1
|
Zhou Y, He L, Zhang M, Chen M, Wu Y, Liu L, Qi L, Zhang B, Yang X, He X, Wang K. An aptamer-responsive microneedle patch sensor platform combining with hybridization chain reaction amplification for detection of steroid hormone cortisol in skin interstitial fluid. Biosens Bioelectron 2025; 269:116935. [PMID: 39550776 DOI: 10.1016/j.bios.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Fluctuations in cortisol levels from stressors are critical for the evaluation of endocrine function in body, and abnormal levels of cortisol may indicate serious health risks. Common strategies for cortisol detection are limited by the drawbacks of the intricate and time-consuming operations and the generation of body trauma. Herein, an aptamer-responsive microneedle patch sensor combining with hybridization chain reaction (HCR) amplification (Apt-HCR MN COR patch) was prepared for easy, accurate and minimally-invasive detection of cortisol in skin interstitial fluid (ISF). In this microneedle patch, swellable methacrylated hyaluronic acid (MeHA) was employed as the matrix for ISF extraction and probes loading. When cortisol bound its aptamer, the trigger DNA initiated the HCR in microneedle patch, producing a fluorescent signal proportional to the cortisol content. Under optimized conditions, in vitro and in vivo investigation confirmed the feasibility of the Apt-HCR MN COR patch for cortisol assay, and good biocompatibility was demonstrated. Benefiting from the aptamer recognition and HCR amplification, the Apt-HCR MN COR patch exhibited excellent selectivity and a detection limit (LOD = 0.048 μM) which could cover cortisol levels in ISF. As a proof of concept, after the established mouse model had shown a circadian rhythm of cortisol secretion, the patch was further used to track cortisol response in short duration of running fatigue exercise on this mouse model. It was demonstrated the detection results agreed well with those obtained by the classical enzyme-linked immunosorbent assay (ELISA). We believed that this strategy will inspire the development of MN sensors for cortisol-related disorders monitoring.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Lin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Min Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Mingjian Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuchen Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Lamei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Lanlin Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Bin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Lin J, Li Y, Huang Z, Zhu Y, Li L, Yang H, Liang X, Qin Y, Zhou J, Xian J, Liu D, Lu D, Luo Z. Rare correlation of somatic PRKACA mutations with pregnancy-associated aldosterone- and cortisol-producing adenomas: a case report and literature review. BMC Endocr Disord 2024; 24:116. [PMID: 39010034 PMCID: PMC11251286 DOI: 10.1186/s12902-024-01645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Somatic mutations have been observed to induce aldosterone-producing adenomas (APAs). These may be accelerated during pregnancy. Somatic PRKACA mutations are common in cortisol-producing adenomas (CPAs). However, their role in APAs, particularly aldosterone- and cortisol-producing adenomas (A/CPAs), is not well understood. This study aims to investigate the association between PRKACA mutations and the accelerated development of A/CPAs during pregnancy. CASE PRESENTATION A patient with primary aldosteronism (PA) associated with severe Cushing's syndrome (CS) underwent surgical resection of an adrenal tumor one year after delivery. Pathologic examination revealed an adrenocortical adenoma characterized primarily by zona glomerulosa hyperplasia. Somatic mutation analysis revealed the presence of the somatic PRKACA mutation, which was validated as a deleterious mutation by various computational databases. Immunohistochemical results showed positive staining for cytochrome P450 family 11 subfamily B member 1 (CYP11B1), cytochrome P450 family 11 subfamily B member 2 (CYP11B2), and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). Our study included a review of 20 previously documented cases of aldosterone- and cortisol-producing adenomas (A/CPAs), two of which were concurrently positive for both CYP11B1 and CYP11B2, consistent with our findings. CONCLUSION Somatic mutations in PRKACA may correlate with the upregulation of LHCGR, which synergistically drives the accelerated growth of co-secretion tumors during pregnancy, thereby exacerbating disease progression.
Collapse
Affiliation(s)
- Jianfan Lin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Yufei Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Yingli Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Li Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Jia Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Jing Xian
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Deyun Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, P. R. China
| | - Decheng Lu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, 530021, P.R. China.
| |
Collapse
|
3
|
Chen YY, Huang SC, Pan CT, Peng KY, Lin LY, Chan CK, Shun CT. The predictors of long-term outcomes after targeted therapy for primary Aldosteronism. J Formos Med Assoc 2024; 123 Suppl 2:S135-S140. [PMID: 38097431 DOI: 10.1016/j.jfma.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 03/12/2024] Open
Abstract
Unilateral primary aldosteronism is thought to be a surgically curable disease, and unilateral adrenalectomy is the mainstay treatment. The Primary Aldosteronism Surgical Outcome (PASO) consensus was developed to assess clinical and biochemical outcomes to standardize the classification of surgical outcomes. However, fewer than half of patients are cured of hypertension after adrenalectomy; therefore, preoperative patient counseling and evaluation might be necessary. Moreover, current studies show that genetic mutations and histopathology classification are associated with the treatment outcome. The Task Force of Taiwan PA recommends using a specific scoring system, including the PASO score and nomogram-based preoperative score, to predict the clinical outcome before adrenalectomy. Herein, we discuss the associations of current histopathological classification and specific somatic gene mutations with clinical outcomes after surgery.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
| | - Chien-Ting Pan
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin, Taiwan
| | - Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-Yu Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin Chu City, Taiwan.
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
4
|
Pitsillou E, Logothetis ANO, Liang JJ, El-Osta A, Hung A, AbuMaziad AS, Karagiannis TC. Identification of Potential Modulators of a Pathogenic G Protein-Gated Inwardly Rectifying K + Channel 4 Mutant: In Silico Investigation in the Context of Drug Discovery for Hypertension. Molecules 2023; 28:7946. [PMID: 38138436 PMCID: PMC10745636 DOI: 10.3390/molecules28247946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Genetic abnormalities have been associated with primary aldosteronism, a major cause of secondary hypertension. This includes mutations in the KCNJ5 gene, which encodes G protein-gated inwardly rectifying K+ channel 4 (GIRK4). For example, the substitution of glycine with glutamic acid gives rise to the pathogenic GIRK4G151E mutation, which alters channel selectivity, making it more permeable to Na+ and Ca2+. While tertiapin and tertiapin-Q are well-known peptide inhibitors of the GIRK4WT channel, clinically, there is a need for the development of selective modulators of mutated channels, including GIRK4G151E. Using in silico methods, including homology modeling, protein-peptide docking, ligand-binding site prediction, and molecular docking, we aimed to explore potential modulators of GIRK4WT and GIRK4G151E. Firstly, protein-peptide docking was performed to characterize the binding site of tertiapin and its derivative to the GIRK4 channels. In accordance with previous studies, the peptide inhibitors preferentially bind to the GIRK4WT channel selectivity filter compared to GIRK4G151E. A ligand-binding site analysis was subsequently performed, resulting in the identification of two potential regions of interest: the central cavity and G-loop gate. Utilizing curated chemical libraries, we screened over 700 small molecules against the central cavity of the GIRK4 channels. Flavonoids, including luteolin-7-O-rutinoside and rutin, and the macrolides rapamycin and troleandomycin bound strongly to the GIRK4 channels. Similarly, xanthophylls, particularly luteoxanthin, bound to the central cavity with a strong preference towards the mutated GIRK4G151E channel compared to GIRK4WT. Overall, our findings suggest potential lead compounds for further investigation, particularly luteoxanthin, that may selectively modulate GIRK4 channels.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Alexander N. O. Logothetis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia J. Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 1799 Copenhagen, Denmark
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Asmaa S. AbuMaziad
- Department of Pediatrics, College of Medicine Tucson, The University of Arizona, Tucson, AZ 85724, USA
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Stanton AM, Heydarpour M, Williams JS, Williams GH, Adler GK. CACNA1D Gene Polymorphisms Associate With Increased Blood Pressure and Salt Sensitivity of Blood Pressure in White Individuals. Hypertension 2023; 80:2665-2673. [PMID: 37846579 PMCID: PMC10843263 DOI: 10.1161/hypertensionaha.123.21229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Disease-causing mutations in CACNA1D gene occur in aldosterone-producing adenomas and familial hyperaldosteronism. We determined whether single nucleotide polymorphisms in CACNA1D gene associate with higher aldosterone resulting in salt sensitivity of blood pressure (BP) and increased BP in men and women. METHODS Data were obtained from the HyperPATH (International Hypertension Pathotypes) cohort, where participants completed a cross-over intervention of liberal and restricted sodium diets. Multi-Ethnic Genotyping Array identified 104 CACNA1D single nucleotide polymorphisms that met quality control. Single nucleotide polymorphism is rs7612148 strongly associated with systolic BP and was selected for study in 521 White participants in 3 scenarios ([1] hypertensives; [2] normotensives; [3] total population=hypertensives+normotensives) using multivariate regression analysis. RESULTS In the total population and hypertensives, but not normotensives, risk allele carriers (CC, GC), as compared with nonrisk allele homozygotes (GG), exhibited higher salt sensitivity of BP and, on liberal sodium diet, higher systolic BP, lower baseline and angiotensin II-stimulated aldosterone, and lower plasma renin activity. On restricted sodium diet, BP was similar across genotypes, suggesting sodium restriction corrected/neutralized the genotype effect on BP. Because increased aldosterone did not seem to drive the increased salt sensitivity of BP and increased BP on liberal sodium diet, we assessed renal plasma flow. Renal plasma flow increase from restricted to liberal sodium diets was blunted in risk allele homozygotes in the total population and in hypertensives. A replication study in another cohort HyperPATH B (International Hypertension Pathotypes Cohort B) confirmed BP-genotype associations. CONCLUSIONS CACNA1D rs7612148 risk allele associated with increased BP and salt sensitivity of BP, likely due to an impaired ability to increase renal plasma flow in response to a liberal sodium diet and not to excess aldosterone.
