1
|
Zhou HL, Hausladen A, Anand P, Rajavel M, Stomberski CT, Zhang R, Premont RT, Greenlee WJ, van den Akker F, Stamler JS. Identification of a Selective SCoR2 Inhibitor That Protects Against Acute Kidney Injury. J Med Chem 2023; 66:5657-5668. [PMID: 37027003 PMCID: PMC10416317 DOI: 10.1021/acs.jmedchem.2c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality, and no drugs are available clinically. Metabolic reprogramming resulting from the deletion of S-nitroso-coenzyme A reductase 2 (SCoR2; AKR1A1) protects mice against AKI, identifying SCoR2 as a potential drug target. Of the few known inhibitors of SCoR2, none are selective versus the related oxidoreductase AKR1B1, limiting therapeutic utility. To identify SCoR2 (AKR1A1) inhibitors with selectivity versus AKR1B1, analogs of the nonselective (dual 1A1/1B1) inhibitor imirestat were designed, synthesized, and evaluated. Among 57 compounds, JSD26 has 10-fold selectivity for SCoR2 versus AKR1B1 and inhibits SCoR2 potently through an uncompetitive mechanism. When dosed orally to mice, JSD26 inhibited SNO-CoA metabolic activity in multiple organs. Notably, intraperitoneal injection of JSD26 in mice protected against AKI through S-nitrosylation of pyruvate kinase M2 (PKM2), whereas imirestat was not protective. Thus, selective inhibition of SCoR2 has therapeutic potential to treat acute kidney injury.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Alfred Hausladen
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Puneet Anand
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Malligarjunan Rajavel
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
| | - Colin T. Stomberski
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Rongli Zhang
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Richard T. Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - William J. Greenlee
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
| | - Jonathan S. Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA 44106
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA 44106
| |
Collapse
|
2
|
Kang ES, Hwang JS, Ham SA, Park MH, Kim GH, Paek KS, Yoo T, Lee WJ, Kang KR, Lee JH, Choi YJ, Seo HG. 15-Deoxy-Δ12,14-prostaglandin J2prevents oxidative injury by upregulating the expression of aldose reductase in vascular smooth muscle cells. Free Radic Res 2013; 48:218-29. [DOI: 10.3109/10715762.2013.860224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Narawongsanont R, Kabinpong S, Auiyawong B, Tantitadapitak C. Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice. Protein J 2012; 31:35-42. [PMID: 22101802 DOI: 10.1007/s10930-011-9371-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aldo-keto reductase (AKR) is an enzyme superfamily whose members are involved in the metabolism of aldehydes/ketones. The AKR4 subfamily C (AKR4C) is a group of aldo-keto reductases that are found in plants. Some AKR4C(s) in dicot plants are capable of metabolizing reactive aldehydes whereas, such activities have not been reported for AKR4C(s) from monocot species. In this study, we have screened Indica rice genome for genes with significant homology to dicot AKR4C(s) and identified a cluster of putative AKR4C(s) located on the Indica rice chromosome I. The genes including OsI_04426, OsI_04428 and OsI_04429 were successfully cloned and sequenced by qRT-PCR from leaves of Thai Jasmine rice (KDML105). OsI_04428, later named AKR4C14, was chosen for further studies because it shares highest homology to the dicot AKR4C(s). The bacterially expressed recombinant protein of AKR4C14 was successfully produced as a MBP fusion protein and his-tagged protein. The recombinant AKR4C14 were capable of metabolizing sugars and reactive aldehydes i.e. methylglyoxal, a toxic by-product of the glycolysis pathway, glutaraldehyde, and trans-2-hexenal, a natural reactive 2-alkenal. AKR4C14 was highly expressed in green tissues, i.e. leaf sheets and stems, whereas flowers and roots had a significantly lower level of expression. These findings indicated that monocot AKR4C(s) can metabolize reactive aldehydes like the dicot AKR4C(s) and possibly play a role in detoxification mechanism of reactive aldehydes.
