1
|
Faure MC, Corona R, Roomans C, Lenfant F, Foidart JM, Cornil CA. Role of Membrane Estrogen Receptor Alpha on the Positive Feedback of Estrogens on Kisspeptin and GnRH Neurons. eNeuro 2024; 11:ENEURO.0271-23.2024. [PMID: 39375032 PMCID: PMC11520851 DOI: 10.1523/eneuro.0271-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Estrogens act through nuclear and membrane-initiated signaling. Estrogen receptor alpha (ERα) is critical for reproduction, but the relative contribution of its nuclear and membrane signaling to the central regulation of reproduction is unclear. To address this question, two complementary approaches were used: estetrol (E4) a natural estrogen acting as an agonist of nuclear ERs, but as an antagonist of their membrane fraction, and the C451A-ERα mouse lacking mERα. E4 dose- dependently blocks ovulation in female rats, but the central mechanism underlying this effect is unknown. To determine whether E4 acts centrally to control ovulation, its effect was tested on the positive feedback of estradiol (E2) on neural circuits underlying luteinizing hormone (LH) secretion. In ovariectomized females chronically exposed to a low dose of E2, estradiol benzoate (EB) alone or combined with progesterone (P) induced an increase in the number of kisspeptin (Kp) and gonadotropin-releasing hormone (GnRH) neurons coexpressing Fos, a marker of neuronal activation. E4 blocked these effects of EB, but not when combined to P. These results indicate that E4 blocked the central induction of the positive feedback in the absence of P, suggesting an antagonistic effect of E4 on mERα in the brain as shown in peripheral tissues. In parallel, as opposed to wild-type females, C451A-ERα females did not show the activation of Kp and GnRH neurons in response to EB unless they are treated with P. Together these effects support a role for membrane-initiated estrogen signaling in the activation of the circuit mediating the LH surge.
Collapse
Affiliation(s)
- Mélanie C. Faure
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Rebeca Corona
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Céline Roomans
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
- Estetra SRL, Légiapark, Boulevard Patience et Beaujonc 3, 4000 Liège, Belgium
| | - Charlotte A. Cornil
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
3
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
4
|
Churchill ML, Holdsworth-Carson SJ, Cowley KJ, Luu J, Simpson KJ, Healey M, Rogers PAW, Donoghue JF. Using a Quantitative High-Throughput Screening Platform to Identify Molecular Targets and Compounds as Repurposing Candidates for Endometriosis. Biomolecules 2023; 13:965. [PMID: 37371546 DOI: 10.3390/biom13060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Endometriosis, defined as the growth of hormonally responsive endometrial-like tissue outside of the uterine cavity, is an estrogen-dependent, chronic, pro-inflammatory disease that affects up to 11.4% of women of reproductive age and gender-diverse people with a uterus. At present, there is no long-term cure, and the identification of new therapies that provide a high level of efficacy and favourable long-term safety profiles with rapid clinical access are a priority. In this study, quantitative high-throughput compound screens of 3517 clinically approved compounds were performed on patient-derived immortalized human endometrial stromal cell lines. Following assay optimization and compound criteria selection, a high-throughput screening protocol was developed to enable the identification of compounds that interfered with estrogen-stimulated cell growth. From these screens, 23 novel compounds were identified, in addition to their molecular targets and in silico cell-signalling pathways, which included the neuroactive ligand-receptor interaction pathway, metabolic pathways, and cancer-associated pathways. This study demonstrates for the first time the feasibility of performing large compound screens for the identification of new translatable therapeutics and the improved characterization of endometriosis molecular pathophysiology. Further investigation of the molecular targets identified herein will help uncover new mechanisms involved in the establishment, symptomology, and progression of endometriosis.
Collapse
Affiliation(s)
- Molly L Churchill
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Sarah J Holdsworth-Carson
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, VIC 3052, Australia
- Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, VIC 3121, Australia
| | - Karla J Cowley
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Jennii Luu
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin Healey
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, VIC 3052, Australia
- Gynaecology Endometriosis and Pelvic Pain Unit, Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Peter A W Rogers
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - J F Donoghue
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
5
|
Davis D, Vajaria R, Delivopoulos E, Vasudevan N. Localisation of oestrogen receptors in stem cells and in stem cell-derived neurons of the mouse. J Neuroendocrinol 2023; 35:e13220. [PMID: 36510342 PMCID: PMC10909416 DOI: 10.1111/jne.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Oestrogen receptors (ER) transduce the effects of the endogenous ligand, 17β-estradiol in cells to regulate a number of important processes such as reproduction, neuroprotection, learning and memory and anxiety. The ERα or ERβ are classical intracellular nuclear hormone receptors while some of their variants or novel proteins such as the G-protein coupled receptor (GPCR), GPER1/GPR30 are reported to localise in intracellular as well as plasma membrane locations. Although the brain is an important target for oestrogen with oestrogen receptors expressed differentially in various nuclei, subcellular organisation and crosstalk between these receptors is under-explored. Using an adapted protocol that is rapid, we first generated neurons from mouse embryonic stem cells. Our immunocytochemistry approach shows that the full length ERα (ERα-66) and for the first time, that an ERα variant, ERα-36, as well as GPER1 is present in embryonic stem cells. In addition, these receptors typically decrease their nuclear localisation as neuronal maturation proceeds. Finally, although these ERs are present in many subcellular compartments such as the nucleus and plasma membrane, we show that they are specifically not colocalised with each other, suggesting that they initiate distinct signalling pathways.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
6
|
Clark S, Pollard K, Rainville J, Vasudevan N. Immunoblot Detection of the Phosphorylation of the Estrogen Receptor α as an Outcome of GPR30 /GPER1 Activation. Methods Mol Biol 2022; 2418:25-39. [PMID: 35119657 DOI: 10.1007/978-1-0716-1920-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modification events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immunoblotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30 or GPER1. Hence, phosphorylation represents a crosstalk event between GPR30 and ERα and may be important in estrogen-regulated physiology.
Collapse
Affiliation(s)
- Sara Clark
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Kevin Pollard
- Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Jennifer Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | |
Collapse
|
7
|
Lu Y, Yang R, Yin N, Faiola F. In vivo and in vitro transcriptomics meta-analyses reveal that BPA may affect TGF-beta signaling regardless of the toxicology system employed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117472. [PMID: 34082367 DOI: 10.1016/j.envpol.2021.117472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a high-production-volume monomer for the manufacture of a wide variety of polycarbonate plastics and resins. Evidence suggests BPA can induce carcinogenesis, reproductive toxicity, abnormal inflammatory or immune response, and developmental disorders of the brain or nervous system. However, whether BPA affects the very same basic molecular processes in all the in vivo and in vitro systems employed to exert its molecular mechanisms of toxicity remains to be clarified. In this study, we collected multi-source global transcriptomics datasets for BPA-exposed organisms and cells, and evaluated the adverse effects of BPA by using data integration and gene functional enrichment analyses. We found that BPA may affect basic cellular processes, such as cell growth, survival, proliferation, differentiation, and apoptosis, independent of species and specific in vivo or in vitro systems. Mechanistically, BPA could regulate cell-extra cellular matrix interactions via challenging TGF-beta signaling pathways. Furthermore, we compared our in vitro BPA-dependent mouse embryoid body (EB) global differentiation transcriptomics with all the other datasets. We verified the EB-based toxicological system could recapitulate several in vivo and other in vitro findings very efficiently, and in a less time- and resource-consuming fashion. Taken together, this study emphasizes the utility of meta-analyses to understand common molecular mechanisms of toxicity of synthetic chemicals.
