1
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Jantsch J, da Silva Rodrigues F, Silva Dias V, de Farias Fraga G, Eller S, Giovenardi M, Guedes RP. Calorie Restriction Attenuates Memory Impairment and Reduces Neuroinflammation in Obese Aged Rats. Mol Neurobiol 2024:10.1007/s12035-024-04360-9. [PMID: 39037530 DOI: 10.1007/s12035-024-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
3
|
Pané A, Videla L, Calvet À, Viaplana J, Vaqué-Alcázar L, Ibarzabal A, Rozalem-Aranha M, Pegueroles J, Moize V, Vidal J, Ortega E, Barroeta I, Camacho V, Chiva-Blanch G, Fortea J, Jiménez A. Hypothalamic Inflammation Improves Through Bariatric Surgery, and Hypothalamic Volume Predicts Short-Term Weight Loss Response in Adults With or Without Type 2 Diabetes. Diabetes Care 2024; 47:1162-1170. [PMID: 38713908 DOI: 10.2337/dc23-2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE Preclinical research implicates hypothalamic inflammation (HI) in obesity and type 2 diabetes pathophysiology. However, their pathophysiological relevance and potential reversibility need to be better defined. We sought to evaluate the effect of bariatric surgery (BS) on radiological biomarkers of HI and the association between the severity of such radiological alterations and post-BS weight loss (WL) trajectories. The utility of cerebrospinal fluid large extracellular vesicles (CSF-lEVs) enriched for microglial and astrocyte markers in studying HI was also explored. RESEARCH DESIGN AND METHODS We included 72 individuals with obesity (20 with and 52 without type 2 diabetes) and 24 control individuals. Participants underwent lumbar puncture and 3-T MRI at baseline and 1-year post-BS. We assessed hypothalamic mean diffusivity (MD) (higher values indicate lesser microstructural integrity) and the volume of the whole and main hypothalamic subregions. CSF-lEVs enriched for glial and astrocyte markers were determined by flow cytometry. RESULTS Compared with control group, the obesity and type 2 diabetes groups showed a larger volume and higher MD in the hypothalamic tubular inferior region, the area encompassing the arcuate nucleus. These radiological alterations were positively associated with baseline anthropometric and metabolic measures and improved post-BS. A larger baseline tubular inferior hypothalamic volume was independently related to lesser WL 1 and 2 years after BS. CSF-lEVs did not differ among groups and were unrelated to WL trajectories. CONCLUSIONS These findings suggest HI improvement after BS and may support a role for HI in modulating the WL response to these interventions.
Collapse
Affiliation(s)
- Adriana Pané
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Àngels Calvet
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Judith Viaplana
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences and Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic, Barcelona, Spain
| | - Mateus Rozalem-Aranha
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Violeta Moize
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Josep Vidal
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Ortega
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gemma Chiva-Blanch
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Health Sciences Faculty, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Neurology Department, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERNED, Instituto de Salud Carlos III
| | - Amanda Jiménez
- Endocrinology and Nutrition Department, Hospital Clínic, Barcelona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
- Fundació Clínic per la Recerca Biomèdica-Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
4
|
Baynat L, Yamamoto T, Tourdias T, Zhang B, Prevost V, Infante A, Klein A, Caid J, Cadart O, Dousset V, Gatta Cherifi B. Quantitative MRI Biomarkers Measure Changes in Targeted Brain Areas in Patients With Obesity. J Clin Endocrinol Metab 2024; 109:1850-1857. [PMID: 38195765 DOI: 10.1210/clinem/dgae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
CONTEXT Obesity is accompanied by damages to several tissues, including the brain. Pathological data and animal models have demonstrated an increased inflammatory reaction in hypothalamus and hippocampus. OBJECTIVE We tested whether we could observe such pathological modifications in vivo through quantitative magnetic resonance imaging (MRI) metrics. METHODS This prospective study was conducted between May 2019 and November 2022. The study was conducted in the Specialized Center for the Care of Obesity in a French University Hospital. Twenty-seven patients with obesity and 23 age and gender-paired normal-weight controls were prospectively recruited. All participants were examined using brain MRI. Anthropometric and biological data, eating behavior, anxiety, depression, and memory performance were assessed in both groups. The main outcome measure was brain MRI with the following parametric maps: quantitative susceptibility mapping (QSM), mean diffusivity (MD), fractional anisotropy (FA), magnetization transfer ratio map, and T2 relaxivity map. RESULTS In the hypothalamus, patients with obesity had higher FA and lower QSM than normal-weight controls. In the hippocampus, patients with obesity had higher FA and lower MD. There was no correlation between imaging biomarkers and eating behavior or anxiety. CONCLUSION Our findings are consistent with the presence of neuroinflammation in brain regions involved in food intake. In vivo brain biomarkers from quantitative MRI appear to provide an incremental information for the assessment of brain damages in patients with obesity.
