1
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
2
|
Equey T, Salamin O, Ponzetto F, Nicoli R, Kuuranne T, Saugy J, Saugy M, Aikin R, Baume N. Longitudinal Profiling of Endogenous Steroids in Blood Using the Athlete Biological Passport Approach. J Clin Endocrinol Metab 2023; 108:1937-1946. [PMID: 36794909 DOI: 10.1210/clinem/dgad085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
CONTEXT Detection of endogenous anabolic androgenic steroids (EAAS), like testosterone (T), as doping agents has been improved with the launch of the Steroidal Module of the Athlete Biological Passport (ABP) in urine samples. OBJECTIVE To target doping practices with EAAS, particularly in individuals with low level of biomarkers excreted in urine, by including new target compounds measured in blood. DESIGN T and T/androstenedione (T/A4) distributions were obtained from 4 years of anti-doping data and applied as priors to analyze individual profiles from 2 T administration studies in female and male subjects. SETTING Anti-doping laboratory. Elite athletes (n = 823) and male and female clinical trials subjects (n = 19 and 14, respectively). INTERVENTION(S) Two open-label administration studies were carried out. One involved a control phase period followed by patch and then oral T administration in male volunteers and the other followed female volunteers during 3 menstrual cycles with 28 days of daily transdermal T application during the second month. MAIN OUTCOME MEASURE(S) Serum samples were analyzed for T and A4 and the performance of a longitudinal ABP-based approach was evaluated for T and T/A4. RESULTS An ABP-based approach set at a 99% specificity flagged all female subjects during the transdermal T application period and 44% of subjects 3 days after the treatment. T showed the best sensitivity (74%) in response to transdermal T application in males. CONCLUSIONS Inclusion of T and T/A4 as markers in the Steroidal Module can improve the performance of the ABP to identify T transdermal application, particularly in females.
Collapse
Affiliation(s)
- Tristan Equey
- World Anti-Doping Agency (WADA), Montreal, Quebec H4Z 1B7, Canada
| | - Olivier Salamin
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1066 Epalinges, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Federico Ponzetto
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, 10126 Turin, Italy
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1066 Epalinges, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1066 Epalinges, Switzerland
| | - Jonas Saugy
- Research and Expertise in anti-Doping Sciences (REDs), Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martial Saugy
- Research and Expertise in anti-Doping Sciences (REDs), Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Reid Aikin
- World Anti-Doping Agency (WADA), Montreal, Quebec H4Z 1B7, Canada
| | - Norbert Baume
- World Anti-Doping Agency (WADA), Montreal, Quebec H4Z 1B7, Canada
| |
Collapse
|
3
|
Basit A, Amory JK, Mettu VS, Li CY, Heyward S, Jariwala PB, Redinbo MR, Prasad B. Relevance of Human Aldoketoreductases and Microbial β-Glucuronidases in Testosterone Disposition. Drug Metab Dispos 2023; 51:427-435. [PMID: 36623880 PMCID: PMC10043941 DOI: 10.1124/dmd.122.000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Testosterone exhibits high variability in pharmacokinetics and glucuronidation after oral administration. Although testosterone metabolism has been studied for decades, the impact of UGT2B17 gene deletion and the role of gut bacterial β-glucuronidases on its disposition are not well characterized. We first performed an exploratory study to investigate the effect of UGT2B17 gene deletion on the global liver proteome, which revealed significant increases in proteins from multiple biological pathways. The most upregulated liver proteins were aldoketoreductases [AKR1D1, AKR1C4, AKR7A3, AKR1A1, and 7-dehydrocholesterol reductase (DHCR7)] and alcohol or aldehyde dehydrogenases (ADH6, ADH1C, ALDH1A1, ALDH9A1, and ALDH5A). In vitro assays revealed that AKR1D1 and AKR1C4 inactivate testosterone to 5β-dihydrotestosterone (5β-DHT) and 3α,5β-tetrahydrotestosterone (3α,5β-THT), respectively. These metabolites also appeared in human hepatocytes treated with testosterone and in human serum collected after oral testosterone dosing in men. Our data also suggest that 5β-DHT and 3α, 5β-THT