1
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
2
|
Yu H, Li X, Zhao J, Wang W, Wei Q, Mao D. NR4A1-mediated regulation of lipid droplets in progesterone synthesis in goat luteal cells†. Biol Reprod 2024; 111:640-654. [PMID: 38936833 DOI: 10.1093/biolre/ioae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Indexed: 06/29/2024] Open
Abstract
Nuclear receptor NR4A1 is a key factor in glycolipid metabolism and steroidogenesis, while lipid droplets serve as crucial dynamic organelles for lipid metabolism in luteal cells. To investigate the effects of NR4A1 on lipid droplet metabolism and progesterone (P4) synthesis in goat corpus luteum in vitro, luteal cells from the middle-cyclic corpus luteum were isolated and treated with Cytosporone B (CSNB, an agonist) or siRNA of NR4A1. Results showed that both low (1 μM) and high (50 μM) concentrations of CSNB promoted lipid droplet accumulation, while NR4A1 knockdown reduced lipid droplet content. CSNB increased while siNR4A1 decreased total cholesterol content; however, CSNB and siNR4A1 did not change triglyceride content. CSNB increased the expression of perilipins at mRNA and protein levels, also increased LDLR, SCARB1, SREBFs, and HMGCR mRNA abundance. Treatment with siNR4A1 revealed opposite results of CSNB, except for HMCGR and SREBF2. For steroidogenesis, 1 μM CSNB increased, but 50 μM CSNB inhibited P4 synthesis, NR4A1 knockdown also reduced the P4 level. Further analysis demonstrated that 1 μM CSNB increased the protein levels of StAR, HSD3B, and P-HSL, while 50 μM CSNB decreased StAR, HSD3B, and CYP11A1 protein levels. Moreover, 50 μM CSNB impaired active mitochondria, reduced the BCL2, and increased DRP1, Caspase 3, and cleaved-Caspase 3 protein levels. siNR4A1 consistently downregulated the P-HSL/HSL ratio and the steroidogenic protein levels. In conclusion, NR4A1-mediated lipid droplets are involved in the regulation of progesterone synthesis in goat luteal cells.
Collapse
Affiliation(s)
- Hao Yu
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaotong Li
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhao
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Guzeloglu A, Bishop JV, Van Campen H, Plewes MR, Gonzalez-Berrios CL, Kincade JN, Davis JS, Hansen TR. Interferon-tau infusion into the ovine corpus luteum delays luteolysis†. Biol Reprod 2024; 111:667-677. [PMID: 38869890 DOI: 10.1093/biolre/ioae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/23/2024] [Indexed: 06/14/2024] Open
Abstract
Conceptus-derived interferon-tau (IFNT) initiates maternal recognition of pregnancy in ewes by paracrine actions on the endometrium and endocrine action on the corpus luteum (CL). To examine the effect of IFNT on the CL without inducing IFN-stimulated genes (ISGs) in the endometrium, recombinant ovine IFNT (roIFNT) or bovine serum albumin was delivered directly into CLs via osmotic pumps at a rate of 10, 50, or 100 ng/h from days 9 to 12 of the estrous cycle. Endometrial and CL samples were collected on day 12. 50 ng/h of roIFNT induced ISG15 in the CL on day 12 without affecting endometrial ISG15 concentrations. In a second experiment, roIFNT (50 ng/h) was infused into the CL from days 10 to 17 of the estrous cycle and serum samples were collected daily. Serum progesterone concentrations were significantly higher from days 15 to 17 in roIFNT-infused ewes compared to controls. Levels of LHCGR, STAR, CYP11A1, HSL, OPA1, and protein kinase A mRNA and proteins were higher in the roIFNT-infused CLs compared to the controls. Levels of ISG15 and MX1 mRNA increased in the CLs of roIFNT-infused ewes but not in the endometrium. Endometrial ESR1 mRNA and protein concentrations were higher in the controls compared to roIFNT-infused ewes. In conclusion, intra-luteal delivery of roIFNT induced ISGs, stabilized steroidogenesis in the CL, and delayed luteolysis without inducing endometrial IFN-stimulated genes. Inhibition of ESR1 in the endometrium of roIFNT-infused ewes was observed suggesting that direct delivery of IFNT to the CL has an additional anti-luteolytic effect on the endometrium.
