1516. [PMID: 36174776 DOI: 10.1016/j.joen.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Many mediators are produced during pulp inflammation and necrosis, including endocannabinoids (ECbs), which might affect the function of stem cells of the apical papilla (SCAP), cells of paramount importance for root formation and regenerative endodontic treatment (RET). The aim of this study was to evaluate the production of osteoclastogenesis-related mediators by SCAP, modulated by ECbs and lipopolysaccharide (LPS) in vitro. METHODS SCAP were cultured and treated with ECbs anandamide (AEA), 2-A arachidonoylglycerol or N-arachidonoylaminophenol (AM404). All groups were incubated in the presence of vehicle or LPS and the antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV-1), capsazepine (CPZ). After 24 h, the culture medium supernatants were collected for further quantification of tumor necrosis factor (TNF)-α, CCL2, macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-Β ligand (RANKL). RESULTS Small amounts of TNF-α and RANKL were detected in SCAP supernatants, and none of the experimental conditions altered their production. A downregulation in constitutive CCL2 production was observed in the AEA group compared to that in the LPS group. The production of M-CSF was significantly increased in all groups treated with AEA compared to the control and LPS-treated groups. OPG was significantly increased by AEA alone and by 2AG and AM404 in presence of LPS and CPZ. CONCLUSIONS AEA modulate some of the osteoclastogenic factors produced by SCAP in a bone resorption-protective fashion.
Collapse
Affiliation(s)
- C C B Meneses
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - A Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - C R Sipert
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
31
|
Abstract
Osteoclasts, the only cells that can resorb bone, play a central role in bone homeostasis as well as bone damage under pathological conditions such as osteoporosis, arthritis, periodontitis, and bone metastasis. Recent studies using single-cell technologies have uncovered the regulatory mechanisms underlying osteoclastogenesis at unprecedented resolution and shed light on the possibility that there is heterogeneity in the origin, function, and fate of osteoclast-lineage cells. Here, we discuss the current advances and emerging concepts in osteoclast biology.
Collapse
|
32
|
Li H, Li Y, Zou J, Yang Y, Han R, Zhang J. Sinomenine Inhibits Orthodontic Tooth Movement and Root Resorption in Rats and Enhances Osteogenic Differentiation of PDLSCs. Drug Des Devel Ther 2022; 16:2949-2965. [PMID: 36090955 PMCID: PMC9462521 DOI: 10.2147/dddt.s379468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effects of sinomenine on orthodontic tooth movement and root resorption in rats, as well as the effect of sinomenine on the osteogenesis of periodontal ligament stem cells (PDLSCs). Methods Fifty-four male Wistar rats were randomly divided into 3 groups: control group, 20 mg/kg sinomenine group and 40 mg/kg sinomenine group. Fifty-gram orthodontic force was applied to all groups. Each group was injected intraperitoneally with corresponding concentration of sinomenine every day. After 14 days, all rats were sacrificed. Micro-computed tomography (micro-CT) scan was used to analyze tooth movement, root resorption and alveolar bone changes. The effect on periodontal tissue was analyzed by Masson, tartrate-resistant acid phosphatase (TRAP) and immunohistochemical staining. In vitro, PDLSCs were extracted and identified. The effect of sinomenine on proliferation was determined by cell-counting kit-8. The effect of sinomenine on osteogenesis was investigated by alkaline phosphatase (ALP) activity and alizarin red staining. qPCR and Western blotting were performed to explore the effects of sinomenine on the expression levels of ALP, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG). Results The tooth movement and root resorption of sinomenine groups were reduced. Sinomenine decreased trabecular spacing on compression side and increased alveolar bone volume and trabecular thickness on tension side. TRAP-positive cells in sinomenine groups decreased significantly. The expressions of TNF-α and RANKL were decreased, while the expressions of OPG, RUNX2 and osteocalcin were up-regulated. In vitro, 0.1 M and 0.5 M sinomenine enhanced ALP activity, mineral deposition and the expression of ALP, RUNX2 and OPG, and reduced the expression of RANKL. Conclusion Sinomenine could inhibit tooth movement, reduce root resorption, and exert a positive effect on bone formation in rats. Moreover, sinomenine promoted the osteogenesis of PDLSCs.