Collapse
Affiliation(s)
- Louise Baynat
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Takayuki Yamamoto
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
| | - Thomas Tourdias
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Pellegrin, Service de Neuroimagerie diagnostique et thérapeutique, 33000 Bordeaux, France
| | - Bei Zhang
- Magnetic Resonance, Canon Medical Systems Europe, 2718 Zoetermeer, Netherlands
| | - Valentin Prevost
- CT-MR Solution Planning Department, Canon Medical Systems Corporation, Tochigi, Japan
| | - Asael Infante
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Achille Klein
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Julien Caid
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Olivier Cadart
- Endocrinology, Centre Hospitalier d'Angoulême, Endocrinolology, Rond point Girac, 16000 Angouleme, France
| | - Vincent Dousset
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Pellegrin, Service de Neuroimagerie diagnostique et thérapeutique, 33000 Bordeaux, France
| | - Blandine Gatta Cherifi
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| |
Collapse
|
5
|
Zhou P, Li L, Lin Z, Ming X, Feng Y, Hu Y, Chen X. Exploring the Shared Genetic Architecture Between Obstructive Sleep Apnea and Body Mass Index. Nat Sci Sleep 2024; 16:711-723. [PMID: 38863482 PMCID: PMC11166156 DOI: 10.2147/nss.s459136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose The reciprocal comorbidity of obstructive sleep apnea (OSA) and body mass index (BMI) has been observed, yet the shared genetic architecture between them remains unclear. This study aimed to explore the genetic overlaps between them. Methods Summary statistics were acquired from the genome-wide association studies (GWASs) on OSA (Ncase = 41,704; Ncontrol = 335,573) and BMI (Noverall = 461,460). A comprehensive genome-wide cross-trait analysis was performed to quantify global and local genetic correlation, infer the bidirectional causal relationships, detect independent pleiotropic loci, and investigate potential comorbid genes. Results A positive significant global genetic correlation between OSA and BMI was observed (r g = 0.52, P = 2.85e-122), which was supported by three local signal. The Mendelian randomization analysis confirmed bidirectional causal associations. In the meta-analysis of cross-traits GWAS, a total of 151 single-nucleotide polymorphisms were found to be pleiotropic between OSA and BMI. Additionally, we discovered that the genetic association between OSA and BMI is concentrated in 12 brain regions. Finally, a total 134 expression-tissue pairs were observed to have a significant impact on both OSA and BMI within the specified brain regions. Conclusion Our comprehensive genome-wide cross-trait analysis indicates a shared genetic architecture between OSA and BMI, offering new perspectives on the possible mechanisms involved.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zehua Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoping Ming
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yiwei Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yifan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Sewaybricker LE, Melhorn SJ, Entringer S, Buss C, Wadhwa PD, Schur EA, Rasmussen JM. Associations of radiologic characteristics of the neonatal hypothalamus with early life adiposity gain. Pediatr Obes 2024; 19:e13114. [PMID: 38477234 PMCID: PMC11081834 DOI: 10.1111/ijpo.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The mediobasal hypothalamus (MBH) is a key brain area for regulation of energy balance. Previous neuroimaging studies suggest that T2-based signal properties indicative of cellular inflammatory response (gliosis) are present in adults and children with obesity, and predicts greater adiposity gain in children at risk of obesity. OBJECTIVES/METHODS The current study aimed to extend this concept to the early life period by considering if, in full-term healthy neonates (up to n = 35), MRI evidence of MBH gliosis is associated with changes in early life (neonatal to six months) body fat percentage measured by DXA. RESULTS In this initial study, neonatal T2 signal in the MBH was positively associated with six-month changes in body fat percentage. CONCLUSION This finding supports the notion that underlying processes in the MBH may play a role in early life growth and, by extension, childhood obesity risk.