Collapse
Affiliation(s)
- Ana Maria Stanton
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mahyar Heydarpour
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jonathan S. Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Kim JH, Choi Y, Hwang S, Yoon JH, Kim GH, Yoo HW, Choi JH. Clinical Characteristics and Long-Term Outcomes of Adrenal Tumors in Children and Adolescents. Exp Clin Endocrinol Diabetes 2023; 131:515-522. [PMID: 37437600 DOI: 10.1055/a-2127-9292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Adrenal tumors are generally rare in children and can be a part of familial cancer syndrome. This research was conducted to examine the clinical outcomes, histopathological results, and genetic etiologies of adrenal tumors in children and adolescents. METHODS Thirty-one children and adolescents with adrenal tumors were included. Data on clinical outcomes and endocrine and radiologic results were retrospectively analyzed. Molecular analysis was conducted in select patients according to their phenotype and family history. RESULTS The median age at diagnosis was 7.9 years (range: 0.8-17.8 years) with 5.1±1.8 cm of maximum tumor diameter. Adrenal adenoma (n=7), carcinoma (n=5), borderline (n=2), isolated micronodular adrenocortical disease (n=2), pheochromocytoma (n=8), paraganglioma (n=3), and ganglioneuroma (n=4) are all pathological diagnoses. The most common presenting symptom was excess production of adrenocortical hormones (n=15), including virilization and Cushing syndrome. Non-functioning adrenocortical tumors were found in a patient with congenital adrenal hyperplasia. Genetic etiologies were identified in TP53 (n=5), VHL (n=4), and PRKACA (n=1). Patients with mutations in TP53 were young (1.5±0.5 years) and had large masses (6.1±2.3 cm). CONCLUSIONS This study describes clinical outcomes and the pathological spectrum of adrenal tumors in children and adolescents. Adrenocortical tumors mostly presented with an excess of the adrenocortical hormone. Patients with genetic defects presented at a young age and large size of tumors, necessitating genetic testing in patients at a young age.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunha Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Hanxiao Y, Boyun Y, Minyue J, Xiaoxiao S. Identification of a novel competing endogenous RNA network and candidate drugs associated with ferroptosis in aldosterone-producing adenomas. Aging (Albany NY) 2023; 15:9193-9216. [PMID: 37709486 PMCID: PMC10522391 DOI: 10.18632/aging.205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Aldosterone-producing adenoma (APA), characterized by unilaterally excessive aldosterone production, is a common cause of primary aldosteronism. Ferroptosis, a recently raised iron-dependent mode of programmed cell death, has been involved in the development and therapy of various diseases. This study obtained datasets of the mRNA and lncRNA expression profiles for APA and adjacent adrenal gland (AAG) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and lncRNAs (DE lncRNAs) associated with ferroptosis were identified. Enrichment analyses indicated 89 ferroptosis-related DEGs were primarily enriched in ROS related processes and ferroptosis. Two physical cores, and one combined core were identified in the protein-protein interaction (PPI). DEGs and clinical traits were used in conjunction to screen eight hub genes from two hub modules and 89 DEGs. A competitive endogenous RNA (ceRNA) network was constructed via co-express analysis. Thereafter, molecular docking was used to identify potential targets. Two active compounds, QL-X-138 and MK-1775, bound to AURKA and DUOX1, respectively, with the lowest binding energies. Molecular dynamics simulation verified the stability of the two complexes. In summary, our studies identified eight hub genes and a novel ceRNA regulatory network associated with ferroptosis, wherein QL-X-138 and MK-1775 were considered to be potential drugs for treating APA.
Collapse
Affiliation(s)
- Yu Hanxiao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Boyun
- Department of Allergy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Minyue
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Xiaoxiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Park SJ, Shin JI. Diagnosis and Treatment of Monogenic Hypertension in Children. Yonsei Med J 2023; 64:77-86. [PMID: 36719014 PMCID: PMC9892546 DOI: 10.3349/ymj.2022.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023] Open
Abstract
Although the majority of individuals with hypertension (HTN) have primary and polygenic HTN, monogenic HTN is a secondary type that is widely thought to play a key role in pediatric HTN, which has the characteristics of early onset, refractory HTN with a positive family history, and electrolyte disorders. Monogenic HTN results from single genetic mutations that contribute to the dysregulation of blood pressure (BP) in the kidneys and adrenal glands. It is pathophysiologically associated with increased sodium reabsorption in the distal tubule, intravascular volume expansion, and HTN, as well as low renin and varying aldosterone levels. Simultaneously increased or decreased potassium levels also provide clues for the diagnosis of monogenic HTN. Discovering the genetic factors that cause an increase in BP has been shown to be related to the choice of and responses to antihypertensive medications. Therefore, early and precise diagnosis with genetic sequencing and effective treatment with accurate antihypertensive agents are critical in the management of monogenic HTN. In addition, understanding the genetic architecture of BP, causative molecular pathways perturbing BP regulation, and pharmacogenomics can help with the selection of precision and personalized medicine, as well as improve morbidity and mortality in adulthood.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Abstract
Adrenal cortical carcinoma (ACC) is a rare and aggressive malignancy that poses challenging issues regarding the diagnostic workup. Indeed, no presurgical technique or clinical parameters can reliably distinguish between adrenal cortical adenomas, which are more frequent and have a favorable outcome, and ACC, and the final diagnosis largely relies on histopathologic analysis of the surgical specimen. However, even the pathologic assessment of malignancy in an adrenal cortical lesion is not straightforward and requires a combined evaluation of multiple histopathologic features. Starting from the Weiss score, which was developed in 1984, several histopathologic scoring systems have been designed to tackle the difficulties of ACC diagnosis. Dealing with specific histopathologic variants (eg, Liss-Weiss-Bisceglia scoring system for oncocytic ACC) or patient characteristics (eg, Wieneke index in the pediatric setting), these scores remarkably improved the diagnostic workup of ACC and its subtypes. Nevertheless, cases with misleading features or discordant correlations between pathologic findings and clinical behavior still occur. Owing to multicentric collaborative studies integrating morphologic features with ancillary immunohistochemical markers and molecular analysis, ACC has eventually emerged as a multifaceted, heterogenous malignancy, and, while innovative and promising approaches are currently being tested, the future clinical management of patients with ACC will mainly rely on personalized medicine and target-therapy protocols. At the dawn of the new Fifth World Health Organization classification of endocrine tumors, this review will tackle ACC from the pathologist's perspective, thus focusing on the main available diagnostic, prognostic, and predictive tissue-tethered features and biomarkers and providing relevant clinical and molecular correlates.
Collapse
|
10
|
Vaidya A, Hundemer GL, Nanba K, Parksook WW, Brown JM. Primary Aldosteronism: State-of-the-Art Review. Am J Hypertens 2022; 35:967-988. [PMID: 35767459 PMCID: PMC9729786 DOI: 10.1093/ajh/hpac079] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
We are witnessing a revolution in our understanding of primary aldosteronism (PA). In the past 2 decades, we have learned that PA is a highly prevalent syndrome that is largely attributable to pathogenic somatic mutations, that contributes to cardiovascular, metabolic, and kidney disease, and that when recognized, can be adequately treated with widely available mineralocorticoid receptor antagonists and/or surgical adrenalectomy. Unfortunately, PA is rarely diagnosed, or adequately treated, mainly because of a lack of awareness and education. Most clinicians still possess an outdated understanding of PA; from primary care physicians to hypertension specialists, there is an urgent need to redefine and reintroduce PA to clinicians with a modern and practical approach. In this state-of-the-art review, we provide readers with the most updated knowledge on the pathogenesis, prevalence, diagnosis, and treatment of PA. In particular, we underscore the public health importance of promptly recognizing and treating PA and provide pragmatic solutions to modify clinical practices to achieve this.
Collapse
Affiliation(s)
- Anand Vaidya
- Department of Medicine, Center for Adrenal Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory L Hundemer
- Department of Medicine (Division of Nephrology) and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wasita W Parksook
- Department of Medicine, Division of Endocrinology and Metabolism, and Division of General Internal Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jenifer M Brown
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Kitamura T, Blinder AR, Nanba K, Tsuiki M, Mishina M, Okuno H, Moriyoshi K, Yamazaki Y, Sasano H, Yoneyama K, Udager AM, Rainey WE, Yasoda A, Satoh-Asahara N, Tagami T. ACTH-independent production of 11-oxygenated androgens and glucocorticoids in an adrenocortical adenoma. Eur J Endocrinol 2022; 187:K39-K45. [PMID: 36691941 DOI: 10.1530/eje-22-0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE STATEMENT Due to its rarity, biochemical and histologic characteristics of androgen and glucocorticoid co-secreting adrenocortical adenomas are largely unknown. Herein, we report a case of adrenocortical adenoma that caused marked hyperandrogenemia and mild autonomous cortisol secretion. In this study, we investigated serum steroid profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and histologic characteristics of the resected tumor. LC-MS/MS revealed highly elevated levels of 11-oxygenated androgens which have not been well studied in adrenal tumors. The expression patterns of steroidogenic enzymes determined by immunohistochemistry supported the results of steroid profiling and suggested the capacity of the tumor cells to produce 11-oxygenated androgens. Measurement of 11-oxygenated steroids should facilitate a better understanding of androgen-producing adrenocortical neoplasms.
Collapse
Affiliation(s)
- Takuya Kitamura
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, Kyoto, Japan
| | - Mika Tsuiki
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Mutsuki Mishina
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiroshi Okuno
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koki Moriyoshi
- Department of Diagnostic Pathology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, Kyoto, Japan
| | - Tetsuya Tagami
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, Kyoto, Japan
| |
Collapse
|
12
|
Abstract
Primary aldosteronism is a common cause of hypertension and is a risk factor for cardiovascular and renal morbidity and mortality, via mechanisms mediated by both hypertension and direct insults to target organs. Despite its high prevalence and associated complications, primary aldosteronism remains largely under-recognized, with less than 2% of people in at-risk populations ever tested. Fundamental progress made over the past decade has transformed our understanding of the pathogenesis of primary aldosteronism and of its clinical phenotypes. The dichotomous paradigm of primary aldosteronism diagnosis and subtyping is being redefined into a multidimensional spectrum of disease, which spans subclinical stages to florid primary aldosteronism, and from single-focal or multifocal to diffuse aldosterone-producing areas, which can affect one or both adrenal glands. This Review discusses how redefining the primary aldosteronism syndrome as a multidimensional spectrum will affect the approach to the diagnosis and subtyping of primary aldosteronism.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Clinical Translationality of KCNJ5 Mutation in Aldosterone Producing Adenoma. Int J Mol Sci 2022; 23:ijms23169042. [PMID: 36012306 PMCID: PMC9409469 DOI: 10.3390/ijms23169042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension due to primary aldosteronism poses a risk of severe cardiovascular complications compared to essential hypertension. The discovery of the KCNJ5 somatic mutation in aldosteroene producing adenoma (APA) in 2011 and the development of specific CYP11B2 antibodies in 2012 have greatly advanced our understanding of the pathophysiology of primary aldosteronism. In particular, the presence of CYP11B2-positive aldosterone-producing micronodules (APMs) in the adrenal glands of normotensive individuals and the presence of renin-independent aldosterone excess in normotensive subjects demonstrated the continuum of the pathogenesis of PA. Furthermore, among the aldosterone driver mutations which incur excessive aldosterone secretion, KCNJ5 was a major somatic mutation in APA, while CACNA1D is a leading somatic mutation in APMs and idiopathic hyperaldosteronism (IHA), suggesting a distinctive pathogenesis between APA and IHA. Although the functional detail of APMs has not been still uncovered, its impact on the pathogenesis of PA is gradually being revealed. In this review, we summarize the integrated findings regarding APA, APM or diffuse hyperplasia defined by novel CYP11B2, and aldosterone driver mutations. Following this, we discuss the clinical implications of KCNJ5 mutations to support better cardiovascular outcomes of primary aldosteronism.