Collapse
Affiliation(s)
- Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Arbiters of endogenous opioid analgesia: role of CNS estrogenic and glutamatergic systems. Transl Res 2021; 234:31-42. [PMID: 33567346 PMCID: PMC8217383 DOI: 10.1016/j.trsl.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Nociception and opioid antinociception in females are pliable processes, varying qualitatively and quantitatively over the reproductive cycle. Spinal estrogenic signaling via membrane estrogen receptors (mERs), in combination with multiple other signaling molecules [spinal dynorphin, kappa-opioid receptors (KOR), glutamate and metabotropic glutamate receptor 1 (mGluR1)], appears to function as a master coordinator, parsing functionality between pronociception and antinociception. This provides a window into pharmacologically accessing intrinsic opioid analgesic/anti-allodynic systems. In diestrus, membrane estrogen receptor alpha (mERα) signals via mGluR1 to suppress spinal endomorphin 2 (EM2) analgesia. Strikingly, in the absence of exogenous opioids, interfering with this suppression in a chronic pain model elicits opioid anti-allodynia, revealing contributions of endogenous opioid(s). In proestrus, robust spinal EM2 analgesia is manifest but this requires spinal dynorphin/KOR and glutamate-activated mGluR1. Furthermore, spinal mGluR1 blockade in a proestrus chronic pain animal (eliminating spinal EM2 analgesia) exacerbates mechanical allodynia, revealing tempering by endogenous opioid(s). A complex containing mu-opioid receptor, KOR, aromatase, mGluRs, and mERα are foundational to eliciting endogenous opioid anti-allodynia. Aromatase-mERα oligomers are also plentiful, in a central nervous system region-specific fashion. These can be independently regulated and allow estrogens to act intracellularly within the same signaling complex in which they are synthesized, explaining asynchronous relationships between circulating estrogens and central nervous system estrogen functionalities. Observations with EM2 highlight the translational relevance of extensively characterizing exogenous responsiveness to endogenous opioids and the neuronal circuits that mediate them along with the multiplicity of estrogenic systems that concomitantly function in phase and out-of-phase with the reproductive cycle.
Collapse
|
9
|
Kokane SS, Perrotti LI. Sex Differences and the Role of Estradiol in Mesolimbic Reward Circuits and Vulnerability to Cocaine and Opiate Addiction. Front Behav Neurosci 2020; 14:74. [PMID: 32508605 PMCID: PMC7251038 DOI: 10.3389/fnbeh.2020.00074] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although both men and women become addicted to drugs of abuse, women transition to addiction faster, experience greater difficulties remaining abstinent, and relapse more often than men. In both humans and rodents, hormonal cycles are associated with females' faster progression to addiction. Higher concentrations and fluctuating levels of ovarian hormones in females modulate the mesolimbic reward system and influence reward-directed behavior. For example, in female rodents, estradiol (E2) influences dopamine activity within the mesolimbic reward system such that drug-directed behaviors that are normally rewarding and reinforcing become enhanced when circulating levels of E2 are high. Therefore, neuroendocrine interactions, in part, explain sex differences in behaviors motivated by drug reward. Here, we review sex differences in the physiology and function of the mesolimbic reward system in order to explore the notion that sex differences in response to drugs of abuse, specifically cocaine and opiates, are the result of molecular neuroadaptations that differentially develop depending upon the hormonal state of the animal. We also reconsider the notion that ovarian hormones, specifically estrogen/estradiol, sensitize target neurons thereby increasing responsivity when under the influence of either cocaine or opiates or in response to exposure to drug-associated cues. These adaptations may ultimately serve to guide the motivational behaviors that underlie the factors that cause women to be more vulnerable to cocaine and opiate addiction than men.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
10
|
Naderi M, Salahinejad A, Attaran A, Niyogi S, Chivers DP. Rapid effects of estradiol and its receptor agonists on object recognition and object placement in adult male zebrafish. Behav Brain Res 2020; 384:112514. [PMID: 32004591 DOI: 10.1016/j.bbr.2020.112514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
In recent years, there has been a growing appreciation that 17β-estradiol (E2) can rapidly modulate learning and memory processes by binding to membrane estrogen receptors and cause the activation of a number of signaling cascades within the central nervous system. In this study, we sought to investigate the effects of post-training administration of E2 (100 ng/g, 1 μg/g, 10 μg/g) and involvement of the estrogen receptors (ERs) using selective ER agonists on the consolidation of object recognition (OR) and object placement memory (OP) in adult male zebrafish. The general activation of ERs with the highest E2 dose improved consolidation of memory in both learning tasks within 1.45 h of administration. Activation of classical ERs (ERα and ERβ) improved consolidation of OR memory, but had no effect on fish performance in OP task. On the other hand, activation of G protein-coupled ER1 impaired and enhanced consolidation of OR and OP memories, respectively. Memory improvement in both tasks was accompanied by a marked up-regulation in the expression of genes encoding ionotropic and metabotropic glutamate receptors in a task-dependent manner. In contrast, the down-regulation in the expression of certain ionotropic glutamate receptors was observed in fish with impaired OR memory. Moreover, our study also revealed an increase in the transcript abundance of genes associated with synaptic protein synthesis (brain-derived neurotrophic factor, synaptophysin, and the mechanistic target of rapamycin). These results suggest that E2 may affect consolidation of memory in zebrafish likely through rapid changes in synaptic morphology and function.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
11
|
Khbouz B, de Bournonville C, Court L, Taziaux M, Corona R, Arnal JF, Lenfant F, Cornil CA. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci 2019; 52:2627-2645. [PMID: 31833601 DOI: 10.1111/ejn.14646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
Abstract
Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.
Collapse
Affiliation(s)
- Badr Khbouz
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Lucas Court
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Rebeca Corona
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-François Arnal
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Françoise Lenfant
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | | |
Collapse
|
12
|
Balthazart J. New concepts in the study of the sexual differentiation and activation of reproductive behavior, a personal view. Front Neuroendocrinol 2019; 55:100785. [PMID: 31430485 PMCID: PMC6858558 DOI: 10.1016/j.yfrne.2019.100785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023]
Abstract
Since the beginning of this century, research methods in neuroendocrinology enjoyed extensive refinements and innovation. These advances allowed collection of huge amounts of new data and the development of new ideas but have not led to this point, with a few exceptions, to the development of new conceptual advances. Conceptual advances that took place largely resulted from the ingenious insights of several investigators. I summarize here some of these new ideas as they relate to the sexual differentiation and activation by sex steroids of reproductive behaviors and I discuss how our research contributed to the general picture. This selective review clearly demonstrates the importance of conceptual changes that have taken place in this field since beginning of the 21st century. The recent technological advances suggest that our understanding of hormones, brain and behavior relationships will continue to improve in a very fundamental manner over the coming years.
