1
|
Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M, Pirrotta F, Abate V, Calabrese M, Falchetti A. Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 2022; 10:932065. [PMID: 36035996 PMCID: PMC9412102 DOI: 10.3389/fcell.2022.932065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Studies over the past two decades have led to major advances in the pathogenesis of Paget’s disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome “Inclusion Body Myopathy, PDB, Fronto-temporal Dementia,” characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Cavati
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Roberta Cosso
- Unit of Rehabilitation Medicine, San Giuseppe Hospital, Istituto Auxologico Italiano, Piancavallo, Italy
| | - Maria Materozzi
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Filippo Pirrotta
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Calabrese
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Alberto Falchetti
- Experimental Research Laboratory on Bone Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milano, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| |
Collapse
|
2
|
Kim H, Lee K, Kim JM, Kim MY, Kim JR, Lee HW, Chung YW, Shin HI, Kim T, Park ES, Rho J, Lee SH, Kim N, Lee SY, Choi Y, Jeong D. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat Commun 2021; 12:2258. [PMID: 33859201 PMCID: PMC8050258 DOI: 10.1038/s41467-021-22565-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism. Selenoproteins containing selenium have a variety of physiological functions including redox homeostasis and thyroid hormone metabolism. Here, the authors show that RANKL-dependent repression of selenoprotein W regulates cell fusion during osteoclast differentiation and bone remodelling in mice.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea.,Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Man Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hong-In Shin
- IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Eui-Soon Park
- Department of Microbiology and BK21 Bio Brain Center, Chungnam National University, Daejeon, Korea
| | - Jaerang Rho
- Department of Microbiology and BK21 Bio Brain Center, Chungnam National University, Daejeon, Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, Wonkwang University School of Dentistry, Iksan, Korea
| | - Nacksung Kim
- National Research Laboratory for Regulation of Bone Metabolism and Disease, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Young Lee
- Division of Life and Pharmaceutical Sciences, Department of Life Science, Center for Cell Signaling & Drug Discovery Research, College of Natural Sciences, Ewha Womans University, Seoul, Korea
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
3
|
Huang YL, Chen ST, Liu RS, Chen YH, Lin CY, Huang CH, Shu PY, Liao CL, Hsieh SL. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl) 2016; 94:1025-37. [PMID: 27033255 PMCID: PMC4992505 DOI: 10.1007/s00109-016-1409-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/31/2022]
Abstract
Abstract Osteoclasts are bone tissue macrophages critical to maintain bone homeostasis. However, whether osteoclasts are susceptible to flaviviral infections and involved in dengue virus (DV)-induced disease pathogenesis is still unknown. In this study, we found that osteoclasts were preferentially susceptible to DV infection and produced similar amounts of cytokines and infectious virions as macrophages. Interestingly, DV-induced cytokine secretion and nuclear translocation of the transcription factor NFATc1 in osteoclast via the Syk-coupled myeloid C-type lectin member 5A (CLEC5A). Moreover, DV caused transient inflammatory reaction in bone tissue and upregulated osteolytic activity to release C-telopeptide of type I collagen (CTX-1) from bone tissue. Furthermore, DV-induced osteolytic activity was attenuated in CLEC5A-deficient mice, and administration of antagonistic anti-CLEC5A mAb inhibited DV-activated osteolytic activity and reduced CTX-1 serum level in vivo. This observation suggests that osteoclasts serve as a novel target for DV, and transient upregulation of osteolytic activity may contribute to the clinical symptoms in dengue patients. Key messages Cultured osteoclasts were susceptible to DV infection. Osteoclasts produced similar amounts of cytokines and infectious virions as macrophages. DV induced nuclear translocation of NFATc1 in osteoclast via CLEC5A. DV caused transient inflammatory reaction in bone tissue and upregulated osteolytic activity. Antagonistic anti-CLEC5A mAb inhibited DV-activated osteolytic activity in vivo.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1409-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Lang Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Ting Chen
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core, Department of Nuclear Medicine, National Yang-Ming University Medical School and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Pei-Yun Shu
- Divisions of Infectious Disease, Center for Disease Control, Taipei, Taiwan
| | - Ching-Len Liao
- Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Matsui H, Nakatani Y, Yoshida H, Takizawa A, Takeuchi O, Øverby A, Takahashi T, Murayama SY, Matsuo K. Flesh-eatingStreptococcus pyogenestriggers the expression of receptor activator of nuclear factor-κB ligand. Cell Microbiol 2016; 18:1390-404. [DOI: 10.1111/cmi.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Hidenori Matsui
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Yuriko Nakatani
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
- National Center for Child Health and Development; 2-10-1 Okura Setagaya-ku Tokyo 157-8535 Japan
| | - Haruno Yoshida
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Asako Takizawa
- Biomedical Laboratory, Biochemical Research Center, Kitasato Institute Hospital; Kitasato University; Minato-ku Tokyo 108-8642 Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Biochemical Research Center, Kitasato Institute Hospital; Kitasato University; Minato-ku Tokyo 108-8642 Japan
| | - Anders Øverby
- Research and Education Center for Clinical Pharmacy, School of Pharmaceutical Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Takashi Takahashi
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
| | - Somay Y. Murayama
- Department of Infection Control and Immunology, Kitasato Institute for Life Sciences; Kitasato University; Minato-ku Tokyo 108-8641 Japan
- Laboratory of Molecular Cell Biology; Nihon University School of Pharmacy; 7-7-1 Narashinodai Funabashi-shi Chiba 274-8555 Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology; Keio University School of Medicine; Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|
5
|
Galson DL, Roodman GD. Pathobiology of Paget's Disease of Bone. J Bone Metab 2014; 21:85-98. [PMID: 25025000 PMCID: PMC4075272 DOI: 10.11005/jbm.2014.21.2.85] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/11/2022] Open
Abstract
Paget's disease of bone is characterized by highly localized areas of increased bone resorption accompanied by exuberant, but aberrant new bone formation with the primary cellular abnormality in osteoclasts. Paget's disease provides an important paradigm for understanding the molecular mechanisms regulating both osteoclast formation and osteoclast-induced osteoblast activity. Both genetic and environmental etiologies have been implicated in Paget's disease, but their relative contributions are just beginning to be defined. To date, the only gene with mutations in the coding region linked to Paget's disease is sequestosome-1 (SQSTM1), which encodes the p62 protein, and these mutations lead to elevated cytokine activation of NF-B in osteoclasts but do not induce a "pagetic osteoclast" phenotype. Further, genetic mutations linked to Paget's appear insufficient to cause Paget's disease and additional susceptibility loci or environmental factors may be required. Among the environmental factors suggested to induce Paget's disease, chronic measles (MV) infection has been the most studied. Expression of the measles virus nucleocapsid gene (MVNP) in osteoclasts induces pagetic-like osteoclasts and bone lesions in mice. Further, mice expressing both MVNP in osteoclasts and germline mutant p62 develop dramatic pagetic bone lesions that were strikingly similar to those seen in patients with Paget's disease. Thus, interactions between environmental and genetic factors appear important to the development of Paget's disease. In this article we review the mechanisms responsible for the effects of mutant p62 gene expression and MVNP on osteoclast and osteoblast activity, and how they may contribute to the development of Paget's disease of bone.