Collapse
|
14
|
Tetti M, Gong S, Veglio F, Reincke M, Williams TA. Primary aldosteronism: Pathophysiological mechanisms of cell death and proliferation. Front Endocrinol (Lausanne) 2022; 13:934326. [PMID: 36004349 PMCID: PMC9393369 DOI: 10.3389/fendo.2022.934326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Primary aldosteronism is the most common surgically curable form of hypertension. The sporadic forms of the disorder are usually caused by aldosterone overproduction from a unilateral adrenocortical aldosterone-producing adenoma or from bilateral adrenocortical hyperplasia. The main knowledge-advances in disease pathophysiology focus on pathogenic germline and somatic variants that drive the excess aldosterone production. Less clear are the molecular and cellular mechanisms that lead to an increased mass of the adrenal cortex. However, the combined application of transcriptomics, metabolomics, and epigenetics has achieved substantial insight into these processes and uncovered the evolving complexity of disrupted cell growth mechanisms in primary aldosteronism. In this review, we summarize and discuss recent progress in our understanding of mechanisms of cell death, and proliferation in the pathophysiology of primary aldosteronism.
Collapse
Affiliation(s)
- Martina Tetti
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Siyuan Gong
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Santana LS, Guimaraes AG, Almeida MQ. Pathogenesis of Primary Aldosteronism: Impact on Clinical Outcome. Front Endocrinol (Lausanne) 2022; 13:927669. [PMID: 35813615 PMCID: PMC9261097 DOI: 10.3389/fendo.2022.927669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary arterial hypertension, with a prevalence of approximately 20% in patients with resistant hypertension. In the last decade, somatic pathogenic variants in KCNJ5, CACNA1D, ATP1A1 and ATP2B3 genes, which are involved in maintaining intracellular ionic homeostasis and cell membrane potential, were described in aldosterone-producing adenomas (aldosteronomas). All variants in these genes lead to the activation of calcium signaling, the major trigger for aldosterone production. Genetic causes of familial hyperaldosteronism have been expanded through the report of germline pathogenic variants in KCNJ5, CACNA1H and CLCN2 genes. Moreover, PDE2A and PDE3B variants were associated with bilateral PA and increased the spectrum of genetic etiologies of PA. Of great importance, the genetic investigation of adrenal lesions guided by the CYP11B2 staining strongly changed the landscape of somatic genetic findings of PA. Furthermore, CYP11B2 staining allowed the better characterization of the aldosterone-producing adrenal lesions in unilateral PA. Aldosterone production may occur from multiple sources, such as solitary aldosteronoma or aldosterone-producing nodule (classical histopathology) or clusters of autonomous aldosterone-producing cells without apparent neoplasia denominated aldosterone-producing micronodules (non-classical histopathology). Interestingly, KCNJ5 mutational status and classical histopathology of unilateral PA (aldosteronoma) have emerged as relevant predictors of clinical and biochemical outcome, respectively. In this review, we summarize the most recent advances in the pathogenesis of PA and discuss their impact on clinical outcome.
Collapse
Affiliation(s)
- Lucas S. Santana
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Augusto G. Guimaraes
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Madson Q. Almeida
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Pitsava G, Stratakis CA. Genetic Alterations in Benign Adrenal Tumors. Biomedicines 2022; 10:biomedicines10051041. [PMID: 35625779 PMCID: PMC9138431 DOI: 10.3390/biomedicines10051041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
The genetic basis of most types of adrenal adenomas has been elucidated over the past decade, leading to the association of adrenal gland pathologies with specific molecular defects. Various genetic studies have established links between variants affecting the protein kinase A (PKA) signaling pathway and benign cortisol-producing adrenal lesions. Specifically, genetic alterations in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B have been identified. The PKA signaling pathway was initially implicated in the pathogenesis of Cushing syndrome in studies aiming to understand the underlying genetic defects of the rare tumor predisposition syndromes, Carney complex, and McCune-Albright syndrome, both affected by the same pathway. In addition, germline variants in ARMC5 have been identified as a cause of primary bilateral macronodular adrenal hyperplasia. On the other hand, primary aldosteronism can be subclassified into aldosterone-producing adenomas and bilateral idiopathic hyperaldosteronism. Various genes have been reported as causative for benign aldosterone-producing adrenal lesions, including KCNJ5, CACNA1D, CACNA1H, CLCN2, ATP1A1, and ATP2B3. The majority of them encode ion channels or pumps, and genetic alterations lead to ion transport impairment and cell membrane depolarization which further increase aldosterone synthase transcription and aldosterone overproduction though activation of voltage-gated calcium channels and intracellular calcium signaling. In this work, we provide an overview of the genetic causes of benign adrenal tumors.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
- Human Genetics & Precision Medicine, IMBB, FORTH, 70013 Heraklion, Greece
- ELPEN Research Institute, ELPEN, 19009 Athens, Greece
| |
Collapse
|
17
|
Primary Aldosteronism: A Consequence of Sugar and Western Diet? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Rege J, Hoxie J, Liu CJ, Cash MN, Luther JM, Gellert L, Turcu AF, Else T, Giordano TJ, Udager AM, Rainey WE, Nanba K. Targeted Mutational Analysis of Cortisol-Producing Adenomas. J Clin Endocrinol Metab 2022; 107:e594-e603. [PMID: 34534321 PMCID: PMC8764218 DOI: 10.1210/clinem/dgab682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Somatic gene mutations have been identified in only about half of cortisol-producing adenomas (CPAs). Affected genes include PRKACA, GNAS, PRKAR1A, and CTNNB1. OBJECTIVE This work aims to expand our understanding of the prevalence of somatic mutations in CPAs from patients with overt Cushing syndrome (OCS) and "subclinical" mild autonomous cortisol excess (MACE), with an immunohistochemistry (IHC)‒guided targeted amplicon sequencing approach using formalin-fixed paraffin-embedded (FFPE) tissue. METHODS We analyzed FFPE adrenal tissue from 77 patients (n = 12 men, 65 women) with either OCS (n = 32) or MACE (n = 45). Using IHC for 17α-hydroxylase/17,20-lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase (HSD3B2), we identified 78 CPAs (32 OCS CPAs and 46 MACE CPAs). Genomic DNA was isolated from the FFPE CPAs and subjected to targeted amplicon sequencing for identification of somatic mutations. RESULTS Somatic mutations were identified in 71.8% (56/78) of the CPAs. While PRKACA was the most frequently mutated gene in OCS CPAs (14/32, 43.8%), somatic genetic aberrations in CTNNB1 occurred in 56.5% (26/46) of the MACE CPAs. Most GNAS mutations were observed in MACE CPAs (5/7, 71.4%). No mutations were observed in PRKAR1A. In addition to the known mutations, we identified one previously unreported mutation in PRKACA. Two patients with MACE harbored 2 adjacent tumors within the same adrenal gland - one patient had 2 CPAs, and the other patient had a CPA and an aldosterone-producing adenoma (identified by IHC for aldosterone synthase). CONCLUSION A comprehensive FFPE IHC-guided gene-targeted sequencing approach identified somatic mutations in 71.8% of the CPAs. OCS CPAs demonstrated a distinct mutation profile compared to MACE CPAs.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jessie Hoxie
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Morgan N Cash
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - James M Luther
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Lan Gellert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
- Correspondence: William E. Rainey, PhD, Department of Molecular and Integrative Physiology, University of Michigan, Room 2560C, MSRB II, 1150 W Medical Center Dr, Ann Arbor, MI 48109-5622, USA.
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Kazutaka Nanba, MD, Department of Molecular and Integrative Physiology, University of Michigan, 1150 W Medical Center Dr, Ann Arbor, MI, 48109, USA; Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| |
Collapse
|
19
|
Pathophysiology of Mild Hypercortisolism: From the Bench to the Bedside. Int J Mol Sci 2022; 23:ijms23020673. [PMID: 35054858 PMCID: PMC8775422 DOI: 10.3390/ijms23020673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Mild hypercortisolism is defined as biochemical evidence of abnormal cortisol secretion without the classical detectable manifestations of overt Cushing’s syndrome and, above all, lacking catabolic characteristics such as central muscle weakness, adipose tissue redistribution, skin fragility and unusual infections. Mild hypercortisolism is frequently discovered in patients with adrenal incidentalomas, with a prevalence ranging between 5 and 50%. This high variability is mainly due to the different criteria used for defining this condition. This subtle cortisol excess has also been described in patients with incidentally discovered pituitary tumors with an estimated prevalence of 5%. To date, the mechanisms responsible for the pathogenesis of mild hypercortisolism of pituitary origin are still not well clarified. At variance, recent advances have been made in understanding the genetic background of bilateral and unilateral adrenal adenomas causing mild hypercortisolism. Some recent data suggest that the clinical effects of glucocorticoid (GC) exposure on peripheral tissues are determined not only by the amount of the adrenal GC production but also by the peripheral GC metabolism and by the GC sensitivity. Indeed, in subjects with normal cortisol secretion, the combined estimate of cortisol secretion, cortisone-to-cortisol peripheral activation by the 11 beta-hydroxysteroid dehydrogenase enzyme and GC receptor sensitizing variants have been suggested to be associated with the presence of hypertension, diabetes and bone fragility, which are three well-known consequences of hypercortisolism. This review focuses on the pathophysiologic mechanism underlying both the different sources of mild hypercortisolism and their clinical consequences (bone fragility, arterial hypertension, subclinical atherosclerosis, cardiovascular remodeling, dyslipidemia, glucose metabolism impairment, visceral adiposity, infections, muscle damage, mood disorders and coagulation).