Collapse
Affiliation(s)
| | - Susan J. Melhorn
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Ellen A. Schur
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jerod M. Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
7
|
Tzounakou AM, Stathori G, Paltoglou G, Valsamakis G, Mastorakos G, Vlahos NF, Charmandari E. Childhood Obesity, Hypothalamic Inflammation, and the Onset of Puberty: A Narrative Review. Nutrients 2024; 16:1720. [PMID: 38892653 PMCID: PMC11175006 DOI: 10.3390/nu16111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The onset of puberty, which is under the control of the hypothalamic-pituitary-gonadal (HPG) axis, is influenced by various factors, including obesity, which has been associated with the earlier onset of puberty. Obesity-induced hypothalamic inflammation may cause premature activation of gonadotropin-releasing hormone (GnRH) neurons, resulting in the development of precocious or early puberty. Mechanisms involving phoenixin action and hypothalamic microglial cells are implicated. Furthermore, obesity induces structural and cellular brain alterations, disrupting metabolic regulation. Imaging studies reveal neuroinflammatory changes in obese individuals, impacting pubertal timing. Magnetic resonance spectroscopy enables the assessment of the brain's neurochemical composition by measuring key metabolites, highlighting potential pathways involved in neurological changes associated with obesity. In this article, we present evidence indicating a potential association among obesity, hypothalamic inflammation, and precocious puberty.
Collapse
Affiliation(s)
- Anastasia-Maria Tzounakou
- Center for the Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (A.-M.T.); (G.S.)
| | - Galateia Stathori
- Center for the Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (A.-M.T.); (G.S.)
| | - George Paltoglou
- Diabetes Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘P. & A. Kyriakou’ Children’s Hospital, 11527 Athens, Greece;
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.V.); (G.M.); (N.F.V.)
| | - George Mastorakos
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.V.); (G.M.); (N.F.V.)
| | - Nikolaos F. Vlahos
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.V.); (G.M.); (N.F.V.)
| | - Evangelia Charmandari
- Center for the Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (A.-M.T.); (G.S.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
9
|
Olerich KLW, Sewaybricker LE, Kee S, Melhorn SJ, Chandrasekaran S, Schur EA. In utero exposure to maternal diabetes or hypertension and childhood hypothalamic gliosis. Int J Obes (Lond) 2024; 48:594-597. [PMID: 38273035 PMCID: PMC11421291 DOI: 10.1038/s41366-024-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Exposure to maternal diabetes (DM) or hypertension (HTN) during pregnancy impacts offspring metabolic health in childhood and beyond. Animal models suggest that induction of hypothalamic inflammation and gliosis in the offspring's hypothalamus is a possible mechanism mediating this effect. We tested, in children, whether in utero exposures to maternal DM or HTN were associated with mediobasal hypothalamic (MBH) gliosis as assessed by brain magnetic resonance imaging (MRI). The study included a subsample of 306 children aged 9-11 years enrolled in the ABCD Study®; 49 were DM-exposed, 53 were HTN-exposed, and 204 (2:1 ratio) were age- and sex-matched children unexposed to DM and/or HTN in utero. We found a significant overall effect of group for the primary outcome of MBH/amygdala (AMY) T2 signal ratio (F(2,300):3.51, p = 0.03). Compared to unexposed children, MBH/AMY T2 signal ratios were significantly higher in the DM-exposed (β:0.05, p = 0.02), but not the HTN-exposed children (β:0.03, p = 0.13), findings that were limited to the MBH and independent of adiposity. We concluded that children exposed to maternal DM in utero display evidence of hypothalamic gliosis, suggesting that gestational DM may have a distinct influence on offspring's brain development and, by extension, children's long-term metabolic health.