Collapse
Affiliation(s)
- Aydin Guzeloglu
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA
- Veteran Affairs, Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Carolina L Gonzalez-Berrios
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica N Kincade
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA
- Veteran Affairs, Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Bérubé M, Abedini A, Lapointe E, Gusscott S, Brind'Amour J, Zamberlam G, Boerboom D. SFRP4 promotes autophagy and blunts FSH responsiveness through inhibition of AKT signaling in ovarian granulosa cells. Cell Commun Signal 2024; 22:396. [PMID: 39138534 PMCID: PMC11323480 DOI: 10.1186/s12964-024-01736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Secreted frizzled-related proteins (SFRPs) comprise a family of WNT signaling antagonists whose roles in the ovary are poorly understood. Sfrp4-null mice were previously found to be hyperfertile due to an enhanced granulosa cell response to gonadotropins, leading to decreased antral follicle atresia and enhanced ovulation rates. The present study aimed to elucidate the mechanisms whereby SFRP4 antagonizes FSH action. METHODS Primary cultures of granulosa cells from wild-type mice were treated with FSH and/or SFRP4, and effects of treatment on gene expression were evaluated by RT-qPCR and RNAseq. Bioinformatic analyses were conducted to analyse the effects of SFRP4 on the transcriptome, and compare them to those of FSH or a constitutively active mutant of FOXO1. Additional granulosa cell cultures from wild-type or Sfrp4-null mice, some pretreated with pharmacologic inhibitors of specific signaling effectors, were used to examine the effects of FSH and/or SFRP4 on signaling pathways, autophagy and apoptosis by western blotting and TUNEL. RESULTS Treatment of cultured granulosa cells with recombinant SFRP4 was found to decrease basal and FSH-stimulated mRNA levels of FSH target genes. Unexpectedly, this effect was found to occur neither via a canonical (CTNNB1-dependent) nor non-canonical WNT signaling mechanism, but was found to be GSK3β-dependent. Rather, SFRP4 was found to antognize AKT activity via a mechanism involving AMPK. This lead to the hypophosphorylation of FOXO1 and a decrease in the expression of a portion of the FSH and FOXO1 transcriptomes. Conversely, FSH-stimulated AMPK, AKT and FOXO1 phosphorylation levels were found to be increased in the granulosa cells of Sfrp4-null mice relative to wild-type controls. SFRP4 treatement of granulosa cells also induced autophagy by signaling via AKT-mTORC1-ULK1, as well as apoptosis. CONCLUSIONS This study identifies a novel GSK3β-AMPK-AKT signaling mechanism through which SFPR4 antagonizes FSH action, and further identifies SFRP4 as a novel regulator of granulosa cell autophagy. These findings provide a mechanistic basis for the phenotypic changes previously observed in Sfrp4-null mice, and broaden our understanding of the physiological roles of WNT signaling processes in the ovary.