Collapse
|
20
|
Chen YJ, Peng KY, Chueh JS, Liao HW, Hsieh TY, Wu VC, Wang SM. Case Report: Primary Aldosteronism Due to Bilateral Aldosterone-Producing Micronodules With HISTALDO Classical and Contralateral Non-Classical Pathology. Front Endocrinol (Lausanne) 2022; 13:816754. [PMID: 35399924 PMCID: PMC8989467 DOI: 10.3389/fendo.2022.816754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Non-classical multiple aldosterone-producing micronodules/nodules (mAPM/mAPN) could be the pathogenesis of primary aldosteronism (PA). The co-existence of mAPM with adenomas harboring somatic mutations has not previously been reported. METHODS We presented a PA patient with bilateral mAPM and concomitant autonomous cortisol secretion (ACS). RESULTS A 46-year-old Taiwanese woman presented with hypertension, hypokalemia, and bilateral adrenal adenomas. A 1 mg low-dose dexamethasone suppression test showed elevated morning serum cortisol. An adrenal vein sampling (AVS) suggested a left-sided lateralization of hyperaldosteronism. A right partial adrenalectomy and a left total adrenalectomy were performed. The patient showed biochemical and hypertension remission after the operation. This patient had bilateral mAPM with concomitant ACS, a right histopathologically classical PA adenoma, and a left non-classical PA adenoma. The right adrenal adenoma showed CYP11B1-negative and CYP11B2-positive staining and harbored the KCNJ5-L168R mutation. The left adrenal adenoma showed CYP11B1-positive and CYP11B2-negative staining and harbored the PRKACA-L206R mutation. CONCLUSION In a PA patient with concomitant ACS, bilateral APM could coexist with both histopathologically classical and non-classical PA adenomas, each with different somatic mutations. The presence of ACS could lead to the misinterpretation of AVS results.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeff S. Chueh
- Department of Urology, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Wei Liao
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Yi Hsieh
- Department of Urology, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Shuo-Meng Wang,
| |
Collapse
|
21
|
Pitsava G, Maria AG, Faucz FR. Disorders of the adrenal cortex: Genetic and molecular aspects. Front Endocrinol (Lausanne) 2022; 13:931389. [PMID: 36105398 PMCID: PMC9465606 DOI: 10.3389/fendo.2022.931389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Adrenal cortex produces glucocorticoids, mineralocorticoids and adrenal androgens which are essential for life, supporting balance, immune response and sexual maturation. Adrenocortical tumors and hyperplasias are a heterogenous group of adrenal disorders and they can be either sporadic or familial. Adrenocortical cancer is a rare and aggressive malignancy, and it is associated with poor prognosis. With the advance of next-generation sequencing technologies and improvement of genomic data analysis over the past decade, various genetic defects, either from germline or somatic origin, have been unraveled, improving diagnosis and treatment of numerous genetic disorders, including adrenocortical diseases. This review gives an overview of disorders associated with the adrenal cortex, the genetic factors of these disorders and their molecular implications.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- Molecular Genomics Core (MGC), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- *Correspondence: Fabio R. Faucz,
| |
Collapse
|
22
|
Pavlovic O, Hudolin T, Miskulin I, Bulimbasic S, Coric M, Perkovic J, Zekulic T. Immunohistochemical Expression of Wnt-4 Protein in Clear Cell Renal Carcinoma. J Clin Med 2021; 10:jcm10245795. [PMID: 34945091 PMCID: PMC8705518 DOI: 10.3390/jcm10245795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Wingless binding integration site proteins (Wnt) have an important role in normal kidney development and in various kidney diseases. They are required for complete epithelial differentiation and normal nephron formation. Changes in these proteins could also have important role in carcinogenesis. This study included 185 patients with clear cell renal carcinoma (ccRCC) in whom immunohistochemical expression of Wnt-4 protein in healthy and tumorous tissue after surgery was investigated. There was higher expression of Wnt-4 in healthy than in tumor tissue. No difference between Fuhrman’s grade and Wnt-4 expression was found. A poor negative correlation between tumor size and Wnt-4 expression was found. Patients with suspected metastatic diseases had higher Wnt-4 expression. There was no difference in survival rates between Wnt-4 negative and positive groups. In our study we have shown that high Wnt-4 expression in healthy tissue decreases in low-grade tumors but then increases in high-grade tumors, suggesting that tumor progression requires Wnt-4 activation or reactivation.
Collapse
Affiliation(s)
- Oliver Pavlovic
- Department of Urology, University Hospital Centre Osijek, 31000 Osijek, Croatia; (O.P.); (J.P.)
- Department of Surgery, Urology, Orthopedics and Physical and Rehabilitation Medicine, Faculty of Medicine Osijek, The Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tvrtko Hudolin
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
- Zagreb School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.C.)
- Correspondence:
| | - Ivan Miskulin
- Department of Public Health, Faculty of Medicine Osijek, The Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Stela Bulimbasic
- Zagreb School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.C.)
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marijana Coric
- Zagreb School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.C.)
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Josip Perkovic
- Department of Urology, University Hospital Centre Osijek, 31000 Osijek, Croatia; (O.P.); (J.P.)
- Department of Surgery, Urology, Orthopedics and Physical and Rehabilitation Medicine, Faculty of Medicine Osijek, The Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Toni Zekulic
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
23
|
Jang I, Kim SJ, Song RY, Kim K, Choi S, Lee JS, Gwon MK, Seong MW, Lee KE, Kim JH. Clinical and Molecular Characteristics of PRKACA L206R Mutant Cortisol-Producing Adenomas in Korean Patients. Endocrinol Metab (Seoul) 2021; 36:1287-1297. [PMID: 34852451 PMCID: PMC8743585 DOI: 10.3803/enm.2021.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND An activating mutation (c.617A>C/p.Lys206Arg, L206R) in protein kinase cAMP-activated catalytic subunit alpha (PRKACA) has been reported in 35% to 65% of cases of cortisol-producing adenomas (CPAs). We aimed to compare the clinical characteristics and transcriptome analysis between PRKACA L206R mutants and wild-type CPAs in Korea. METHODS We included 57 subjects with CPAs who underwent adrenalectomy at Seoul National University Hospital. Sanger sequencing for PRKACA was conducted in 57 CPA tumor tissues. RNA sequencing was performed in 13 fresh-frozen tumor tissues. RESULTS The prevalence of the PRKACA L206R mutation was 51% (29/57). The mean age of the study subjects was 42±12 years, and 87.7% (50/57) of the patients were female. Subjects with PRKACA L206R mutant CPAs showed smaller adenoma size (3.3±0.7 cm vs. 3.8±1.2 cm, P=0.059) and lower dehydroepiandrosterone sulfate levels (218±180 ng/mL vs. 1,511±3,307 ng/mL, P=0.001) than those with PRKACA wild-type CPAs. Transcriptome profiling identified 244 differentially expressed genes (DEGs) between PRKACA L206R mutant (n=8) and wild-type CPAs (n=5), including five upregulated and 239 downregulated genes in PRKACA L206R mutant CPAs (|fold change| ≥2, P<0.05). Among the upstream regulators of DEGs, CTNNB1 was the most significant transcription regulator. In several pathway analyses, the Wnt signaling pathway was downregulated and the steroid biosynthesis pathway was upregulated in PRKACA mutants. Protein-protein interaction analysis also showed that PRKACA downregulates Wnt signaling and upregulates steroid biosynthesis. CONCLUSION The PRKACA L206R mutation in CPAs causes high hormonal activity with a limited proliferative capacity, as supported by transcriptome profiling.
Collapse
Affiliation(s)
- Insoon Jang
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
- Corresponding authors: Kyu Eun Lee, Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea, Tel: +82-2-2072-2081, Fax: +82-2-766-3975, E-mail:
| | - Su-jin Kim
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul,
Korea
- Corresponding authors: Kyu Eun Lee, Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea, Tel: +82-2-2072-2081, Fax: +82-2-766-3975, E-mail:
| | - Ra-Young Song
- Department of Surgery, Chung-Ang University Hospital, Seoul,
Korea
| | - Kwangsoo Kim
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Seongmin Choi
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Jang-Seok Lee
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Min-Kyeong Gwon
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Moon Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Kyu Eun Lee
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul,
Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
24
|
Wu VC, Peng KY, Kuo YP, Liu H, Tan BCM, Lin YH, Lai TS, Chen YM, Chueh JS. Subtypes of Histopathologically Classical Aldosterone-Producing Adenomas Yield Various Transcriptomic Signaling and Outcomes. Hypertension 2021; 78:1791-1800. [PMID: 34657444 DOI: 10.1161/hypertensionaha.121.18006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vin-Cent Wu
- Division of Nephrology (V.-C.W., T.-S.L., Y.-M.C.), National Taiwan University Hospital, Taipei
| | - Kang-Yung Peng
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan (H.L., K.-Y.P.)
| | | | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan (H.L., K.-Y.P.).,Graduate Institute of Biomedical Sciences (H.L., B.C.-M.T.), Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology (H.L.), Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Neurosurgery (H.L.), Taoyuan, Taiwan. TAIPAI group, Taiwan Primary Aldosteronism Investigation, Taipei, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences (H.L., B.C.-M.T.), Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, Research Center for Emerging Viral Infections (B.C.-M.T.), Chang Gung University, Taoyuan, Taiwan.,College of Medicine (B.C.-M.T.), Chang Gung University, Taoyuan, Taiwan.,Lin-Kou Medical Center, Chang Gung Memorial Hospital (B.C.-M.T.), Taoyuan, Taiwan. TAIPAI group, Taiwan Primary Aldosteronism Investigation, Taipei, Taiwan
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine (Y.-H.L.), National Taiwan University Hospital, Taipei
| | - Tai-Shuan Lai
- Division of Nephrology (V.-C.W., T.-S.L., Y.-M.C.), National Taiwan University Hospital, Taipei
| | - Yung-Ming Chen
- Division of Nephrology (V.-C.W., T.-S.L., Y.-M.C.), National Taiwan University Hospital, Taipei
| | - Jeff S Chueh
- Department of Urology, College of Medicine (J.S.C.), National Taiwan University Hospital, Taipei
| | | |
Collapse
|
25
|
Viengchareun S, Pussard E, Castanet M, Sachs LM, Vu TA, Boileau P, Lombès M, Martinerie L. The invention of aldosterone, how the past resurfaces in pediatric endocrinology. Mol Cell Endocrinol 2021; 535:111375. [PMID: 34197901 DOI: 10.1016/j.mce.2021.111375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Sodium and water homeostasis are drastically modified at birth, in mammals, by the transition from aquatic life to terrestrial life. Accumulating evidence during the past ten years underscores the central role for the mineralocorticoid signaling pathway, in the fine regulation of this equilibrium, at this critical period of development. Interestingly, regarding evolution, while the mineralocorticoid receptor is expressed in fish, the appearance of its related ligand, aldosterone, coincides with terrestrial life, as it is first detected in lungfish and amphibian. Thus, aldosterone is likely one of the main hormones regulating the transition from an aquatic environment to an air environment. This review will focus on the different actors of the mineralocorticoid signaling pathway from aldosterone secretion in the adrenal gland, to mineralocorticoid receptor expression in the kidney, summarizing their regulation and roles throughout fetal and neonatal development, in the light of evolution.
