1
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
2
|
Oakley J, Hill M, Giess A, Tanguy M, Elgar G. Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of severe chronic fatigue. J Transl Med 2023; 21:825. [PMID: 37978513 PMCID: PMC10655400 DOI: 10.1186/s12967-023-04711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified. Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient populations likely encompass multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment. METHODS We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences. RESULTS Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory GABAergic neurosteroids and impaired progesterone metabolism which could suppress neuronal activity and interfere with cellular function in a wide range of tissues. CONCLUSIONS This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a novel disease aetiology that may be an underlying cause of complex chronic fatigue. It reveals biomarkers that could now be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.
Collapse
Affiliation(s)
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národni 8, 11694, Prague, Czech Republic
| | - Adam Giess
- Scientific Research and Development, Genomics England, London, UK
| | - Mélanie Tanguy
- Scientific Research and Development, Genomics England, London, UK
| | - Greg Elgar
- Scientific Research and Development, Genomics England, London, UK.
| |
Collapse
|
3
|
Bishop AC, Spradling‐Reeves KD, Shade RE, Lange KJ, Birnbaum S, Favela K, Dick EJ, Nijland MJ, Li C, Nathanielsz PW, Cox LA. Postnatal persistence of nonhuman primate sex-dependent renal structural and molecular changes programmed by intrauterine growth restriction. J Med Primatol 2022; 51:329-344. [PMID: 35855511 PMCID: PMC9796938 DOI: 10.1111/jmp.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Poor nutrition during fetal development programs postnatal kidney function. Understanding postnatal consequences in nonhuman primates (NHP) is important for translation to our understanding the impact on human kidney function and disease risk. We hypothesized that intrauterine growth restriction (IUGR) in NHP persists postnatally, with potential molecular mechanisms revealed by Western-type diet challenge. METHODS IUGR juvenile baboons were fed a 7-week Western diet, with kidney biopsies, blood, and urine collected before and after challenge. Transcriptomics and metabolomics were used to analyze biosamples. RESULTS Pre-challenge IUGR kidney transcriptome and urine metabolome differed from controls. Post-challenge, sex and diet-specific responses in urine metabolite and renal signaling pathways were observed. Dysregulated mTOR signaling persisted postnatally in female pre-challenge. Post-challenge IUGR male response showed uncoordinated signaling suggesting proximal tubule injury. CONCLUSION Fetal undernutrition impacts juvenile offspring kidneys at the molecular level suggesting early-onset blood pressure dysregulation.
Collapse
Affiliation(s)
- Andrew C. Bishop
- Center for Precision MedicineDepartment of Internal Medicine, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kimberly D. Spradling‐Reeves
- Center for Precision MedicineDepartment of Internal Medicine, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Robert E. Shade
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Kenneth J. Lange
- Department of Pharmaceuticals and BioengineeringSouthwest Research InstituteSan AntonioTexasUSA
| | - Shifra Birnbaum
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Kristin Favela
- Department of Pharmaceuticals and BioengineeringSouthwest Research InstituteSan AntonioTexasUSA
| | - Edward J. Dick
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| | - Mark J. Nijland
- Department of Obstetrics and GynecologyUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Cun Li
- Department of Animal SciencesUniversity of WyomingLaramieWyomingUSA
| | - Peter W. Nathanielsz
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
- Department of Animal SciencesUniversity of WyomingLaramieWyomingUSA
| | - Laura A. Cox
- Center for Precision MedicineDepartment of Internal Medicine, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexasUSA
| |
Collapse
|
4
|
Corona R, Ordaz B, Robles-Osorio L, Sabath E, Morales T. Neuroimmunoendocrine Link Between Chronic Kidney Disease and Olfactory Deficits. Front Integr Neurosci 2022; 16:763986. [PMID: 35173591 PMCID: PMC8841736 DOI: 10.3389/fnint.2022.763986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a multifactorial pathology that progressively leads to the deterioration of metabolic functions and results from deficient glomerular filtration and electrolyte imbalance. Its economic impact on public health is challenging. Mexico has a high prevalence of CKD that is strongly associated with some of the most common metabolic disorders like diabetes and hypertension. The gradual loss of kidney functions provokes an inflammatory state and endocrine alterations affecting several systems. High serum levels of prolactin have been associated with CKD progression, inflammation, and olfactory function. Also, the nutritional status is altered due to impaired renal function. The decrease in calorie and protein intake is often accompanied by malnutrition, which can be severe at advanced stages of the disease. Nutrition and olfactory functioning are closely interconnected, and CKD patients often complain of olfactory deficits, which ultimately can lead to deficient food intake. CKD patients present a wide range of deficits in olfaction like odor discrimination, identification, and detection threshold. The chronic inflammatory status in CKD damages the olfactory epithelium leading to deficiencies in the chemical detection of odor molecules. Additionally, the decline in cognitive functioning impairs the capacity of odor differentiation. It is not clear whether peritoneal dialysis and hemodialysis improve the olfactory deficits, but renal transplants have a strong positive effect. In the present review, we discuss whether the olfactory deficiencies caused by CKD are the result of the induced inflammatory state, the hyperprolactinemia, or a combination of both.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Ernesto Sabath
- Facultad de Nutrición, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Teresa Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
5
|
Piani F, Melena I, Tommerdahl KL, Nokoff N, Nelson RG, Pavkov ME, van Raalte DH, Cherney DZ, Johnson RJ, Nadeau KJ, Bjornstad P. Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications. J Diabetes Complications 2021; 35:107841. [PMID: 33423908 PMCID: PMC8007279 DOI: 10.1016/j.jdiacomp.2020.107841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Sexual dimorphism may play a key role in the pathogenesis of diabetic kidney disease (DKD) and explain differences observed in disease phenotypes, responses to interventions, and disease progression between men and women with diabetes. Therefore, omitting the consideration of sex as a biological factor may result in delayed diagnoses and suboptimal therapies. This review will summarize the effects of sexual dimorphism on putative metabolic and molecular mechanisms underlying DKD, and the potential implications of these differences on therapeutic interventions. To successfully implement precision medicine, we require a better understanding of sexual dimorphism in the pathophysiologic progression of DKD. Such insights can unveil sex-specific therapeutic targets that have the potential to maximize efficacy while minimizing adverse events.
Collapse
Affiliation(s)
- Federica Piani
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabella Melena
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kalie L Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Meda E Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
| | - David Z Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Richard J Johnson
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen J Nadeau
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
6
|
D Prabhu Y, Bhati M, Vellingiri B, Valsala Gopalakrishnan A. The effect of γ-linolenic acid on Polycystic Ovary Syndrome associated Focal Segmental Glomerulosclerosis via TGF-β pathway. Life Sci 2021; 276:119456. [PMID: 33811895 DOI: 10.1016/j.lfs.2021.119456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In recent years, female infertility from Polycystic Ovary Syndrome (PCOS) has gained scientific interest. PCOS alters the metabolic and endocrine functioning in females. The elevation in androgens can damage the androgen receptors present on the kidney giving rise to renal disorders like Focal Segmental Glomerulosclerosis (FSGS). Transforming Growth Factor Beta (TGF-β) in the ovary is activated by activin for Follicle Stimulating Hormone (FSH) secretion and in the kidney by thrombospondin 1 (TSP1) for cell growth and apoptosis. Studies show that gamma-linolenic acid (GLA) effectively treats breast cancer, eczema, inflammatory conditions and PCOS. AIM The study aimed to find out the possibility of FSGS development in PCOS and to understand the effect of GLA on FSGS via the TGF-β pathway. METHOD To carry out the study, the dehydroepiandrosterone (DHEA) induced PCOS model was used. Three groups namely vehicle control, DHEA, and DHEA+GLA, were used with six animals in each. TGF-β1, TGF-β2, and TSP1 genes were studied using real-time PCR. RESULTS The study showed an increase in the level of renal fibrosis biomarker, TSP1, in the DHEA group, which was further decreased by an anti-inflammatory agent, GLA. The TGF-β1 and TGF-β2 genes associated with the TGF-β pathway were seen to be increased in DHEA-induced PCOS rats which showed a possible relation between the two conditions. CONCLUSION The study shows a possible development of renal fibrosis in the DHEA-induced PCOS model. The GLA might act as a ligand to regulate TGF-β signaling in glomerulosclerosis in a DHEA-induced PCOS model.