Collapse
Affiliation(s)
- Michael Bérubé
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Atefeh Abedini
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Evelyne Lapointe
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Samuel Gusscott
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Julie Brind'Amour
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Gustavo Zamberlam
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
5
|
Przygrodzka E, Binderwala F, Powers R, McFee RM, Cupp AS, Wood JR, Davis JS. Central Role for Glycolysis and Fatty Acids in LH-responsive Progesterone Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580329. [PMID: 38405789 PMCID: PMC10888869 DOI: 10.1101/2024.02.14.580329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Progesterone production by the corpus luteum is fundamental for establishing and maintaining pregnancy. The pituitary gonadotropin luteinizing hormone (LH) is recognized as the primary stimulus for luteal formation and progesterone synthesis, regardless of species. Previous studies demonstrated an elevation in abundance of genes related to glucose and lipid metabolism during the follicular to luteal transition. However, the metabolic phenotype of these highly steroidogenic cells has not been studied. Herein, we determined acute metabolic changes induced by LH in primary luteal cells and defined pathways required for progesterone synthesis. Untargeted metabolomics analysis revealed that LH induces rapid changes in vital metabolic pathways, including glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway, de novo lipogenesis, and hydrolysis of phospholipids. LH stimulated glucose uptake, enhanced glycolysis, and flux of [U- 13 C 6 ]-labeled glucose-derived carbons into metabolic branches associated with adenosine 5'-triphosphate (ATP) and NADH/NADPH production, synthesis of nucleotides, proteins, and lipids, glycosylation of proteins or lipids, and redox homeostasis. Selective use of small molecule inhibitors targeting the most significantly changed pathways, such as glycolysis, TCA cycle, and lipogenesis, uncovered cellular metabolic routes required for LH-stimulated steroidogenesis. Furthermore, LH via the protein kinase A (PKA) pathway triggered post- translational modification of acetyl-CoA carboxylase alpha (ACACA) and ATP citrate lyase (ACLY), enzymes involved in de novo synthesis of fatty acids. Inhibition of ACLY and fatty acid transport into mitochondria reduced LH-stimulated ATP, cAMP production, PKA activation, and progesterone synthesis. Taken together, these findings reveal novel hormone-sensitive metabolic pathways essential for maintaining LHCGR/PKA signaling and steroidogenesis in ovarian luteal cells. Significance The establishment and maintenance of pregnancy require a well-developed corpus luteum, an endocrine gland within the ovary that produces progesterone. Although there is increased awareness of intracellular signaling events initiating the massive production of progesterone during the reproductive cycle and pregnancy, there are critical gaps in our knowledge of the metabolic and lipidomic pathways required for initiating and maintaining luteal progesterone synthesis. Here, we describe rapid, hormonally triggered metabolic pathways, and define metabolic targets crucial for progesterone synthesis by ovarian steroidogenic cells. Understanding hormonal control of metabolic pathways may help elucidate approaches for improving ovarian function and successful reproduction or identifying metabolic targets for developing nonhormonal contraceptives.
Collapse
|
6
|
Kabakci R, Clark KL, Plewes MR, Monaco CF, Davis JS. Perfluorooctanoic acid (PFOA) inhibits steroidogenesis and mitochondrial function in bovine granulosa cells in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122698. [PMID: 37832777 PMCID: PMC10873118 DOI: 10.1016/j.envpol.2023.122698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 μM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ruhi Kabakci
- Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey; Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kendra L Clark
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Deparment of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Corrine F Monaco
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198, USA
| | - John S Davis
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Deparment of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
7
|
Yuan Z, Lu X, Lei F, Sun H, Jiang J, Xing D, Du L. Novel Effect of p-Coumaric Acid on Hepatic Lipolysis: Inhibition of Hepatic Lipid-Droplets. Molecules 2023; 28:4641. [PMID: 37375195 DOI: 10.3390/molecules28124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
p-coumaric acid (p-CA), a common plant phenolic acid with multiple bioactivities, has a lipid-lowering effect. As a dietary polyphenol, its low toxicity, with the advantages of prophylactic and long-term administration, makes it a potential drug for prophylaxis and the treatment of nonalcoholic fatty liver disease (NAFLD). However, the mechanism by which it regulates lipid metabolism is still unclear. In this study, we studied the effect of p-CA on the down-regulation of accumulated lipids in vivo and in vitro. p-CA increased a number of lipase expressions, including hormone-sensitive lipase (HSL), monoacylglycerol lipase (MGL) and hepatic triglyceride lipase (HTGL), as well as the expression of genes related to fatty acid oxidation, including long-chain fatty acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyltransferase-1 (CPT1), by activating peroxisome proliferator-activated receptor α, and γ (PPARα and γ). Furthermore, p-CA promoted adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and enhanced the expression of the mammalian suppressor of Sec4 (MSS4), a critical protein that can inhibit lipid droplet growth. Thus, p-CA can decrease lipid accumulation and inhibit lipid droplet fusion, which are correlated with the enhancement of liver lipases and genes related to fatty acid oxidation as an activator of PPARs. Therefore, p-CA is capable of regulating lipid metabolism and is a potential therapeutic drug or health care product for hyperlipidemia and fatty liver.