Collapse
Affiliation(s)
- Rawint Narawongsanont
- Department of Biochemistry, Faculty of Science, Kasetsart University, Pahonyothin Rd, Bangkok, 10903, Thailand
| | | | | | | |
Collapse
|
4
|
Osmolarity and glucose differentially regulate aldose reductase activity in cultured mouse podocytes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:278963. [PMID: 22253613 PMCID: PMC3255165 DOI: 10.1155/2011/278963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/05/2011] [Accepted: 09/23/2011] [Indexed: 12/04/2022]
Abstract
Podocyte injury is associated with progression of many renal diseases, including diabetic nephropathy. In this study we examined whether aldose reductase (AR), the enzyme implicated in diabetic complications in different tissues, is modulated by high glucose and osmolarity in podocyte cells. AR mRNA, protein expression, and activity were measured in mouse podocytes cultured in both normal and high glucose and osmolarity for 6 hours to 5 days. Hyperosmolarity acutely stimulated AR expression and activity, with subsequent increase of AR expression but decrease of activity. High glucose also elevated AR protein level; however, this was not accompanied by respective enzyme activation. Furthermore, high glucose appeared to counteract the osmolarity-dependent activation of AR. In conclusion, in podocytes AR is modulated by high glucose and increased osmolarity in a different manner. Posttranslational events may affect AR activity independent of enzyme protein amount. Activation of AR in podocytes may be implicated in diabetic podocytopathy.
Collapse
|
5
|
Irarrazabal CE, Williams CK, Ely MA, Birrer MJ, Garcia-Perez A, Burg MB, Ferraris JD. Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity. J Biol Chem 2007; 283:2554-63. [PMID: 18056707 DOI: 10.1074/jbc.m703490200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) is a Rel protein that activates transcription of osmoprotective genes at high extracellular NaCl. Other Rel proteins NFAT1-4 and NF-kappaB complex with activator protein-1 (AP-1) to transactivate target genes through interaction at composite NFAT/NF-kappaB.AP-1 sites. TonEBP/OREBP target genes commonly have one or more conserved AP-1 binding sites near TonEBP/OREBP cognate elements (OREs). Also, TonEBP/OREBP and the AP-1 proteins c-Fos and c-Jun are all activated by high NaCl. We now find, using an ORE.AP-1 reporter from the target aldose reductase gene or the same reporter with a mutated AP-1 site, that upon stimulation by high extracellular NaCl, 1) the presence of a wild type, but not a mutated, AP-1 site contributes to TonEBP/OREBP-dependent transcription and 2) AP-1 dominant negative constructs inhibit TonEBP/OREBP-dependent transcription provided the AP-1 site is not mutated. Using supershifts and an ORE.AP-1 probe, we find c-Fos and c-Jun present in combination with TonEBP/OREBP. Also, c-Fos and c-Jun coimmunoprecipitate with TonEBP/OREBP, indicating physical association. Small interfering RNA knockdown of either c-Fos or c-Jun inhibits high NaCl-induced increase of mRNA abundance of the TonEBP/OREBP target genes AR and BGT1. Furthermore, a dominant negative AP-1 also reduces high NaCl-induced increase of TonEBP/OREBP transactivating activity. Inhibition of p38, which is known to stimulate TonEBP/OREBP transcriptional activity, reduces high NaCl-dependent transcription of an ORE.AP-1 reporter only if the AP-1 site is intact. Thus, AP-1 is part of the TonEBP/OREBP enhanceosome, and its role in high NaCl-induced activation of TonEBP/OREBP may require p38 activity.
Collapse
Affiliation(s)
- Carlos E Irarrazabal
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health/DHHS, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Hypertonicity activates several different transcription factors, including TonEBP/OREBP, that in turn increase transcription of numerous genes. Hypertonicity elevates TonEBP/OREBP transcriptional activity by moving it into the nucleus, where it binds to its cognate DNA element (ORE), and by increasing its transactivational activity. This chapter presents protocols for measuring the transcriptional activity of TonEBP/OREBP and determining its subcellular localization, its binding to OREs, and activity of its transactivation domain.