are then eliminated through glucuronidation by UGT2B7 in UGT2B17 deletion individuals. Second, we evaluated the potential reactivation of testosterone glucuronide (TG) after its secretion into the intestinal lumen. Incubation of TG with purified gut microbial β-glucuronidase enzymes and with human fecal extracts confirmed testosterone reactivation into testosterone by gut bacterial enzymes. Both testosterone metabolic switching and variable testosterone activation by gut microbial enzymes are important mechanisms for explaining the disposition of orally administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions. SIGNIFICANCE STATEMENT: This study investigated the association of UGT2B17 gene deletion and gut bacterial β-glucuronidases with testosterone disposition in vitro. The experiments revealed upregulation of AKR1D1 and AKR1C4 in UGT2B17 deletion individuals, and the role of these enzymes to inactivate testosterone to 5β-dihydrotestosterone and 3α, 5β-tetrahydrotestosterone, respectively. Key gut bacterial species responsible for testosterone glucuronide activation were identified. These data are important for explaining the disposition of exogenously administered testosterone and appear essential to unraveling the molecular mechanisms underlying UGT2B17-associated pathophysiological conditions.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - John K Amory
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Cindy Yanfei Li
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Parth B Jariwala
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Matthew R Redinbo
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., V.S.M., B.P.); Departments of Medicine (J.K.A.) and Pharmaceutics (C.Y.L.), University of Washington, Seattle, Washington; BioIVT Inc., Baltimore, Maryland (S.H.); and Departments of Chemistry, Biochemistry, and Microbiology and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.)
| |
Collapse
|
4
|
Jeong SM, Lee DH, Rezende LFM, Giovannucci EL. Different correlation of body mass index with body fatness and obesity-related biomarker according to age, sex and race-ethnicity. Sci Rep 2023; 13:3472. [PMID: 36859451 PMCID: PMC9977890 DOI: 10.1038/s41598-023-30527-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The relationship between body mass index (BMI) and body fatness could differ according to age, sex, and race-ethnicity. We aimed to evaluate in which contexts BMI could be a good measure for body fatness compared to dual-energy X-ray absorptiometry (DXA) derived measures. The study population included 18,061 participants (9141 men and 8920 women) aged 18 and older who tested DXA from the National Health and Nutrition Examination Survey (NHANES) database from 1999 to 2006, and 8107 men and 10,754 women with DXA data from Korea NHANES from 2008 to 2011 to represent the Asian population. We calculated Pearson correlation coefficients between BMI and DXA derived fat mass index (FMI) and percentage body fat (PBF) depending on age, sex, and race-ethnicity. The correlation between BMI, FMI and PBF and obesity-related biomarkers was also estimated among the subgroup with both DXA and information on each biomarker. BMI was strongly correlated with FMI (r = 0.944 in men and 0.976 in women), PBF (r = 0.735 in men and 0.799 in women), and truncal fat mass (r = 0.914 in men and 0.941 in women) with correlations stronger in women than in men except for with waist-height ratio (r = 0.921 in men and 0.911 in women). The correlation between BMI and DXA derived adiposity weakened with age in both sexes. BMI was less correlated with FMI (r = 0.840 in men and 0.912 in women), PBF (r = 0.645 in men and 0.681 in women), and truncal fat mass (r = 0.836 in men and 0.884 in women) in Korean compared to other race-ethnicities. Among obesity-related biomarkers, insulin was the most strongly correlated to body adiposity indices in both sexes and strength of these correlations generally decreased with age. BMI predicted obesity-related biomarkers as well as FMI and truncal fat mass and superior to PBF. BMI could be a good measure for body fatness, particularly among young age groups, women, the US population, but less so in Korean populations. The lower correlation between BMI and body fatness in older compared to younger age groups could be related to increasing PBF and decreasing lean body mass.