Collapse
Affiliation(s)
- Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, People’s Republic of China, Tel +86 139 5310 9816, Email
| |
Collapse
|
33
|
Abstract
Bone science has over the last decades unraveled many important pathways in bone and mineral metabolism and the interplay between genetic factors and the environment. Some of these discoveries have led to the development of pharmacological treatments of osteoporosis and rare bone diseases. Other scientific avenues have uncovered a role for the gut microbiome in regulating bone mass, which have led to investigations on the possible therapeutic role of probiotics in the prevention of osteoporosis. Huge advances have been made in identifying the genes that cause rare bone diseases, which in some cases have led to therapeutic interventions. Advances have also been made in understanding the genetic basis of the more common polygenic bone diseases, including osteoporosis and Paget's disease of bone (PDB). Polygenic profiles are used for establishing genetic risk scores aiming at early diagnosis and intervention, but also in Mendelian randomization (MR) studies to investigate both desired and undesired effects of targets for drug design.
Collapse
Affiliation(s)
- Bente L Langdahl
- Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - André G Uitterlinden
- Laboratory for Population Genomics, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
34
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Yang K, Li S, Wang T, Yan X, He Q, Ning R, Xu X, Yao W, Zhang X, Yang C, Jiang M, Deng L. Development of an Orally Active Small-Molecule Inhibitor of Receptor Activator of Nuclear Factor-κB Ligand. J Med Chem 2022; 65:10992-11009. [PMID: 35960655 DOI: 10.1021/acs.jmedchem.2c00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, play pivotal roles in bone remodeling. The monoclonal antibody denosumab successfully inhibited the maturation of osteoclasts (OCs) by binding to RANKL in the clinic. We continued our efforts to develop small-molecule inhibitors of RANKL. In this work, 41 β-carboline derivatives were synthesized based on previously synthesized compound Y1599 to improve its drug-like properties. Compound Y1693 was identified as a potent RANKL inhibitor that improved absorption-distribution-metabolism-excretion properties and effectively prevented RANKL-induced osteoclastogenesis and bone resorption. Furthermore, Y1693 also suppressed the expression of OC marker genes. Moreover, Y1693 demonstrated good tolerability and efficacy in an orally administered mouse model of osteoporosis as well as the ability to rescue alveolar bone loss in vivo caused by periodontal disease. Collectively, the above findings may provide a valuable direction for the development of novel antiresorptive therapies that target RANKL.
Collapse
Affiliation(s)
- Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Shunyao Li
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Tianqi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xueming Yan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xing Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, The University of California at Davis Medical Center, Sacramento, California 95817, United States
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
36
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Marcadet L, Bouredji Z, Argaw A, Frenette J. The Roles of RANK/RANKL/OPG in Cardiac, Skeletal, and Smooth Muscles in Health and Disease. Front Cell Dev Biol 2022; 10:903657. [PMID: 35693934 PMCID: PMC9181319 DOI: 10.3389/fcell.2022.903657] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Although their physiology and functions are very different, bones, skeletal and smooth muscles, as well as the heart have the same embryonic origin. Skeletal muscles and bones interact with each other to enable breathing, kinesis, and the maintenance of posture. Often, muscle and bone tissues degenerate synchronously under various conditions such as cancers, space travel, aging, prolonged bed rest, and neuromuscular diseases. In addition, bone tissue, skeletal and smooth muscles, and the heart share common signaling pathways. The RANK/RANKL/OPG pathway, which is essential for bone homeostasis, is also implicated in various physiological processes such as sarcopenia, atherosclerosis, and cardiovascular diseases. Several studies have reported bone-skeletal muscle crosstalk through the RANK/RANKL/OPG pathway. This review will summarize the current evidence indicating that the RANK/RANKL/OPG pathway is involved in muscle function. First, we will briefly discuss the role this pathway plays in bone homeostasis. Then, we will present results from various sources indicating that it plays a physiopathological role in skeletal, smooth muscle, and cardiac functions. Understanding how the RANK/RANKL/OPG pathway interferes in several physiological disorders may lead to new therapeutic approaches aimed at protecting bones and other tissues with a single treatment.