Collapse
Affiliation(s)
- Yogamaya D Prabhu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Monica Bhati
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Karaman S, Sabancıoğulları E, Karaman E, Başaranoğlu M, Çetin M, Karaman K. Indicator of early kidney injury in adolescents with polycystic ovary syndrome: Can urine NGAL level be? Gynecol Endocrinol 2021; 37:117-120. [PMID: 32608277 DOI: 10.1080/09513590.2020.1787377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION AND PURPOSE The Urinary Neutrophil-gelatinase associated lipocalin (NGAL) levels which are a biomarker for early diagnosis of kidney damage that may develop in patients with Polycystic Ovary Syndrome (PCOS) were investigated in the study. MATERIAL AND METHODS The 30 patients diagnosed with Polycystic Ovarian Syndrome between the ages of 13 and 18 who applied to the Yuzuncu Yil University General Children's Outpatient Clinic were included in the PCOS group and 30 healthy adolescents without any known acute or chronic illness and drug use were included in the control group. FINDINGS Urine NGAL value was 842.204 ± 21.561 in PCOS group and 775.379 ± 23.98 in control group. NGAL level in PCOS group was statistically significantly higher than control group (p: .045). When we examine the relationship between dyslipidemia and PCOS; While dyslipidemia was positive in 10 (33.7%) patients in the PCOS group, it was negative in 20 (66.7%) patients. While 1 patient had dyslipidemia, 29 patients did not have dyslipidemia in the control group. A significant relationship was found between dyslipidemia and PCOS (p: .005). CONCLUSION We found that subclinical kidney dysfunction started in early stage patients in PCOS in our study. The urine NGAL level was thought to increase in response to increased oxidative stress in PCOS. We found no relationship between, insulin resistance and urea, BUN, creatinine and NGAL levels. However, we found a negative correlation between NGAL level and LDL. In addition, dyslipidemia, insulin resistance and ALT elevation were detected in the PCOS group.
Collapse
Affiliation(s)
- Serap Karaman
- Department of Pediatric, Yuzuncu Yil University, Van, Turkey
| | | | - Erbil Karaman
- Medical Faculty, Obstetric and Gynecology, Yuzuncu Yil University, Van, Turkey
| | | | - Mecnun Çetin
- Medical Faculty, Department of Pediatric Cardiology, Yuzuncu Yil University, Van, Turkey
| | - Kamuran Karaman
- Medical Faculty, Department of Pediatric Hematology, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
8
|
Fuster DG, Morard GA, Schneider L, Mattmann C, Lüthi D, Vogt B, Dhayat NA. Association of urinary sex steroid hormones with urinary calcium, oxalate and citrate excretion in kidney stone formers. Nephrol Dial Transplant 2020; 37:335-348. [PMID: 33295624 DOI: 10.1093/ndt/gfaa360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Sex-specific differences in nephrolithiasis with respect to both distribution of prevalence and stone composition are widely described and may be influenced by sex hormones. METHODS We conducted a cross-sectional analysis of the relationship between 24-hour urinary sex hormone metabolites measured by gas chromatography-mass spectrometry with urinary calcium, oxalate and citrate excretion in a cohort of 628 kidney stone formers from a tertiary care hospital in Switzerland, taking demographic characteristics, kidney function and dietary factors into account. RESULTS We observed a positive association of urinary calcium with urinary testosterone and 17β-estradiol. Positive associations of urinary calcium with dehydroepiandrosterone, 5α-DH-testosterone, etiocholanolone, androsterone, and estriol were modified by net gastrointestinal alkali absorption or urinary sulfate excretion. As the only sex hormone, dehydroepiandrosterone was inversely associated with urinary oxalate excretion in adjusted analyses. Urinary citrate correlated positively with urinary testosterone. Associations of urinary citrate with urinary androsterone, 17β-estradiol and estriol were modified by urinary sulfate or sodium, or by sex. CONCLUSIONS Urinary androgens and estrogens are significantly associated with urinary calcium and citrate excretion, and associations are in part modified by diet. Our data furthermore reveal dehydroepiandrosterone as a novel factor associated with urinary oxalate excretion in humans.
Collapse
Affiliation(s)
- Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gaétan A Morard
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lisa Schneider
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Mattmann
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Lüthi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nasser A Dhayat
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Hanson AE, Perusquia M, Stallone JN. Hypogonadal hypertension in male Sprague-Dawley rats is renin-angiotensin system-dependent: role of endogenous androgens. Biol Sex Differ 2020; 11:48. [PMID: 32843085 PMCID: PMC7448502 DOI: 10.1186/s13293-020-00324-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Acutely, testosterone (TES) and other androgens are efficacious vasodilators, both in vitro and in vivo; however, their long-term effects on arterial blood pressure (BP) remain unclear. It was hypothesized that endogenous androgens exert long-term anti-hypertensive effects on systemic BP through a combination of genomic and nongenomic effects to enhance vasodilation of the systemic vasculature. Methods The long-term effects of endogenous TES and exogenous TES replacement therapy (TRT) on BP were studied in intact (InT) and castrated (CsX) male Sprague-Dawley (SD) and testicular-feminized male (Tfm, androgen receptor defective) rats (12 weeks old). Systolic BP (tail-cuff plethysmography) was determined weekly for 15 weeks in InT-control and CsX rats. Some CsX-SD rats received androgen replacement therapy at 10-15 weeks with TES-enanthate (TRT; 1.75 mg/kg, 2x/week) or DHT-enanthate (DRT; 1.00 mg/kg. 2x/week) and a separate group of CsX-SD rats received losartan-potassium in drinking water (LST, 250 mg/L) for the entire 15 week period. Expression of renin, angiotensinogen (Agt), angiotensin converting enzyme (ACE), and angiotensin II type I receptor (AT1R) mRNA in kidney and aorta were determined by real-time PCR (rt-PCR) and plasma renin levels were determined by radioimmunoassay. Results There was a progressive rise in BP over 10 weeks in CsX (109 ± 3.3 vs. 143 ± 3.5 mmHg), while BP remained stable in InT-control (109 ± 3.0 vs. 113 ± 0.3). BP gradually declined to normal in CsX-TRT rats (113 ± 1.3), while BP remained elevated in CsX (140 ± 1.2) and normal in InT-control (113 ± 0.3). LST prevented the development of hypertension in CsX at 10 weeks (100 ± 1.5 in CsX + LST vs. 143 ± 3.5 in CsX). During the next 5 weeks with TES-RT, BP declined in CsX-TRT (113 ± 1.3) and remained lower in CsX + LST (99 ± 0.4). DHT-RT reduced BP in CxS to a similar extent. In Tfm, CsX resulted in a similar rise in BP (109 ± 0.7 vs. 139 ± 0.4 mmHg), but TRT reduced BP more rapidly and to a greater extent (106 ± 2.8). rt-PCR of the kidney revealed that CsX increased expression of mRNA for renin (92%), ACE (58%), and AT1R (80%) compared to InT, while TES RT normalized expression of renin, AT1R, and ACE mRNA to levels of InT rats. Plasma renin levels exhibited changes similar to those observed for renin mRNA expression. Conclusions This is the first study to examine the long-term effects of endogenous and exogenous androgens on BP in male SD and Tfm rats. These data reveal that endogenous androgens (TES) exert anti-hypertensive effects that appear to involve non-genomic and possibly genomic mechanism(s), resulting in reductions in RAS expression in the kidney and enhanced systemic vasodilation.
Collapse
Affiliation(s)
- Andrea E Hanson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Mercedes Perusquia
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F, Mexico
| | - John N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA. .,Michael E. DeBakey Institute For Comparative Cardiovascular Sciences, Women's Health Division, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
11
|
Bhati M, D Prabhu Y, Renu K, Vellingiri B, Thiagarajan P, Panda A, Chakraborty R, Myakala H, Valsala Gopalakrishnan A. Role of TGF-β signalling in PCOS associated focal segmental glomerulosclerosis. Clin Chim Acta 2020; 510:244-251. [PMID: 32682803 DOI: 10.1016/j.cca.2020.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Research on polycystic ovarian syndrome (PCOS) remains intense due to its evolving impact on metabolism, reproduction and cardiovascular function. Changes in metabolic pathways can also significantly impact renal function including the development of Focal Segmental Glomerulosclerosis (FSGS), one of the most highly investigated renal diseases. In FSGS, scarring of the glomerulus vascular tuft damages the kidneys. Onset of FSGS may either be congenital or due to other disorders that affect the metabolism and normal kidney function. Both PCOS and FSGS appear to be associated with Transforming Growth Factor-β (TGF-β) signalling. Over-expression of TGF-β may be due to the activation of the thrombospondin 1 (TSP1) gene, which increases the probability of developing renal disorders. Higher androgen levels in PCOS may also cause podocyte damage thus directly impacting development of FSGS. This article reviews the role of TGF-β's in PCOS and FSGS and explores the inter-relationship between these two disorders.