Collapse
|
13
|
The loss of ERE-dependent ERα signaling potentiates the effects of maternal high-fat diet on energy homeostasis in female offspring fed an obesogenic diet. J Dev Orig Health Dis 2019; 11:285-296. [PMID: 31543088 DOI: 10.1017/s2040174419000515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal high-fat diet (HFD) alters hypothalamic programming and disrupts offspring energy homeostasis in rodents. We previously reported that the loss of ERα signaling partially blocks the effects of maternal HFD in female offspring fed a standard chow diet. In a companion study, we determined if the effects of maternal HFD were magnified by an adult obesogenic diet in our transgenic mouse models. Heterozygous ERα knockout (wild-type (WT)/KO) dams were fed a control breeder chow diet (25% fat) or a semipurified HFD (45% fat) 4 weeks prior to mating with heterozygous males (WT/KO or WT/ knockin) to produce WT, ERα KO, or ERα knockin/knockout (KIKO) (no estrogen response element (ERE) binding) female offspring, which were fed HFD for 20 weeks. Maternal HFD potentiated the effects of adult HFD on KIKO and KO body weight due to increased adiposity and decreased activity. Maternal HFD also produced KIKO females that exhibit KO-like insulin intolerance and impaired glucose homeostasis. Maternal HFD increased plasma interleukin 6 and monocyte chemoattractant protein 1 levels and G6pc and Pepck liver expression only in WT mice. Insulin and tumor necrosis factor α levels were higher in KO offspring from HFD-fed dams. Arcuate and liver expression of Esr1 was altered in KIKO and WT, respectively. These data suggest that loss of ERE-dependent ERα signaling, and not total ERα signaling, sensitizes females to the deleterious influence of maternal HFD on offspring energy and glucose potentially through the control of peripheral inflammation and hypothalamic and liver gene expression. Future studies will interrogate the tissue-specific mechanisms of maternal HFD programming through ERα signaling.
Collapse
|
14
|
Gintzler AR, Storman EM, Liu NJ. Estrogens as arbiters of sex-specific and reproductive cycle-dependent opioid analgesic mechanisms. VITAMINS AND HORMONES 2019; 111:227-246. [PMID: 31421702 PMCID: PMC7136895 DOI: 10.1016/bs.vh.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The organization of estrogenic signaling in the CNS is exceedingly complex. It is comprised of peripherally and centrally synthesized estrogens, and a plethora of types of estrogen receptor that can localize to both the nucleus and the plasma membrane. Moreover, CNS estrogen receptors can exist independent of aromatase (aka estrogen synthase) as well as oligomerize with it, along with a host of other membrane signaling proteins. This ability of CNS estrogen receptors to either to physically pair or exist separately enables locally produced estrogens to act on multiple spatial levels, with a high degree of gradated regulation and plasticity, signaling either in-phase or out-of phase with circulating estrogens. This complexity explains the numerous contradictory findings regarding sex-dependent pain processing and sexually dimorphic opioid antinociception. This review highlights the increasing awareness that estrogens are major endogenous arbiters of both opioid analgesic actions and the mechanisms used to achieve them. This behooves us to understand, and possibly intercede at, the points of intersection of estrogenic signaling and opioid functionality. Factors that integrate estrogenic actions at subcellular, synaptic, and CNS regional levels are likely to be prime drug targets for novel pharmacotherapies designed to modulate CNS estrogen-dependent opioid functionalities and possibly circumvent the current opioid epidemic.
Collapse
MESH Headings
- Analgesia
- Analgesics, Opioid/pharmacology
- Animals
- Aromatase
- Brain/physiology
- Dynorphins/physiology
- Estrogens/physiology
- Female
- Humans
- Male
- Neurosecretory Systems/physiology
- Nociception/drug effects
- Nociception/physiology
- Receptors, Estrogen/physiology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Reproduction/physiology
- Sex Characteristics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States.
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
15
|
de Bournonville MP, Vandries LM, Ball GF, Balthazart J, Cornil CA. Site-specific effects of aromatase inhibition on the activation of male sexual behavior in male Japanese quail (Coturnix japonica). Horm Behav 2019; 108:42-49. [PMID: 30605622 PMCID: PMC6377315 DOI: 10.1016/j.yhbeh.2018.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/14/2022]
Abstract
Aromatization within the medial preoptic nucleus (POM) is essential for the expression of male copulatory behavior in Japanese quail. However, several nuclei within the social behavior network (SBN) also express aromatase. Whether aromatase in these loci participates in the behavioral activation is not known. Castrated male Japanese quail were implanted with 2 subcutaneous Silastic capsules filled with crystalline testosterone and with bilateral stereotaxic implants filled with the aromatase inhibitor Vorozole targeting the POM, the bed nucleus of the stria terminalis (BST) or the ventromedial nucleus of the hypothalamus (VMN). Control animals were implanted with testosterone and empty bilateral stereotaxic implants. Starting 2 days after the surgery, subjects were tested for the expression of consummatory sexual behavior (CSB) every other day for a total of 10 tests. They were also tested once for appetitive sexual behavior (ASB) as measured by the rhythmic cloacal sphincter movements displayed in response to the visual presentation of a female. CSB was drastically reduced when the Vorozole implants were localized in the POM, but not in the BST nor in the VMN. Birds with implants in the BST took longer to show CSB in the first 6 tests than controls, suggesting a role of the BST in the acquisition of the full copulatory ability. ASB was not significantly affected by aromatase blockade in any region. These data confirm the key role played by the POM in the control of male sexual behavior and suggest a minor role for aromatization in the BST or VMN.
Collapse
Affiliation(s)
| | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, United States of America
| | | | | |
Collapse
|
16
|
Sheng Z, Wang C, Ren F, Liu Y, Zhu B. Molecular mechanism of endocrine-disruptive effects induced by Bisphenol A: The role of transmembrane G-protein estrogen receptor 1 and integrin αvβ3. J Environ Sci (China) 2019; 75:1-13. [PMID: 30473274 DOI: 10.1016/j.jes.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume industrial products worldwide and has been widely used to make various products as the intermediates of polycarbonate plastics and epoxy resins. Inevitably, general population has been widely exposed to BPA due to extensive use of BPA-containing products. BPA has similar chemical structure with the natural estrogen and has been shown to induce a variety of estrogen-like endocrine effects on organism in vivo or in vitro. High doses of BPA tend to act as antagonist of estrogen receptors (ERs) by directly regulating the genomic transcription. However, BPA at environmentally relevant low-dose always disrupt the biological function via a non-genomic manner mediated by membrane receptors, rather than ERs. Although some studies had investigated the non-genomic effects of low-dose BPA, the exact molecular mechanism still remains unclear. Recently, we found that membrane G protein-coupled estrogen receptor 1 and integrin αvβ3 and its relative signal pathways participate in the induction of male germ cell proliferation and thyroid transcription disruption by the low-dose BPA. A profound understanding for the mechanism of action of the environmentally relevant BPA exposure not only contributes to objectively evaluate and predict the potential influence to human health, but also provides theoretical basis and methodological support for assessing health effects trigged by other estrogen-like environmental endocrine disruptors. Based mainly on our recent findings, this review outlines the research progress of molecular mechanism on endocrine disrupting effects of environmental low-dose BPA, existing problems and some consideration for future studies.