Collapse
Affiliation(s)
- Kelsey L W Olerich
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| | | | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Shang Y, Wang X, Su S, Ji F, Shao D, Duan C, Chen T, Liang C, Zhang D, Lu H. Identifying of immune-associated genes for assessing the obesity-associated risk to the offspring in maternal obesity: A bioinformatics and machine learning. CNS Neurosci Ther 2024; 30:e14700. [PMID: 38544384 PMCID: PMC10973700 DOI: 10.1111/cns.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Perinatal exposure to maternal obesity predisposes offspring to develop obesity later in life. Immune dysregulation in the hypothalamus, the brain center governing energy homeostasis, is pivotal in obesity development. This study aimed to identify key candidate genes associated with the risk of offspring obesity in maternal obesity. METHODS We obtained obesity-related datasets from the Gene Expression Omnibus (GEO) database. GSE135830 comprises gene expression data from the hypothalamus of mouse offspring in a maternal obesity model induced by a high-fat diet model (maternal high-fat diet (mHFD) group and maternal chow (mChow) group), while GSE127056 consists of hypothalamus microarray data from young adult mice with obesity (high-fat diet (HFD) and Chow groups). We identified differentially expressed genes (DEGs) and module genes using Limma and weighted gene co-expression network analysis (WGCNA), conducted functional enrichment analysis, and employed a machine learning algorithm (least absolute shrinkage and selection operator (LASSO) regression) to pinpoint candidate hub genes for diagnosing obesity-associated risk in offspring of maternal obesity. We constructed a nomogram receiver operating characteristic (ROC) curve to evaluate the diagnostic value. Additionally, we analyzed immune cell infiltration to investigate immune cell dysregulation in maternal obesity. Furthermore, we verified the expression of the candidate hub genes both in vivo and in vitro. RESULTS The GSE135830 dataset revealed 2868 DEGs between the mHFD offspring and the mChow group and 2627 WGCNA module genes related to maternal obesity. The overlap of DEGs and module genes in the offspring with maternal obesity in GSE135830 primarily enriched in neurodevelopment and immune regulation. In the GSE127056 dataset, 133 DEGs were identified in the hypothalamus of HFD-induced adult obese individuals. A total of 13 genes intersected between the GSE127056 adult obesity DEGs and the GSE135830 maternal obesity module genes that were primarily enriched in neurodevelopment and the immune response. Following machine learning, two candidate hub genes were chosen for nomogram construction. Diagnostic value evaluation by ROC analysis determined Sytl4 and Kncn2 as hub genes for maternal obesity in the offspring. A gene regulatory network with transcription factor-miRNA interactions was established. Dysregulated immune cells were observed in the hypothalamus of offspring with maternal obesity. Expression of Sytl4 and Kncn2 was validated in a mouse model of hypothalamic inflammation and a palmitic acid-stimulated microglial inflammation model. CONCLUSION Two candidate hub genes (Sytl4 and Kcnc2) were identified and a nomogram was developed to predict obesity risk in offspring with maternal obesity. These findings offer potential diagnostic candidate genes for identifying obesity-associated risks in the offspring of obese mothers.
Collapse
Affiliation(s)
- Yanxing Shang
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Xueqin Wang
- Department of Endocrinology, Affiliated Hospital 2Nantong UniversityNantongChina
| | - Sixuan Su
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
- Department of Pathogen Biology, Medical CollegeNantong UniversityNantongChina
| | - Feng Ji
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Donghai Shao
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Tianpeng Chen
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Caixia Liang
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
- Department of Pathogen Biology, Medical CollegeNantong UniversityNantongChina
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Department of Rehabilitation Medicine, Affiliated Hospital 2Nantong UniversityNantongChina
| |
Collapse
|
11
|