Collapse
Affiliation(s)
- Deborah L Galson
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - G David Roodman
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis IN, USA. ; Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
6
|
Falchetti A, Marini F, Masi L, Amedei A, Brandi ML. Genetic aspects of the Paget's disease of bone: concerns on the introduction of DNA-based tests in the clinical practice. Advantages and disadvantages of its application. Eur J Clin Invest 2010; 40:655-67. [PMID: 20658751 DOI: 10.1111/j.1365-2362.2010.02312.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND A large amount of genetic studies have clearly demonstrated the existence of a genetic susceptibility to Paget's disease of bone (PDB). Although the disease is genetically heterogeneous, the SQSTM1/p62 gene, encoding a protein with a pathophysiological role in both osteoclast differentiation and activity, has been found worldwide to harbour germline mutations in most of the PDB patients from geographically distant populations originating from different areas of Europe, both in sporadic and familial cases. MATERIALS AND METHODS Thus, SQSTM1/p62 gene mutations may confer an increased lifetime risk of developing PDB. RESULTS Several different genotype-phenotype analyses have shown a high penetrance for such mutations. These results suggest the opportunity to perform genetic testing in affected individuals and then, after the identification of a SQSTM1/p62 gene germline mutation, in their relatives as a real and concrete strategy to increase the diagnostic sensitivity in most of the asymptomatic mutant carriers. However, it is of note to underlie that an incomplete penetrance for SQSTM1/p62 gene mutations has also been reported. CONCLUSIONS In light of all these contradictory evidences, a review on whether, when and why apply the DNA test to those subjects, its interpretation and clinical application is necessary. In fact, a growing number of preventive care options are now available to affected patients and families and the process of systematically assessing risk is becoming increasingly important for both patients and physicians.
Collapse
Affiliation(s)
- Alberto Falchetti
- Regional Center for Hereditary Endocrine Tumors, Unit of Metabolic Bone Diseases, AOUC, Department of Internal Medicine, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
7
|
Pagetʼs disease of bone: thereʼs more than the affected skeletal – a clinical review and suggestions for the clinical practice. Curr Opin Rheumatol 2010; 22:410-23. [DOI: 10.1097/bor.0b013e32833af61e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Gennari L, Gianfrancesco F, Di Stefano M, Rendina D, Merlotti D, Esposito T, Gallone S, Fusco P, Rainero I, Fenoglio P, Mancini M, Martini G, Bergui S, De Filippo G, Isaia G, Strazzullo P, Nuti R, Mossetti G. SQSTM1 gene analysis and gene-environment interaction in Paget's disease of bone. J Bone Miner Res 2010; 25:1375-84. [PMID: 20200946 DOI: 10.1002/jbmr.31] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Even though SQSTM1 gene mutations have been identified in a consistent number of patients, the etiology of Paget's disease of bone (PDB) remains in part unknown. In this study we analyzed SQSTM1 mutations in 533 of 608 consecutive PDB patients from several regions, including the high-prevalence area of Campania (also characterized by increased severity of PDB, higher number of familial cases, and peculiar phenotypic characteristics as giant cell tumor). Eleven different mutations (Y383X, P387L, P392L, E396X, M401V, M404V, G411S, D423X, G425E, G425R, and A427D) were observed in 34 of 92 (37%) and 43 of 441 (10%) of familial and sporadic PDB patients, respectively. All five patients with giant cell tumor complicating familial PDB were negative for SQSTM1 mutations. An increased heterogeneity and a different distribution of mutations were observed in southern Italy (showing 9 of the 11 mutations) than in central and northern Italy. Genotype-phenotype analysis showed only a modest reduction in age at diagnosis in patients with truncating versus missense mutations, whereas the number of affected skeletal sites did not differ significantly. Patients from Campania had the highest prevalence of animal contacts (i.e., working or living on a farm or pet ownership) without any difference between patients with or without mutation. However, when familial cases from Campania were considered, animal contacts were observed in 90% of families without mutations. Interestingly, a progressive age-related decrease in the prevalence of animal contacts, as well as a parallel increase in the prevalence of SQSTM1 mutations, was observed in most regions except in the subgroup of patients from Campania. Moreover, patients reporting animal contacts showed an increased number of affected sites (2.54 +/- 2.0 versus 2.19 +/- 1.9, p < .05) over patients without animal contacts. This difference also was evidenced in the subgroup of patients with SQSTM1 mutations (3.84 +/- 2.5 versus 2.76 +/- 2.2, p < .05). Overall, these data suggest that animal-related factors may be important in the etiology of PDB and may interact with SQSTM1 mutations in influencing disease severity.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Paget's disease of bone is a focal bone disorder that is common among older people of Western European descent. It is an unusual disorder, for although we now have safe and highly effective treatment, there are many aspects of its pathogenesis and natural history that we do not yet understand. Recent years have seen significant advances in the understanding of its epidemiology, genetics and molecular biology, but an integrated view that incorporates all these aspects remains elusive. In this review we examine some of the outstanding problems, the solutions to which seem likely to change our understanding of bone cell biology.