Collapse
Affiliation(s)
- Su-Min Jeong
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Family Medicine, Seoul National University Health Service Center, Seoul, Republic of Korea.,Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hoon Lee
- Department of Sport Industry Studies, Yonsei University, Seoul, Republic of Korea.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Leandro F M Rezende
- Department of Preventive Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, SP, Brazil
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Bldg. 2, Room 371, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Wang PY, Yang Y, Shi XQ, Chen Y, Liu SD, Wang HY, Peng T, Shi Q, Zhang W, Sun C. Distilling functional variations for human UGT2B4 upstream region based on selection signals and implications for phenotypes of Neanderthal and Denisovan. Sci Rep 2023; 13:3134. [PMID: 36823244 PMCID: PMC9950360 DOI: 10.1038/s41598-023-29682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Our previous work identified one region upstream human UGT2B4 (UDP glucuronosyltransferase family 2 member B4) which is associated with breast cancer and under balancing selection. However, the distribution, functional variation and molecular mechanism underlying breast cancer and balancing selection remain unclear. In current study, the two haplotypes with deep divergence are described by analyzing 1000 genomes project data and observed to be with high frequencies in all human populations. Through population genetics analysis and genome annotation, the potential functional region is identified and verified by reporter gene assay. Further mutagenesis indicates that the functional mutations are rs66862535 and rs68096061. Both SNPs can alter the interaction efficiency of transcription factor POU2F1 (POU class 2 homeobox 1). Through chromosome conformation capture, it is identified that the enhancer containing these two SNPs can interact with UGT2B4 promoter. Expression quantitative trait loci analysis indicates that UGT2B4 expression is dependent on the genotype of this locus. The common haplotype in human is lost in four genomes of archaic hominins, which suggests that Neanderthal and Denisovan should present relatively lower UGT2B4 expression and further higher steroid hormone level. This study provides new insight into the contribution of ancient population structure to human phenotypes.
Collapse
Affiliation(s)
- Pin-Yi Wang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China ,grid.440773.30000 0000 9342 2456State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 Yunnan People’s Republic of China
| | - Yuan Yang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Xiao-Qian Shi
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Ying Chen
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Shao-Dong Liu
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Hong-Yan Wang
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Tao Peng
- grid.440773.30000 0000 9342 2456State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091 Yunnan People’s Republic of China
| | - Qiang Shi
- grid.412498.20000 0004 1759 8395College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 Shaanxi People’s Republic of China
| | - Wei Zhang
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA ,grid.449428.70000 0004 1797 7280Institute of Precision Medicine, Jining Medical University, Jining, 272067 Shandong People’s Republic of China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Extensive metabolic consequences of human glycosyltransferase gene knockouts in prostate cancer. Br J Cancer 2023; 128:285-296. [PMID: 36347965 PMCID: PMC9902621 DOI: 10.1038/s41416-022-02040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Naturally occurring germline gene deletions (KO) represent a unique setting to interrogate gene functions. Complete deletions and differential expression of the human glycosyltransferase UGT2B17 and UGT2B28 genes are linked to prostate cancer (PCa) risk and progression, leukaemia, autoimmune and other diseases. METHODS The systemic metabolic consequences of UGT deficiencies were examined using untargeted and targeted mass spectrometry-based metabolomics profiling of carefully matched, treatment-naive PCa cases. RESULTS Each UGT KO differentially affected over 5% of the 1545 measured metabolites, with divergent metabolic perturbations influencing the same pathways. Several of the perturbed metabolites are known to promote PCa growth, invasion and metastasis, including steroids, ceramides and kynurenine. In UGT2B17 KO, reduced levels of inactive steroid-glucuronides were compensated by sulfated derivatives that constitute circulating steroid reservoirs. UGT2B28 KO presented remarkably lower levels of oxylipins paralleled by reduced inflammatory mediators, but higher ceramides unveiled as substrates of the enzyme in PCa cells. CONCLUSION The distinctive and broad metabolic rewiring caused by UGT KO reinforces the need to examine their unique and divergent functions in PCa biology.
Collapse
|
7
|
Huanyu T, Jianghong S, Wei G, Jiawei Z, Hui G, Yunhe W. Environmental fate and toxicity of androgens: A critical review. ENVIRONMENTAL RESEARCH 2022; 214:113849. [PMID: 35843282 DOI: 10.1016/j.envres.2022.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Androgens are released by humans and livestock into the environment and which cause potent endocrine disruptions even at nanogram per liter levels. In this article, we reviewed updated research results on the structure, source, distribution characteristics and the fate of androgens in ecological systems; and emphasized the potential risk of androgens in aquatic organism. Androgens have moderately solubility in water (23.6-58.4 mg/L) and moderately hydrophobic (log Kow 2.75-4.40). The concentration of androgens in surface waters were mostly in ng/L ranges. The removal efficiencies of main wastewater treatment processes were about 70-100%, except oxidation ditch and stabilization ponds. Sludge adsorption and microbial degradation play important role in the androgens remove. The conjugated androgens were transformed into free androgens in environmental matrices. Global efforts to provide more toxicity data and establish standard monitoring methods need a revisit. Of the day available, there is an urgent need for comprehensive consideration of the impact of androgens on the environment and ecology.