Collapse
Affiliation(s)
- Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xi Lu
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hong Sun
- Institute of Medicinal Plant and Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China
| | - Jingfei Jiang
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongming Xing
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijun Du
- School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Yan MQ, Wang Y, Wang Z, Liu XH, Yang YM, Duan XY, Sun H, Liu XM. Mitoguardin2 Is Associated With Hyperandrogenism and Regulates Steroidogenesis in Human Ovarian Granulosa Cells. J Endocr Soc 2023; 7:bvad034. [PMID: 36936714 PMCID: PMC10016062 DOI: 10.1210/jendso/bvad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 03/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy characterized by hyperandrogenism, anovulation, and polycystic ovaries, in which hyperandrogenism manifests by excess androgen and other steroid hormone abnormalities. Mitochondrial fusion is essential in steroidogenesis, while the role of mitochondrial fusion in granulosa cells of hyperandrogenic PCOS patients remains unclear. In this study, mRNA expression of mitochondrial fusion genes mitoguardin1, -2 (MIGA 1, -2) was significantly increased in granulosa cells of hyperandrogenic PCOS but not PCOS with normal androgen levels, their mRNA expression positively correlated with testosterone levels. Dihydrotestosterone (DHT) treatment in mice led to high expression of MIGA2 in granulosa cells of ovulating follicles. Testosterone or forskolin/ phorbol 12-myristate 13-acetate treatments increased expression of MIGA2 and the steroidogenic acute regulatory protein (StAR) in KGN cells. MIGA2 interacted with StAR and induced StAR localization on mitochondria. Furthermore, MIGA2 overexpression significantly increased cAMP-activated protein kinase A (PKA) and phosphorylation of AMP-activated protein kinase (pAMPK) at T172 but inhibited StAR protein expression. However, MIGA2 overexpression increased CYP11A1, HSD3B2, and CYP19A1 mRNA expression. As a result, MIGA2 overexpression decreased progesterone but increased estradiol synthesis. Besides the androgen receptor, testosterone or DHT might also regulate MIGA2 and pAMPK (T172) through LH/choriogonadotropin receptor-mediated PKA signaling. Taken together, these findings indicate that testosterone regulates MIGA2 via PKA/AMP-activated protein kinase signaling in ovarian granulosa cells. It is suggested mitochondrial fusion in ovarian granulosa cells is associated with hyperandrogenism and potentially leads to abnormal steroidogenesis in PCOS.
Collapse
Affiliation(s)
- Ming-Qi Yan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Zhao Wang
- Center for Reproductive Medicine, Shandong University, Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250012, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, Kunshan 215300, China
| | - Yu-Meng Yang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Xiu-Yun Duan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| |
Collapse
|
10
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
11
|
Zou Y, Zhou Z, Yin S, Huang C, Tang H, Yin Z. Targeting of gallbladder megalin receptors with DHA-conjugated limonene albumin nanoparticles. NANOSCALE 2022; 14:6052-6065. [PMID: 35380143 DOI: 10.1039/d1nr07767h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gallbladder stones are a major pathogenic factor leading to cholecystitis, and it is increasingly important to explore innovative drug delivery methods for gallstones. In the present study, docosahexaenoic acid-coupled limonene bovine serum albumin nanoparticles (LIM-DHA-BSA-NPs) were constructed. The LIM-DHA-BSA-NPs are spherical structures, and the distribution was relatively uniform, and, more importantly, it has low cytotoxicity and good safety. The LIM-DHA-BSA-NPs solution shows higher uptake rates by RAW264.7 cells when compared with free limonene (LIM). The fluorescence intensity of FITC-modified BSA NPs was significantly higher than that of free FITC, which further indicated that the uptake of DHA-conjugated BSA NPs by RAW264.7 cells was stronger than that of the free drugs. Moreover, the in vivo distribution experiment showed that the enrichment of DiD-loaded BSA NPs in the gallbladder was significantly enhanced when compared with that of free DiD. The semi-quantitative fluorescence intensity results showed that the uptake of DiD-DHA-BSA-NPs was 4.5 times higher when compared with the free DiD. It is preliminarily shown that the DHA-conjugated BSA NPs that were constructed, have an ability to target the gallbladder. Furthermore, the Pearson colocalization coefficient Rcoloc from in vivo colocalization results indicates that the DHA-BSA-NPs