Collapse
Affiliation(s)
- Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche Du Centre Hospitalier de L’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Jérôme Frenette,
| |
Collapse
|
38
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
39
|
Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol Med Rep 2022; 25:200. [PMID: 35475514 DOI: 10.3892/mmr.2022.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
Collapse
Affiliation(s)
- Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yujuan Zhang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
40
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
41
|
Tsuruda T, Yamashita A, Otsu M, Koide M, Nakamichi Y, Sekita-Hatakeyama Y, Hatakeyama K, Funamoto T, Chosa E, Asada Y, Udagawa N, Kato J, Kitamura K. Angiotensin II Induces Aortic Rupture and Dissection in Osteoprotegerin-Deficient Mice. J Am Heart Assoc 2022; 11:e025336. [PMID: 35411794 PMCID: PMC9238451 DOI: 10.1161/jaha.122.025336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The biological mechanism of action for osteoprotegerin, a soluble decoy receptor for the receptor activator of nuclear factor‐kappa B ligand in the vascular structure, has not been elucidated. The study aim was to determine if osteoprotegerin affects aortic structural integrity in angiotensin II (Ang II)‐induced hypertension. Methods and Results Mortality was higher (P<0.0001 by log‐rank test) in 8‐week‐old male homozygotes of osteoprotegerin gene‐knockout mice given subcutaneous administration of Ang II for 28 days, with an incidence of 21% fatal aortic rupture and 23% aortic dissection, than in age‐matched wild‐type mice. Ang II‐infused aorta of wild‐type mice showed that osteoprotegerin immunoreactivity was present with proteoglycan. The absence of osteoprotegerin was associated with decreased medial and adventitial thickness and increased numbers of elastin breaks as well as with increased periostin expression and soluble receptor activator of nuclear factor‐kappa B ligand concentrations. PEGylated human recombinant osteoprotegerin administration decreased all‐cause mortality (P<0.001 by log‐rank test), the incidence of fatal aortic rupture (P=0.08), and aortic dissection (P<0.001) with decreasing numbers of elastin breaks, periostin expressions, and soluble receptor activator of nuclear factor‐kappa B ligand concentrations in Ang II‐infused osteoprotegerin gene‐knockout mice. Conclusions These data suggest that osteoprotegerin protects against aortic rupture and dissection in Ang II‐induced hypertension by inhibiting receptor activator of nuclear factor‐kappa B ligand activity and periostin expression.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Division of Internal Medicine, Cardiovascular Medicine and Nephrology Faculty of Medicine University of Miyazaki Japan
| | - Atsushi Yamashita
- Department of Pathology Faculty of Medicine University of Miyazaki Japan
| | - Misa Otsu
- Division of Internal Medicine, Cardiovascular Medicine and Nephrology Faculty of Medicine University of Miyazaki Japan
| | - Masanori Koide
- Institute for Oral Science Matsumoto Dental University Nagano Japan
| | - Yuko Nakamichi
- Institute for Oral Science Matsumoto Dental University Nagano Japan
| | | | - Kinta Hatakeyama
- Department of Pathology National Cerebral and Cardiovascular Center Osaka Japan
| | - Taro Funamoto
- Division of Orthopedic Surgery Department of Medicine of Sensory and Motor Organs Faculty of Medicine University of Miyazaki Japan
| | - Etsuo Chosa
- Division of Orthopedic Surgery Department of Medicine of Sensory and Motor Organs Faculty of Medicine University of Miyazaki Japan
| | - Yujiro Asada
- Department of Pathology Faculty of Medicine University of Miyazaki Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry Matsumoto Dental University Nagano Japan
| | - Johji Kato
- Frontier Science Research Center University of Miyazaki Japan
| | - Kazuo Kitamura
- Frontier Science Research Center University of Miyazaki Japan
| |
Collapse
|
42
|