Collapse
Affiliation(s)
- Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France
| | - Eric Pussard
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France; Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275, Le Kremlin Bicêtre, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, Inserm U1239, CHU Rouen, Department of Pediatrics, F-76000, Rouen, France
| | - Laurent M Sachs
- UMR 7221 Molecular Physiology and Adaption, Department Adaptation of Life, Centre National de La Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - Thi An Vu
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France
| | - Pascal Boileau
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France; Department of Neonatal Pediatrics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain, 10, Rue du Champ Gaillard 78300 Poissy France; Université Paris-Saclay, UVSQ, 78180, Montigny-Le-Bretonneux, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France; Université de Paris, 75019, Paris, France; Pediatric Endocrinology Department, AP-HP, Hôpital Universitaire Robert-Debre, 75019, Paris, France.
| |
Collapse
|
26
|
Chiodini I, Gennari L. Grand Challenge in Adrenal Endocrinology: Is the Legacy of the Past a Challenge for the Future of Precision Medicine? Front Endocrinol (Lausanne) 2021; 12:747006. [PMID: 34539585 PMCID: PMC8446680 DOI: 10.3389/fendo.2021.747006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Iacopo Chiodini
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Giovanelli L, Aresta C, Favero V, Bonomi M, Cangiano B, Eller-Vainicher C, Grassi G, Morelli V, Pugliese F, Falchetti A, Gennari L, Scillitani A, Persani L, Chiodini I. Hidden hypercortisolism: a too frequently neglected clinical condition. J Endocrinol Invest 2021; 44:1581-1596. [PMID: 33394454 DOI: 10.1007/s40618-020-01484-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Classic Cushing's syndrome (CS) is a severe disease characterized by central obesity, hypertension, easy bruising, striae rubrae, buffalo hump, proximal myopathy and hypertricosis. However, several CS cases have also been reported with unusual or camouflaged manifestations. In recent years, several authors investigated the prevalence of "hidden hypercortisolism" (HidHyCo) among subjects affected with bone fragility, hypertension and type 2 diabetes mellitus (DM2). The prevalence of the HidHyCo is estimated to be much higher than that of classic CS. However, similarly to classic CS, HidHyCo is known to increase the risk of fractures, cardiovascular disease and mortality. METHODS We reviewed all published cases of unusual presentations of hypercortisolism and studies specifically assessing the HidHyCo prevalence in diabetic, osteoporotic and hypertensive patients. RESULTS We found 49 HidHyCo cases, in whom bone fragility, hypertension and diabetes were the presenting manifestations of an otherwise silent hypercortisolism. Amongst these cases, 34.7%, 32.7%, 6.1% and 19.0%, respectively, had bone fragility, hypertension, DM2 or hypertension plus DM2 as the sole clinical manifestations of HidHyCo. Overall, 25% of HidHyCo cases were of pituitary origin, and bone fragility was the very prevalent first manifestation among them. In population studies, it is possible to estimate that 1-4% of patients with apparent primary osteoporosis has a HidHyCo and the prevalence of this condition among diabetics ranges between 3.4 and 10%. CONCLUSION These data indicate that patients with resistant or suddenly worsening hypertension or DM2 or unexplainable bone fragility should be screened for HidHyCo using the most recently approved sensitive cut-offs.
Collapse
Affiliation(s)
- L Giovanelli
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - C Aresta
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - V Favero
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Bonomi
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - B Cangiano
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - C Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - G Grassi
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - V Morelli
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - F Pugliese
- Unit of Endocrinology and Diabetology "Casa Sollievo della Sofferenza" Hospital, IRCCS, San Giovanni Rotondo, FG, Italy
| | - A Falchetti
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
| | - L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - A Scillitani
- Unit of Endocrinology and Diabetology "Casa Sollievo della Sofferenza" Hospital, IRCCS, San Giovanni Rotondo, FG, Italy
| | - L Persani
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - I Chiodini
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, Via Magnasco 2, 20149, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Shimada H, Yamazaki Y, Sugawara A, Sasano H, Nakamura Y. Molecular Mechanisms of Functional Adrenocortical Adenoma and Carcinoma: Genetic Characterization and Intracellular Signaling Pathway. Biomedicines 2021; 9:biomedicines9080892. [PMID: 34440096 PMCID: PMC8389593 DOI: 10.3390/biomedicines9080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor prognosis. Various genetic abnormalities have been reported, which are associated with possible pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In particular, somatic mutations in APAs have been detected in genes encoding membrane proteins, especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics and regulation of intracellular signaling and transcription factors in individual tumors.
Collapse
Affiliation(s)
- Hiroki Shimada
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan;
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (Y.Y.); (H.S.)
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Miyagi, Japan;
- Correspondence: ; Tel.: +81-22-290-8731
| |
Collapse
|
29
|
Meyer LS, Handgriff L, Lim JS, Udager AM, Kinker IS, Ladurner R, Wildgruber M, Knösel T, Bidlingmaier M, Rainey WE, Reincke M, Williams TA. Single-Center Prospective Cohort Study on the Histopathology, Genotype, and Postsurgical Outcomes of Patients With Primary Aldosteronism. Hypertension 2021; 78:738-746. [PMID: 34024122 DOI: 10.1161/hypertensionaha.121.17348] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lucie S Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Laura Handgriff
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Jung Soo Lim
- Department of Molecular and Integrative Physiology (J.S.L., W.E.R.), University of Michigan Medical School, Ann Arbor, MI
| | - Aaron M Udager
- Department of Pathology (A.M.U.), University of Michigan Medical School, Ann Arbor, MI.,Michigan Center for Translational Pathology, Ann Arbor (A.M.U.).,Rogel Cancer Center, University of Michigan, Ann Arbor (A.M.U.)
| | - Isabella-Sabrina Kinker
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Roland Ladurner
- Klinik für Viszeral- und Endokrine Chirurgie, Klinikum der Universität München, Germany (R.L.)
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Germany (M.W.)
| | - Thomas Knösel
- Institute of Pathology (T.K.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - William E Rainey
- Department of Molecular and Integrative Physiology (J.S.L., W.E.R.), University of Michigan Medical School, Ann Arbor, MI
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München (L.S.M., L.H., I.K., M.B., M.R., T.A.W.), Ludwig-Maximilians-Universität München, Germany.,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (T.A.W.)
| |
Collapse
|
30
|
Pauzi FA, Azizan EA. Functional Characteristic and Significance of Aldosterone-Producing Cell Clusters in Primary Aldosteronism and Age-Related Hypertension. Front Endocrinol (Lausanne) 2021; 12:631848. [PMID: 33763031 PMCID: PMC7982842 DOI: 10.3389/fendo.2021.631848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Primary aldosteronism (PA) is one of the most frequent curable forms of secondary hypertension. It can be caused by the overproduction of aldosterone in one or both adrenal glands. The most common subtypes of PA are unilateral aldosterone over-production due to aldosterone-producing adenomas (APA) or bilateral aldosterone over-production due to bilateral hyperaldosteronism (BHA). Utilizing the immunohistochemical (IHC) detection of aldosterone synthase (CYP11B2) has allowed the identification of aldosterone-producing cell clusters (APCCs) with unique focal localization positive for CYP11B2 expression in the subcapsular portion of the human adult adrenal cortex. The presence of CYP11B2 supports that synthesis of aldosterone can occur in these cell clusters and therefore might contribute to hyperaldosteronism. However, the significance of the steroidogenic properties of APCCs especially in regards to PA remains unclear. Herein, we review the available evidence on the presence of APCCs in normal adrenals and adrenal tissues adjacent to APAs, their aldosterone-stimulating somatic gene mutations, and their accumulation during the ageing process; raising the possibility that APCCs may play a role in the development of PA and age-related hypertension.