Collapse
Affiliation(s)
- Brya Matthews
- a Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Tim Cundy
- b Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
10
|
Shanmugarajan S, Youssef RF, Pati P, Ries WL, Rao DS, Reddy SV. Osteoclast inhibitory peptide-1 (OIP-1) inhibits measles virus nucleocapsid protein stimulated osteoclast formation/activity. J Cell Biochem 2008; 104:1500-8. [PMID: 18348201 DOI: 10.1002/jcb.21723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paget's disease (PD) of bone is characterized by increased activity of large abnormal osteoclasts (OCLs) which contain paramyxoviral nuclear and cytoplasmic inclusions. MVNP gene expression has been shown to induce pagetic phenotype in OCLs. We previously characterized the osteoclast inhibitory peptide-1 (OIP-1/hSca) which inhibits OCL formation/bone resorption. OIP-1 is a glycophosphatidylinositol (GPI)-linked membrane protein containing a 79 amino acid extra cellular peptide and a 32 amino acid carboxy terminal GPI-linked peptide (c-peptide) which is critical for OCL inhibition. In this study, we demonstrate that OIP-1 c-peptide significantly decreased (43%) osteoclast differentiation of peripheral blood mononuclear cells from patients with PD. Also, OIP-1 treatment to normal human bone marrow mononuclear cells transduced with the MVNP inhibited (41%) osteoclast precursor (CFU-GM) growth in methyl-cellulose cultures. We further tested if OIP-1 overexpression in the OCL lineage in transgenic mice inhibits MVNP stimulated OCL formation. MVNP transduction and RANKL stimulation of OIP-1 mouse bone marrow cells showed a significant decrease (43%) in OCL formation and inhibition (38%) of bone resorption area compared to wild-type mice. Western blot analysis identified that OIP-1 decreased (3.5-fold) MVNP induced TRAF2 expression during OCL differentiation. MVNP or OIP-1 expression did not affect TRAF6 levels. Furthermore, OIP-1 expression resulted in a significant inhibition of MVNP stimulated ASK1, Rac1, c-Fos, p-JNK, and NFATc1 expression during OCL differentiation. These results suggest that OIP-1 inhibits MVNP induced pagetic OCL formation/activity through suppression of RANK signaling. Thus, OIP-1 may have therapeutic utility against excess bone resorption in patients with PD.
Collapse
Affiliation(s)
- Srinivasan Shanmugarajan
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Paget's disease of bone is a common disease characterised by focal areas of increased bone turnover, affecting one or several bones throughout the skeleton. Paget's disease is often asymptomatic but can be associated with bone pain and other complications such as osteoarthritis, pathological fracture, bone deformity, deafness, and nerve compression syndromes. Genetic factors have an important role in this disease, and mutations have been identified in four genes that cause Paget's disease and related syndromes. The most important of these is Sequestosome 1 (SQSTM1), which is a scaffold protein in the nuclear factor kappaB (NFkappaB) signalling pathway. Patients with SQSTM1 mutations have severe Paget's disease of bone and a high degree of penetrance with increasing age. Environmental factors also contribute. Most research has focused on paramyxovirus infection as a possible trigger, but evidence for this notion is conflicting. Other potential triggers include deficiency of dietary calcium and repetitive mechanical loading of the skeleton. Medical management of Paget's disease of bone is based on giving inhibitors of osteoclastic bone resorption, and bisphosphonates are the treatment of first choice. Bisphosphonate therapy is primarily indicated for patients who have bone pain arising from increased metabolic activity in affected bones. Bisphosphonate therapy is highly effective at reducing bone turnover, and it has been shown to heal radiological lesions and restore normal histology; however, the long-term effects of bisphosphonates on disease progression have not been adequately studied. No firm evidence as yet exists to show that bisphosphonates can prevent the development of complications of Paget's disease of bone, and further work is needed to address the effects of treatment on long-term clinical outcome.