Collapse
Affiliation(s)
- Joan D Ferraris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Abstract
Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
Collapse
|
8
|
Kang ES, Woo IS, Kim HJ, Eun SY, Paek KS, Kim HJ, Chang KC, Lee JH, Lee HT, Kim JH, Nishinaka T, Yabe-Nishimura C, Seo HG. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radic Biol Med 2007; 43:535-45. [PMID: 17640564 DOI: 10.1016/j.freeradbiomed.2007.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 04/16/2007] [Accepted: 05/05/2007] [Indexed: 12/21/2022]
Abstract
Up-regulation of aldose reductase (AR) by reactive oxygen species (ROS) and aldehyde derivatives has been observed in vascular smooth muscle cells. However, the pathophysiological consequences of the induction of AR in vascular tissues are not fully elucidated. Herein we report that an herb-derived polyphenolic compound, curcumin, elicited a dose- and time-dependent increase in AR expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) significantly suppressed the curcumin-augmented mRNA levels and promoter activity of the AR gene. Luciferase reporter assays indicated that an osmotic response element in the promoter was essential for the responsiveness to curcumin. Curcumin accelerated the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2), and overexpression of Nrf2, but not the dominant negative Nrf2, enhanced the promoter activity of the AR gene. Cells preincubated with curcumin demonstrated resistance to ROS-induced apoptotic death. These effects were significantly attenuated in the presence of AR inhibitors or small interfering RNAs, indicating a protective role for AR against ROS-induced cell damage. Taken together, the activation of PI3K and p38 MAPK by curcumin augmented the expression of the AR gene via Nrf2, and increased AR activity may be an important cellular response against oxidative stress.
Collapse
MESH Headings
- Aldehyde Reductase/biosynthesis
- Aldehyde Reductase/drug effects
- Aldehyde Reductase/genetics
- Animals
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Curcumin/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- In Situ Nick-End Labeling
- Microscopy, Confocal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- NF-E2-Related Factor 2/metabolism
- Oncogene Protein v-akt/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Phosphatidylinositol 3-Kinases/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Small Interfering
- Rats
- Reactive Oxygen Species/metabolism
- Up-Regulation
- p38 Mitogen-Activated Protein Kinases/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Eun Sil Kang
- Department of Pharmacology, Gyeongsang Institute of Health Science, College of Medicine, Gyeongsang National University, 92 Chilam-Dong, Jinju 660-751, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang B, Hodgkinson AD, Oates PJ, Kwon HM, Millward BA, Demaine AG. Elevated activity of transcription factor nuclear factor of activated T-cells 5 (NFAT5) and diabetic nephropathy. Diabetes 2006; 55:1450-5. [PMID: 16644704 DOI: 10.2337/db05-1260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The expression of aldose reductase is tightly regulated by the transcription factor tonicity response element binding protein (TonEBP/NFAT5) binding to three osmotic response elements (OREs; OREA, OREB, and OREC) in the gene. The aim was to investigate the contribution of NFAT5 to the pathogenesis of diabetic nephropathy. Peripheral blood mononuclear cells (PBMCs) were isolated from the following subjects: 44 Caucasoid patients with type 1 diabetes, of whom 26 had nephropathy and 18 had no nephropathy after a diabetes duration of 20 years, and 13 normal healthy control subjects. In addition, human mesangial cells (HMCs) were isolated from the normal lobe of 10 kidneys following radical nephrectomy for renal cell carcinoma. Nuclear and cytoplasmic proteins were extracted from PBMCs and HMCs and cultured in either normal or high-glucose (31 mmol/l D-glucose) conditions for 5 days. NFAT5 binding activity was quantitated using electrophoretic mobility shift assays for each of the OREs. Western blotting was used to measure aldose reductase and sorbitol dehydrogenase protein levels. There were significant fold increases in DNA binding activities of NFAT5 to OREB (2.06 +/- 0.03 vs. 1.33 +/- 0.18, P = 0.033) and OREC (1.94 +/- 0.21 vs. 1.39 +/- 0.11, P = 0.024) in PBMCs from patients with diabetic nephropathy compared with diabetic control subjects cultured under high glucose. Aldose reductase and sorbitol dehydrogenase protein levels in the patients with diabetic nephropathy were significantly increased in PBMCs cultured in high-glucose conditions. In HMCs cultured under high glucose, there were significant increases in NFAT5 binding activities to OREA, OREB, and OREC by 1.38 +/- 0.22-, 1.84 +/- 0.44-, and 2.38 +/- 1.15-fold, respectively. Similar results were found in HMCs exposed to high glucose (aldose reductase 1.30 +/- 0.06-fold and sorbitol dehydrogenease 1.54 +/- 0.24-fold increases). Finally, the silencing of the NFAT5 gene in vitro reduced the expression of the aldose reductase gene. In conclusion, these results show that aldose reductase is upregulated by the transcriptional factor NFAT5 under high-glucose conditions in both PBMCs and HMCs.