Collapse
|
31
|
Nishimoto K, Umakoshi H, Seki T, Yasuda M, Araki R, Otsuki M, Katabami T, Shibata H, Ogawa Y, Wada N, Sone M, Okamura S, Izawa S, Miyauchi S, Yoshimoto T, Tsuiki M, Naruse M. Diverse pathological lesions of primary aldosteronism and their clinical significance. Hypertens Res 2021; 44:498-507. [PMID: 33437027 PMCID: PMC8099725 DOI: 10.1038/s41440-020-00579-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/29/2023]
Abstract
Primary aldosteronism (PA) is mainly clinically classified as unilateral aldosterone-producing adenoma (APA) or bilateral idiopathic hyperaldosteronism. Immunohistochemistry for aldosterone synthase reveals a diverse PA pathology, including pathological APA and aldosterone-producing cell clusters. The relationship between PA pathology and adrenalectomy outcomes was examined herein. Data from 219 unilaterally adrenalectomized PA cases were analyzed. Pathological analyses revealed diverse putative aldosterone-producing lesions. Postoperative biochemical outcomes in 114 cases (test cohort) were classified as complete success (n = 85), partial success (n = 19), and absent success (n = 10). Outcomes in the large and small PA lesion groups, rather than between PA lesion types, were compared at five threshold values for PA lesion sizes (2-6 mm with 1-mm increments) to streamline the results. The proportion of complete success was significantly higher in the large PA lesion group than in the small PA lesion group at the 5-mm threshold only. The proportion of absent success was significantly higher in the small PA lesion group than in the large PA lesion group at all thresholds. Univariate and multivariate analyses of the test cohort identified serum K as an independent predictive factor for the small PA lesion group, which was confirmed in the 105-case validation cohort. Chi-squared automatic interaction detector analysis revealed that the best threshold of serum K for predicting large PA lesions was 2.82 mEq/L. These results will be beneficial for treating PA in clinical settings because patients with low serum K levels and apparent adrenal masses on CT may be subjected to adrenalectomy even if the adrenal venous sampling test is unavailable.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- grid.412377.4Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, 350-1241 Japan
| | - Hironobu Umakoshi
- grid.410835.bDepartment of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555 Japan
| | - Tsugio Seki
- Department of Medical Education, School of Medicine, California University of Science and Medicine, Colton, CA USA
| | - Masanori Yasuda
- grid.412377.4Department of Pathology, Saitama Medical University International Medical Center, Hidaka, 350-1241 Japan
| | - Ryuichiro Araki
- grid.410802.f0000 0001 2216 2631Community Health Science Center, Saitama Medical University, Saitama, 350-0495 Japan
| | - Michio Otsuki
- grid.136593.b0000 0004 0373 3971Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, 565-0871 Japan
| | - Takuyuki Katabami
- grid.412764.20000 0004 0372 3116Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, 241-0811 Japan
| | - Hirotaka Shibata
- grid.412334.30000 0001 0665 3553Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, 879-5593 Japan
| | - Yoshihiro Ogawa
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582 Japan ,grid.265073.50000 0001 1014 9130Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Tokyo, 113-8510 Japan
| | - Norio Wada
- grid.415261.50000 0004 0377 292XDepartment of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 060-8604 Japan
| | - Masakatsu Sone
- grid.258799.80000 0004 0372 2033Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, 606-8303 Japan
| | - Shintaro Okamura
- grid.416952.d0000 0004 0378 4277Department of Endocrinology, Tenri Hospital, Tenri, 632-8552 Japan
| | - Shoichiro Izawa
- grid.265107.70000 0001 0663 5064Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, Yonago, 683-8504 Japan
| | - Shozo Miyauchi
- grid.417104.70000 0004 0640 6124Department of Internal Medicine, Uwajima City Hospital, Uwajima, Japan
| | - Takanobu Yoshimoto
- grid.265073.50000 0001 1014 9130Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Tokyo, 113-8510 Japan
| | - Mika Tsuiki
- grid.410835.bDepartment of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555 Japan
| | - Mitsuhide Naruse
- grid.410835.bDepartment of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555 Japan
| | | |
Collapse
|
32
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Suzuki T, Satoh F, Sasano H. Pathology of Aldosterone Biosynthesis and its Action. TOHOKU J EXP MED 2021; 254:1-15. [PMID: 34011803 DOI: 10.1620/tjem.254.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aldosterone plays pivotal roles in renin-angiotensin-aldosterone system in order to maintain the equilibrium of liquid volume and electrolyte metabolism. Aldosterone action is mediated by both mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Its excessive actions directly induced tissue injuries in its target organs such as myocardial and vascular fibrosis in addition to chronic kidney diseases. Excessive aldosterone actions were also reported to be involved in unbalanced electrolyte metabolism in inflammatory bowel disease and development of pulmonary diseases. Hyperaldosteronism is tentatively classified into primary and secondary types. Primary aldosteronism is more frequent and has been well known to result in secondary hypertension with subsequent cardiovascular damages. Primary aldosteronism is also further classified into distinctive subtypes and among those, aldosterone-producing adenoma is the most frequent one accounting for the great majority of unilateral primary aldosteronism cases. In bilateral hyperaldosteronism, aldosterone-producing diffuse hyperplasia and aldosterone-producing micronodules or nodules are the major subtypes. All these aldosterone-producing lesions were reported to harbor somatic mutations including KCNJ5, CACNA1D, ATP1A1 and ATP2B3, which were all related to excessive aldosterone production. Among those mutations above, somatic mutation of KCNJ5 is the most frequent in aldosterone-producing adenoma and mostly composed of clear cells harboring abundant aldosterone synthase expression. In contrast, CACNA1D-mutated aldosterone-producing micronodules or aldosterone-producing nodules were frequently detected not only in primary aldosteronism patients but also in the zona glomerulosa of normal adrenal glands, which could eventually lead to an autonomous aldosterone production resulting in normotensive or overt primary aldosteronism, but their details have remained unknown.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University, Graduate School of Medicine
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University, Graduate School of Medicine
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital
| | - Hironobu Sasano
- Department of Pathology, Tohoku University, Graduate School of Medicine
| |
Collapse
|
33
|
Sherlock M, Scarsbrook A, Abbas A, Fraser S, Limumpornpetch P, Dineen R, Stewart PM. Adrenal Incidentaloma. Endocr Rev 2020; 41:bnaa008. [PMID: 32266384 PMCID: PMC7431180 DOI: 10.1210/endrev/bnaa008] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
An adrenal incidentaloma is now established as a common endocrine diagnosis that requires a multidisciplinary approach for effective management. The majority of patients can be reassured and discharged, but a personalized approach based upon image analysis, endocrine workup, and clinical symptoms and signs are required in every case. Adrenocortical carcinoma remains a real concern but is restricted to <2% of all cases. Functional adrenal incidentaloma lesions are commoner (but still probably <10% of total) and the greatest challenge remains the diagnosis and optimum management of autonomous cortisol secretion. Modern-day surgery has improved outcomes and novel radiological and urinary biomarkers will improve early detection and patient stratification in future years to come.
Collapse
Affiliation(s)
- Mark Sherlock
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, UK
| | - Afroze Abbas
- Department of Endocrinology, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, UK
| | - Sheila Fraser
- Department of Endocrine Surgery, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, UK
| | - Padiporn Limumpornpetch
- Faculty of Medicine & Health, University of Leeds, Worsley Building, Clarendon Way, Leeds, UK
| | - Rosemary Dineen
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul M Stewart
- Faculty of Medicine & Health, University of Leeds, Worsley Building, Clarendon Way, Leeds, UK
| |
Collapse
|
34
|
Zennaro MC, Boulkroun S, Fernandes-Rosa FL. Pathogenesis and treatment of primary aldosteronism. Nat Rev Endocrinol 2020; 16:578-589. [PMID: 32724183 DOI: 10.1038/s41574-020-0382-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Early diagnosis and appropriate treatment of primary aldosteronism, the most frequent cause of secondary hypertension, are crucial to prevent deleterious cardiovascular outcomes. In the past decade, the discovery of genetic abnormalities responsible for sporadic and familial forms of primary aldosteronism has improved the knowledge of the pathogenesis of this disorder. Mutations in genes encoding ion channels and pumps lead to increased cytosolic concentrations of calcium in zona glomerulosa cells, which triggers CYP11B2 expression and autonomous aldosterone production. Improved understanding of the mechanisms underlying the disease is key to improving diagnostics and to developing and implementing targeted treatments. This Review provides an update on the genetic abnormalities associated with sporadic and familial forms of primary aldosteronism, their frequency among different populations and the mechanisms explaining excessive aldosterone production and adrenal nodule development. The possible effects and uses of these findings for improving the diagnostics for primary aldosteronism are discussed. Furthermore, current treatment options of primary aldosteronism are reviewed, with particular attention to the latest studies on blood pressure and cardiovascular outcomes following medical or surgical treatment. The new perspectives regarding the use of targeted drug therapy for aldosterone-producing adenomas with specific somatic mutations are also addressed.
Collapse
Affiliation(s)
- Maria-Christina Zennaro
- INSERM, PARCC, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| | | | | |
Collapse
|
35
|
Sato S, Imachi H, Kobayashi T, Fukunaga K, Lyu J, Dong T, Yoshioka Y, Saheki T, Fukata Y, Ban N, Urushihara K, Kadota K, Murao K. Ectopic Cortisol-producing Adrenocortical Adenoma Detected by 131I-6β-iodomethyl-norcholesterol Scintigraphy. Intern Med 2020; 59:1731-1734. [PMID: 32238722 PMCID: PMC7434542 DOI: 10.2169/internalmedicine.4180-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A 50-year-old man was referred to our department for overt Cushing's syndrome (CS). His plasma cortisol concentrations were 314 μg/L, and his urinary cortisol concentrations were 431 μg/day. The plasma adrenocorticotropic hormone (ACTH) concentration was below the detectable limit. Computed tomography revealed atrophy of both adrenal glands and the presence of a left pararenal tumor. 131I-6β-iodomethyl-norcholesterol scintigraphy showed an intense uptake by the left pararenal tumor. These findings suggested that the left pararenal tumor was ectopic cortisol-producing adrenocortical adenoma. This case serves as a reminder that 131I-6β-iodomethyl-norcholesterol scintigraphy is an effective method for diagnosing ACTH-independent CS in which no adrenal tumor has been found.
Collapse
Affiliation(s)
- Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Yuuki Yoshioka
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Youko Fukata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Natsuki Ban
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Kurumi Urushihara
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| | - Kyuuichi Kadota
- Department of Pathology, Faculty of Medicine, Kagawa University, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Japan
| |
Collapse
|
36
|
Ortner NJ, Kaserer T, Copeland JN, Striessnig J. De novo CACNA1D Ca 2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch 2020; 472:755-773. [PMID: 32583268 PMCID: PMC7351864 DOI: 10.1007/s00424-020-02418-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - J Nathan Copeland
- Duke Center for Autism and Brain Development, Duke Child and Family Mental Health and Developmental Neuroscience, Durham, USA
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
37
|
Abstract
Primary aldosteronism (PA) is the most common form of endocrine hypertension. Agonistic autoantibodies against the angiotensin II type 1 receptor (AT1R-Abs) have been described in transplantation medicine and women with pre-eclampsia and more recently in patients with PA. Any functional role of AT1R-Abs in either of the two main subtypes of PA (aldosterone-producing adenoma or bilateral adrenal hyperplasia) requires clarification. In this review, we discuss the studies performed to date on AT1R-Abs in PA.