Collapse
Affiliation(s)
- Stuart H Ralston
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Anne L Langston
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian R Reid
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, Cundy T, Cornish J, Reid IR, Naot D. Failure to detect measles virus ribonucleic acid in bone cells from patients with Paget's disease. J Clin Endocrinol Metab 2008; 93:1398-401. [PMID: 18230662 DOI: 10.1210/jc.2007-1978] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Paget's disease is a condition of focal accelerated bone turnover. Electron-microscopy investigations of osteoclasts from pagetic lesions have identified nuclear inclusion bodies that have a similar appearance to viral nucleocapsid particles. Subsequently, RNA from several paramyxoviruses has been detected in pagetic tissue, and it was suggested that these viruses, in particular measles, might play a role in the etiology of Paget's disease. We have tested for measles virus sequences in osteoblasts and bone marrow cells collected from pagetic lesions and healthy bone. METHODS Bone and bone marrow samples were taken from Paget's patients and control subjects, and cells were cultured from each of these tissues. RNA was extracted from 13 osteoblast cultures and 13 cultures of bone marrow cells derived from pagetic lesions, and from 26 and 23 control osteoblast and bone marrow cultures, respectively. These samples were sourced from 22 patients with Paget's disease and 31 controls. RT-PCR-nested PCR amplification was used for the detection of the genes for the measles nucleocapsid and matrix proteins. RESULTS Measles virus sequences were not detected in any of the pagetic or control samples. However, measles virus sequences were identified in samples of a measles virus culture isolate included as a positive control, and in a brain sample from a patient with subacute sclerosing panencephalitis, a condition associated with chronic measles infection. CONCLUSION The results of the study do not support the hypothesis that measles virus plays a role in the pathogenesis of Paget's disease.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lucas GJ, Riches PL, Hocking LJ, Cundy T, Nicholson GC, Walsh JP, Ralston SH. Identification of a major locus for Paget's disease on chromosome 10p13 in families of British descent. J Bone Miner Res 2008; 23:58-63. [PMID: 17907922 DOI: 10.1359/jbmr.071004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Mutations of SQSTM1 are an important cause of PDB, but other genes remain to be discovered. A major susceptibility locus for PDB was identified on chromosome 10p13 by a genome-wide linkage scan in families of British descent, which accounted for the vast majority of cases not caused by SQSTM1 mutations. INTRODUCTION Paget's disease of bone (PDB) has a strong genetic component, and several susceptibility loci have been identified by genome-wide linkage scans. We previously identified three susceptibility loci for PDB using this approach on chromosomes 5q35, 2q36, and 10p13 in 62 families of mainly British descent, but subsequently, mutations in the SQSTM1 gene were found to be the cause of PDB in 23 families from this cohort. Here we reanalyzed the results of our genome-wide search in families from this cohort who did not have SQSTM1 mutations. MATERIALS AND METHODS The study population consisted of 210 individuals from 39 families of predominantly British descent with autosomal dominant inheritance of PDB in whom SQSTM1 mutations had been excluded by mutation screening. The average family size was 5.44 +/- 3.98 (SD) individuals (range, 2-24 individuals). Genotyping was performed using standard techniques with 382 microsatellite markers spaced at an average distance of 9.06 cM throughout the autosomes. Multipoint linkage analysis was performed using the GENEHUNTER program under models of homogeneity and heterogeneity. RESULTS Multipoint parametric linkage analysis under a model of homogeneity and nonparametric linkage analysis under a model of heterogeneity both showed strong evidence of linkage to a single locus on chromosome 10p13 (LOD score, +4.08) close to the marker D10S1653 at 41.43cM. No evidence of linkage was detected at the chromosome 2q36 locus previously identified in this population, and linkage to other candidate loci previously implicated in the pathogenesis of PDB was excluded. CONCLUSIONS We conclude that there is an important susceptibility gene for PDB on chromosome 10p13 in families of British descent and find no evidence to support the existence of a susceptibility locus on chromosome 2q36 or other previously identified candidate loci for PDB in this population. The gene that lies within the 10p13 locus seems to account for the development of PDB in the vast majority of families of British descent who do not carry SQSTM1 mutations.
Collapse
Affiliation(s)
- Gavin Ja Lucas
- Rheumatic Diseases Unit, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Ralston SH, Afzal MA, Helfrich MH, Fraser WD, Gallagher JA, Mee A, Rima B. Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget's disease of bone. J Bone Miner Res 2007; 22:569-77. [PMID: 17227218 DOI: 10.1359/jbmr.070103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Conflicting results have been reported on the detection of paramyxovirus transcripts in Paget's disease, and a possible explanation is differences in the sensitivity of RT-PCR methods for detecting virus. In a blinded study, we found no evidence to suggest that laboratories that failed to detect viral transcripts had less sensitive RT-PCR assays, and we did not detect measles or distemper transcripts in Paget's samples using the most sensitive assays evaluated. INTRODUCTION There is conflicting evidence on the possible role of persistent paramyxovirus infection in Paget's disease of bone (PDB). Some workers have detected measles virus (MV) or canine distemper virus (CDV) transcripts in cells and tissues from patients with PDB, but others have failed to confirm this finding. A possible explanation might be differences in the sensitivity of RT-PCR methods for detecting virus. Here we performed a blinded comparison of the sensitivity of different RT-PCR-based techniques for MV and CDV detection in different laboratories and used the most sensitive assays to screen for evidence of viral transcripts in bone and blood samples derived from patients with PDB. MATERIALS AND METHODS Participating laboratories analyzed samples spiked with known amounts of MV and CDV transcripts and control samples that did not contain viral nucleic acids. All analyses were performed on a blinded basis. RESULTS The limit of detection for CDV was 1000 viral transcripts in three laboratories (Aberdeen, Belfast, and Liverpool) and 10,000 transcripts in another laboratory (Manchester). The limit of detection for MV was 16 transcripts in one laboratory (NIBSC), 1000 transcripts in two laboratories (Aberdeen and Belfast), and 10,000 transcripts in two laboratories (Liverpool and Manchester). An assay previously used by a U.S.-based group to detect MV transcripts in PDB had a sensitivity of 1000 transcripts. One laboratory (Manchester) detected CDV transcripts in a negative control and in two samples that had been spiked with MV. None of the other laboratories had false-positive results for MV or CDV, and no evidence of viral transcripts was found on analysis of 12 PDB samples using the most sensitive RT-PCR assays for MV and CDV. CONCLUSIONS We found that RT-PCR assays used by different laboratories differed in their sensitivity to detect CDV and MV transcripts but found no evidence to suggest that laboratories that previously failed to detect viral transcripts had less sensitive RT-PCR assays than those that detected viral transcripts. False-positive results were observed with one laboratory, and we failed to detect paramyxovirus transcripts in PDB samples using the most sensitive assays evaluated. Our results show that failure of some laboratories to detect viral transcripts is unlikely to be caused by problems with assay sensitivity and highlight the fact that contamination can be an issue when searching for pathogens by sensitive RT-PCR-based techniques.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Karosi T, Jókay I, Kónya J, Petkó M, Szabó LZ, Sziklai I. Expression of measles virus receptors in otosclerotic, non-otosclerotic and in normal stapes footplates. Eur Arch Otorhinolaryngol 2007; 264:607-13. [PMID: 17294206 DOI: 10.1007/s00405-007-0247-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Otosclerosis is a bone remodeling disorder of complex etiology. Persistent measles virus infection of the otic capsule could increase the expression level of measles virus receptors (CD46) on the osteoclasts and endothelial cells of the otosclerotic foci. Presence of measles virus RNA was demonstrated in the footplates of histologically diagnosed otosclerotic patients by RT-PCR; however, no reports were available about the CD46 expression pattern and level in otosclerosis. Nucleic acid was extracted from stapes footplates of clinically otosclerotic patients (N = 116). Genomic RNA of measles virus was amplified by RT-PCR. Amplification results were correlated with postoperative histologic and CD46 specific immunhistologic findings. Among 116 stapes fixation cases, 87 otosclerotic stapes contained measles virus RNA. Histology for virus negative stapes (N = 29) represented degenerative disorders with heterogeneous histopathology. Active otosclerosis was featured by increased numbers of osteoclasts showing strong CD46 expression. In virus negative, non-otosclerotic stapes fixation and in normal stapes footplates weak CD46 immunoreaction was demonstrated on the osteocytes and fibroblasts. In otosclerosis, it is reasonable to assume that measles virus increases the expression level of its own cellular receptor. Furthermore, intensive CD46 reaction could relate to active virus replication and continuous receptor internalisation. Otosclerosis is a disease of disturbed osteoid turnover due to persistent measles virus infection and special CD46 receptor pattern of the otic capsule.