Collapse
Affiliation(s)
- Zhiguo Sheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Liu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Benzhan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
18
|
17β-estradiol modulates NGF and BDNF expression through ERβ mediated ERK signaling in cortical astrocytes. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Vajaria R, Vasudevan N. Is the membrane estrogen receptor, GPER1, a promiscuous receptor that modulates nuclear estrogen receptor-mediated functions in the brain? Horm Behav 2018; 104:165-172. [PMID: 29964007 DOI: 10.1016/j.yhbeh.2018.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen signals both slowly to regulate transcription and rapidly to activate kinases and regulate calcium levels. Both rapid, non-genomic signaling as well as genomic transcriptional signaling via intracellular estrogen receptors (ER)s can change behavior. Rapid non-genomic signaling is initiated from the plasma membrane by a G-protein coupled receptor called GPER1 that binds 17β-estradiol. GPER1 or GPR30 is one of the candidates for a membrane ER (mER) that is not only highly expressed in pathology i.e. cancers but also in several behaviorally-relevant brain regions. In the brain, GPER1 signaling, in response to estrogen, facilitates neuroprotection, social behaviors and cognition. In this review, we describe several notable characteristics of GPER1 such as the ability of several endogenous steroids as well as artificially synthesized molecules to bind the GPER1. In addition, GPER1 is localized to the plasma membrane in breast cancer cell lines but may be present in the endoplasmic reticulum or the Golgi apparatus in the hippocampus. Unusually, GPER1 can also translocate to the perinuclear space from the plasma membrane. We explore the idea that subcellular localization and ligand promiscuity may determine the varied downstream signaling cascades of the activated GPER1. Lastly, we suggest that GPER1 can act as a modulator of ERα-mediated action on a convergent target, spinogenesis, in neurons that in turn drives female social behaviors such as lordosis and social learning.
Collapse
Affiliation(s)
- Ruby Vajaria
- School of Biological Sciences, Hopkins Building, University of Reading WhiteKnights Campus, Reading RG6 6AS, United Kingdom.
| | - Nandini Vasudevan
- School of Biological Sciences, Hopkins Building Room 205, University of Reading WhiteKnights Campus, Reading RG6 6AS, United Kingdom.
| |
Collapse
|
20
|
Remage-Healey L, Choleris E, Balthazart J. Rapid effects of steroids in the brain: Introduction to special issue. Horm Behav 2018; 104:1-3. [PMID: 29913141 DOI: 10.1016/j.yhbeh.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
21
|
Heimovics SA, Merritt JR, Jalabert C, Ma C, Maney DL, Soma KK. Rapid effects of 17β-estradiol on aggressive behavior in songbirds: Environmental and genetic influences. Horm Behav 2018; 104:41-51. [PMID: 29605636 PMCID: PMC6344317 DOI: 10.1016/j.yhbeh.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. 17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
Collapse
Affiliation(s)
| | | | - Cecilia Jalabert
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada
| | - Chunqi Ma
- University of British Columbia, Department of Psychology, Vancouver, BC, Canada
| | - Donna L Maney
- Emory University, Department of Psychology, Atlanta, GA, USA
| | - Kiran K Soma
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada; University of British Columbia, Department of Psychology, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Canada
| |
Collapse
|
22
|
Smith LC, Lavelle CM, Silva-Sanchez C, Denslow ND, Sabo-Attwood T. Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 2018; 8:10212. [PMID: 29977039 PMCID: PMC6033950 DOI: 10.1038/s41598-018-28395-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Adverse outcome pathways (AOPs) are conceptual frameworks that organize and link contaminant-induced mechanistic molecular changes to adverse biological responses at the individual and population level. AOPs leverage molecular and high content mechanistic information for regulatory decision-making, but most current AOPs for hormonally active agents (HAAs) focus on nuclear receptor-mediated effects only despite the overwhelming evidence that HAAs also activate membrane receptors. Activation of membrane receptors triggers non-genomic signaling cascades often transduced by protein phosphorylation leading to phenotypic changes. We utilized label-free LC-MS/MS to identify proteins differentially phosphorylated in the brain of fathead minnows (Pimephales promelas) aqueously exposed for 30 minutes to two HAAs, 17α-ethinylestradiol (EE2), a strong estrogenic substance, and levonorgestrel (LNG), a progestin, both components of the birth control pill. EE2 promoted differential phosphorylation of proteins involved in neuronal processes such as nervous system development, synaptic transmission, and neuroprotection, while LNG induced differential phosphorylation of proteins involved in axon cargo transport and calcium ion homeostasis. EE2 and LNG caused similar enrichment of synaptic plasticity and neurogenesis. This study is the first to identify molecular changes in vivo in fish after short-term exposure and highlights transduction of rapid signaling mechanisms as targets of HAAs, in addition to nuclear receptor-mediated pathways.
Collapse
Affiliation(s)
- L C Smith
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C M Lavelle
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C Silva-Sanchez
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32601, USA
| | - N D Denslow
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| | - T Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
23
|
Estrogens synthesized and acting within a spinal oligomer suppress spinal endomorphin 2 antinociception: ebb and flow over the rat reproductive cycle. Pain 2018; 158:1903-1914. [PMID: 28902684 DOI: 10.1097/j.pain.0000000000000991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The magnitude of antinociception elicited by intrathecal endomorphin 2 (EM2), an endogenous mu-opioid receptor (MOR) ligand, varies across the rat estrous cycle. We now report that phasic changes in analgesic responsiveness to spinal EM2 result from plastic interactions within a novel membrane-bound oligomer containing estrogen receptors (mERs), aromatase (aka estrogen synthase), metabotropic glutamate receptor 1 (mGluR1), and MOR. During diestrus, spinal mERs, activated by locally synthesized estrogens, act with mGluR1 to suppress spinal EM2/MOR antinociception. The emergence of robust spinal EM2 antinociception during proestrus results from the loss of mER-mGluR1 suppression, a consequence of altered interactions within the oligomer. The chemical pairing of aromatase with mERs within the oligomer containing MOR and mGluR1 allows estrogens to function as intracellular messengers whose synthesis and actions are confined to the same signaling oligomer. This form of estrogenic signaling, which we term "oligocrine," enables discrete, highly compartmentalized estrogen/mER-mGluR1 signaling to regulate MOR-mediated antinociception induced by EM2. Finally, spinal neurons were observed not only to coexpress MOR, mERα, aromatase, and mGluR1 but also be apposed by EM2 varicosities. This suggests that modulation of spinal analgesic responsiveness to exogenous EM2 likely reflects changes in its endogenous analgesic activity. Analogous suppression of spinal EM2 antinociception in women (eg, around menses, comparable with diestrus in rats) as well as the (pathological) inability to transition out of that suppressed state at other menstrual cycle stages could underlie, at least in part, the much greater prevalence and severity of chronic pain in women than men.