Collapse
Affiliation(s)
- Lucie S. Meyer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
| | - Siyuan Gong
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, LMU München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical
Sciences, University of Turin, Turin, Italy
- Correspondence Tracy Ann Williams PhD Medizinische Klinik und Poliklinik IV, Klinikum der
UniversitätMünchen, LMU MünchenZiemssenstr. 180336 MünchenGermany+49 89 4400 52941+49 89 4400 54428
| |
Collapse
|
38
|
Stemness regulation of the adrenal mixed corticomedullary tumorigenesis-a case-control study. Neoplasia 2020; 22:263-271. [PMID: 32438306 PMCID: PMC7240194 DOI: 10.1016/j.neo.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Mixed corticomedullary tumor is an adrenal tumor intermixed with cortical and medullary cells. It is extremely rare with unclear tumorigenesis. We reported a 32-year-old female, manifested with typical Cushing’s syndrome and hypertension, to be diagnosed with right huge adrenal mixed corticomedullary tumor (8.8 cm). Right adrenalectomy was done to document the tumor intimately admixed with adrenal cortical adenoma and pheochromocytoma by biochemistry and immunohistochemistry. A case-control study was designed to explore the tumorigenesis of mixed corticomedullary tumor by whole exome sequencing. Expression of the stemness markers was controlled by a tissue array of 80 adrenal tumors. Overall, 1559 identical variants coexisted in parts of adrenal cortical adenoma and pheochromocytoma, which mainly (85.8%) originated from germline mutations. These enriched mutations were engaged in stemness control, coherent with substantial expression of the stemness markers (SOX2, CD44 and OCT4) in both parts. The differential stemness expressions were demonstrated in other adrenal tumors as well. The germline mutations were also enriched in signaling involving cancer proliferation, hypoxia inducible factor-1, focal adhesion and extracellular matrix receptor interaction. Somatic mutations affecting mitogen-activated protein kinase signaling, glycolysis and the citrate cycle were found in some tumor elements. This is the first study to verify the rare mixed corticomedullary tumor by molecular and genetic evidence to link with its phenotype. Germline mutations involving the stemness regulation and cancer proliferative signaling may drive intermixed tumor formation. Somatic mutations related to glycolysis and the citrate cycle may contribute to greater tumor outgrowth.
Collapse
|
39
|
Maria AG, Suzuki M, Berthon A, Kamilaris C, Demidowich A, Lack J, Zilbermint M, Hannah-Shmouni F, Faucz FR, Stratakis CA. Mosaicism for KCNJ5 Causing Early-Onset Primary Aldosteronism due to Bilateral Adrenocortical Hyperplasia. Am J Hypertens 2020; 33:124-130. [PMID: 31637427 DOI: 10.1093/ajh/hpz172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Somatic variants in KCNJ5 are the most common cause of primary aldosteronism (PA). There are few patients with PA in whom the disease is caused by germline variants in the KCNJ5 potassium channel gene (familial hyperaldosteronism type III-FH-III). METHODS A 5-year-old patient who developed hypertension due to bilateral adrenocortical hyperplasia (BAH) causing PA had negative peripheral DNA testing for any known genetic causes of PA. He was treated medically with adequate control of his PA but by the third decade of his life, due to worsening renal function, he underwent bilateral adrenalectomy. RESULTS Focused exome sequencing in multiple nodules of his BAH uncovered a "hot-spot" pathogenic KCNJ5 variant, while repeated Sanger sequencing showed no detectable DNA defects in peripheral blood and other tissues. However, whole exome, "deep" sequencing revealed that 0.23% of copies of germline DNA did in fact carry the same KCNJ5 variant that was present in the adrenocortical nodules, suggesting low level germline mosaicism for this PA-causing KCNJ5 defect. CONCLUSIONS Thus, this patient represents a unique case of BAH due to a mosaic KCNJ5 defect. Undoubtedly, his milder PA compared with other known cases of FH-III, was due to his mosaicism. This case has a number of implications for the prognosis, treatment, and counseling of the many patients with PA due to BAH that are seen in hypertension clinics.
Collapse
Affiliation(s)
- Andrea G Maria
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Mari Suzuki
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- National Institute of Diabetes and Digestive and Kidney Disorders, Bethesda, Maryland, USA
| | - Annabel Berthon
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Crystal Kamilaris
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Andrew Demidowich
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, Frederick, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mihail Zilbermint
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Community Physicians at Suburban Hospital, Bethesda, Maryland, USA
| | - Fady Hannah-Shmouni
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Fabio R Faucz
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Left-versus-right-adrenal-volume ratio as a screening index before adrenal venous sampling to identify unilateral primary aldosteronism patients. J Hypertens 2020; 38:347-353. [DOI: 10.1097/hjh.0000000000002271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Itcho K, Oki K, Gomez-Sanchez CE, Gomez-Sanchez EP, Ohno H, Kobuke K, Nagano G, Yoshii Y, Baba R, Hattori N, Yoneda M. Endoplasmic Reticulum Chaperone Calmegin Is Upregulated in Aldosterone-Producing Adenoma and Associates With Aldosterone Production. Hypertension 2019; 75:492-499. [PMID: 31865789 DOI: 10.1161/hypertensionaha.119.14062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in syntheses of proteins and steroid hormones and regulation of intracellular Ca2+ level. We aimed to investigate ER-associated genes in aldosterone-producing adenomas (APAs) and clarify their effect on aldosterone production. Microarray analysis targeting 288 ER-associated genes was conducted using nonfunctioning adrenocortical adenomas (n=5) and APAs (n=19). Immunohistochemistry and quantitative polymerase chain reaction analyses were performed with 13 nonfunctioning adrenocortical adenoma and 48 APA samples. Functional studies were performed with human adrenocortical carcinoma (HAC15) cells, some of which were genetically modified using lentiviruses. The ER chaperone calmegin (CLGN) was the most highly expressed ER-associated gene in APAs relative to nonfunctioning adrenocortical adenomas. Analysis with quantitative polymerase chain reaction revealed CLGN to be 9.5-fold upregulated in APAs relative to nonfunctioning adrenocortical adenomas. There were no differences among different APA genotypes affecting aldosterone production. Immunohistochemistry analysis revealed that CLGN was strongly expressed in APAs and aldosterone-producing cell clusters. Angiotensin II stimulation or KCNJ5 T158A overexpression in HAC15 cells did not affect CLGN mRNA levels. CLGN overexpression in HAC15 cells increased aldosterone levels but did not stimulate CYP11B2 mRNA levels. Pathway and gene ontology analyses using RNA sequencing results showed that tRNA aminoacyl metabolism was the most enriched pathway in CLGN-overexpressing cells. CYP11B2 (aldosterone synthase) and HSD3B2 (3 beta-hydroxysteroid dehydrogenase/delta 5->4-isomerase type 2) protein expression were more abundant in CLGN-overexpressing cells. CLGN knockdown using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method in HAC15 cells that carry the KCNJ5 mutation did not affect aldosterone production. To summarize, CLGN was upregulated and associated with aldosterone production via translational regulation of CYP11B2 in APAs.
Collapse
Affiliation(s)
- Kiyotaka Itcho
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Kenji Oki
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Elise P Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Haruya Ohno
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Kazuhiro Kobuke
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Gaku Nagano
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Yoko Yoshii
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Ryuta Baba
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Noboru Hattori
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| | - Masayasu Yoneda
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.I., K.O., H.O., K.K., G.N., Y.Y., R.B., N.H., M.Y.)
| |
Collapse
|
42
|
Hundemer GL, Vaidya A. Primary Aldosteronism Diagnosis and Management: A Clinical Approach. Endocrinol Metab Clin North Am 2019; 48:681-700. [PMID: 31655770 PMCID: PMC6824480 DOI: 10.1016/j.ecl.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Primary aldosteronism used to be considered a rare cause of secondary hypertension. However, accruing evidence indicates that primary aldosteronism is more common than previously recognized. The implications of this increased prevalence are important to public health because autonomous aldosterone production contributes to cardiovascular disease and can be treated in a targeted manner. This article focuses on clinical approaches for diagnosing primary aldosteronism more frequently and earlier in its course, as well as practical treatment objectives to reduce the risk for incident cardiovascular disease.
Collapse
Affiliation(s)
- Gregory L Hundemer
- Division of Nephrology, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Box 511, Ottawa, ON K1H 8L6, Canada
| | - Anand Vaidya
- Center for Adrenal Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Genetic causes of primary aldosteronism. Exp Mol Med 2019; 51:1-12. [PMID: 31695023 PMCID: PMC6834635 DOI: 10.1038/s12276-019-0337-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
Primary aldosteronism is characterized by at least partially autonomous production of the adrenal steroid hormone aldosterone and is the most common cause of secondary hypertension. The most frequent subforms are idiopathic hyperaldosteronism and aldosterone-producing adenoma. Rare causes include unilateral hyperplasia, adrenocortical carcinoma and Mendelian forms (familial hyperaldosteronism). Studies conducted in the last eight years have identified somatic driver mutations in a substantial portion of aldosterone-producing adenomas, including the genes KCNJ5 (encoding inwardly rectifying potassium channel GIRK4), CACNA1D (encoding a subunit of L-type voltage-gated calcium channel CaV1.3), ATP1A1 (encoding a subunit of Na+/K+-ATPase), ATP2B3 (encoding a Ca2+-ATPase), and CTNNB1 (encoding ß-catenin). In addition, aldosterone-producing cells were recently reported to form small clusters (aldosterone-producing cell clusters) beneath the adrenal capsule. Such clusters accumulate with age and appear to be more frequent in individuals with idiopathic hyperaldosteronism. The fact that they are associated with somatic mutations implicated in aldosterone-producing adenomas also suggests a precursor function for adenomas. Rare germline variants of CYP11B2 (encoding aldosterone synthase), CLCN2 (encoding voltage-gated chloride channel ClC-2), KCNJ5, CACNA1H (encoding a subunit of T-type voltage-gated calcium channel CaV3.2), and CACNA1D have been reported in different subtypes of familial hyperaldosteronism. Collectively, these studies suggest that primary aldosteronism is largely due to genetic mutations in single genes, with potential implications for diagnosis and therapy.