Collapse
Affiliation(s)
- Tamás Karosi
- Department of Otolaryngology Head & Neck Surgery, University Medical School of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Beyens G, Wuyts W, Cleiren E, de Freitas F, Tiegs R, Van Hul W. Identification and molecular characterization of a novel splice-site mutation (G1205C) in the SQSTM1 gene causing Paget's disease of bone in an extended American family. Calcif Tissue Int 2006; 79:281-8. [PMID: 17120186 DOI: 10.1007/s00223-006-0122-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 07/27/2006] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is a common late-onset bone disorder characterized by focal areas of abnormal bone remodeling. Positional cloning efforts resulted in the identification of seven genetic loci (PDB1-7) with putative involvement in the pathogenesis of PDB. Meanwhile, the PDB-causing gene from the PDB3 region on chromosome 5q35 has been identified as the SQSTM1 gene. All mutations identified in this gene so far are located in or close to the ubiquitin-associated (UBA) domain of the protein. In 2001, we reported genotyping results of genetic markers located in the PDB3 region in an extended American family, indicating the involvement of the PDB3 locus. Here, we report the identification of a novel mutation (G1205C) in the SQSTM1 gene in this family. The G1205C mutation is located in the splice donor site of intron 7 and reverse-transcription polymerase chain reaction experiments showed that the presence of the C allele results in the production of two abnormal mRNA transcripts. Translation of the first transcript would result in a protein that lacks amino acids 351-388, including 26 amino acids of the second PEST domain in addition to two amino acids of the UBA domain. The second mutant mRNA transcript could result in a truncated protein (390X) that lacks almost the complete UBA domain. PDB mutations that disrupt the function of the PEST domain of SQSTM1 have not been reported before, so probably the pathogenic effect of both transcripts resides in the disruption of the ubiquitin-binding properties of the protein.
Collapse
Affiliation(s)
- G Beyens
- Department of Medical Genetics, University and University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Kajiya H, Ito M, Ohshima H, Kenmotsu SI, Ries WL, Benjamin IJ, Reddy SV. RANK ligand expression in heat shock factor-2 deficient mouse bone marrow stromal/preosteoblast cells. J Cell Biochem 2006; 97:1362-9. [PMID: 16365894 DOI: 10.1002/jcb.20737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.
Collapse
Affiliation(s)
- Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Sawara-ku, Fukuoka, 814-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Gantumur T, Niedermeyer HP, Neubert WJ, Arnold W. Molecular detection of measles virus in primary cell cultures of otosclerotic tissue. Acta Otolaryngol 2006; 126:811-6. [PMID: 16846922 DOI: 10.1080/00016480500522749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONCLUSION Primary cell cultures were established from otosclerotic/otospongiotic footplate bone particles. Although this procedure is time-consuming, the quality and quantity of RNA isolated from these cells were much higher in comparison with the direct isolation of RNA from footplate bone samples and the preparation was more suitable for the detection of measles virus (MeV) RNA. OBJECTIVE Morphological and biochemical investigations suggest that persistent MeV infection participates in the development of otosclerotic foci. However, this hypothesis is controversial because the detection of MeV in otosclerotic foci is inconsistent since the results are dependent on the presence and stage of foci in the investigated bone particles. Unfortunately, this cannot be confirmed before investigation. To study the presence of the MeV by different techniques in otosclerotic foci, stapes footplate fragments were collected during stapedectomy from patients suffering from clinical otosclerosis. MATERIALS AND METHODS MeV-specific RT-PCR was performed on total RNA isolated directly from four fresh frozen footplate bone fragments and from the cells of 16 primary cultures of otosclerotic tissue samples. In order to rescue persisting MeV, the primary footplate cells were cocultured with MeV permissive B95a cells. RESULTS MeV was not detected in RNA from fresh frozen otosclerotic materials, but analysis of the RNA from 5 of the 16 primary cell cultures showed MeV-positive results. Nucleotide sequencing of a 317 bp MeV-specific RT-PCR fragment confirmed the presence of the MeV RNA genome. Here, we report the first determination of MeV sequences in total RNA isolated from primary cells cultured from otosclerotic tissue. Persisting MeV in primary footplate cells could not be recovered by coculturing with B95a cells.
Collapse
Affiliation(s)
- Tsagaan Gantumur
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Head and Neck Surgery, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | | | | | | |
Collapse
|
19
|
Nakano Y, Kato Y, Imai K, Ochiai E, Namekawa JI, Ishizuka S, Takenouchi K, Tanatani A, Hashimoto Y, Nagasawa K. Practical synthesis and evaluation of the biological activities of 1alpha,25-dihydroxyvitamin D3 antagonists, 1alpha,25-dihydroxyvitamin D3-26,23-lactams. Designed on the basis of the helix 12-folding inhibition hypothesis. J Med Chem 2006; 49:2398-406. [PMID: 16610783 DOI: 10.1021/jm050738x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical synthetic route to novel vitamin D antagonists of DLAM (1alpha,25-dihydroxyvitamin D(3)-26,23-lactam) was developed from vitamin D(2) via the 1,3-dipolar cycloaddition reaction as a key step. Six DLAM derivatives (24 compounds) with a variety of nitrogen substituents and stereochemistries at C23 and C25 were synthesized. Among these new derivatives, (23S,25S)-DLAM isomers bound effectively to VDRs and showed antagonistic activity in the HL-60 cell differentiation inhibition assay. The importance of the substituent on the nitrogen of DLAMs for antagonistic activity was also suggested by computational docking studies.