Collapse
|
24
|
Rivera HM, Stincic TL. Estradiol and the control of feeding behavior. Steroids 2018; 133:44-52. [PMID: 29180290 PMCID: PMC5864536 DOI: 10.1016/j.steroids.2017.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
This review lays out the evidence for the role of E2 in homeostatic and hedonic feeding across several species. While significant effort has been expended on homeostatic feeding research, more studies for hedonic feeding need to be conducted (i.e. are there increases in meal size and enhanced motivation to natural food rewards). By identifying the underlying neural circuitry involved, one can better delineate the mechanisms by which E2 influences feeding behavior. By utilizing more selective neural targeting techniques, such as optogenetics, significant progress can be made toward this goal. Together, behavioral and physiological techniques will help us to better understand neural deficits that can increase the risk for obesity in the absence of E2 (menopause) and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- H M Rivera
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - T L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
25
|
Sørvik IB, Solum EJ, Labba NA, Hansen TV, Paulsen RE. Differential effects of some novel synthetic oestrogen analogs on oxidative PC12 cell death caused by serum deprivation. Free Radic Res 2018; 52:273-287. [DOI: 10.1080/10715762.2018.1430363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Irene B. Sørvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eirik Johansson Solum
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils A. Labba
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
27
|
Ahmadi S, Eshraghian MR, Hedayati M, Pishva H. Relationship between estrogen and body composition, energy, and endocrine factors in obese women with normal and low REE. Steroids 2018; 130:31-35. [PMID: 29273197 DOI: 10.1016/j.steroids.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/02/2017] [Accepted: 12/15/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between estrogen and leptin, thyroid (T3), Uncoupling Protein2 (UCP2), sex hormone binding globulin (SHBG), and resting energy expenditure(REE) in obese subjects with normal and low REE, and to investigate the relationship of estrogen with body composition and energy intake. METHOD A total 49 subjects (25-50 years old) were selected. Anthropometric measurements, body composition, and resting energy expenditure were measured. Fasted circulating leptin, T3, SHBG and UCP2 levels were also measured. Subjects were divided to three groups: BMI > 30 and low resting energy expenditure (group I, n = 16), BMI > 30 and normal resting energy expenditure (group II, n = 17), and non-obese women as the control group (group III, n = 16). RESULT A significant association was observed between estrogen and REE in obese women with normal REE. There was a significant association between estrogen and leptin in groups I (β = 0.98, p < .0001), and II (β = 0.84, P < .0001). However, no significant association was observed between estrogen and T3 and UCP2 protein in the three groups. Regression analyses demonstrated no correlation between fat mass, percent fat mass, and plasma estrogen. Plasma estrogen was not correlated with caloric intake or macronutrients of the diet. CONCLUSION Estrogen has been shown to affect metabolism and hemostasis in obesity and increases resting energy expenditure via leptin. Production of UCP2 in PBMC is not affected by estrogen.
Collapse
Affiliation(s)
- Somaye Ahmadi
- Department of Cellular-Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Pishva
- Department of Cellular-Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
29
|
On the role of brain aromatase in females: why are estrogens produced locally when they are available systemically? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:31-49. [PMID: 29086012 DOI: 10.1007/s00359-017-1224-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/27/2023]
Abstract
The ovaries are often thought of as the main and only source of estrogens involved in the regulation of female behavior. However, aromatase, the key enzyme for estrogen synthesis, although it is more abundant in males, is expressed and active in the brain of females where it is regulated by similar mechanisms as in males. Early work had shown that estrogens produced in the ventromedial hypothalamus are involved in the regulation of female sexual behavior in musk shrews. However, the question of the role of central aromatase in general had not received much attention until recently. Here, I will review the emerging concept that central aromatization plays a role in the regulation of physiological and behavioral endpoints in females. The data support the notion that in females, brain aromatase is not simply a non-functional evolutionary vestige, and provide support for the importance of locally produced estrogens for brain function in females. These observations should also have an impact for clinical research.
Collapse
|
30
|
Roepke TA, Yasrebi A, Villalobos A, Krumm EA, Yang JA, Mamounis KJ. Loss of ERα partially reverses the effects of maternal high-fat diet on energy homeostasis in female mice. Sci Rep 2017; 7:6381. [PMID: 28743985 PMCID: PMC5526977 DOI: 10.1038/s41598-017-06560-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
Maternal high-fat diet (HFD) alters hypothalamic developmental programming and disrupts offspring energy homeostasis in rodents. 17β-estradiol (E2) also influences hypothalamic programming through estrogen receptor (ER) α. Therefore, we hypothesized that females lacking ERα would be more susceptible to maternal HFD. To address this question, heterozygous ERα knockout (WT/KO) dams were fed a control breeder chow diet (25% fat) or a semi-purified HFD (45% fat) 4 weeks prior to mating with WT/KO males or heterozygous males with an ERα DNA-binding domain mutation knocked in (WT/KI) to produce WT, ERα KO, or ERα KIKO females lacking ERE-dependent ERα signaling. Maternal HFD increased body weight in WT and KIKO, in part, due to increased adiposity and daytime carbohydrate utilization in WT and KIKO, while increasing nighttime fat utilization in KO. Maternal HFD also increased plasma leptin, IL-6, and MCP-1 in WT and increased arcuate expression of Kiss1 and Esr1 (ERα) and liver expression of G6pc and Pepck in WT and KIKO. Contrary to our hypothesis, these data suggest that loss of ERα signaling blocks the influence of maternal HFD on energy homeostasis, inflammation, and hypothalamic and liver gene expression and that restoration of ERE-independent ERα signaling partially reestablishes susceptibility to maternal HFD.
Collapse
Affiliation(s)
- Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA. .,New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alejandra Villalobos
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Reproductive Medicine, University of California, San Diego, San Diego, CA 92103, USA
| | - Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
31
|
Actions of Steroids: New Neurotransmitters. J Neurosci 2017; 36:11449-11458. [PMID: 27911748 DOI: 10.1523/jneurosci.2473-16.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain.
Collapse
|
32
|
Stevanato Filho PR, Aguiar Júnior S, Begnami MD, Ferreira FDO, Nakagawa WT, Spencer RMSB, Bezerra TS, Boggiss PE, Lopes A. Estrogen Receptor β as a Prognostic Marker of Tumor Progression in Colorectal Cancer with Familial Adenomatous Polyposis and Sporadic Polyps. Pathol Oncol Res 2017; 24:533-540. [PMID: 28681123 DOI: 10.1007/s12253-017-0268-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
The incidence of colorectal cancer (CRC) is lower in women than in men, and sex steroids can be considered contributing factors because oral contraception usage and estrogen replacement therapy are associated with decreased risk. Conversely, colorectal polyp development in familial adenomatous polyposis (FAP) begins during puberty. The objectives were to evaluate the relationship between the expression of these hormone receptors and adenoma-carcinoma progression, CRC stage and overall survival. We studied 120 A.C. Camargo Cancer Center patients diagnosed with either FAP-associated or spontaneous adenomatous polyps or CRC to determine the immunohistochemical expression levels of estrogen receptor (ER)-α, ER-β and the progesterone and androgen receptors (480 analyses). The ER-β expression levels differed between the groups: the group with FAP polyps had lower ER-β expression than that of the sporadic polyp group. With transformation of the sporadic polyps to cancer, there was a considerable decrease in ER-β expression (from 90% with strong expression to 80% with absent or weak expression) (p < 0.001). The ER-β expression was lower in T3/T4 tumors than in T1/T2 tumors (p = 0.015). The 5-year overall survival of CRC patients positively expressing ER-β exceeded that of patients without detectable expression levels (74.8% vs. 44.3%, respectively; p = 0.035). There was no significant expression of the androgen or progesterone receptor or ER-α among the groups. Differences in ER-β expression represent a potential mechanism through which estrogen might alter the susceptibility to colon cancer, thereby confirming the possibility of a protective role of estrogen against colorectal carcinogenesis.