had a good colocalization effect on the gallbladder epithelial cells (GBECs). In addition, the LIM-DHA-BSA-NPs solution not only significantly reduced the concentration of nitric oxide (NO) secreted by inflammatory model cells and the number of peripheral blood leukocytes in guinea pigs with cholecystitis, but also significantly decreased the activities of the aspartate transaminase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), glutamyl endopeptidase (GGT), total bile acid (TBA), and total bilirubin (TBIL) enzymes. Collectively, the LIM-DHA-BSA-NPs could be used as an effective anti-inflammatory agent at the cellular and animal levels. This experiment, for the first time, showed that DHA-conjugated BSA NPs could be absorbed into GBECs by megalin receptor-mediated endocytosis and then they exert an anti-cholecystitis effect because of the LIM. The active uptake of DHA-conjugated BSA NPs by the megalin receptors of the GBECs is expected to become an effective therapeutic strategy for cholecystolithiasis.
Collapse
Affiliation(s)
- Ya Zou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Hesong Tang
- Sichuan Emeishan Pharmaceutical Co., Ltd, No.6 Yingbin Road, High-tech Development Zone, Leshan City, Sichuan Province, 614000, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Yang M, Tian F, Tao S, Xia M, Wang Y, Hu J, Pan B, Li Z, Peng R, Kan H, Xu Y, Li W. Concentrated ambient fine particles exposure affects ovarian follicle development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113178. [PMID: 35026587 DOI: 10.1016/j.ecoenv.2022.113178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient fine particles (PM2.5) are known to cause various reproductive and developmental diseases. However, the potential mechanisms of PM2.5 exposure induced female reproductive damage remain unclear. METHODS Four weeks old female C57BL/6 J mice were exposed to filtered air (FA, n = 10) or concentrated ambient PM2.5 (CAP, n = 10) using a versatile aerosol concentration enrichment system. After 9 weeks of the exposure, mice were sacrificed under sevoflurane anesthesia and tissue samples were collected. Immunohistochemical analysis, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and RNA-sequencing were performed to analyze the effects of PM2.5 exposure on follicle development and elucidate its potential mechanisms. RESULTS Chronic PM2.5 exposure resulted in follicular dysplasia. Compared to the FA-exposed group, follicular atresia in the CAP-exposed mice were significantly increased. Further studies confirmed that CAP induced apoptosis in granulosa cells, accompanied by a distortion of hormone homeostasis. In addition, RNA-sequencing data demonstrated that CAP exposure induced the alteration of ovarian gene expressions and was associated with inflammatory response. CONCLUSIONS Chronic exposure to CAP can induce follicular atresia, which was associated with hormone modulation and inflammation.
Collapse
Affiliation(s)
- Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Shimin Tao
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Shen F, Li D, Chen J. Mechanistic toxicity assessment of fine particulate matter emitted from fuel combustion via pathway-based approaches in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150214. [PMID: 34571223 DOI: 10.1016/j.scitotenv.2021.150214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fuel exhaust particulate matter (FEPM) is an important source of air pollution worldwide. However, the comparative and mechanistic toxicity of FEPMs emitted from combustion of different fuels is still not fully understood. This study employed pathway-based approaches via human cells to evaluate mechanistic toxicity of FEPMs. The results showed that FEPMs caused concentration-dependent (0.1-200 μg/mL) cytotoxicity and oxidative stress. FEPMs at low concentration (10 μg/mL) induced cell cycle arrest in S and G2 phases, while high level of FEPMs (200 μg/mL) caused cell cycle arrest in G1 phase. Different FEPMs induced distinct expression profiles of toxicity-related genes, illustrating different toxic mechanisms. Furthermore, FEPMs inhibited the phosphorylation of protein kinase A (PKA), which related with reproductive toxicity. Spearman rank correlations among the chemicals carried by FEPMs and the toxic effects revealed that PAHs and metals promoted cell cycle arrest in the G1 phase and suppressed PKA activity. Furthermore, PAHs (Nap and Acy) and metals (Al and Pb) in FEPMs were highly and positively correlated with the expression of genes involved in apoptosis, ER stress, metal stress and inflammation. Our findings offered more mechanistic information of FEPMs at the level of subcellular toxicity and help to better understand their potential health effects.