Da J, Xu Y, Tan Y, Zhang J, Yu J, Zhao J, Da Q, Yu F, Zha Y. Central administration of Dapagliflozin alleviates a hypothalamic neuroinflammatory signature and changing tubular lipid metabolism in type 2 diabetic nephropathy by upregulating MCPIP1. Biomed Pharmacother 2023; 168:115840. [PMID: 37931516 DOI: 10.1016/j.biopha.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Hypothalamic neuroinflammation is associated with disorders of lipid metabolism. Considering the anti-neuroinflammation effects of sodium-glucose cotransporter 2(SGLT2) inhibitors, a central administration of Dapagliflozin is postulated to provide hypothalamic protection and change lipid metabolism in kidney against diabetic kidney disease (DKD). METHODS Blood samples of DKD patients were collected. Male Sprague-Dawley (SD) rats with 30 mg/kg streptozotocin and a high-fat diet, db/db mice and palmitic acid (PA)-stimulated BV2 microglia were used for study models. 0.28 mg/3ul dapagliflozin was injected into the lateral ventricle in db/db mice. Genes and protein expression levels were determined by qPCR, western blotting, immunofluorescence, and immunohistochemistry staining. Secreted IL-1β and IL-6 were quantified by ELISA. Oil red O staining, lipidomic, and non-targeted metabolomics were performed to evaluate abnormal lipid metabolism in kidney. RESULTS The decrease of serum MCPIP1 was an independent risk factor for renal progression in DKD patients (OR=1.22, 95 %CI: 1.02-1.45, P = 0.033). Higher microglia marker IBA1 and lower MCPIP1 in the hypothalamus, as well as lipid droplet deposition increasing in the kidney were observed in DKD rats. Central dapagliflozin could reduce the blood sugar, hypothalamic inflammatory cytokines, lipid droplet deposition in renal tubular. Lipidomics and metabolomics results showed that dapagliflozin changed 37 lipids and 19 metabolites considered on promoting lipolysis. These lipid metabolism changes were attributed to dapagliflozin by upregulating MCPIP1, and inhibiting cytokines in the microglia induced by PA. CONCLUSIONS Central administrated Dapagliflozin elicits an anti-inflammatory effect by upregulating MCPIP1 levels in microglia and changes lipid metabolism in kidney of DKD.
Collapse
Affiliation(s)
- Jingjing Da
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yongjie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiali Yu
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianqiu Zhao
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fuxun Yu
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Renal Division, Department of Medicine, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic & Urinary Disease, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
12
|
Fallows E, Ells L, Anand V. Semaglutide and the future of obesity care in the UK. Lancet 2023; 401:2093-2096. [PMID: 37290459 DOI: 10.1016/s0140-6736(23)01083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Ellen Fallows
- Brackley Medical Centre, Brackley NN13 6QZ, UK; The British Society of Lifestyle Medicine, Haddington, East Lothian, UK.
| | - Louisa Ells
- Obesity Institute, School of Health, Leeds Beckett University, Leeds, UK
| | - Varun Anand
- Diadem Medical Practice and Hull Public Health Team, Hull, UK
| |
Collapse
|
13
|
Qiu S, He S, Wang J, Wang H, Bhattacharjee A, Li X, Saeed M, Dupree JL, Han X. Adult-Onset CNS Sulfatide Deficiency Causes Sex-Dependent Metabolic Disruption in Aging. Int J Mol Sci 2023; 24:10483. [PMID: 37445661 PMCID: PMC10341976 DOI: 10.3390/ijms241310483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The interconnection between obesity and central nervous system (CNS) neurological dysfunction has been widely appreciated. Accumulating evidence demonstrates that obesity is a risk factor for CNS neuroinflammation and cognitive impairment. However, the extent to which CNS disruption influences peripheral metabolism remains to be elucidated. We previously reported that myelin-enriched sulfatide loss leads to CNS neuroinflammation and cognitive decline. In this study, we further investigated the impact of CNS sulfatide deficiency on peripheral metabolism while considering sex- and age-specific effects. We found that female sulfatide-deficient mice gained significantly more body weight, exhibited higher basal glucose levels, and were glucose-intolerant during glucose-tolerance test (GTT) compared to age-matched controls under a normal diet, whereas male sulfatide-deficient mice only displayed glucose intolerance at a much older age compared to female sulfatide-deficient mice. Mechanistically, we found that increased body weight was associated with increased food intake and elevated neuroinflammation, especially in the hypothalamus, in a sex-specific manner. Our results suggest that CNS sulfatide deficiency leads to sex-specific alterations in energy homeostasis via dysregulated hypothalamic control of food intake.
Collapse
Affiliation(s)
- Shulan Qiu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sijia He
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Xin Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Moawiz Saeed
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23284, USA
- McGuire Veterans Affairs Medical Center, Research Division, Richmond, VA 23249, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|