Collapse
Affiliation(s)
- Monica Bhati
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Yogamaya D Prabhu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics & Stem Cell Lab, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India
| | - Padma Thiagarajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Aditi Panda
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India.
| |
Collapse
|
12
|
Bae YJ, Kratzsch J, Zeidler R, Fikenzer S, Werner C, Herm J, Jungehülsing GJ, Endres M, Haeusler KG, Thiery J, Laufs U. Unraveling the steroid hormone response in male marathon runners: Correlation of running time with aldosterone and progesterone. J Steroid Biochem Mol Biol 2019; 195:105473. [PMID: 31541731 DOI: 10.1016/j.jsbmb.2019.105473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Marathon running is a physical and psychological stressor. We aimed to characterize the response of nine steroid hormones, which include estradiol, progesterone, testosterone, cortisol, aldosterone, 17-hydroxyprogesterone, cortisone, androstenedione, and dehydroepiandrosterone sulfate, to marathon running and their association with performance. Blood samples of sixty men (age: 49.3 ± 5.9 years) who participated in the Berlin marathon were collected within 3 days before, within 30 min and within 58 h after the end of the marathon. The nine steroid hormones in serum were quantified using liquid chromatography-tandem mass spectrometry. The responses of nine steroid hormones to marathon running were characterized. Aldosterone (fold change: 8.5), progesterone (fold change: 6.6), and cortisol (fold change: 3.7) showed significant increases within 30 min after the marathon (all p < 0.0001). Estradiol but not testosterone increased in the male runners. Marathon running time was significantly related to aldosterone increase (beta=-0.238, p = 0.008) and progesterone increase (beta=-0.192, p = 0.036) in addition to body mass index, self-reported training distance, and age. Serum progesterone correlated with aldosterone and cortisol (r = 0.81 and r = 0.92, respectively, p < 0.001). Progesterone, as a precursor hormone, is increased after the completion of marathon running in association with the increase of aldosterone and cortisol. These findings reveal a contribution of progesterone during the response to the psycho-physical stress of marathon running in males.
Collapse
Affiliation(s)
- Yoon Ju Bae
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, 04103, Leipzig, Germany.
| | - Juergen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, 04103, Leipzig, Germany
| | - Robert Zeidler
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, 04103, Leipzig, Germany
| | - Sven Fikenzer
- Department of Cardiology, Universitätsklinikum Leipzig, Liebigstraße20, 04103, Leipzig, Germany
| | - Christian Werner
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg, Saar, Germany
| | - Juliane Herm
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | | | - Matthias Endres
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) & German Center for Cardiovascular Diseases (DZHK), Partner Site, Berlin, Germany
| | | | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, 04103, Leipzig, Germany
| | - Ulrich Laufs
- Department of Cardiology, Universitätsklinikum Leipzig, Liebigstraße20, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Savchuk I, Morvan ML, Antignac JP, Kurek M, Le Bizec B, Söder O, Svechnikov K. Steroidogenic potential of human fetal kidney at early gestational age. Steroids 2019; 149:108417. [PMID: 31150682 DOI: 10.1016/j.steroids.2019.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 11/18/2022]
Abstract
Steroidogenic potential of the human fetal kidney (hFK) at the end of first trimester is poorly investigated. Little is known about the ontogeny of steroidogenic enzymes and activities of steroidogenic pathways in the hFK at early pregnancy. Our aim was to explore steroidogenesis and the expression of steroidogenic enzymes in the hFK at gestational weeks (GW) 9-12. Steroids in the hFK were analyzed by gas chromatography/coupled to tandem mass spectrometry. The expression of steroidogenic enzymes in the hFK at GW 9-12 was investigated by qPCR, automated Western blotting and immunohistochemistry. We observed that the hFK produced substantial amount of steroids of the Δ5 and Δ4 pathways and several steroid precursors in the biosynthesis of DHT via the backdoor pathway but not DHT itself. The levels of steroids and expression of relevant steroidogenic enzymes (e.g., CYP17A1, HSD3B1, HSD3B2, CYP11B1 and AKR1C4) we significantly higher in the hFK at GW11-12 compared to GW9. We also found the expression of sex steroid receptors (e.g., AR, ERα and ERβ) in the hFK at GW9-12. No sex-dependent differences in the levels of all identified steroids and expression of steroidogenic enzymes in the hFK from male and female fetuses were found. Altogether, our data indicate that the hFK at early pregnancy is steroidogenic organ with potential to synthesize multiple steroids that may play an important role in the formation and development of this organ in humans.
Collapse
Affiliation(s)
- I Savchuk
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute & University Hospital, Stockholm, Sweden
| | - M L Morvan
- École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (Oniris), Laboratoire d'Étude des Résidus et Contaminants dans les aliments (LABERCA), UMR INRA 1329, Nantes, France
| | - J P Antignac
- École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (Oniris), Laboratoire d'Étude des Résidus et Contaminants dans les aliments (LABERCA), UMR INRA 1329, Nantes, France
| | - M Kurek
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, NORDFERTIL research lab, Karolinska Institute & University Hospital, Stockholm, Sweden
| | - B Le Bizec
- École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (Oniris), Laboratoire d'Étude des Résidus et Contaminants dans les aliments (LABERCA), UMR INRA 1329, Nantes, France
| | - O Söder
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute & University Hospital, Stockholm, Sweden
| | - K Svechnikov
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute & University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Dote-Montero M, Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Gutierrez A, Castillo MJ. Study of the association of DHEAS, testosterone and cortisol with S-Klotho plasma levels in healthy sedentary middle-aged adults. Exp Gerontol 2019; 121:55-61. [PMID: 30928678 DOI: 10.1016/j.exger.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND α-Klotho is a recently discovered gene that accelerates ageing when disrupted and extends lifespan when overexpressed. The age-related decline in DHEAS and testosterone secretion and the increase in cortisol are associated with a rise of frailty and mortality. OBJECTIVE To investigate the association of DHEAS, cortisol and testosterone plasma levels with S-Klotho plasma levels in healthy sedentary middle-aged adults. METHODS 73 (39 women) healthy middle-aged sedentary adults (45-65 years old) were recruited for the present study. The blood samples were collected in the morning after fasting for 12 h. RESULTS DHEAS was positively associated with S-Klotho in men (β = 0.521, R2 = 0.248, P = 0.002), whereas no association was observed in women (P ≥ 0.201). Testosterone was positively associated with S-Klotho in both men and women (β = 0.360, R2 = 0.099, P = 0.047; β = 0.431, R2 = 0.161, P = 0.010, respectively). No association was found between cortisol and S-Klotho neither in men nor in women (all P ≥ 0.141). The association between DHEAS and testosterone with S-Klotho in men disappeared after adjusting by age (all P ≥ 0.151). Nevertheless, the association between testosterone (β = 0.397, R2 = 0.423, P = 0.011) and S-Klotho in women remained after adjusting by age. CONCLUSIONS DHEAS and testosterone were positively associated with S-Klotho in healthy sedentary middle-aged men while only testosterone was positively associated in women.
Collapse
Affiliation(s)
- Manuel Dote-Montero
- Department of Medical Physiology, School of Medicine, University of Granada, 18016 Granada, Spain.
| | - Francisco J Amaro-Gahete
- Department of Medical Physiology, School of Medicine, University of Granada, 18016 Granada, Spain.
| | - Alejandro De-la-O
- Department of Medical Physiology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Lucas Jurado-Fasoli
- Department of Medical Physiology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Angel Gutierrez
- Department of Medical Physiology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Manuel J Castillo
- Department of Medical Physiology, School of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
15
|
Khalil R, Kim NR, Jardi F, Vanderschueren D, Claessens F, Decallonne B. Sex steroids and the kidney: role in renal calcium and phosphate handling. Mol Cell Endocrinol 2018; 465:61-72. [PMID: 29155307 DOI: 10.1016/j.mce.2017.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Calcium and phosphate are vital for the organism and constitute essential components of the skeleton. Serum levels are tightly hormonally regulated and maintained by exchange with three major sources: the intestines, the kidney and the bone. The effects of sex steroids on the bone have been extensively studied and it is well known that sex steroid deficiency induces bone loss, indirectly influencing renal calcium and phosphate homeostasis. However, it is unknown whether sex steroids also directly regulate renal calcium and phosphate handling, hereby potentially indirectly impacting on bone. The presence of androgen receptors (AR) and estrogen receptors (ER) in both human and rodent kidney, although their exact localization within the kidney remains debated, supports direct effects. Estrogens stimulate renal calcium reabsorption as well as phosphate excretion, while the effects of androgens are less clear. Many of the studies performed with regard to renal calcium and/or phosphate homeostasis do not correct for the calcium and phosphate fluxes from the bone and intestines, which complicates the differentiation between the direct effects of sex steroids on renal calcium and phosphate handling and the indirect effects via the bone and intestines. The objective of this study is to review the literature and current insight of the role of sex steroids in calcium and phosphate handling in the kidney.