Collapse
Affiliation(s)
- Fanglin Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO. The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 2021; 23:198. [PMID: 35008624 PMCID: PMC8745465 DOI: 10.3390/ijms23010198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
In men with type 2 diabetes mellitus (T2DM), steroidogenesis and spermatogenesis are impaired. Metformin and the agonists of luteinizing hormone/human chorionic gonadotropin(hCG)-receptor (LH/hCG-R) (hCG, low-molecular-weight allosteric LH/hCG-R-agonists) can be used to restore them. The aim was to study effectiveness of separate and combined administration of metformin, hCG and 5-amino-N-tert-butyl-2-(methylsulfanyl)-4-(3-(nicotinamido)phenyl)thieno[2,3-d]pyrimidine-6-carboxamide (TP3) on steroidogenesis and spermatogenesis in male rats with T2DM. hCG (15 IU/rat/day) and TP3 (15 mg/kg/day) were injected in the last five days of five-week metformin treatment (120 mg/kg/day). Metformin improved testicular steroidogenesis and spermatogenesis and restored LH/hCG-R-expression. Compared to control, in T2DM, hCG stimulated steroidogenesis and StAR-gene expression less effectively and, after five-day administration, reduced LH/hCG-R-expression, while TP3 effects changed weaker. In co-administration of metformin and LH/hCG-R-agonists, on the first day, stimulating effects of LH/hCG-R-agonists on testosterone levels and hCG-stimulated expression of StAR- and CYP17A1-genes were increased, but on the 3-5th day, they disappeared. This was due to reduced LH/hCG-R-gene expression and increased aromatase-catalyzed estradiol production. With co-administration, LH/hCG-R-agonists did not contribute to improving spermatogenesis, induced by metformin. Thus, in T2DM, metformin and LH/hCG-R-agonists restore steroidogenesis and spermatogenesis, with metformin being more effective in restoring spermatogenesis, and their co-administration improves LH/hCG-R-agonist-stimulating testicular steroidogenesis in acute but not chronic administration.
Collapse
Affiliation(s)
- Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
- Institute of Chemistry, Saint Petersburg State University, 198504 St. Petersburg, Russia
| | - Anna M. Stepochkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina Yu. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina O. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Liubov V. Bayunova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| |
Collapse
|
15
|
Bakhtyukov AA, Derkach KV, Stepochkina AM, Sorokoumov VN, Bayunova LV, Lebedev IA, Shpakov AO. The Effect of Metformin Therapy on Luteinizing Hormone Receptor Agonist-Mediated Stimulation of Testosterone Production and Spermatogenesis in Diabetic Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302106017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Przygrodzka E, Monaco CF, Plewes MR, Li G, Wood JR, Cupp AS, Davis JS. Protein Kinase A and 5' AMP-Activated Protein Kinase Signaling Pathways Exert Opposite Effects on Induction of Autophagy in Luteal Cells. Front Cell Dev Biol 2021; 9:723563. [PMID: 34820368 PMCID: PMC8607825 DOI: 10.3389/fcell.2021.723563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
In the absence of pregnancy the ovarian corpus luteum undergoes regression, a process characterized by decreased production of progesterone and structural luteolysis involving apoptosis. Autophagy has been observed in the corpus luteum during luteal regression. Autophagy is a self-degradative process important for balancing sources of cellular energy at critical times in development and in response to nutrient stress, but it can also lead to apoptosis. Mechanistic target of rapamycin (MTOR) and 5′ AMP-activated protein kinase (AMPK), key players in autophagy, are known to inhibit or activate autophagy, respectively. Here, we analyzed the signaling pathways regulating the initiation of autophagy in bovine luteal cells. In vivo studies showed increased activating phosphorylation of AMPKα (Thr172) and elevated content of LC3B, a known marker of autophagy, in luteal tissue during PGF2α-induced luteolysis. In vitro, AMPK activators 1) stimulated phosphorylation of regulatory associated protein of MTOR (RPTOR) leading