Collapse
Affiliation(s)
- Yusuke Nakano
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD. Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res 2006; 21:446-55. [PMID: 16491293 DOI: 10.1359/jbmr.051108] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 01/23/2023]
Abstract
UNLABELLED We targeted the MVNP gene to the OCL lineage in transgenic mice. These mice developed abnormal OCLs and bone lesions similar to those found in Paget's patients. These results show that persistent expression of MVNP in OCLs can induce pagetic-like bone lesions in vivo. INTRODUCTION Paget's disease (PD) of bone is the second most common bone disease. Both genetic and viral factors have been implicated in its pathogenesis, but their exact roles in vivo are unclear. We previously reported that transfection of normal human osteoclast (OCL) precursors with the measles virus nucleocapsid (MVNP) or measles virus (MV) infection of bone marrow cells from transgenic mice expressing a MV receptor results in formation of pagetic-like OCLs. MATERIALS AND METHODS Based on these in vitro studies, we determined if the MVNP gene from either an Edmonston-related strain of MV or a MVNP gene sequence derived from a patient with PD (P-MVNP), when targeted to cells in the OCL lineage of transgenic mice with the TRACP promoter (TRACP/MVNP mice), induced changes in bone similar to those found in PD. RESULTS Bone marrow culture studies and histomorphometric analysis of bones from these mice showed that their OCLs displayed many of the features of pagetic OCLs and that they developed bone lesions that were similar to those in patients with PD. Furthermore, IL-6 seemed to be required for the development of the pagetic phenotype in OCLs from TRACP/MVNP mice. CONCLUSIONS These results show that persistent expression of the MVNP gene in cells of the OCL lineage can induce pagetic-like bone lesions in vivo.
Collapse
Affiliation(s)
- Noriyoshi Kurihara
- Medicine/Hem-Onc, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Selski DJ, Clohisy DR. A customized retroviral vector confers marker gene expression in osteoclast lineage cells. J Cell Biochem 2006; 97:641-50. [PMID: 16229014 DOI: 10.1002/jcb.20679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoclasts play a seminal role in many skeletal diseases and therefore are candidates for cell-based gene delivery systems to treat disorders of bone. As an initial step toward developing osteoclast-mediated gene delivery systems, we have made and analyzed a customized Molony-Murine leukemia virus (MMLV)-based retroviral vector containing elements of the osteoclast-specific tartrate-resistant acid phosphatase (TRAP) gene. RAW 264.7 cells were transduced with the customized vector (E3) and differentiated along macrophage or osteoclast lineages. E3 contained a truncated form of the human nerve growth factor receptor (NGFR) as a reporter gene. NGFR expression increased with RANK-ligand (RANK-L) treatment but not with macrophage (gamma-IFN/LPS treatment) differentiation. Enhanced NGFR expression peaked 48 h after RANK-L treatment. Electrophoretic mobility shift assays (EMSA) analysis of the TRAP gene regulatory elements in E3 identified a single 27 bp DNA probe, which specifically bound protein from RANK-L-treated cells. DNA sequence revealed AP-1 binding sites, and analysis with mutant probes implied that the sites were functional. EMSA supershift analysis identified Fos protein interacting with the 27 bp probe. In summary, insertion of sequence -962 to -868 from the TRAP gene into the U3 region of the MMLV LTR confers RANK-L induced retroviral gene expression via Fos family protein interaction at AP-1 sites.
Collapse
Affiliation(s)
- Daniel J Selski
- Department of Orthopaedic Surgery, The University of Minnesota, 420 Delaware Street, Minneapolis, MN 55455, USA
| | | |
Collapse
|
22
|
Abstract
Paget's disease of bone is a chronic focal skeletal disorder that affects up to 2-3% of the population over the age of 60 years. Paget's disease is primarily a disease of the osteoclast. The pathologic abnormality in patients with Paget's disease involves increased bone resorption by the osteoclasts, followed by abundant new bone formation that is of poor quality. Genetic linkage analysis indicated that 40% of patients with Paget's disease have an affected first degree relative and 1% of patients develop osteosarcoma. Paget's disease is an autosomal dominant trait with genetic heterogeneity. Recurrent mutations in the ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1/p62) are identified in patients with Paget's disease. Osteoclasts and osteoclast precursors from patients with Paget's disease contain paramyxoviral transcripts and appear hyperresponsive to 1,25-(OH)2D3 and RANK ligand (RANKL). It has been suggested that the enhanced sensitivity of osteoclast precursors for 1,25-(OH)2D3 in Paget's disease results from increased expression of coactivators of vitamin D receptor (VDR). However, a cause and effect relationship for the paramyxoviral infection and SQSTM1/p62 gene mutations associated with this disease and osteoclast abnormalities are unclear. Therefore, the etiology of Paget's disease remains uncertain.
Collapse
Affiliation(s)
- Sakamuri V Reddy
- Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
23
|
Abstract
Paget disease of bone (PD) is characterized by excessive bone resorption in focal areas followed by abundant new bone formation, with eventual replacement of the normal bone marrow by vascular and fibrous tissue. The etiology of PD is not well understood, but one PD-linked gene and several other susceptibility loci have been identified, and paramyxoviral gene products have been detected in pagetic osteoclasts. In this review, the pathophysiology of PD and evidence for both a genetic and a viral etiology for PD will be discussed.