Collapse
|
44
|
Lin YF, Peng KY, Chang CH, Hu YH, Wu VC, Chueh JS, Wu KD. Adrenalectomy Completely Cured Hypertension in Patients With Familial Hyperaldosteronism Type I Who Had Somatic KCNJ5 Mutation. J Clin Endocrinol Metab 2019; 104:5462-5466. [PMID: 31287546 DOI: 10.1210/jc.2019-00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Familial hyperaldosteronism type I (FH-I) or glucocorticoid-remediable aldosteronism (GRA) is caused by unequal crossing over of the steroid 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) genes. Somatic KCNJ5 mutations have not been reported in patients with GRA; therefore, the appropriate treatment and prognosis of such concurrent cases remain unknown. CASE DESCRIPTION Two siblings of a Taiwanese family with GRA were found to have adrenal adenomas and somatic KCNJ5 mutations. Complete clinical cure was achieved after unilateral adrenalectomy. Furthermore, the conversion site of the chimeric gene was identified by direct sequencing. CONCLUSIONS We report the coexistence of a somatic KCNJ5 mutation and GRA. Patients with GRA whose blood pressure management develops resistance to glucocorticoid treatment could therefore benefit from a lateralization test. The promising outcomes after unilateral adrenalectomy presented in this report offer new perspectives for further research into various PA subtypes.
Collapse
Affiliation(s)
- Yu-Fang Lin
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Chia-Hui Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, New Taipei City, Taiwan
| | - Ya-Hui Hu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, New Taipei City, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jeff S Chueh
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kwan-Dun Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
45
|
Göppner C, Orozco IJ, Hoegg-Beiler MB, Soria AH, Hübner CA, Fernandes-Rosa FL, Boulkroun S, Zennaro MC, Jentsch TJ. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nat Commun 2019; 10:4678. [PMID: 31615979 PMCID: PMC6794291 DOI: 10.1038/s41467-019-12113-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Human primary aldosteronism (PA) can be caused by mutations in several ion channel genes but mouse models replicating this condition are lacking. We now show that almost all known PA-associated CLCN2 mutations markedly increase ClC-2 chloride currents and generate knock-in mice expressing a constitutively open ClC-2 Cl− channel as mouse model for PA. The Clcn2op allele strongly increases the chloride conductance of zona glomerulosa cells, provoking a strong depolarization and increasing cytoplasmic Ca2+ concentration. Clcn2op mice display typical features of human PA, including high serum aldosterone in the presence of low renin activity, marked hypertension and hypokalemia. These symptoms are more pronounced in homozygous Clcn2op/op than in heterozygous Clcn2+/op mice. This difference is attributed to the unexpected finding that only ~50 % of Clcn2+/op zona glomerulosa cells are depolarized. By reproducing essential features of human PA, Clcn2op mice are a valuable model to study the pathological mechanisms underlying this disease. Mutations in the chloride channel ClC-2 have been found in primary aldosteronism (PA). Here, Göppner et al. generate transgenic mice expressing a mutant form of ClC-2 that displays increased chloride currents like patient mutations, and find it recapitulates the key pathological features of PA.
Collapse
Affiliation(s)
- Corinna Göppner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Ian J Orozco
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maja B Hoegg-Beiler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Audrey H Soria
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | | | - Fabio L Fernandes-Rosa
- INSERM, UMRS_970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sheerazed Boulkroun
- INSERM, UMRS_970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Christina Zennaro
- INSERM, UMRS_970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany. .,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
46
|
Retinoic acid receptor α as a novel contributor to adrenal cortex structure and function through interactions with Wnt and Vegfa signalling. Sci Rep 2019; 9:14677. [PMID: 31605007 PMCID: PMC6789122 DOI: 10.1038/s41598-019-50988-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
Primary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. Mutations in different genes increase aldosterone production in PA, but additional mechanisms may contribute to increased cell proliferation and aldosterone producing adenoma (APA) development. We performed transcriptome analysis in APA and identified retinoic acid receptor alpha (RARα) signaling as a central molecular network involved in nodule formation. To understand how RARα modulates adrenal structure and function, we explored the adrenal phenotype of male and female Rarα knockout mice. Inactivation of Rarα in mice led to significant structural disorganization of the adrenal cortex in both sexes, with increased adrenal cortex size in female mice and increased cell proliferation in males. Abnormalities of vessel architecture and extracellular matrix were due to decreased Vegfa expression and modifications in extracellular matrix components. On the molecular level, Rarα inactivation leads to inhibition of non-canonical Wnt signaling, without affecting the canonical Wnt pathway nor PKA signaling. Our study suggests that Rarα contributes to the maintenance of normal adrenal cortex structure and cell proliferation, by modulating Wnt signaling. Dysregulation of this interaction may contribute to abnormal cell proliferation, creating a propitious environment for the emergence of specific driver mutations in PA.
Collapse
|
47
|
Ma H, Li R, Di X, Jin X, Wang Y, Lai B, Shi C, Ji M, Zhu X, Wang K. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics 2019; 20:655. [PMID: 31419939 PMCID: PMC6697928 DOI: 10.1186/s12864-019-6030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Hematology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Bingjie Lai
- Department of Intensive Care Unit, the Second Hospital of Jilin University, Changchun, China
| | - Cailian Shi
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Mingxin Ji
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Xinran Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
48
|
Hayashi T, Zhang Z, Al-Eyd G, Sasaki A, Yasuda M, Oyama M, Gomez-Sanchez CE, Asakura H, Seki T, Mukai K, Nishimoto K. Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. J Steroid Biochem Mol Biol 2019; 191:105361. [PMID: 30974191 PMCID: PMC6786771 DOI: 10.1016/j.jsbmb.2019.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
Abstract
Immunohistochemistry of human aldosterone synthase (CYP11B2) has revealed that most of aldosterone is autonomously produced in aldosterone-producing cell clusters (APCCs) beneath the capsule of adult adrenals rather than physiologically in the zona glomerulosa (ZG). APCCs have been occasionally found to harbor a somatic mutation of ion channel/pump genes, and number and size of APCCs increase with age until 50 years old. Herein, the objective of the study was to examine APCC development in 106 autopsied adrenals from 85 elderly individuals who died at ages from 50 to 103 years. We obtained the following results: (1) physiological CYP11B2 expression in ZG were attenuated in more elderly persons; (2) number and size of APCCs decreased with age; (3) detachment of APCC from the capsule appeared to occur occasionally over the wide range of the ages; and (4) incidental micro aldosterone-producing adenomas (APAs) and possible APCC-to-APA transitional lesions (pAATLs) were found primarily in samples from persons aged 50-60 years but not in samples from more elderly persons; pAATL was a putative designation based on our previous results indicating that it consisted of subcapsular APCC-like portion and inner APA-like portions. Thus, the formation of the CYP11B2-expressing lesions as well as thickening of the ZG in the adrenals were inversely correlated with age of death in the individuals aged over 50 years. Considering that autopsy samples were used in this study, inactive production of aldosterone regardless of autonomous or physiological manners may have survival advantages in individuals aged over 50 years.
Collapse
Affiliation(s)
- Taiki Hayashi
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan; Department of Urology, Saitama Medical University, Japan
| | - Zhen Zhang
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan; Tianjin University of Chinese Traditional Medicine, Tianjin, China
| | - Ghaith Al-Eyd
- Department of Clinical Science, California Northstate University, Elk Grove, CA, USA
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Japan
| | - Masafumi Oyama
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Tsugio Seki
- Department of Medical Education, California University of Science and Medicine, San Bernardino, CA, USA
| | - Kuniaki Mukai
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan; Medical Education Center, Keio University School of Medicine, Tokyo, Japan.
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan; Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
49
|
Wulczyn K, Perez-Reyes E, Nussbaum RL, Park M. Primary aldosteronism associated with a germline variant in CACNA1H. BMJ Case Rep 2019; 12:12/5/e229031. [PMID: 31126930 DOI: 10.1136/bcr-2018-229031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The CACNA1H gene encodes the pore-forming α1 subunit of the T-type voltage-dependent calcium channel CaV3.2, expressed abundantly in the adrenal cortex. Mutations in CACNA1H are associated with various forms of primary aldosteronism (PA), including familial hyperaldosteronism type 4 (FH4). We describe a patient with refractory hypokalaemia and elevated aldosterone secretion independent of renin activity. Despite the absence of overt hypertension in this patient, the laboratory evaluation was consistent with a diagnosis of PA. Whole-exome sequencing revealed a de novo missense variant, R890H, in the voltage sensing domain of CACNA1H Expression of the variant channel in cells resulted in decreased whole-cell current, consistent with a loss-of-function. We hypothesise this variant is the genetic cause of pathological aldosterone secretion in this patient, and thereby expand the current understanding of the genetic basis of FH4.
Collapse
Affiliation(s)
- Kendra Wulczyn
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Meyeon Park
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
50
|
Lerario AM, Nanba K, Blinder AR, Suematsu S, Omura M, Nishikawa T, Giordano TJ, Rainey WE, Else T. Genetics of aldosterone-producing adenomas with pathogenic KCNJ5 variants. Endocr Relat Cancer 2019; 26:463-470. [PMID: 30753137 PMCID: PMC7869655 DOI: 10.1530/erc-18-0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/11/2019] [Indexed: 12/27/2022]
Abstract
Somatic variants in genes that regulate intracellular ion homeostasis have been identified in aldosterone-producing adenomas (APA). Although the mechanisms leading to an increased aldosterone production in APA cells has been well studied, the molecular events that cause cell proliferation and tumor formation are poorly understood. In the present study, we have performed whole exome sequencing (WES) to characterize the landscape of somatic alterations in a homogeneous series of APA with pathogenic KCNJ5 variants. In the WES analysis on eleven APA, 84 exonic somatic events were called by 3 different somatic callers. Besides the KCNJ5 gene, only two genes (MED13 and ZNF669) harbored somatic variants in more than one APA. Unlike adrenocortical carcinomas, no chromosomal instability was observed by the somatic copy-number alteration and loss of heterozygosity analyses. The estimated tumor purity ranged from 0.35 to 0.67, suggesting a significant proportion of normal cell infiltration. Based on the results of PureCN analysis, the KCNJ5 variants appear to be clonal. In conclusion, in addition to KCNJ5 somatic pathogenic variant, no significant somatic event that would obviously explain proliferation or tumor growth was observed in our homogeneous cohort of KCNJ5-mutated APA. The molecular mechanisms causing APA growth and tumorigenesis remain to be elucidated.
Collapse
Affiliation(s)
- Antonio M. Lerario
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy R. Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sachiko Suematsu
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Masao Omura
- Medical Checkup Clinic, Minatomirai Medical Square, Sowa-Group, Yokohama, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Thomas J. Giordano
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Corresponding author: Tobias Else, MD, 1150 West Medical Center Dr. Ann Arbor, MI, 48109, USA,
| |
Collapse
|