Collapse
Affiliation(s)
- Bingmei Yang
- Molecular Medicine Research Group, The John Bull Building, Research Way, Peninsula Medical School, Universities of Exeter and Plymouth, Plymouth PL6 8BU, U.K
| | | | | | | | | | | |
Collapse
|
10
|
Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF, Lavandero S. Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J Biol Chem 2003; 278:38484-94. [PMID: 12881532 DOI: 10.1074/jbc.m211824200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.
Collapse
Affiliation(s)
- Anita S Galvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 6640750, Chile
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Tonicity-responsive genes are regulated by the TonE enhancer element and the tonicity-responsive enhancer binding protein (TonEBP) transcription factor with which it interacts. Urea, a permeant solute coexistent with hypertonic NaCl in the mammalian renal medulla, activates a characteristic set of signaling events that may serve to counteract the effects of NaCl in some contexts. Urea inhibited the ability of hypertonic stressors to increase expression of TonEBP mRNA and also inhibited tonicity-inducible TonE-dependent reporter gene activity. The permeant solute glycerol failed to reproduce these effects, as did cell activators including peptide mitogens and phorbol ester. The inhibitory effect of urea was evident as late as 2 h after the application of hypertonicity. Pharmacological inhibitors of known urea-inducible signaling pathways failed to abolish the inhibitory effect of urea. TonEBP action is incompletely understood, but evidence supports a role for proteasome function and p38 action in regulation; urea failed to inhibit proteasome function or p38 signaling in response to hypertonicity. Consistent with its effect on TonEBP expression and action, urea pretreatment inhibited the effect of hypertonicity on expression of the physiological effector gene, aldose reductase. Taken together, these data 1) define a molecular mechanism of urea-mediated inhibition of tonicity-dependent signaling, and 2) underscore a role for TonEBP abundance in regulating TonE-mediated gene transcription.
Collapse
Affiliation(s)
- W Tian
- Division of Nephrology and Molecular Medicine, Oregon Health Sciences University and the Portland Veterans Affairs Medical Center, 3314 S.W. US Veterans Hospital Rd., Portland, OR 97201, USA
| | | |
Collapse
|
12
|
Aida K, Ikegishi Y, Chen J, Tawata M, Ito S, Maeda S, Onaya T. Disruption of aldose reductase gene (Akr1b1) causes defect in urinary concentrating ability and divalent cation homeostasis. Biochem Biophys Res Commun 2000; 277:281-6. [PMID: 11032718 DOI: 10.1006/bbrc.2000.3648] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldose reductase (AKR1B1) is the first enzyme in the polyol pathway through which glucose is converted to sorbitol, and has been implicated in the etiology of diabetic complications. However, its physiological role is still not well understood. In the kidney, AKR1B1 is quite abundant in the collecting tubule cells and thought to provide protection against hypertonic environment. We report here that the mice lacking AKR1B1 showed hypercalciuria, hypercalcemia, hypermagnesemia, and reduced ability to concentrate urine, suggesting a new physiological role of AKR1B1 in divalent cation homeostasis.