to decreased activity of MTOR, 2) increased phosphorylation of Unc-51-Like Kinase 1 (ULK1) and Beclin 1 (BECN1), at sites specific for AMPK and required for autophagy initiation, 3) increased levels of LC3B, and 4) enhanced colocalization of autophagosomes with lysosomes indicating elevated autophagy. In contrast, LH/PKA signaling in luteal cells 1) reduced activation of AMPKα and phosphorylation of RPTOR, 2) elevated MTOR activity, 3) stimulated phosphorylation of ULK1 at site required for ULK1 inactivation, and 4) inhibited autophagosome formation as reflected by reduced content of LC3B-II. Pretreatment with AICAR, a pharmacological activator of AMPK, inhibited LH-mediated effects on RPTOR, ULK1 and BECN1. Our results indicate that luteotrophic signaling via LH/PKA/MTOR inhibits, while luteolytic signaling via PGF2α/Ca2+/AMPK activates key signaling pathways involved in luteal cell autophagy.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine F Monaco
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michele R Plewes
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, United States
| | - Guojuan Li
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Andrea S Cupp
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States.,Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
17
|
Nakanishi T, Tanaka R, Tonai S, Lee JY, Yamaoka M, Kawai T, Okamoto A, Shimada M, Yamashita Y. LH Induces De Novo Cholesterol Biosynthesis via SREBP Activation in Granulosa Cells During Ovulation in Female Mice. Endocrinology 2021; 162:6357690. [PMID: 34431998 DOI: 10.1210/endocr/bqab166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/22/2022]
Abstract
In the liver, the sterol response element binding protein (SREBP) and the SREBP cleavage-activated protein (SCAP) complex upregulate cholesterol biosynthesis by gene induction of de novo cholesterol synthetic enzymes (Hmgcr, Cyp51, and Dhcr7). Insulin induced gene 1 (INSIG1) negatively regulates cholesterol biosynthesis by the inhibition of de novo cholesterol biosynthetic gene expression. In the ovary, cholesterol is de novo synthesized; however, the roles of SREBP and its regulators (SCAP and INSIG1) are not well understood. In this study, when immature mice were treated with gonadotropins (eCG followed by hCG), eCG induced and hCG maintained the expression of SREBP-1a, -2, and SCAP granulosa cells, whereas INSIG1 expression was dramatically downregulated after hCG injection. Downregulation of INSIG1 led to generate the SREBPs active form and translocate the SREBPs active form to nuclei. Inhibition of generation of the SREBPs active form by fatostatin or Scap siRNA in both in vivo and in vitro significantly decreased the expressions of de novo cholesterol biosynthetic enzymes, cholesterol accumulation, and progesterone (P4) production compared with the control group. Fatostatin treatment inhibited the ovulation and increased the formation of abnormal corpus luteum which trapped the matured oocyte in the corpus luteum; however, the phenomenon was abolished by P4 administration. The results showed that decreasing INSIG1 level after hCG stimulation activated SREBP-induced de novo cholesterol biosynthesis in granulosa cells of preovulatory follicles, which is essential for P4 production and the rupture of matured oocyte during ovulation process.
Collapse
Affiliation(s)
- Tomoya Nakanishi
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Risa Tanaka
- Department of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Joo Yeon Lee
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Manami Yamaoka
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Tomoko Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Asako Okamoto
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
- Department of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| |
Collapse
|
18
|
Przygrodzka E, Plewes MR, Davis JS. Luteinizing Hormone Regulation of Inter-Organelle Communication and Fate of the Corpus Luteum. Int J Mol Sci 2021; 22:9972. [PMID: 34576135 PMCID: PMC8470545 DOI: 10.3390/ijms22189972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
| | - Michele R. Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|