Collapse
Affiliation(s)
- Rougin Khalil
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium.
| | - Na Ri Kim
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| | - Ferran Jardi
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| | - Frank Claessens
- Molecular Endocrinology, KU Leuven, Herestraat 49 Box 901, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 Box 902, Belgium
| |
Collapse
|
16
|
Schiffer L, Arlt W, Storbeck KH. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol 2018; 465:4-26. [PMID: 28865807 PMCID: PMC6565845 DOI: 10.1016/j.mce.2017.08.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Androgens play an important role in metabolic homeostasis and reproductive health in both men and women. Androgen signalling is dependent on androgen receptor activation, mostly by testosterone and 5α-dihydrotestosterone. However, the intracellular or intracrine activation of C19 androgen precursors to active androgens in peripheral target tissues of androgen action is of equal importance. Intracrine androgen synthesis is often not reflected by circulating androgens but rather by androgen metabolites and conjugates. In this review we provide an overview of human C19 steroid biosynthesis including the production of 11-oxygenated androgens, their transport in circulation and uptake into peripheral tissues. We conceptualise the mechanisms of intracrinology and review the intracrine pathways of activation and inactivation in selected human tissues. The contribution of liver and kidney as organs driving androgen inactivation and renal excretion are also highlighted. Finally, the importance of quantifying androgen metabolites and conjugates to assess intracrine androgen production is discussed.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
17
|
Sex hormone levels are not associated with progression of renal disease in male patients with T2DM. DIABETES & METABOLISM 2017; 43:140-145. [DOI: 10.1016/j.diabet.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
|
18
|
van Rooyen D, du Toit T, Louw-du Toit R, Africander D, Swart P, Swart AC. The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone. Mol Cell Endocrinol 2017; 441:86-98. [PMID: 27664517 DOI: 10.1016/j.mce.2016.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023]
Abstract
16α-hydroxyprogesterone (16OHP4) is not well characterised in terms of metabolism and receptor interaction. We therefore investigated its metabolism by adrenal CYP11B and peripheral steroidogenic enzymes, SRD5A and AKR1C2. UHPLC-MS/MS analyses identified novel steroids: the biosynthesis of 4-pregnen-11β,16α-diol-3,20-dione catalysed by CYP11B2; the 5α-reduction of the latter and 16OHP4 catalysed by SRD5A yielding 5α-pregnan-11β,16α-diol-3,20-diovne and 5α-pregnan-16α-ol-3,20-dione (16OH-DHP4); and 16OH-DHP4 converted by AKR1C2 to 5α-pregnan-3α,16α-diol-20-one. Receptor studies showed 16OHP4, 16OH-DHP4, progesterone and dihydroprogesterone (DHP4) were weak partial AR agonists; 16OHP4, 16OH-DHP4 and DHP4 exhibited weak partial agonist activity towards PR-B with DHP4 also exhibiting partial agonist activity towards PR-A. Data showed that while the 5α-reduction of P4 decreased PR activation significantly, 16OHP4 and 16OH-DHP4 exhibited comparable receptor activation. Although the clinical relevance of 16OHP4 remains unclear the elevated 16OHP4 levels characteristic of 21OHD, CAH, PCOS, prostate cancer, testicular feminization syndrome and cryptorchidism likely contribute towards these clinical conditions, inducing receptor-activated target genes.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Therina du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Renate Louw-du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Donita Africander
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
19
|
Endo S, Miyagi N, Matsunaga T, Hara A, Ikari A. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun 2016; 472:231-6. [PMID: 26920053 DOI: 10.1016/j.bbrc.2016.01.190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/30/2016] [Indexed: 11/29/2022]
Abstract
We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Namiki Miyagi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
20
|
Yanar K, Atukeren P, Cebe T, Kunbaz A, Ozan T, Kansu AD, Durmaz S, Güleç V, Belce A, Aydın S, Çakatay U, Rizvi SI. Ameliorative Effects of Testosterone Administration on Renal Redox Homeostasis in Naturally Aged Rats. Rejuvenation Res 2015; 18:299-312. [DOI: 10.1089/rej.2014.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Atukeren
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tamer Cebe
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmad Kunbaz
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuna Ozan
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Doğukan Kansu
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selahattin Durmaz
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Veysel Güleç
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Belce
- Department of Nursing, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Seval Aydın
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
21
|
Ko B, Bergsland K, Gillen DL, Evan AP, Clark DL, Baylock J, Coe FL, Worcester EM. Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers. Am J Physiol Regul Integr Comp Physiol 2015; 309:R85-92. [PMID: 25947170 DOI: 10.1152/ajpregu.00071.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 11/22/2022]
Abstract
Idiopathic hypercalciuria (IH) is a common familial trait among patients with calcium nephrolithiasis. Previously, we have demonstrated that hypercalciuria is primarily due to reduced renal proximal and distal tubule calcium reabsorption. Here, using measurements of the clearances of sodium, calcium, and endogenous lithium taken from the General Clinical Research Center, we test the hypothesis that patterns of segmental nephron tubule calcium reabsorption differ between the sexes in IH and normal subjects. When the sexes are compared, we reconfirm the reduced proximal and distal calcium reabsorption. In IH women, distal nephron calcium reabsorption is decreased compared to normal women. In IH men, proximal tubule calcium reabsorption falls significantly, with a more modest reduction in distal calcium reabsorption compared to normal men. Additionally, we demonstrate that male IH patients have lower systolic blood pressures than normal males. We conclude that women and men differ in the way they produce the hypercalciuria of IH, with females reducing distal reabsorption and males primarily reducing proximal tubule function.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois;
| | - Kristin Bergsland
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Daniel L Gillen
- Department of Statistics, University of California, Irvine, California; and
| | - Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel L Clark
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jaime Baylock
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Fredric L Coe
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Elaine M Worcester
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Nanjidsuren T, Min KS. The transcription factor Ap-1 regulates monkey 20α-hydroxysteroid dehydrogenase promoter activity in CHO cells. BMC Biotechnol 2014; 14:71. [PMID: 25073972 PMCID: PMC4118612 DOI: 10.1186/1472-6750-14-71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Monkey 20α-hydroxysteroid dehydrogenase (20α-HSD) is a catabolic enzyme responsible for converting progesterone into biologically inactive 20α-hydroxyprogesterone, thereby playing a key role in the estrous cycle or pregnancy and allowing ovulation and parturition to occur in most mammalian animals. Monkey 20α-HSD was highly abundant in ovarian and placental tissues during the pre-ovulation and pre-parturition phase and was primarily localized in the syncytiotrophoblast of the placenta. In this study, we focused on the molecular characterization of the monkey 20α-HSD promoter region by conducting reporter assays in Chinese hamster ovary (CHO) K1 cells. Results A reporter assay using constructs of various lengths of the 5′-flanking region (-890-Luc, -513-Luc, -306-Luc, -273-Luc, and -70-Luc) revealed that a region corresponding to the activator protein 1 (Ap-1) located between -281 and -274 bp was essential for the transcriptional activity. Absence of the Ap-1 site in -273-Luc dramatically decreased the transcription levels to the control levels. When the reporter constructs were co-transfected with Ap-1 (Jun) and specificity protein (Sp-1) genes, the transcription activities of the constructs increased with the exception of -273 and -70, while that of the double construct was reduced compared to that of Ap-1 alone. Furthermore, mutational analysis demonstrated that a putative Ap-1 site played an important role in the expression of the reporter gene. These findings were confirmed by EMSA examining the interactions of the protein Ap-1 in a nuclear extract from CHO-K1 cells and the expression levels of the Ap-1 transcription factor in pre-parturition placenta and CHO-K1 cells. Although mut-1 and mut-2 of Ap-1 bound with nuclear extracts from CHO-K1 cells, the transcriptional activity of mut-3 was almost completely suppressed. Conclusions Our results indicate that the Ap-1 site (-281 → -274) (5′-TGTCTCAT-3′) plays a crucial role in the activation of the monkey 20α-HSD gene. Thus, we demonstrated that monkey 20α-HSD promoter activity is regulated by the transcription factor Ap-1 in CHO-K1 cells.