Collapse
Affiliation(s)
- K Aida
- Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. KIDNEY INTERNATIONAL. SUPPLEMENT 2000; 77:S3-12. [PMID: 10997684 DOI: 10.1046/j.1523-1755.2000.07702.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED BACKGROUND; In diabetic renal complications, hyperglycemia may cause damage at a cellular level in both glomerular and tubular locations, often preceding overt dysfunction. Our previous work has implicated aldose reductase in a pathway whereby aldose reductase-induced use of nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) drives the pentose phosphate pathway, which culminates in a protein kinase C-induced increase in glomerular prostaglandin production and loss of mesangial cell contractility as a possible cause of hyperfiltration and glomerular dysfunction in diabetes. In this model, aldose reductase inhibition in vitro redresses all aspects of the pathway proposed to lead to hyperfiltration; aldose reductase inhibition in vivo gives only a partial amelioration over the short-term or is without effect in the longer term on microalbuminuria, which follows glomerular and tubular dysfunction. In diabetes, hyperglycemia-induced renal polyol pathway activity does not occur in isolation but instead in tandem with oxidative changes and the production of reactive dicarbonyls and alpha,beta-unsaturated aldehydes. Aldose reductase may detoxify these compounds. We investigated this aspect in a transgenic rat model with human aldose reductase cDNA under the control of the cytomegalovirus promoter with tubular expression of transgene. METHODS Tubules (S3 region-enriched) from transgenic and control animals were prepared, exposed to oxidative stress, and analyzed to determine the cellular protein dicarbonyl content. RESULTS In tubules from transgenic animals, oxidative stress-induced dicarbonyls were significantly reduced, an effect not seen when an aldose reductase inhibitor was present. CONCLUSIONS Aldose reductase may both exacerbate and alleviate the production of metabolites that lead to hyperglycemia-induced cellular impairment, with the balance determining the extent of dysfunction.
Collapse
Affiliation(s)
- M Dunlop
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Osmotic regulation of DNA activity and the cell cycle. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin Investig Drugs 1999; 8:2095-2119. [PMID: 11139842 DOI: 10.1517/13543784.8.12.2095] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 'late complications' of diabetes mellitus, i.e., nephropathy, neuropathy and retinopathy are firmly rooted in inadequate control of blood glucose: hyperglycaemia. Hyperglycaemia causes elevated cytosolic glucose and/or rates of glucose metabolism, i.e., 'hyperglysolia,' within cells of vulnerable tissues. Although the molecular basis for the pathogenic effects of hyperglysolia remains to be proven, substantial evidence points to a key role for increased glucose metabolism through a cytosolic enzyme, aldose reductase (AR). Recent human genetic and biochemical data link polymorphisms of the AR gene (technically called the AR2 gene) and elevated tissue levels of AR with strongly altered risks for diabetic complications. Despite several genetic reports failing to confirm such an association, there are now ten concordant reports from five continents that certain polymorphisms of the AR gene are associated with an ~ 3- to 20-fold higher risk for diabetic complications. Moreover, in US and European diabetic study populations the principle allele of the AR gene associated with elevated disease risk, the Z-2 allele, correlates with an ~ 2- to 3-fold increase in AR expression. These results, together with recent clinical, experimental and pharmacological data, provide powerful new support for the rationale for research and development of aldose reductase inhibitors (ARIs) targeted at slowing the progression of diabetic complications. Although past clinical trials of ARIs have been disappointing, this has stemmed from overly optimistic expectations, inadequate trial designs and lack of pharmacological robustness and/or acceptable systemic toleration of the agents tested. However, a more realistic and encouraging perspective for therapeutic expectations for ARIs has arisen from recent data revealing that the seemingly modest short-term effects of intensified glycaemic control and of pancreatic transplantation are followed by substantial long-term benefits on diabetic complications. In addition, robust inhibition of AR in human nerve has recently yielded dose-dependent efficacy on nerve structure and function. Thus, the quest for well-tolerated, potent ARIs continues to be a worthy and more urgent objective than ever before.
Collapse
|