Collapse
Affiliation(s)
- Paulo Roberto Stevanato Filho
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil.
| | - Samuel Aguiar Júnior
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| | | | - Fábio de Oliveira Ferreira
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| | - Wilson Toshihiko Nakagawa
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| | - Ranyell Matheus Sobreira Batista Spencer
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| | - Tiago Santoro Bezerra
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| | - Philip Edward Boggiss
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| | - Ademar Lopes
- Colorectal Tumor Nucleus of the Pelvic Surgery Department, A.C. Camargo Cancer Center, R. Professor Antônio Prudente, 211 Liberdade, São Paulo CEP, São Paulo, SP, 01509-010, Brazil
| |
Collapse
|
33
|
Glutamate released in the preoptic area during sexual behavior controls local estrogen synthesis in male quail. Psychoneuroendocrinology 2017; 79:49-58. [PMID: 28259043 PMCID: PMC5432736 DOI: 10.1016/j.psyneuen.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 11/23/2022]
Abstract
Estrogens are known to act rapidly, probably via membrane estrogen receptors, to induce fast effects on physiological and behavioral processes. Engaging in some of these behaviors, such as sexual behavior, results in an acute modulation of the production of estrogens in the brain by regulating the efficiency of the estrogen synthase enzyme, aromatase. We recently demonstrated that aromatase activity (AA) in the male quail brain is rapidly inhibited in discrete brain regions including the medial preoptic nucleus (POM) following exposure to a female. Evidence from in vitro studies point to glutamate release as one of the mechanisms controlling these rapid regulations of the aromatase enzyme. Here, we show that (a) the acute injection of the glutamatergic agonist kainate into the POM of anesthetized male quail inhibits AA and (b) glutamate is released in the POM during copulation. These results provide the first set of in vivo data demonstrating a role for glutamate release in the rapid control of AA in the context of sexual behavior.
Collapse
|
34
|
Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 2017; 113:652-660. [DOI: 10.1016/j.neuropharm.2016.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
|
35
|
Meng S, Qiu L, Hu G, Fan L, Song C, Zheng Y, Wu W, Qu J, Li D, Chen J, Xu P. Effects of methomyl on steroidogenic gene transcription of the hypothalamic-pituitary-gonad-liver axis in male tilapia. CHEMOSPHERE 2016; 165:152-162. [PMID: 27643660 DOI: 10.1016/j.chemosphere.2016.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Male tilapia were exposed to sub-lethal methomyl concentrations of 0, 0.2, 2, 20 or 200 μg/L for 30 d, and were subsequently cultured in methomyl-free water for 18 d. Relative transcript abundance of steroidogenic genes involved in the HPGL axis of male tilapia was examined at 30 d in the exposure test and at 18 d in the recovery test. The results revealed that low concentrations of methomyl (0.2 and 2 μg/L) did not cause significant changes in gene mRNA levels in the HPGL axis of male tilapia; thus, we considered 2 μg/L concentrations as the level that showed no apparent adverse endocrine disruption effects. However, higher concentrations of methomyl (20 and 200 μg/L) disrupted the endocrine system and caused significant increase in the levels of GnRH2, GnRH3, ERα, and ERβ genes in the hypothalamus, GnRHR and FSHβ genes in the pituitary, CYP19a, FSHR, and ERα genes in the testis, and VTG and ERα genes in the liver, and significantly decreased the levels of LHR, StAR, 3β-HSD, and ARα genes in the testis and LHβ gene in the pituitary, leading to changes in sex steroid hormone and vitellogenin levels in the serum and ultimately resulting in reproductive dysfunction in male tilapia. The recovery tests showed that the toxicity effect caused by 20 μg/L methomyl was reversible; however, the toxicity effect at 200 μg/L of methomyl was irreversible after 18 d. Therefore, we concluded that 200 μg/L was the threshold concentration for methomyl-induced irreversible endocrine disruption in male tilapia.
Collapse
Affiliation(s)
- ShunLong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - LiPing Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - GengDong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - LiMin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - JianHong Qu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - DanDan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China
| | - JiaZhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China.
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors, Ministry of Agriculture, PR China; Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, PR China.
| |
Collapse
|
36
|
Zancan M, Dall'Oglio A, Quagliotto E, Rasia‐Filho AA. Castration alters the number and structure of dendritic spines in the male posterodorsal medial amygdala. Eur J Neurosci 2016; 45:572-580. [DOI: 10.1111/ejn.13460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Aline Dall'Oglio
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Edson Quagliotto
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
37
|
Nogami H, Hiraoka Y, Aiso S. Estradiol and corticosterone stimulate the proliferation of a GH cell line, MtT/S: Proliferation of growth hormone cells. Growth Horm IGF Res 2016; 29:33-38. [PMID: 27082452 DOI: 10.1016/j.ghir.2016.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH). DESIGN Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR. RESULTS Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E. CONCLUSIONS The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors.