Ward DL, Schroeder L, Tinius A, Niccoli S, Voth R, Lees SJ, Silcox M, Viola B, Sanzo P. Ovariectomized Rat Model and Shape Variation in the Bony Labyrinth. Anat Rec (Hoboken) 2022; 305:3283-3296. [PMID: 35103405 DOI: 10.1002/ar.24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Postmenopausal osteoporosis is a serious concern in aging individuals, but has not been explored for its potential to alter the shape of the inner ear by way of increased remodelling in the otic capsule. The otic capsule, or bony labyrinth, is thought to experience uniquely limited remodelling after development due to high levels of osteoprotegerin. On this basis, despite the widespread remodelling that accompanies osteoporosis, we hypothesize that both the shape and volume of the semicircular canals will resist such changes. To test this hypothesis, we conducted three-dimensional geometric morphometric shape analysis on microcomputed tomographic data collected on the semicircular canals of an ovariectomized (OVX) rat model. A Procrustes ANOVA found no statistically significant differences in shape between surgery and sham groups, and morphological disparity testing likewise found no differences in shape variation. Univariate testing found no differences in semicircular volume between OVX and control groups. The range of variation in the OVX group, however, is greater than in the sham group but this difference does not reach statistical significance, perhaps because of a combination of small effect size and low sample size. This finding suggests that labyrinthine shape remains a tool for assessing phylogeny and function in the fossil record, but that it is possible that osteoporosis may be contributing to intraspecific shape variation in the bony labyrinth. This effect warrants further exploration at a microstructural level with continued focus on variables related to remodelling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Devin L Ward
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Lauren Schroeder
- University of Toronto Mississauga, Department of Anthropology, Mississauga, Ontario
| | - Alexander Tinius
- University of Toronto, Department of Ecology & Evolutionary Biology, Toronto, Ontario
| | - Sarah Niccoli
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Riley Voth
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Simon J Lees
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Mary Silcox
- University of Toronto Scarborough, Department of Anthropology, Scarborough, Ontario
| | - Bence Viola
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Paolo Sanzo
- Lakehead University, Northern Ontario School of Medicine and School of Kinesiology, Thunder Bay, Ontario
| |
Collapse
|
43
|
Anti-Inflammatory and Anti-Catabolic Effects of Creatine Supplementation: A Brief Review. Nutrients 2022; 14:nu14030544. [PMID: 35276903 PMCID: PMC8839648 DOI: 10.3390/nu14030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
It is well established that creatine supplementation, primarily when combined with resistance training, significantly increases measures of muscle mass and performance (primarily strength). Emerging research also indicates that creatine supplementation may have favorable effects on measures of bone biology. These anabolic adaptations may be related to creatine influencing cellular hydration status, high-energy phosphate metabolism, growth factors, muscle protein kinetics, and the bone remodeling process. Accumulating research also suggests that creatine supplementation has anti-inflammatory and anti-catabolic properties, which may help create a favorable environment for muscle and bone accretion and recovery from exercise. Creatine supplementation has the ability to decrease markers of inflammation and possibly attenuate cancerous tumor growth progression. From a musculoskeletal perspective, there is some evidence to show that creatine supplementation reduces measures of muscle protein catabolism (primarily in males) and bone resorption when combined with resistance training. The purpose of this brief review is to summarize the current body of literature examining the potential anti-inflammatory and anti-catabolic effects of creatine supplementation across various research populations.
Collapse
|
44
|
Molecular Mechanisms Leading from Periodontal Disease to Cancer. Int J Mol Sci 2022; 23:ijms23020970. [PMID: 35055157 PMCID: PMC8778447 DOI: 10.3390/ijms23020970] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is prevalent in half of the adult population and raises critical health concerns as it has been recently associated with an increased risk of cancer. While information about the topic remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promoting neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gingivalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in instigating tumorigenesis. We also present evidence for potential links between the RANKL–RANK signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclusive data associating periodontitis and cancer reported in the case and cohort studies, we examine clinical trials relevant to the topic and summarize their outcome.