Collapse
Affiliation(s)
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Bio and Information Technology, Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Republic of Korea.
| |
Collapse
|
23
|
Nanjidsuren T, Yun S, Park C, Kim M, Kang M, Min K. Expression and localization of 20α-hydroxysteroid dehydrogenase (20α-HSD) in porcine reproductive tissues during pregnancy. Anim Reprod Sci 2014; 148:63-71. [DOI: 10.1016/j.anireprosci.2014.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 04/11/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
24
|
Kim SH, Shin YS, Kang MH, Yoon JT, Min KS. Gene expression and localization of 20α-hydroxysteroid dehydrogenase (HSD) in reproductive tissues during early pregnancy of cattle. Anim Reprod Sci 2014; 147:1-9. [PMID: 24794445 DOI: 10.1016/j.anireprosci.2014.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
The enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD) catalyzes the conversion of progesterone to its inactive form, 20α-hydroxyprogesterone, and this enzyme has an important role in the regulation of luteal function in mammals. It has previously been determined that the 20α-HSD gene is primarily expressed by large luteal cells during the late stage of the estrous cycle. In the present study, the amounts of mRNA were determined in cultured cells of the corpus luteum (CL) cells. The localization of 20α-HSD was also determined in ovaries, placenta, and endometrium during early pregnancy. The amount of 20α-HSD mRNA in cultured luteal cells increased with time and by treatment with the luteolysis agent prostaglandin F2α (PGF2α). Immunofluorescence assays detected increased protein in cultured luteal cells. The 20α-HSD mRNA and protein were present in the ovaries, placenta, and endometrium on Days 30, 60, and 90 of pregnancy. In particular, gene expression was much greater in the ovary than in the placenta and endometrium. Immuno-histochemical analysis indicated that bovine 20α-HSD was primarily localized in ovarian large luteal cells, placental cytotrophoblast villus, and glandular epithelial cells of the endometrium during early pregnancy. Furthermore, in situ analyses demonstrated colocalization of 20α-HSD mRNA and protein. Taken together, results of the present study indicate that 20α-HSD mRNA and protein are co-localized in large luteal cells, the placenta, and the endometrium during early pregnancy, suggesting that 20α-HSD regulates mechanisms involved in the maintenance of early pregnancy.
Collapse
Affiliation(s)
- S H Kim
- Animal Biotechnology, Graduate School of Bio and Information Technology, Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Republic of Korea
| | - Y S Shin
- Animal Biotechnology, Graduate School of Bio and Information Technology, Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Republic of Korea
| | - M H Kang
- Department of Food and Nutrition, Hoseo University, Asan 336-795, Republic of Korea
| | - J T Yoon
- Animal Biotechnology, Graduate School of Bio and Information Technology, Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Republic of Korea
| | - K S Min
- Animal Biotechnology, Graduate School of Bio and Information Technology, Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Republic of Korea.
| |
Collapse
|
25
|
Piccinato CA, Rosa GJM, N’Jai AU, Jefcoate CR, Wiltbank MC. Estradiol and progesterone exhibit similar patterns of hepatic gene expression regulation in the bovine model. PLoS One 2013; 8:e73552. [PMID: 24069207 PMCID: PMC3775788 DOI: 10.1371/journal.pone.0073552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Female sex steroid hormones, estradiol-17β (E2-17β) and progesterone (P4) regulate reproductive function and gene expression in a broad range of tissues. Given the central role of the liver in regulating homeostasis including steroid hormone metabolism, we sought to understand how E2-17β and P4 interact to affect global gene expression in liver. Ovariectomized cows (n = 8) were randomly assigned to 4 treatment groups applied in a replicated Latin Square design: 1) No hormone supplementation, 2) E2-17β treatment (ear implant), 3) P4 treatment (intravaginal inserts), and 4) E2-17β combined with P4. After 14 d of treatment, liver biopsies were collected, allowing 28 d intervals between periods. Changes in gene expression in the liver biopsies were monitored using bovine-specific arrays. Treatment with E2-17β altered expression of 479 genes, P4 472 genes, and combined treatment significantly altered expression of 468 genes. In total, 578 genes exhibited altered expression including a remarkable number (346 genes) that responded similarly to E2-17β, P4, or combined treatment. Additional evidence for similar gene expression actions of E2-17ß and/or P4 were: principal component analysis placed almost every treatment array at a substantial distance from controls; Venn diagrams indicated overall treatment effects for most regulated genes; clustering analysis indicated the two major clusters had all treatments up-regulating (172 genes) or down-regulating (173 genes) expression. Thus, unexpectedly, common biological pathways were regulated by E2-17β and/or P4 in liver. This indicates that the mechanism of action of these steroid hormones in the liver might be either indirect or might occur through non-genomic pathways. This unusual pattern of gene expression in response to steroid hormones is consistent with the idea that there are classical and non-classical tissue-specific responses to steroid hormone actions. Future studies are needed to elucidate putative mechanism(s) responsible for overlapping actions of E2-17β and P4 on the liver transcriptome.
Collapse
Affiliation(s)
- Carla A. Piccinato
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Guilherme J. M. Rosa
- Department of Animal Sciences, and Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alhaji U. N’Jai
- Department of Pathobiological Sciences and Molecular & Environmental Toxicology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Colin R. Jefcoate
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Milo C. Wiltbank
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
TGF-β is well known to play a critical role in diabetic kidney disease, and ongoing clinical studies are testing the potential therapeutic promise of inhibiting TGF-β production and action. An aspect of TGF-β action that has not received much attention is its potential role in explaining sex-related proclivity for kidney disease. In this review, we discuss recent studies linking TGF-β signaling to sex-related effects in diabetic kidney disease and suggest targets for future studies.
Collapse
Affiliation(s)
- Maggie K Diamond-Stanic
- Center for Renal Translational Medicine, University of California San Diego/Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093-0711, USA
| | | | | |
Collapse
|
27
|
Reslan OM, Khalil RA. Vascular effects of estrogenic menopausal hormone therapy. Rev Recent Clin Trials 2012; 7:47-70. [PMID: 21864249 DOI: 10.2174/157488712799363253] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/ progestin Replacement Study (HERS) and the Women's Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the 'timing hypothesis', which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of an appropriate MHT dose, route of administration, and estrogen/progestin combination could maximize the vascular benefits of MHT and minimize other adverse effects, especially if given within a reasonably short time after menopause to women that seek MHT for the relief of menopausal symptoms.
Collapse
Affiliation(s)
- Ossama M Reslan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Abstract
Blood pressure is typically lower in premenopausal women than in men. However, after menopause, the prevalence of hypertension in women is higher than it is in men. Hypertension is a major risk factor for cardiovascular disease in women and men, but cardiovascular disease is the leading cause of death in women. Furthermore, there is evidence that blood pressure may not be as well-controlled in women as in men, despite the fact that most women adhere better to their therapeutic regimens and medications than do men, and have their blood pressures measured more frequently than do men. This review describes possible mechanisms by which blood pressure may be increased in postmenopausal women.
Collapse
Affiliation(s)
- Roberta Lima
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
29
|
Lopes RAM, Neves KB, Carneiro FS, Tostes RC. Testosterone and vascular function in aging. Front Physiol 2012; 3:89. [PMID: 22514541 PMCID: PMC3322529 DOI: 10.3389/fphys.2012.00089] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/25/2012] [Indexed: 11/13/2022] Open
Abstract
Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed.
Collapse
Affiliation(s)
- Rhéure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, Ribeirao Preto São Paulo, Brazil
| | | | | | | |
Collapse
|
30
|
Xie M, Zhu X, Liu Z, Shrubsole M, Varma V, Mayer IA, Dai Q, Chen Q, You S. Membrane progesterone receptor alpha as a potential prognostic biomarker for breast cancer survival: a retrospective study. PLoS One 2012; 7:e35198. [PMID: 22496908 PMCID: PMC3319632 DOI: 10.1371/journal.pone.0035198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/13/2012] [Indexed: 01/24/2023] Open
Abstract
Classically, the actions of progesterone (P4) are attributed to the binding of nuclear progesterone receptor (PR) and subsequent activation of its downstream target genes. These mechanisms, however, are not applicable to PR– or basal phenotype breast cancer (BPBC) due to lack of PR in these cancers. Recently, the function of membrane progesterone receptor alpha (mPRα) in human BPBC cell lines was studied in our lab. We proposed that the signaling cascades of P4→mPRα pathway may play an essential role in controlling cell proliferation and epithelial mesenchymal transition (EMT) of breast cancer. Using human breast cancer tissue microarrays, we found in this study that the average intensity of mPRα expression, but not percentage of breast cancer with high level of mPRα expression (mPRα-HiEx), was significantly lower in the TNM stage 4 patients compared to those with TNM 1–3 patients; and both average intensities of mPRα expression and mPRα-HiEx rates were significantly higher in cancers negative for ER, as compared with those cancers with ER+. However, after adjusting for age at diagnosis and/or TNM stage, only average intensities of mPRα expression were associated with ER status. In addition, we found that the rates of mPRα-HiEx were significantly higher in cancers with epithelial growth factor receptor–1 (EGFR+) and high level of Ki67 expression, indicating positive correlation between mPRα over expression and EGFR or Ki67. Further analysis indicated that both mPRα-HiEx rate and average intensity of mPRα expression were significantly higher in HER2+ subtype cancers (i.e. HER2+ER–PR–) as compared to ER+ subtype cancers. These data support our hypothesis that P4 modulates the activities of the PI3K and cell proliferation pathways through the caveolar membrane bound growth factor receptors such as mPRα and growth factor receptors. Future large longitudinal studies with larger sample size and survival outcomes are necessary to confirm our findings.