Collapse
Affiliation(s)
- Tao Huanyu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Shi Jianghong
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guo Wei
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhang Jiawei
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Ge Hui
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Yunhe
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Walpurgis K, Piper T, Thevis M. Androgens, sports, and detection strategies for anabolic drug use. Best Pract Res Clin Endocrinol Metab 2022; 36:101609. [PMID: 35120801 DOI: 10.1016/j.beem.2021.101609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For decades, anabolic androgenic agents have represented the substance class most frequently observed in doping control samples. They comprise synthetic and pseudoendogenous anabolic androgenic steroids and other, mostly non-steroidal compounds with (presumed) positive effects on muscle mass and function. While exogenous substances can easily be detected by gas/liquid chromatography and mass spectrometry, significantly more complex methodologies including the longitudinal monitoring of individual urinary steroid concentrations/ratios and isotope ratio mass spectrometry are required to provide evidence for the exogenous administration of endogenous compounds. This narrative review summarizes the efforts made within the last 5 years to further improve the detection of anabolic agents in doping control samples. Different approaches such as the identification of novel metabolites and biomarkers, the acquisition of complementary mass spectrometric data, and the development of new analytical strategies were employed to increase method sensitivity and retrospectivity while simultaneously reducing method complexity to facilitate a higher and faster sample throughput.
Collapse
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| |
Collapse
|
9
|
Ekström L, Knutsson JE, Stephanou C, Hirschberg AL. Klotho Polymorphism in Association With Serum Testosterone and Knee Strength in Women After Testosterone Administration. Front Physiol 2022; 13:844133. [PMID: 35600302 PMCID: PMC9116293 DOI: 10.3389/fphys.2022.844133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Administration of testosterone (T) is associated with increased serum T concentrations and improved physical performance in women. However, the inter-individual variation in T concentrations after T treatment is large and may in part be due to genetic variations. Serum T, as well as dihydrotestosterone (DHT), androstenedione (A) and the T/A ratio have been suggested as promising doping biomarkers for testosterone intake. Here, polymorphisms in androgen metabolic enzyme genes have been investigated in healthy women prior to and after 10 weeks administration of testosterone cream. Klotho is a protein that has been associated with anaerobic strength and here a genetic variation in klotho gene was studied in relation to performance as measured by isokinetic knee strength, as well as to serum androgen disposition. The AKR1C3 genotype (rs12529) was associated with serum T levels at baseline, whereas serum concentrations post T treatment did not differ between genotypes. The SLCO2B1 (rs12422149) and UGT2B17 deletion polymorphisms were not associated with serum concentration of either T, DHT or A. The klotho polymorphism (rs9536314) was associated with serum concentrations of both total T and T/A ratio after T administration. Individuals with the GT genotype increased T concentrations and T/A ratio more than women homozygous for the T allele. No significant difference in the association of klotho genotype with knee muscle strength was observed between placebo and T treatment. However, individuals homozygous for the T allele showed higher isometric mean torque scores at exit than GT subjects after T administration. This is the first time a genotype has been associated with androgen concentrations after T administration and muscle strength in women. Our results imply that subjects with a polymorphism in klotho may be more prone to detection using serum T and A as biomarkers.