Collapse
|
45
|
Bjelić D, Finšgar M. Bioactive coatings with anti-osteoclast therapeutic agents for bone implants: Enhanced compliance and prolonged implant life. Pharmacol Res 2022; 176:106060. [PMID: 34998972 DOI: 10.1016/j.phrs.2022.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
The use of therapeutic agents that inhibit bone resorption is crucial to prolong implant life, delay revision surgery, and reduce the burden on the healthcare system. These therapeutic agents include bisphosphonates, various nucleic acids, statins, proteins, and protein complexes. Their use in systemic treatment has several drawbacks, such as side effects and insufficient efficacy in terms of concentration, which can be eliminated by local treatment. This review focuses on the incorporation of osteoclast inhibitors (antiresorptive agents) into bioactive coatings for bone implants. The ability of bioactive coatings as systems for local delivery of antiresorptive agents to achieve optimal loading of the bioactive coating and its release is described in detail. Various parameters such as the suitable concentrations, release times, and the effects of the antiresorptive agents on nearby cells or bone tissue are discussed. However, further research is needed to support the optimization of the implant, as this will enable subsequent personalized design of the coating in terms of the design and selection of the coating material, the choice of an antiresorptive agent and its amount in the coating. In addition, therapeutic agents that have not yet been incorporated into bioactive coatings but appear promising are also mentioned. From this work, it can be concluded that therapeutic agents contribute to the biocompatibility of the bioactive coating by enhancing its beneficial properties.
Collapse
Affiliation(s)
- Dragana Bjelić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
46
|
Wu Q, Yamawaki I, Taguchi Y, Shiomi K, Kimura D, Takahashi T, Umeda M. Glucose Affects the Quality and Properties of Hard Tissue in Diabetes Mellitus Model. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qingchao Wu
- Department of Periodontology, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University
| | | | - Kei Shiomi
- Department of Periodontology, Osaka Dental University
| | | | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
47
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Recent Advances in Osteoclast Biological Behavior. Front Cell Dev Biol 2021; 9:788680. [PMID: 34957116 PMCID: PMC8694526 DOI: 10.3389/fcell.2021.788680] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
With the progress of the aging population, bone-related diseases such as osteoporosis and osteoarthritis have become urgent problems. Recent studies have demonstrated the importance of osteoclasts in bone homeostasis, implying these will be an important mediator in the treatment of bone-related diseases. Up to now, several reviews have been performed on part of osteoclast biological behaviors such as differentiation, function, or apoptosis. However, few reviews have shown the complete osteoclast biology and research advances in recent years. Therefore, in this review, we focus on the origin, differentiation, apoptosis, behavior changes and coupling signals with osteoblasts, providing a simple but comprehensive overview of osteoclasts for subsequent studies.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Benefits and mechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int J Biol Macromol 2021; 193:1996-2005. [PMID: 34767882 DOI: 10.1016/j.ijbiomac.2021.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Osteoporosis is a systemic metabolic bone disease with an increasing incidence rate. Chinese medicinal herbs have a long history of treating bone diseases. Polysaccharides are an important category of phytochemicals in Chinese medicinal herbs, and their health benefits have increased the interest of the public. Numerous studies have indicated that polysaccharides exhibit anti-osteoporosis effects by balancing bone resorption and bone formation, but the detailed effects and mechanism have not been systematically summarized. We performed a comprehensive review of the literature to consolidate studies for the period 2000-2021 by conducting electronic searches on the PubMed, CNKI, VIP, and Wanfang databases. In total, polysaccharides from 19 kinds of Chinese medicinal herbs in 54 studies have shown bone homeostasis protective properties. In vivo and in vitro experiments have demonstrated that polysaccharides present properties in the treatment of postmenopausal osteoporosis, senile osteoporosis, and glucocorticoid-induced secondary osteoporosis, especially postmenopausal osteoporosis. Moreover, a number of signalling pathways, such as the Wnt/β-catenin signalling pathway, BMP/SMAD/RUNX2 signalling pathway, OPG/RANKL/RANK signalling pathway, apoptosis pathway, and transcription factors, are regulated by polysaccharides and participate in improving bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of polysaccharides and the concomitant modulations of signalling pathways.