Collapse
Affiliation(s)
- Mingxuan Xie
- Histopathology core, Atlanta Research & Educational Foundation/Atlanta VA Medical Center, Decatur, Georgia, United States of America
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangzhu Zhu
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Zhaofan Liu
- Histopathology core, Atlanta Research & Educational Foundation/Atlanta VA Medical Center, Decatur, Georgia, United States of America
| | - Martha Shrubsole
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Vijay Varma
- Department of Pathology, Atlanta VA Medical Center, Decatur, Georgia, United States of America
| | - Ingrid A. Mayer
- Division of Hematology/Oncology, School of Medicine, Nashville, Tennessee, United States of America
| | - Qi Dai
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (SY); (QD)
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaojin You
- Histopathology core, Atlanta Research & Educational Foundation/Atlanta VA Medical Center, Decatur, Georgia, United States of America
- * E-mail: (SY); (QD)
| |
Collapse
|
31
|
Evaluating sex and gender competencies in the medical curriculum: a case study. ACTA ACUST UNITED AC 2012; 9:180-186.e3. [PMID: 22304976 DOI: 10.1016/j.genm.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/15/2011] [Accepted: 01/09/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sex and gender differences exist in the manifestation and prevalence of many conditions and diseases. Yet many clinician training programs neglect to integrate this information across their curricula. OBJECTIVE This study aimed to measure the sex and gender medical knowledge of medical students enrolled in a program without an explicit directive to integrate sex and gender differences across a block system of core subjects. METHODS A forced-choice instrument consisting of 35 multiple-choice and true or false questions was adapted from an evaluation tool used in the European Curriculum in Gender Medicine held at Charité Hospital, Berlin, in September 2010. RESULTS Fourth-year (response rate 93%) and second-year (response rate 70%) students enrolled in Mayo Medical School completed the instrument. More than 50% of students in both classes indicated that topics related to sex and gender were covered in gynecology, cardiology, and pediatrics, and <20% of students indicated inclusion of such topics in nephrology, neurology, and orthopedics. More than twice as many second-year students indicated that topics dealing with sex and gender were included in immunology course material compared with fourth-year students. A consensus of written comments indicated that concepts of sex and gender-based medicine need to be embedded into existing curriculum, with an emphasis on clinically relevant information. CONCLUSIONS Although this study represents only one medical school in the United States, information regarding sex and gender aspects of medicine is not consistently included in this curriculum without an explicit directive. These results can provide guidance for curriculum improvement to train future physicians.
Collapse
|
32
|
Miller VM, Kaplan JR, Schork NJ, Ouyang P, Berga SL, Wenger NK, Shaw LJ, Webb RC, Mallampalli M, Steiner M, Taylor DA, Merz CNB, Reckelhoff JF. Strategies and methods to study sex differences in cardiovascular structure and function: a guide for basic scientists. Biol Sex Differ 2011; 2:14. [PMID: 22152231 PMCID: PMC3292512 DOI: 10.1186/2042-6410-2-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/12/2011] [Indexed: 02/02/2023] Open
Abstract
Background Cardiovascular disease remains the primary cause of death worldwide. In the US, deaths due to cardiovascular disease for women exceed those of men. While cultural and psychosocial factors such as education, economic status, marital status and access to healthcare contribute to sex differences in adverse outcomes, physiological and molecular bases of differences between women and men that contribute to development of cardiovascular disease and response to therapy remain underexplored. Methods This article describes concepts, methods and procedures to assist in the design of animal and tissue/cell based studies of sex differences in cardiovascular structure, function and models of disease. Results To address knowledge gaps, study designs must incorporate appropriate experimental material including species/strain characteristics, sex and hormonal status. Determining whether a sex difference exists in a trait must take into account the reproductive status and history of the animal including those used for tissue (cell) harvest, such as the presence of gonadal steroids at the time of testing, during development or number of pregnancies. When selecting the type of experimental animal, additional consideration should be given to diet requirements (soy or plant based influencing consumption of phytoestrogen), lifespan, frequency of estrous cycle in females, and ability to investigate developmental or environmental components of disease modulation. Stress imposed by disruption of sleep/wake cycles, patterns of social interaction (or degree of social isolation), or handling may influence adrenal hormones that interact with pathways activated by the sex steroid hormones. Care must be given to selection of hormonal treatment and route of administration. Conclusions Accounting for sex in the design and interpretation of studies including pharmacological effects of drugs is essential to increase the foundation of basic knowledge upon which to build translational approaches to prevent, diagnose and treat cardiovascular diseases in humans.
Collapse
Affiliation(s)
- Virginia M Miller
- Departments of Surgery, Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yanes LL, Romero DG, Iliescu R, Reckelhoff JF. A single pill to treat postmenopausal hypertension? Not yet. Curr Top Med Chem 2011; 11:1736-41. [PMID: 21463249 DOI: 10.2174/156802611796117667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 08/14/2010] [Indexed: 11/22/2022]
Abstract
Postmenopausal women make up one of the fastest growing populations in the United States. Women typically have a higher incidence of cardiovascular disease following menopause. One of the major risk factors for cardiovascular disease is hypertension, and after menopause, blood pressure (BP) increases progressively in women. Also after menopause, the progression of renal disease increases in women compared with aged matched men. However, the mechanism(s) responsible for the post-menopausal increase in BP and renal injury are yet to be elucidated. Moreover the best therapeutic options to treat postmenopausal hypertension in women are not clear. Hypertension in postmenopausal women are usually associated with other cardiovascular risk factors, such as dyslipidemias, visceral obesity and endothelial dysfunction. Recently it became apparent that in a large number of hypertensive postmenopausal women, their BP is not well controlled with conventional antihypertensive medications. A clear understanding of the complex pathogenesis of postmenopausal hypertension is needed in order to offer the best therapeutic options for these women.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
34
|
Goosen P, Storbeck KH, Swart AC, Conradie R, Swart P. Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity. J Steroid Biochem Mol Biol 2011; 127:238-47. [PMID: 21930205 DOI: 10.1016/j.jsbmb.2011.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/26/2022]
Abstract
During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1, has been shown to alter the steroidogenic outcome of this competition. In this study, the influence of Cyt-b(5) on 3βHSD activity was investigated. In COS-1 cells, Cyt-b(5) was shown to significantly increase the activity of both caprine and ovine 3βHSD towards pregnenolone, 17-OH pregnenolone and dehydroepiandrosterone in a substrate and species specific manner. Furthermore, kinetic studies revealed Cyt-b(5) to have no influence on the K(m) values while significantly increasing the V(max) values of ovine 3βHSD for all its respective substrates. In addition, the activity of ovine 3βHSD in microsomal preparations was significantly influenced by the addition of either purified Cyt-b(5) or anti-Cyt-b(5) IgG. The results presented in this study indicate that Cyt-b(5) augments 3βHSD activity and represents the first documentation of such augmentation in any species.
Collapse
Affiliation(s)
- Pierre Goosen
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | | | | | |
Collapse
|
35
|
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in postmenopausal women. Hypertension is a major risk factor for cardiovascular disease. The mechanisms responsible for postmenopausal hypertension have not been completely elucidated. However, various mechanisms have been implicated to play a role. For example, there is evidence that changes in estrogen/androgen ratios favoring increases in androgens, activation of the renin-angiotensin and endothelin systems, activation of the sympathetic nervous system, metabolic syndrome and obesity, inflammation, increased vasoconstrictor eicosanoids, and anxiety and depression may be important in the pathogenesis of postmenopausal hypertension. There is also evidence that hypertension is less well controlled in aging women than in aging men, but the reasons for this gender difference is not clear. Postmenopausal hypertension is likely multifactorial. Future studies will be necessary to determine the contribution of these systems listed above in mediating postmenopausal hypertension and to design treatment strategies that encompass these mechanisms to improve the quality of life of postmenopausal women as they age.