Collapse
Affiliation(s)
- Lena Ekström
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Lena Ekström,
| | - Jona Elings Knutsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Angelica Lindén Hirschberg
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Savkovic S, Ly LP, Desai R, Howa J, Nair V, Eichner D, Handelsman DJ. Detection of testosterone microdosing in healthy females. Drug Test Anal 2021; 14:653-666. [PMID: 34811948 DOI: 10.1002/dta.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
The ready detectability of synthetic androgens by mass spectrometry (MS)-based antidoping tests has reoriented androgen doping to using testosterone (T), which must be distinguished from its endogenous counterpart making detection of exogenous T harder. We investigated urine and serum steroid and hematological profiling individually and combined to determine the optimal detection model for T administration in women. Twelve healthy females provided six paired blood and urine samples over 2 weeks prior to treatment consisting of 12.5-mg T in a topical transdermal gel applied daily for 7 days. Paired blood and urine samples were then obtained at the end of treatment and Days 1, 2, 4, 7, and 14 days later. Compliance with treatment and sampling was high, and no adverse effects were reported. T treatment significantly increased serum and urine T, serum dihydrotestosterone (DHT), urine 5α-androstane-3α,17β-diol (5α-diol) epitestosterone (E), and urine T/E ratio with a brief window of detection (2-4 days) as well as total and immature (medium and high fluorescence) reticulocytes that remained elevated over the full 14 posttreatment days. Carbon isotope ratio MS and the OFF score and Abnormal Blood Profile score (ABPS) were not discriminatory. The optimal multivariate model to identify T exposure combined serum T, urine T/E ratio with three hematological variables (% high fluorescence reticulocytes, mean corpuscular hemoglobin, and volume) with the five variables providing 93% correct classification (4% false positive, 10% false negatives). Hence, combining select serum and urine steroid MS variables with reticulocyte measures can achieve a high but imperfect detection of T administration to healthy females.
Collapse
Affiliation(s)
- Sasha Savkovic
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Lam P Ly
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Reena Desai
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - John Howa
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Vinod Nair
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - David J Handelsman
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Piper T, Haenelt N, Fusshöller G, Geyer H, Thevis M. Sensitive detection of testosterone and testosterone prohormone administrations based on urinary concentrations and carbon isotope ratios of androsterone and etiocholanolone. Drug Test Anal 2021; 13:1835-1851. [PMID: 34648228 DOI: 10.1002/dta.3168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
The testing strategy for the detection of testosterone (T) or T-prohormones is based on the longitudinal evaluation of urinary steroid concentrations accompanied by subsequent isotope ratio mass spectrometry (IRMS)-based confirmation of samples showing atypical concentrations or concentration ratios. In recent years, the IRMS methodology focussed more and more on T itself and on the metabolites of T, 5α- and 5β-androstanediol. These target analytes showed the best sensitivity and retrospectivity, but their use has occasionally been challenging due to their comparably low urinary concentrations. Conversely, the carbon isotope ratios (CIR) of the main urinary metabolites of T, androsterone (A) and etiocholanolone (EITO), can readily be measured even from low urine volumes; those however, commonly offer a lower sensitivity and shorter retrospectivity in uncovering T misuse. Within this study, the CIRs of A and ETIO were combined with their urinary concentrations, resulting in a single parameter referred to as 'difference from weighted mean' (DWM). Both glucuronidated and sulfated steroids were investigated, encompassing a reference population (n = 110), longitudinal studies on three individuals, influence of ethanol in two individuals, and re-analysis of several administration studies including T, dihydrotestosterone, androstenedione, epiandrosterone, dehydroepiandrosterone, and T-gel. Especially DWM calculated for the sulfoconjugated steroids significantly prolonged the detection time of steroid hormone administrations when individual reference ranges were applied. Administration studies employing T encompassing CIR common for Europe (-23.8‰ and -24.4‰) were investigated and, even though for a significantly shorter time period and less pronounced, DWM could demonstrate the exogenous source of T metabolites.
Collapse
Affiliation(s)
- Thomas Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Köln, Germany
| | - Nadine Haenelt
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Köln, Germany
| | - Gregor Fusshöller
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Köln, Germany
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Köln, Germany
| | - Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Köln, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
12
|
Piper T, Geyer H, Haenelt N, Huelsemann F, Schaenzer W, Thevis M. Current Insights into the Steroidal Module of the Athlete Biological Passport. Int J Sports Med 2021; 42:863-878. [PMID: 34049412 PMCID: PMC8445669 DOI: 10.1055/a-1481-8683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
For decades, the class of anabolic androgenic steroids has represented the most frequently detected doping agents in athletes' urine samples. Roughly 50% of all adverse analytical findings per year can be attributed to anabolic androgenic steroids, of which about 2/3 are synthetic exogenous steroids, where a qualitative analytical approach is sufficient for routine doping controls. For the remaining 1/3 of findings, caused by endogenous steroid-derived analytical test results, a more sophisticated quantitative approach is required, as their sheer presence in urine cannot be directly linked to an illicit administration. Here, the determination of urinary concentrations and concentration ratios proved to be a suitable tool to identify abnormal steroid profiles. Due to the large inter-individual variability of both concentrations and ratios, population-based thresholds demonstrated to be of limited practicability, leading to the introduction of the steroidal module of the Athlete Biological Passport. The passport enabled the generation of athlete-specific individual reference ranges for steroid profile parameters. Besides an increase in sensitivity, several other aspects like sample substitution or numerous confounding factors affecting the steroid profile are addressed by the Athlete Biological Passport-based approach. This narrative review provides a comprehensive overview on current prospects, supporting professionals in sports drug testing and steroid physiology.