Collapse
Affiliation(s)
- Haruo Nogami
- Laboratory of Molecular Neuroendocrinology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Yoshiki Hiraoka
- Department of Anatomy, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Sadakazu Aiso
- Department of Anatomy, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
38
|
Jasnow AM, Lynch JF, Gilman TL, Riccio DC. Perspectives on fear generalization and its implications for emotional disorders. J Neurosci Res 2016; 95:821-835. [PMID: 27448175 DOI: 10.1002/jnr.23837] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/28/2022]
Abstract
Although generalization to conditioned stimuli is not a new phenomenon, renewed interest in understanding its biological underpinning has stemmed from its association with a number of anxiety disorders. Generalization as it relates to fear processing is a temporally dynamic process in which animals, including humans, display fear in response to similar yet distinct cues or contexts as the time between training and testing increases. This Review surveys the literature on contextual fear generalization and its relation to several views of memory, including systems consolidation, forgetting, and transformation hypothesis, which differentially implicate roles of the hippocampus and neocortex in memory consolidation and retrieval. We discuss recent evidence on the neurobiological mechanisms contributing to the increase in fear generalization over time and how generalized responding may be modulated by acquisition, consolidation, and retrieval mechanisms. Whereas clinical perspectives of generalization emphasize a lack of fear inhibition to CS- cues or fear toward intermediate CS cues, the time-dependent nature of generalization and its relation to traditional views on memory consolidation and retrieval are often overlooked. Understanding the time-dependent increase in fear generalization has important implications not only for understanding how generalization contributes to anxiety disorders but also for understanding basic long-term memory function. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| | - Joseph F Lynch
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| | - T Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
39
|
Wang Q, Xia X, Deng X, Li N, Wu D, Zhang L, Yang C, Tao F, Zhou J. Lambda-cyhalothrin disrupts the up-regulation effect of 17β-estradiol on post-synaptic density 95 protein expression via estrogen receptor α-dependent Akt pathway. J Environ Sci (China) 2016; 41:252-260. [PMID: 26969072 DOI: 10.1016/j.jes.2015.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 06/05/2023]
Abstract
Lambda-cyhalothrin (LCT), one of the type II pyrethroids, has been widely used throughout the world. The estrogenic effect of LCT to increase cell proliferation has been well established. However, whether the estrogenic effect of LCT will influence neurodevelopment has not been investigated. In addition, 17β-Estradiol (E2) plays a crucial role in neurodevelopment and induces an increase in synaptic proteins. The post-synaptic density 95 (PSD95) protein, which is involved in the development of the structure and function of new spines and localized with estrogen receptor α (ERα) at the post-synaptic density (PSD), was detected in our study by using hippocampal neuron cell line HT22. We found that LCT up-regulated PSD95 and ERα expression, estrogen receptor (ER) antagonist ICI182,780 and phosphatidylinositol-4; 5-bisphosphate 3-kinase (PI3K) inhibitor LY294,002 blocked this effect. In addition, LCT disrupted the promotion effect of E2 on PSD95. To investigate whether the observed changes are caused by ERα-dependent signaling activation, we next detected the effects of LCT on the ERα-mediated PI3K-Protein kinase B (PKB/Akt)-eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) pathway. There existed an activation of Akt and the downstream factor 4E-BP1 after LCT treatment. In addition, LCT could disrupt the activation effect of E2 on the Akt pathway. However, no changes in cAMP response element-binding protein (CREB) activation and PSD95 messenger ribonucleic acid (mRNA) were observed. Our findings demonstrated that LCT could increase the PSD95 protein level via the ERα-dependent Akt pathway, and LCT might disrupt the up-regulation effect of E2 on PSD95 protein expression via this signaling pathway.
Collapse
Affiliation(s)
- Qunan Wang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Toxicology, College of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Xin Xia
- Department of Toxicology, College of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiaomei Deng
- Department of Pharmacy, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Nian Li
- Department of Toxicology, College of Public Health, Anhui Medical University, Hefei 230032, China
| | - Daji Wu
- Department of Toxicology, College of Public Health, Anhui Medical University, Hefei 230032, China
| | - Long Zhang
- Department of Toxicology, College of Public Health, Anhui Medical University, Hefei 230032, China
| | - Chengwei Yang
- Department of Toxicology, College of Public Health, Anhui Medical University, Hefei 230032, China
| | - Fangbiao Tao
- Department of Maternal and Child health, College of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiangning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
40
|
Lynch JF, Winiecki P, Vanderhoof T, Riccio DC, Jasnow AM. Hippocampal cytosolic estrogen receptors regulate fear generalization in females. Neurobiol Learn Mem 2016; 130:83-92. [PMID: 26851128 DOI: 10.1016/j.nlm.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/27/2015] [Accepted: 01/25/2016] [Indexed: 01/04/2023]
Abstract
Generalization of fear responses is a symptom of many anxiety disorders and we have previously demonstrated that female rats generalize fear to a neutral context at a faster rate compared to males. This effect is due in part, to activation of ER and modulation of memory retrieval mechanisms resulting in fear generalization. Given that the effects of estradiol on fear generalization required approximately 24h, our data suggested possible genomic actions on fear generalization. To determine whether these actions were due to cytosolic versus membrane bound receptors, female rats were given infusions of ICI 182,780, a cytosolic estrogen receptor antagonist, into the lateral ventricle or dorsal hippocampus simultaneously with estradiol treatment or with an ER agonist (DPN). Infusions of ICI into the lateral ventricle or the dorsal hippocampus blocked fear generalization induced by peripheral or central treatment with estradiol or DPN, suggesting that estradiol acts through cytosolic ERβ receptors. In further support of these findings, intracerebroventricular or intra-hippocampal infusions of bovine serum conjugated estradiol (E2-BSA), activating membrane-bound estrogen receptors only, did not induce fear generalization. Moreover, rats receiving intra-hippocampal infusions of the ERK/MAPK inhibitor, U0126, continued to display estradiol-induced generalization, again suggesting that membrane-bound estrogen receptors do not contribute to fear generalization. Overall, these data suggest that estradiol-induced enhancements in fear generalization are mediated through activation of cytosolic/nuclear ER within the dorsal hippocampus. This region seems to be an important locus for the effects of estradiol on fear generalization although additional neuroanatomical regions have yet to be identified.
Collapse
Affiliation(s)
- Joseph F Lynch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Patrick Winiecki
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Tyler Vanderhoof
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
41
|
Clark S, Pollard K, Rainville J, Vasudevan N. Detection of the Phosphorylation of the Estrogen Receptor α as an Outcome of GPR30 Activation. Methods Mol Biol 2016; 1366:457-470. [PMID: 26585157 DOI: 10.1007/978-1-4939-3127-9_36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modification events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immuno-blotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30. Hence, phosphorylation represents a cross talk event between GPR30 and ERα and may be important in estrogen-regulated physiology.
Collapse
Affiliation(s)
- Sara Clark
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Kevin Pollard
- The Neuroscience Program, Tulane University, New Orleans, LA, 70118, USA
| | - Jennifer Rainville
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Nandini Vasudevan
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA, 70118, USA.
- The Neuroscience Program, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
42
|
Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a. J Neurosci 2015; 35:13110-23. [PMID: 26400941 DOI: 10.1523/jneurosci.2056-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute intracerebroventricular injections of specific agonists and antagonists following blockade of brain aromatase, we show here that brain-derived estrogens acutely facilitate male sexual motivation through the activation of estrogen receptor β interacting with the metabotropic glutamate receptor 1a. This behavioral effect occurring within minutes provides a mechanistic explanation of how an estrogen receptor not intrinsically coupled to intracellular effectors can signal from the membrane to govern behavior in a very rapid fashion. It suggests that different subtypes of estrogen receptors could regulate the motivation versus performance aspects of behavior.
Collapse
|
43
|
Reproductive experiential regulation of cognitive and emotional resilience. Neurosci Biobehav Rev 2015; 58:92-106. [DOI: 10.1016/j.neubiorev.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
|
44
|
Carrier N, Wang X, Sun L, Lu XY. Sex-Specific and Estrous Cycle-Dependent Antidepressant-Like Effects and Hippocampal Akt Signaling of Leptin. Endocrinology 2015; 156:3695-705. [PMID: 26181103 PMCID: PMC4588814 DOI: 10.1210/en.2015-1029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sex differences in the incidence of depression and antidepressant treatment responses are well documented. Depression is twice as common in women as in men. Recent studies indicate that low levels of leptin, an adipocyte-derived hormone, are associated with increased symptoms of depression in women. Leptin has been shown to produce antidepressant-like effects in male rodents. In the present study, we examined sex differences and estrous cycle variations in antidepressant-like responses to leptin. Leptin administration significantly reduced immobility, a putative measure of behavioral despair, in the forced swim test in intact female mice in the proestrus phase but not in the diestrus phase of the estrous cycle. Moreover, leptin administration stimulated Akt phosphorylation in the hippocampus of female mice in proestrus but not in diestrus, in correlation with its differential behavioral effects in these two phases of the cycle. Leptin-induced behavioral responses and stimulation of hippocampal Akt phosphorylation in female mice were abolished by ovariectomy. By contrast, the antidepressant-like effect of leptin in male mice was not affected by gonadectomy (castration). Pretreatment with 17β-estradiol restored sensitivity to the effects of leptin on behavior and hippocampal Akt phosphorylation in ovariectomized female mice. These results suggest leptin regulates depression-like behavior and hippocampal Akt signaling in a sex-specific and estrous cycle-dependent manner.