Collapse
|
36
|
El-Kabbani O, Dhagat U, Hara A. Inhibitors of human 20α-hydroxysteroid dehydrogenase (AKR1C1). J Steroid Biochem Mol Biol 2011; 125:105-11. [PMID: 21050889 DOI: 10.1016/j.jsbmb.2010.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/11/2010] [Accepted: 10/23/2010] [Indexed: 12/13/2022]
Abstract
Human 20α-hydroxysteroid dehydrogenase (AKR1C1), a member of the aldo-keto reductase (AKR) superfamily, is one of four isoforms (with >84% amino acid sequence identity) existing in human tissues. AKR1C1 most efficiently reduces biologically active progesterone and 5α-pregnan-3α-ol-20-one into their corresponding 20α-hydroxysteroids among the isoforms. The enzyme also accepts endogenous and xenobiotic non-steroidal carbonyl compounds as the substrates. In addition to the up-regulation of the AKR1C1 gene in cancer cells, the enzyme's over-expression in the cells of lung, ovary, uterine cervix, skin and colon carcinomas was reported to be associated with resistance against several anticancer agents. Thus, AKR1C1 may be a marker of the above cancers and a target of poor prognosis in cancer therapy. The recently determined X-ray crystal structures of AKR1C1/NADP(+)/20α-hydroxyprogesterone and AKR1C1/NADP(+)/3,5-dichlorosalicylic acid ternary complexes have provided a strong foundation for structure-based design methods to improve inhibitor selectivity and potency. In this review we provide an overview of the different types of AKR1C1 inhibitors and an update on the design of potent and selective inhibitors based on the crystal structure of the enzyme-inhibitor complex. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Ossama El-Kabbani
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
37
|
Storbeck KH, Swart P, Africander D, Conradie R, Louw R, Swart AC. 16α-hydroxyprogesterone: origin, biosynthesis and receptor interaction. Mol Cell Endocrinol 2011; 336:92-101. [PMID: 21095220 DOI: 10.1016/j.mce.2010.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 11/11/2010] [Indexed: 11/16/2022]
Abstract
The metabolism of progesterone (PROG) by cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) results in the formation of both 17α-hydroxyprogesterone (17-OHPROG) and 16α-hydroxyprogesterone (16-OHPROG) in humans. Unlike 17-OHPROG, 16-OHPROG is not metabolised further in steroidogenic tissue. While this metabolite can be readily detected in serum and urine, its physiological role remains unclear. This paper reviews the production of 16-OHPROG by human CYP17A1 by providing insight into the catalysis of PROG by CYP17A1 and highlights the role of Ala105 in the 16α-hydroxylation reaction. As 16-OHPROG has been putatively linked to reproductive function, we investigated the interaction of this steroid metabolite with both isoforms of the human progesterone receptor (hPR). We show for the first time that 16-OHPROG can bind to both hPR-A and hPR-B and act as an agonist for both receptors.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | | | | | | | |
Collapse
|
38
|
Pagotto MA, Roldán ML, Pagotto RM, Lugano MC, Pisani GB, Rogic G, Molinas SM, Trumper L, Pignataro OP, Monasterolo LA. Localization and functional activity of cytochrome P450 side chain cleavage enzyme (CYP11A1) in the adult rat kidney. Mol Cell Endocrinol 2011; 332:253-60. [PMID: 21075169 DOI: 10.1016/j.mce.2010.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 11/16/2022]
Abstract
Cumulative evidence demonstrated effective downstream metabolism of pregnenolone in renal tissue. The aim of this study was to evaluate the expression and functional activity of cytochrome P450 side chain cleavage enzyme (CYP11A1), which converts cholesterol into pregnenolone, in adult rat kidney. Immunohistochemical labeling for CYP11A1 was observed in renal cortex and medulla, on structures identified as distal convoluted tubule and thick ascending limb of Henle's loop, respectively. Immunoblotting analysis corroborated the renal expression of the protein in inner mitochondrial membrane fractions. The incubation of isolated mitochondria with the membrane-permeant cholesterol analogue 22R-hydroxycholesterol resulted in efficient formation of pregnenolone, the immediate precursor for the synthesis of all the steroid hormones. The low progesterone production rate observed in these experiments suggested a poor activity of 3β-hydroxysteroid dehydrogenase enzyme in renal mitochondria. The steroidogenic acute regulatory protein (StAR), involved in the mitochondrial import of cholesterol, was detected in renal tissue at both mRNA and protein level. Immunostaining for StAR showed similar distribution to that observed for CYP11A1. The expression of StAR and CYP11A1 was found to be higher in medulla than in cortex. This enhanced expression of steroidogenesis-related proteins correlated with a greater pregnenolone synthesis rate and higher steroid hormones tissular content measured in medulla. In conclusion, we have established the expression and localization of StAR and CYP11A1 protein, the ability of synthesizing pregnenolone and a region-specific content of sex hormones in the adult rat kidney. These data clearly show that the kidney is a steroid hormones synthesizing organ. It is proposed that the existence in the kidney of complete steroidogenic machinery would respond to a physiological significance.
Collapse
Affiliation(s)
- Melina A Pagotto
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Broad tissue expression of membrane progesterone receptor Alpha in normal mice. J Mol Histol 2010; 41:101-10. [DOI: 10.1007/s10735-010-9265-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
40
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Tomei G, Ciarrocca M, Capozzella A, Rosati MV, Vacca D, Ursini A, Cangemi C, Monti C, Tomei F. Effects on Androstenedione in Male Workers Exposed to Urban Stressors. Inhal Toxicol 2008; 18:501-6. [PMID: 16603481 DOI: 10.1080/08958370600596110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study is to evaluate whether occupational exposure to urban stressors could cause alterations in androstenedione plasma levels in male traffic policemen compared to a control group. After excluding the principal confounding factors, traffic policemen were matched with controls by age, working life, body mass index (BMI), drinking habit, and habitual soy intake in diet. One hundred and ten traffic policemen and 110 controls were included in the study. In male traffic policemen, mean androstenedione values were significantly lower compared to controls. The distribution of androstenedione values in traffic policemen and in controls was significant. Our results suggest that the occupational exposure to chemical urban stressors, interacting with and adding to the psychosocial ones, could alter androstenedione plasma concentrations in traffic policemen compared to a control group. According to our previous research, androstenedione could be used as an early biological marker, valuable for the group to be employed in occupational settings, even before the onset of the endocrine reproductive health diseases.
Collapse
Affiliation(s)
- Gianfranco Tomei
- Department of Occupational Medicine, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yanes LL, Sartori-Valinotti JC, Reckelhoff JF. Sex steroids and renal disease: lessons from animal studies. Hypertension 2008; 51:976-81. [PMID: 18259026 DOI: 10.1161/hypertensionaha.107.105767] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, The Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
43
|
Sabolić I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function. Pflugers Arch 2007; 455:397-429. [PMID: 17638010 DOI: 10.1007/s00424-007-0308-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 01/04/2023]
Abstract
Sex hormones influence the development of female (F) and male (M) specific traits and primarily affect the structure and function of gender-specific organs. Recent studies also indicated their important roles in regulating structure and/or function of nearly every tissue and organ in the mammalian body, including the kidneys, causing gender differences in a variety of characteristics. Clinical observations in humans and studies in experimental animals in vivo and in models in vitro have shown that renal structure and functions under various physiological, pharmacological, and toxicological conditions are different in M and F, and that these differences may be related to the sex-hormone-regulated expression and action of transporters in the apical and basolateral membrane of nephron epithelial cells. In this review we have collected published data on gender differences in renal functions, transporters and other related parameters, and present our own microarray data on messenger RNA expression for various transporters in the kidney cortex of M and F rats. With these data we would like to emphasize the importance of sex hormones in regulation of a variety of renal transport functions and to initiate further studies of gender-related differences in kidney structure and functions, which would enable us to better understand occurrence and development of various renal diseases, pharmacotherapy, and drug-induced nephrotoxicity in humans and animals.
Collapse
Affiliation(s)
- Ivan Sabolić
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
44
|
Sun J, Devish K, Langer WJ, Carmines PK, Lane PH. Testosterone treatment promotes tubular damage in experimental diabetes in prepubertal rats. Am J Physiol Renal Physiol 2007; 292:F1681-90. [PMID: 17311907 DOI: 10.1152/ajprenal.00482.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Puberty unmasks or accelerates progressive kidney diseases, including diabetes mellitus (DM), perhaps through effects of sex steroids. To test the hypothesis that rising androgen levels at puberty permit diabetic kidney damage, we studied four groups of male rats with and without streptozocin-induced DM: adult onset (A), adult onset after castration (AC), juvenile onset (J), and juvenile onset with testosterone treatment (JT). Profibrotic markers were measured after 6 wk with blood glucose levels 300-450 mg/dl. JT permitted increased expression of mRNA for two isoforms of transforming growth factor-beta and connective tissue growth factor compared with J animals with DM; prior castration did not provide protection in adult-onset DM. JT also permitted greater tubular staining for alpha-smooth muscle actin and fibroblast-specific protein, two markers of cell damage and potential epithelial mesenchymal transition. Once again, castration was not protective for these effects of DM in the AC group. These data indicate that puberty permits detrimental effects in the tubulointerstitium in the diabetic kidney, an effect mimicked by testosterone treatment of juvenile animals and partially blunted by castration of adults, but damage does not correlate with testosterone levels, suggesting a less direct mechanism.
Collapse
Affiliation(s)
- Jianhong Sun
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198-2169, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss the impact of male and female sex hormones on renal function and to develop the concept that salt-sensitivity of renal function behaves independently of the systemic blood pressure response to salt and may contribute to renal sex-specific differences. RECENT FINDINGS Men exhibit a more rapid age-related decline in renal function than women and some renal diseases are clearly sex dependent. Recent studies have shown that gonadal steroids have an important influence on sodium handling and renal hemodynamics that may offer a key for understanding the sexual dimorphism of the renal function. It has been found that androgens increase proximal sodium reabsorption and intraglomerular pressure by modulating afferent and efferent arteriolar tonus via angiotensin II, endothelin and oxidative stress. In contrast, female sex hormones lead to a renal vasodilation and decrease filtration fraction. SUMMARY Some newly discovered mechanisms triggering the salt-sensitivity of the renal function and the interaction between gonadal steroids and components of the renin cascade may play an important role in the dimorphism of renal response to salt.