Collapse
|
49
|
The Effects of Osteoporotic and Non-osteoporotic Medications on Fracture Risk and Bone Mineral Density. Drugs 2021; 81:1831-1858. [PMID: 34724173 PMCID: PMC8578161 DOI: 10.1007/s40265-021-01625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Osteoporosis is a highly prevalent bone disease affecting more than 37.5 million individuals in the European Union (EU) and the United States of America (USA). It is characterized by low bone mineral density (BMD), impaired bone quality, and loss of structural and biomechanical properties, resulting in reduced bone strength. An increase in morbidity and mortality is seen in patients with osteoporosis, caused by the approximately 3.5 million new osteoporotic fractures occurring every year in the EU. Currently, different medications are available for the treatment of osteoporosis, including anti-resorptive and osteoanabolic medications. Bisphosphonates, which belong to the anti-resorptive medications, are the standard treatment for osteoporosis based on their positive effects on bone, long-term experience, and low costs. However, not only medications used for the treatment of osteoporosis can affect bone: several other medications are suggested to have an effect on bone as well, especially on fracture risk and BMD. Knowledge about the positive and negative effects of different medications on both fracture risk and BMD is important, as it can contribute to an improvement in osteoporosis prevention and treatment in general, and, even more importantly, to the individual's health. In this review, we therefore discuss the effects of both osteoporotic and non-osteoporotic medications on fracture risk and BMD. In addition, we discuss the underlying mechanisms of action.
Collapse
|
50
|
Ni F, Zhang Y, Peng Y, Peng X, Li J. Serum RANKL levels in Chinese patients with ankylosing spondylitis: a meta-analysis. J Orthop Surg Res 2021; 16:615. [PMID: 34663371 PMCID: PMC8522048 DOI: 10.1186/s13018-021-02721-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Objective We aimed to determine the association between serum receptor activator of nuclear factor-kappa B ligand (sRANKL) levels and ankylosing spondylitis (AS) in Chinese patients. Methods The PubMed, Cochrane Library, Embase, Chinese Biomedical Database, Web of Science, China National Knowledge Infrastructure, VIP, and Wan Fang databases were searched for studies conducted before October 1, 2020, without language restrictions. STATA version 12.0 and Revman version 5.3 were used to analyze the data. The standard mean differences (SMDs) and corresponding 95% confidence intervals (95% CIs) were calculated. Results Twelve clinical case–control studies, including 585 patients with AS and 423 healthy controls, were included. The combined SMD for sRANKL suggested that the sRANKL level was significantly higher in Chinese patients with AS than in healthy controls (SMD: 3.27, 95% CI 2.11–4.43, P < 0.00001). Serum RANKL-related factor osteoprotegerin (OPG) levels (SMD: 0.86, 95% CI 0.09–1.64, P < 0.03) were lower in the Chinese patients with AS than in healthy controls, and the RANKL/OPG ratio (SMD = 1.05, 95% CI 0.64–1.46, P < 0.00001) in Chinese patients with AS was approximately the same as that of healthy controls. Subgroup analysis indicated that patients from North and South China had higher sRANKL levels than controls; the sRANKL levels of patients from South China were higher in the subgroup with a Bath Ankylosing Spondylitis Functional Index (BASFI) of > 4 than those of patients in other subgroups. In terms of duration, patients with AS for > 8 years had higher sRANKL levels than health controls. Other subgroup analyses were conducted by region, language, source of control, age, and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). In these subgroups, the sRANKL levels were significantly higher in the patients with AS than in healthy controls. The BASFI and BASDAI were sources of heterogeneity. Conclusions The sRANKL levels are higher in Chinese patients with AS, especially among those from South China. sRANKL levels may be positively correlated with the pathogenesis of AS among Chinese patients.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, People's Republic of China
| | - Yi Peng
- Department of Urological, Nantong University Danyang Teaching Hospital, Zhenjiang, 212300, People's Republic of China
| | - Xiaoxiao Peng
- Daxing Teaching Hospital of Capital Medical University, Beijing, 102600, People's Republic of China
| | - Jianjun Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|