Collapse
Affiliation(s)
- G David Roodman
- Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15240, USA.
| | | |
Collapse
|
24
|
Saito N, Masuda M, Matsunaga T, Saito H, Anzai M, Takenouchi K, Miura D, Ishizuka S, Takimoto-Kamimura M, Kittaka A. 24,24-Dimethylvitamin D3-26,23-lactones and their 2α-functionalized analogues as highly potent VDR antagonists. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.05.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Kato Y, Nakano Y, Sano H, Tanatani A, Kobayashi H, Shimazawa R, Koshino H, Hashimoto Y, Nagasawa K. Synthesis of 1α,25-dihydroxyvitamin D3-26,23-lactams (DLAMs), a novel series of 1α,25-dihydroxyvitamin D3 antagonist. Bioorg Med Chem Lett 2004; 14:2579-83. [PMID: 15109656 DOI: 10.1016/j.bmcl.2004.02.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 02/20/2004] [Accepted: 02/21/2004] [Indexed: 11/22/2022]
Abstract
Novel vitamin D(3) analogs having a lactam structure in their side chains, 1 alpha,25-dihydroxyvitamin D(3)-26,23-lactams (DLAMs), were designed based on the principle of regulation of the folding of helix-12 in the vitamin D nuclear receptor (VDR). The new analogs were synthesized via 1,3-dipolar cycloaddition reaction and subsequent reduction of the isoxazolidine as key steps. Among the analogs, (23S,25S)-DLAM-01 (4a) and (23S,25S)-DLAM-1P (5a) bind strongly to VDR. Moreover, these analogs were found to inhibit the differentiation of HL-60 cells induced by 1 alpha,25-dihydroxyvitamin D(3).
Collapse
Affiliation(s)
- Yuko Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, Lanier LL, Nakamura MC. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res 2004; 19:224-34. [PMID: 14969392 DOI: 10.1359/jbmr.0301234] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 09/08/2003] [Accepted: 10/03/2003] [Indexed: 11/18/2022]
Abstract
UNLABELLED Deficiency of the signaling adapter protein DAP12 is associated with bony abnormalities in both mice and humans. We identify specific DAP12-associated receptors expressed by osteoclasts and examine function of DAP12 in murine osteoclasts in vivo and in vitro. These data show a new role for DAP12 signaling in regulating formation of multinucleated osteoclasts. INTRODUCTION Osteoclasts are bone-resorbing cells derived from hematopoietic precursors in the myeloid lineage. In other myeloid cell types, the signaling adapter protein DAP12 transmits activating signals on ligation of a DAP12-associated receptor (DAR). The aim of this study was to clarify the role of DAP12 signaling during osteoclast development. MATERIALS AND METHODS Osteoclasts from DAP12 -/- or control mice were analyzed in vitro for morphology, function, and for osteoclast markers. DARs were identified in osteoclast cultures through reverse transcriptase-polymerase chain reaction (RT-PCR). Bone density of DAP12 -/- and control mice were analyzed by microcomputed tomography. DAP12 -/- osteoclasts were retrovirally reconstituted with DAP12. RAW264.7 cells were transfected with FLAG-tagged DAP12 or TREM2 and stimulated by anti-FLAG antibody during in vitro osteoclastogenesis. RESULTS C57BL/6 DAP12-deficient mice have higher bone mass than C57BL/6 wildtype controls. We verified the presence of DAP12 in pre-osteoclasts and osteoclasts derived from C57BL/6 or the pre-osteoclast line RAW 264.7 and identified the DARs expressed. DAP12 -/- osteoclasts developed in vitro with macrophage colony-stimulating factor (M-CSF) and RANKL formed only intensely TRACP+ mononuclear cells and failed to generate multinuclear osteoclasts. These mononuclear cells are functional osteoclast-like cells because, by RT-PCR, they express other osteoclast markers and generate resorption pits on dentine slices, although quantitative assessment of bone resorption shows decreased resorption by DAP12 -/- osteoclasts compared with C57BL/6 osteoclasts. Restoration of DAP12 expression by retroviral transduction of DAP12 -/- osteoclast precursors rescued in vitro osteoclast multinucleation. Direct stimulation of DAP12 expressed in RAW264.7 during in vitro osteoclastogenesis led to a marked increase in the number of TRACP+ multinucleated osteoclast-like cells formed. CONCLUSION Our studies indicate that stimulation of the DAP12 adapter protein plays a significant role in formation of multinuclear osteoclasts and that DAP12 and DARs likely participate in the regulation of bony remodeling.
Collapse
Affiliation(s)
- Mary Beth Humphrey
- Department of Medicine, VA Medical Center and University of California, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Despite the extensive media exposure that viruses such as West Nile, Norwalk, and Ebola have received lately, and the emerging threat that old pathogens may reappear as new agents of terrorism, measles virus (MV) persists as one of the leading causes of death by infectious agents worldwide, approaching the annual mortality rate of human immunodeficiency virus (HIV)-1. For most MV victims, fatality is indirect: Virus-induced transient immunosuppression predisposes the individual to opportunistic infections that, left untreated, can result in mortality. In rare cases, MV may also cause progressive neurodegenerative disease. During the past five years (1998-2002), development of animal models and the application of reverse genetics and immunological assays have collectively contributed to major progress in our understanding of MV biology and pathogenesis. Nevertheless, questions and controversies remain that are the basis for future research. In this review, major advances and current debates are discussed, including MV receptor usage, the cellular basis of immunosuppression, the suspected role of MV in "nonviral" diseases such as multiple sclerosis and Paget's disease, and the controversy surrounding MV vaccine safety.