Collapse
Affiliation(s)
- Thomas Piper
- Center for Preventive Doping Research – Institute of
Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research – Institute of
Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Nadine Haenelt
- Center for Preventive Doping Research – Institute of
Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Frank Huelsemann
- Center for Preventive Doping Research – Institute of
Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Schaenzer
- Center for Preventive Doping Research – Institute of
Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research – Institute of
Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA)
Cologne/Bonn Germany
| |
Collapse
|
13
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
14
|
Thevis M, Piper T, Thomas A. Recent advances in identifying and utilizing metabolites of selected doping agents in human sports drug testing. J Pharm Biomed Anal 2021; 205:114312. [PMID: 34391136 DOI: 10.1016/j.jpba.2021.114312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
Probing for evidence of the administration of prohibited therapeutics, drugs and/or drug candidates as well as the use of methods of doping in doping control samples is a central assignment of anti-doping laboratories. In order to accomplish the desired analytical sensitivity, retrospectivity, and comprehensiveness, a considerable portion of anti-doping research has been invested into studying metabolic biotransformation and elimination profiles of doping agents. As these doping agents include lower molecular mass drugs such as e.g. stimulants and anabolic androgenic steroids, some of which further necessitate the differentiation of their natural/endogenous or xenobiotic origin, but also higher molecular mass substances such as e.g. insulins, growth hormone, or siRNA/anti-sense oligonucleotides, a variety of different strategies towards the identification of employable and informative metabolites have been developed. In this review, approaches supporting the identification, characterization, and implementation of metabolites exemplified by means of selected doping agents into routine doping controls are presented, and challenges as well as solutions reported and published between 2010 and 2020 are discussed.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Bonn, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
15
|
Chamnanphon M, Sukprasong R, Gaedigk A, Manosuthi W, Chariyavilaskul P, Wittayalertpanya S, Koomdee N, Jantararoungtong T, Puangpetch A, Sukasem C. Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:915-926. [PMID: 34335044 PMCID: PMC8318725 DOI: 10.2147/pgpm.s306358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023]
Abstract
Purpose Plasma efavirenz (EFV) concentrations within therapeutic levels are essential to successfully treat patients suffering from human immunodeficiency virus (HIV) type 1. In addition to the drug-metabolizing enzyme CYP2B6, other phase II drug-metabolizing enzymes and transporters may have an important role in the pharmacokinetics of EFV. Thus, the influence of phase II drug-metabolizing enzymes and drug transporters on plasma EFV levels was investigated in Thai HIV patients receiving EFV. Patients and Methods Genotyping was performed by TaqMan® real-time PCR in 149 HIV-infected Thai adults, and plasma efavirenz concentration was measured by a validated high-performance liquid chromatography in 12 hours after dosing steady-state plasma samples at week 12 and 24. Results Patients with three or more copies of SULT1A1 had significantly lower median plasma EFV concentrations than those carrying two copies at week 12 (p=0.046) and SULT1A1*2 (c.638G>A) carriers had significantly lower median plasma EFV concentrations compared to those not carrying the variant at week 24 (p=0.048). However, no significant association was found after adjusting for CYP2B6 genotype. Conclusion Genetic variation in a combination of SULT1A1*2 and SULT1A1 copy number may contribute to variability in EFV metabolism and thereby may impact drug response. The influence of a combination between the SULT1A1 and CYP2B6 genotype on EFV pharmacokinetics should be further investigated in a larger study population.