Collapse
Affiliation(s)
- Antoinette Pechere-Bertschi
- Medical Policlinic and Service of Endocrinology, Diabetology and Nutrition, University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
46
|
McGuire BB, Watson RWG, Pérez-Barriocanal F, Fitzpatrick JM, Docherty NG. Gender differences in the renin-angiotensin and nitric oxide systems: relevance in the normal and diseased kidney. Kidney Blood Press Res 2007; 30:67-80. [PMID: 17268203 DOI: 10.1159/000099150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Female gender is associated with better renal function and resistance to renal injury, suggesting that an oestrogen-based effect or increased androgenic effects are responsible. Studies in rodents have confirmed a biological basis for this, based on the differential effects of androgens and oestrogens on the normal and diseased kidney. Many researchers in the field believe that the pre-menopausal levels of oestrogen are key to the protection observed in females. The key pressor effects of the renin-angiotensin (RA) system are due to both direct vasoconstrictory properties and alterations in renal control of extracellular fluid volume. Additionally, the RA has been shown to promote diverse aspects of renal injury. RA activity is positively modulated by androgens and antagonized by oestrogens. Nitric oxide (NO) is a potent vasorelaxant with a key role in renal control of extracellular fluid homeostasis. NO can variously have both protective and deleterious effects on renal injury. Endogenous oestrogen has an anti-hypertensive effect as well as protective effects against cell and organ damage, many of which are mediated via increases in NO generation. We examine how the RA- and NO-generating systems may underpin key aspects of gender differences in normal renal function and renal disease.
Collapse
Affiliation(s)
- Barry B McGuire
- UCD School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Republic of Ireland
| | | | | | | | | |
Collapse
|
47
|
Lu H, Lei X, Klaassen C. Gender differences in renal nuclear receptors and aryl hydrocarbon receptor in 5/6 nephrectomized rats. Kidney Int 2006; 70:1920-8. [PMID: 16985511 DOI: 10.1038/sj.ki.5001880] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was aimed at delineating molecular pathways essential in gender-different pathogenesis of chronic kidney diseases (CKD). Renal transcripts of nuclear receptors and metabolic enzymes in male and female kidneys from 5/6 nephrectomized (Nx) rats 7 weeks post-Nx were examined using branched DNA signal amplification assay. Nx-males had marked kidney injury coupled with anemia and malnutrition. Nx-females had moderate renal injury, and were free of albuminuria, anemia, and malnutrition. Nx-males had systemic and renal inflammation, which were largely absent in Nx-females. Blood 17beta-estradiol, testosterone, and corticosterone did not change, whereas urinary testosterone decreased in both genders. Compared to males, female kidneys had higher androgen receptor (AR) and aryl hydrocarbon receptor (AhR) but lower estrogen receptor alpha (ERalpha). Compared to Nx-males, female remnant kidneys had less decreases in ERalpha and peroxisome proliferator-activated receptor alpha (PPARalpha), had no induction of AR and decrease of acyl-CoA oxidase, whereas had induction of cytochrome P450 4a1 (Cyp4a1) but decrease of AhR. Renal protein expression of a 52-kDa isoform of Wilm's tumor 1 (WT1), transcription factor critical in nephrogenesis, decreased dramatically in Nx-males but largely preserved in Nx-females. In conclusion, gender divergences in basal expression and alteration of ERalpha, AR, AhR, WT1, and PPARalpha/Cyp4a1 during CKD may explain gender differences in CKD progression and outcome of renal transplantation.
Collapse
Affiliation(s)
- H Lu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | |
Collapse
|
48
|
Sharma KK, Lindqvist A, Zhou XJ, Auchus RJ, Penning TM, Andersson S. Deoxycorticosterone inactivation by AKR1C3 in human mineralocorticoid target tissues. Mol Cell Endocrinol 2006; 248:79-86. [PMID: 16337083 DOI: 10.1016/j.mce.2005.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aldosterone is the principal endogenous mineralocorticoid in humans and regulates salt and water homeostasis. Cortisol, the major glucocorticoid, has high affinity for the mineralocorticoid receptor; however, 11beta-hydroxysteroid dehydrogenase type 2 converts cortisol to the inactive steroid cortisone in aldosterone target cells of the kidney, thus limiting the mineralocorticoid action of cortisol. Deoxycorticosterone (DOC) binds to the mineralocorticocoid receptor with high affinity and circulates at concentrations comparable to aldosterone. Severe DOC excess as is seen in 17alpha- and 11beta-hydroxylase deficiencies causes hypertension, and moderate DOC overproduction in late pregnancy is associated with hypertension. Here, we demonstrate that DOC is inactivated by the 20-ketosteroid reductase activity of the human AKR1C3 isozyme. Immunohistochemical analyses demonstrate that AKR1C3 is expressed in the mineralocorticoid-responsive epithelial cells of the renal cortical and medullary collecting ducts, as well as the colon. Our findings suggest that AKR1C3 protects the mineralocorticoid receptor from activation by DOC in mineralocorticoid target cells of the kidney and colon, analogous to cortisol inactivation by 11beta-hydroxysteroid dehydrogenase type 2.
Collapse
Affiliation(s)
- Kamalesh K Sharma
- Department of Obstetrics-Gynecology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hoppe U, Holterhus PM, Wünsch L, Jocham D, Drechsler T, Thiele S, Marschke C, Hiort O. Tissue-specific transcription profiles of sex steroid biosynthesis enzymes and the androgen receptor. J Mol Med (Berl) 2006; 84:651-9. [PMID: 16572348 DOI: 10.1007/s00109-006-0049-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 12/19/2005] [Indexed: 10/24/2022]
Abstract
17beta-hydroxysteroid dehydrogenase (17beta-HSD) and 5alpha-reductase isoenzymes play a crucial role in the formation and metabolism of sex steroids. Not only the key androgens testosterone and dihydrotestosterone but also their precursors are potent activators of the androgen receptor and are, therefore, likely to act as determinants of male sexual differentiation and maturation in a differentially regulated way. The aim of the present study was to relatively quantify the expression of the mRNA of 17beta-HSD isoenzymes, namely, type 1, 2, 3, 4, 5, 7, and 10, together with the 5alpha-reductase type 1 and 2, and the androgen receptor in normal human males and females. RNA was isolated from peripheral blood cells of both sexes and from genital skin fibroblasts (GSFs) of two different localizations (foreskin and scrotal skin) obtained from phenotypically normal males. mRNA expression was semi-quantified by quantitative reverse-transcriptase polymerase chain reaction with the LightCycler Instrument (Roche). The examined enzymes show statistically significant differences in their transcription pattern between the blood and the GSF RNA samples. Within the GSF samples, there are also significant variations between the two examined localizations in the transcription of 17beta-HSD type 1, 2, 4, and 5 as well as for the androgen receptor. We found large interindividual variation of enzyme transcription patterns in all investigated tissues. In peripheral blood cells, no sex-specific differences were seen. We conclude that sex steroid enzymes are expressed not only in genital primary target tissues but also in peripheral blood. The expression in different target tissues may contribute to both the individual sexual and tissue-specific phenotype in humans.
Collapse
Affiliation(s)
- U Hoppe
- Department of Pediatrics and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Reckelhoff JF, Yanes LL, Iliescu R, Fortepiani LA, Granger JP. Testosterone supplementation in aging men and women: possible impact on cardiovascular-renal disease. Am J Physiol Renal Physiol 2005; 289:F941-8. [PMID: 16210452 DOI: 10.1152/ajprenal.00034.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of aging men and women with testosterone supplements is increasing. The supplements are given to postmenopausal women mainly to improve their libido and to aging men to improve muscle mass and bone strength, to improve libido and quality of life, to prevent and treat osteoporosis, and, with the phosphodiesterase-5 inhibitors, such as sildenafil, to treat erectile dysfunction. The increased use of testosterone supplements in aging individuals has occurred despite the fact that there have been no rigorous clinical trials examining the effects of chronic testosterone on the cardiovascular-renal disease risk. Studies in humans and animals have suggested that androgens can increase blood pressure and compromise renal function. Androgens have been shown to increase tubular sodium and water reabsorption and activate various vasoconstrictor systems in the kidney, such as the renin-angiotensin system and endothelin. There is also evidence that androgens may increase oxidative stress. Furthermore, the kidney contains the enzymes necessary to produce androgens de novo. This review presents an overview of the data from human and animal studies in which the role of androgens in promoting renal and cardiovascular diseases has been investigated.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Dept. of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | | | | | |
Collapse
|