Collapse
Affiliation(s)
- Glenn F Rall
- Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
28
|
Abstract
Osteoclasts are the only cells capable of resorbing mineralised bone, dentine and cartilage. Osteoclasts act in close concert with bone forming osteoblasts to model the skeleton during embryogenesis and to remodel it during later life. A number of inherited human conditions are known that are primarily caused by a defect in osteoclasts. Most of these are rare monogenic disorders, but others, such as the more common Paget's disease, are complex diseases, where genetic and environmental factors combine to result in the abnormal osteoclast phenotype. Where the genetic defect gives rise to ineffective osteoclasts, such as in osteopetrosis and pycnodysostosis, the result is the presence of too much bone. However, the phenotype in many osteoclast diseases is a combination of osteosclerosis with osteolytic lesions. In such conditions, the primary defect is hyperactivity of osteoclasts, compensated by a secondary increase in osteoblast activity. Rapid progress has been made in recent years in the identification of the causative genes and in the understanding of the biological role of the proteins encoded. This review discusses the known osteoclast diseases with particular emphasis on the genetic causes and the resulting osteoclast phenotype. These human diseases highlight the critical importance of specific proteins or signalling pathways in osteoclasts.
Collapse
Affiliation(s)
- Miep H Helfrich
- Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, AB25 2ZD United Kingdom.
| |
Collapse
|
29
|
Seton M, Choi HK, Hansen MF, Sebaldt RJ, Cooper C. Analysis of environmental factors in familial versus sporadic Paget's disease of bone--the New England Registry for Paget's Disease of Bone. J Bone Miner Res 2003; 18:1519-24. [PMID: 12929942 DOI: 10.1359/jbmr.2003.18.8.1519] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A registry for Paget's Disease (PD) was created to study the environmental and familial features of this disorder. This study examines the first 202 people enrolled. Those with a family history of PD (20%) suffered earlier deformity and fracture, and tended to have grandparents born abroad. These findings suggest heritage is important in PD; the role of environment remains unclear. INTRODUCTION The New England Registry for Paget's Disease of Bone is a database that was created to explore the distribution and determinants of disease frequency. METHODS Using a case-series design, we explored the association of environmental factors in expression of the disease, comparing those patients with familial Paget's disease to those with sporadic Paget's disease (PD). RESULTS AND CONCLUSIONS Analysis of the first 202 patients enrolled in the registry revealed a positive family history (FH) in 41 (20%). Significant findings in this cohort included an earlier age of onset (51 years FH+ versus 59 years FH-, p < 0.05), a trend to a higher incidence of bone deformity (49% versus 33%, p < 0.1), and an increased fracture rate (27% versus 11%, p < 0.05). Persons with a FH of PD were less likely to record the United States or Canada as their grandparents' birthplace (p < 0.01), and sibships tended to be larger (p < 0.05). A history of measles infection, childhood exposure to pets, milk ingestion, year of immigration to the United States, birth order, level of education, and functional status did not distinguish the two groups. The database confirms the high prevalence of familial PD and supports the theory that heritable factors are important in the pathogenesis of this focal disorder of bone metabolism.
Collapse
Affiliation(s)
- Margaret Seton
- Arthritis Unit, New England Registry for Paget's Disease of Bone, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
30
|
Saito N, Matsunaga T, Fujishima T, Anzai M, Saito H, Takenouchi K, Miura D, Ishizuka S, Takayama H, Kittaka A. Remarkable effect of 2α-modification on the VDR antagonistic activity of 1α-hydroxyvitamin D3-26,23-lactones. Org Biomol Chem 2003; 1:4396-402. [PMID: 14685312 DOI: 10.1039/b311107e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel 2[small alpha]-methyl-, 2[small alpha]-(3-hydroxypropyl)- and 2[small alpha]-(3-hydroxypropoxy)-substituted 25-dehydro-1[small alpha]-hydroxyvitamin D-26,23-lactone derivatives were efficiently synthesized Reformatsky type allylation and palladium-catalyzed alkenylative cyclization processes, and their biological activities were evaluated. Introducing functional groups into the 2[small alpha]-position of the vitamin D-26,23-lactones resulted in remarkable enhancement of their antagonistic activity on vitamin D receptor (VDR).
Collapse
Affiliation(s)
- Nozomi Saito
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Whyte MP, Reinus WR, Podgornik MN, Mills BG. Familial expansile osteolysis (excessive RANK effect) in a 5-generation American kindred. Medicine (Baltimore) 2002; 81:101-21. [PMID: 11889411 DOI: 10.1097/00005792-200203000-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Michael P Whyte
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, Missouri 63131, USA.
| | | | | | | |
Collapse
|
33
|
Friedrichs WE, Reddy SV, Bruder JM, Cundy T, Cornish J, Singer FR, Roodman GD. Sequence analysis of measles virus nucleocapsid transcripts in patients with Paget's disease. J Bone Miner Res 2002; 17:145-51. [PMID: 11771661 DOI: 10.1359/jbmr.2002.17.1.145] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been debated for almost 30 years whether Paget's disease of bone results from paramyxoviral infection of osteoclasts (OCs). Paramyxoviral-like nuclear inclusions are found in OCs from patients with Paget's disease, and measles virus (MV) or canine distemper virus (CDV) messenger RNA (mRNA) transcripts have been detected by in situ hybridization in bone cells from pagetic lesions. Furthermore, immunocytochemical studies have shown the presence of several paramyxoviral species in OCs from patients with Paget's disease. However, others have been unable to detect paramyxoviral transcripts in bone samples from patients with Paget's disease or marrow cultures from involved sites of patients with Paget's disease. Furthermore, no one has been able to isolate an infectious virus from pagetic bone samples or marrow cells from patients with Paget's disease, and a full-length viral gene has not been sequenced from pagetic samples. In this study, we have obtained the full-length sequence for the MV nucleocapsid (MVNP) gene in bone marrow from an involved site from a patient with Paget's disease and more than 700 base pairs (bps) of MVNP sequence in 3 other patients with Paget's disease. These sequences were undetectable in four normal marrow samples studied simultaneously. The sequences from the patients contained multiple mutations that differed from the Edmonston strain MVNP gene. These findings are consistent with the presence of a chronic MV infection in affected sites from these patients with Paget's disease.
Collapse
Affiliation(s)
- William E Friedrichs
- Department of Medicine/Hematology, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | | | |
Collapse
|