Collapse
Affiliation(s)
- Nicole Carrier
- Department of Pharmacology (N.C., X.W., L.S., X.-Y.L.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; and Institute for Metabolic and Neuropsychiatric Disorders (X.W., L.S.), Binzhou Medical University, Yantai 256603, China
| | - Xuezhen Wang
- Department of Pharmacology (N.C., X.W., L.S., X.-Y.L.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; and Institute for Metabolic and Neuropsychiatric Disorders (X.W., L.S.), Binzhou Medical University, Yantai 256603, China
| | - Linshan Sun
- Department of Pharmacology (N.C., X.W., L.S., X.-Y.L.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; and Institute for Metabolic and Neuropsychiatric Disorders (X.W., L.S.), Binzhou Medical University, Yantai 256603, China
| | - Xin-Yun Lu
- Department of Pharmacology (N.C., X.W., L.S., X.-Y.L.), The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; and Institute for Metabolic and Neuropsychiatric Disorders (X.W., L.S.), Binzhou Medical University, Yantai 256603, China
| |
Collapse
|
45
|
Han S, Zhao B, Pan X, Song Z, Liu J, Gong Y, Wang M. Estrogen receptor variant ER-α36 is involved in estrogen neuroprotection against oxidative toxicity. Neuroscience 2015; 310:224-41. [PMID: 26383254 DOI: 10.1016/j.neuroscience.2015.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
It is well known that estrogen exerts neuroprotective effect against various neuronal damages. However, the estrogen receptor (ER) that mediates estrogen neuroprotection has not been well established. In this study, we investigated the potential receptor that mediates estrogen neuroprotection and the underlying molecular mechanisms. Hydrogen peroxide (H2O2) was chosen as an agent in our study to mimic free radicals that are often involved in the pathogenesis of many degenerative diseases. We found that in human SY5Y and IMR-32 cells, the estrogen neuroprotection against H2O2 toxicity was abrogated by knockdown of a variant of estrogen receptor-α, ER-α36. We also studied the rapid estrogen signaling mediated by ER-α36 in neuroprotective effect and found the PI3K/AKT and MAPK/ERK1/2 signaling mediated by ER-α36 is involved in estrogen neuroprotection. We also found that GPER, an orphan G protein-coupled receptor, is not involved in ER-α36-mediated rapid estrogen response. Our study thus demonstrates that ER-α36-mediated rapid estrogen signaling is involved in the neuroprotection activity of estrogen against oxidative toxicity.
Collapse
Affiliation(s)
- S Han
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - B Zhao
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - X Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China.
| | - Z Song
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - J Liu
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - Y Gong
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - M Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
46
|
Ervin KSJ, Mulvale E, Gallagher N, Roussel V, Choleris E. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning. Psychoneuroendocrinology 2015; 58:51-66. [PMID: 25957002 DOI: 10.1016/j.psyneuen.2015.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning.
Collapse
Affiliation(s)
- Kelsy Sharice Jean Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Erin Mulvale
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Nicola Gallagher
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Véronique Roussel
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
47
|
Abot A, Fontaine C, Buscato M, Solinhac R, Flouriot G, Fabre A, Drougard A, Rajan S, Laine M, Milon A, Muller I, Henrion D, Adlanmerini M, Valéra MC, Gompel A, Gerard C, Péqueux C, Mestdagt M, Raymond-Letron I, Knauf C, Ferriere F, Valet P, Gourdy P, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2015; 6:1328-46. [PMID: 25214462 PMCID: PMC4287935 DOI: 10.15252/emmm.201404112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Mélissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Romain Solinhac
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Gilles Flouriot
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Aurélie Fabre
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Drougard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Shyamala Rajan
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Muriel Laine
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alain Milon
- CNRS and Université de Toulouse, IPBS, Toulouse, France
| | | | - Daniel Henrion
- INSERM U1083, CNRS UMR 6214, Université d'Angers, Angers, France
| | - Marine Adlanmerini
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Marie-Cécile Valéra
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Gompel
- APHP, Unité de Gynécologie Endocrinienne, Université Paris Descartes, Paris, France
| | - Céline Gerard
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Christel Péqueux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Mélanie Mestdagt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | | | - Claude Knauf
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - François Ferriere
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Philippe Valet
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Geoffrey L Greene
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
48
|
Cornil CA, Ball GF, Balthazart J. The dual action of estrogen hypothesis. Trends Neurosci 2015; 38:408-16. [PMID: 26089224 DOI: 10.1016/j.tins.2015.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 11/25/2022]
Abstract
Estradiol (E2) can act in the brain in a relatively fast manner (i.e., seconds to minutes) usually through signaling initiated at the cell membrane. Brain-derived E2 has thus been considered as another type of neurotransmitter. Recent work found that behaviors indicative of male sexual motivation are activated by estrogenic metabolites of testosterone (T) in a fast manner, while sexual performance (copulatory behavior per se) is regulated by brain E2 in a slower manner via nucleus-initiated actions. This functional division between these two types of action appears to generalize to other behavioral systems regulated by E2. We propose the dual action of estrogen hypothesis to explain this functional distinction between these two different modes of action.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, 2141 Tydings Hall, University of Maryland, College Park, MD 20742-7201, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium.
| |
Collapse
|
49
|
Filova B, Malinova M, Babickova J, Tothova L, Ostatnikova D, Celec P, Hodosy J. Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway. Neurosci Bull 2015; 31:288-96. [PMID: 25754146 DOI: 10.1007/s12264-014-1510-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Besides their known slow genomic effects, testosterone and estradiol have rapid effects in the brain. However, their impact on mood-related behavior is not clear. The aim of this study was to investigate the non-genomic pathway of testosterone and estradiol in the amygdala in relation to anxiety and depressive-like behavior. Sham-operated and gonadectomized male rats (GDX) supplemented with testosterone propionate, estradiol, or olive oil were used. Five minutes after administration, anxiety and depression-like behavior were tested. Estradiol increased anxiolytic behavior in the open-field test compared to the GDX group, but administration of testosterone had no significant effect. Besides, c-Fos expression in the medial nucleus of the amygdala significantly increased after testosterone treatment compared to the GDX group, while no significant difference was observed in the central and the basolateral nuclei of the amygdala in the testosterone-treated group compared to the GDX group. In conclusion, estradiol had an anxiolytic effect via a rapid pathway, but no rapid effect of testosterone on anxiety was found. Further studies elucidating whether the rapid effect is mediated by a non-genomic pathway are needed.
Collapse
Affiliation(s)
- Barbora Filova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
50
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|