Collapse
Affiliation(s)
- Monpat Chamnanphon
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Nakornnayok, Thailand.,Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| |
Collapse
|
16
|
Shankara Narayana N, Ly LP, Jayadev V, Fennell C, Savkovic S, Conway AJ, Handelsman DJ. Optimal injection interval for testosterone undecanoate treatment of hypogonadal and transgender men. Endocr Connect 2021; 10:758-766. [PMID: 34137730 PMCID: PMC8346198 DOI: 10.1530/ec-21-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To define the optimized inter-injection interval of injectable testosterone undecanoate (TU) treatment for hypogonadal and transmen based on individual dose titration in routine clinical practice. DESIGN AND METHODS A prolective observational study of consecutive TU injections in men undergoing testosterone replacement therapy for pathological hypogonadism or masculinization of female-to-male transgender (transmen) subject to individual dosing titration to achieve a stable replacement regimen. RESULTS From 2006 to 2019, 6899 injections were given to 325 consecutive patients. After excluding the 6-week loading dose, 6300 injections were given to 297 patients who had at least three and a median of 14 injections. The optimal injection interval (mean of last three injection intervals) had a median of 12.0 weeks (interquartile range 10.4-12.7 weeks). The interval was significantly influenced by age and body size (body surface area, BSA) but not by diagnosis or trough serum LH, FSH, and SHBG. Longer (≥14 weeks; 68/297, 23%), but not shorter (≤10 weeks; 22/297, 7.4%), intervals were weakly correlated with age but not diagnosis or other covariables. Low blood hemoglobin increased with trough serum testosterone to reach plateau once testosterone was about 10 nmol/L or higher. CONCLUSION Optimal intervals between TU injection after individual titration resulted in the approved 12-week interval in 70% of patients with only minor influence for clinical application of BSA and not of trough serum LH, FSH, and SHBG. Individually optimized inter-injection interval did not differ between men with primary or secondary hypogonadism or transmen.
Collapse
Affiliation(s)
- Nandini Shankara Narayana
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Lam P Ly
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Veena Jayadev
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Carolyn Fennell
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Sasha Savkovic
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Ann J Conway
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - David J Handelsman
- Andrology Department, Concord Hospital and, ANZAC Research Institute, University of Sydney, Sydney, Australia
- Correspondence should be addressed to D J Handelsman:
| |
Collapse
|
17
|
Lima G, Muniz-Pardos B, Kolliari-Turner A, Hamilton B, Guppy FM, Grivas G, Bosch A, Borrione P, DI Gianfrancesco A, Fossati C, Pigozzi F, Pitsiladis Y. Anti-doping and other sport integrity challenges during the COVID-19 pandemic. J Sports Med Phys Fitness 2021; 61:1173-1183. [PMID: 34256541 DOI: 10.23736/s0022-4707.21.12777-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The coronavirus disease (COVID-19) pandemic has had an unprecedent impact on the world of sport and society at large. Many of the challenges with respect to integrity previously facing competitive sport have been accentuated further during the pandemic. Threats to the integrity of sporting competition include traditional doping, issues of technological fairness, and integration of transgender and intersex athletes in elite sport. The enforced lull in competitive sport provides an unprecedented opportunity for stakeholders in sport to focus on unresolved integrity issues and develop and implement long-lasting solutions. There needs to be a concerted effort to focus on the many technological innovations accelerated by and perfected during COVID-19 that have enabled us to work from home, such as teaching students on-line, applications for medical advice, prescriptions and referrals, and treating patients in hospitals/care homes via video links and use these developments and innovations to enhance sport integrity and anti-doping procedures. Positive sports integrity actions will require a considered application of all such technology, as well as the inclusion of "omics" technology, big data, bioinformatics and machine learning/artificial intelligence approaches to modernize sport. Applications include protecting the health of athletes, considered non-discriminative integration of athletes into elite sport, intelligent remote testing to improve the frequency of anti-doping tests, detection windows, and the potential combination with omics technology to improve the tests' sensitivity and specificity in order to protect clean athletes and deter doping practices.
Collapse
Affiliation(s)
- Giscard Lima
- Foro Italico University of Rome, Rome, Italy.,Centre for Stress and Age Related Disease, University of Brighton, Brighton, UK.,School of Sport and Health Sciences, University of Brighton, Eastbourne, UK
| | - Borja Muniz-Pardos
- GENUD Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain
| | | | - Blair Hamilton
- Centre for Stress and Age Related Disease, University of Brighton, Brighton, UK.,School of Sport and Health Sciences, University of Brighton, Eastbourne, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Fergus M Guppy
- Centre for Stress and Age Related Disease, University of Brighton, Brighton, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Gerasimos Grivas
- Division of Humanities and Political Sciences, Department of Physical Education and Sports, Hellenic Naval Academy, Piraeus, Greece
| | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Paolo Borrione
- Foro Italico University of Rome, Rome, Italy.,NADO Italia, National Antidoping Organization, Rome, Italy
| | - Alessia DI Gianfrancesco
- Foro Italico University of Rome, Rome, Italy.,NADO Italia, National Antidoping Organization, Rome, Italy
| | - Chiara Fossati
- Foro Italico University of Rome, Rome, Italy.,NADO Italia, National Antidoping Organization, Rome, Italy
| | - Fabio Pigozzi
- Foro Italico University of Rome, Rome, Italy - .,Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa.,International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Yannis Pitsiladis
- Foro Italico University of Rome, Rome, Italy.,Centre for Stress and Age Related Disease, University of Brighton, Brighton, UK.,International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| |
Collapse
|
18
|
Lood Y, Aardal E, Gustavsson S, Prasolov I, Josefsson M, Ahlner J. False negative results in testosterone doping in forensic cases: Sensitivity of the urinary detection criteria T/E and T/LH. Drug Test Anal 2021; 13:1735-1742. [PMID: 34228890 DOI: 10.1002/dta.3125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022]
Abstract
At the Swedish national forensic toxicology laboratory, a measured testosterone/epitestosterone (T/E) ratio ≥ 12 together with testosterone/luteinizing hormone (T/LH) in urine > 400 nmol/IU is considered as a proof of exogenous testosterone administration. However, according to the rules of the World Anti-Doping Agency (WADA), samples with T/E ratio > 4 are considered suspicious and shall be further analysed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to confirm the origin of testosterone and its metabolites. The aim of this study was to investigate the possibility of false negative results and to estimate the frequency of negative results using the current criteria for detection of abuse of testosterone in forensic investigations. Urine and serum samples were collected by the police at suspected infringement of the doping law in Sweden. Fifty-eight male subjects were included in the study. Urinary testosterone was determined by gas chromatography-mass spectrometry (GC-MS), serum testosterone and LH-by immunoassay. The origin of testosterone and its metabolites was confirmed by means of GC-C-IRMS. Twenty-six of the 57 analysed subjects tested positive for exogenous testosterone using the criteria T/E ≥ 12 combined with T/LH > 400 nmol/IU. The IRMS analyses confirmed 47 positives; thus, 21 were considered false negatives. Negative predictive value was 32% (95% confidence interval [CI]: 16%-50%) and sensitivity 55%. No false positive subjects were found. The number of false negative cases using the current criteria for the detection of testosterone abuse and hence the low sensitivity indicates a need to discuss introduction of new strategies in forensic doping investigations.
Collapse
Affiliation(s)
- Yvonne Lood
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elisabeth Aardal
- Division of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sara Gustavsson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping University, Linköping, Sweden
| | - Ilya Prasolov
- Swedish Doping Control Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Josefsson
- Drug Unit Department, National Forensic Centre, Linköping, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Johan Ahlner
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Testosterone Levels in Adolescents and Young Men with Type 1 Diabetes and Their Association with Diabetic Nephropathy. BIOLOGY 2021; 10:biology10070615. [PMID: 34356470 PMCID: PMC8301039 DOI: 10.3390/biology10070615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary Type 2 diabetes(T2D) has been known to be related with obesity, insulin-resistance, impaired glucose control. Low testosterone levels and hypogonadism are also known as clinical characteristics of T2D patients. On the contrary, type 1 diabetes(T1D) happens when insulin is insufficient rather than insulin-resistance. Relationship between T1D and testosterone has not been established enough. In the study, patients with T1D showed higher testosterone levels than the general population. We could also find that higher testosterone levels have positive relationship with nephropathy, one of complications in diabetic patients. Therefore, periodic check-up for testostrone levels may be helpful for preventing nephropathy in T1D. Abstract The association between serum testosterone levels and type 1 diabetes (T1D), especially in adolescents and young adults, has not been fully investigated. We aimed to compare testosterone levels between adolescents/young men with T1D and controls and to determine the factors affecting testosterone levels. We enrolled 47 men with T1D and 32 controls aged 15–29 years. We evaluated anthropometric measurements, lipid profiles, diabetic complications, and levels of serum luteinizing hormone, follicle-stimulating hormone, hemoglobin A1c, 24-h urine albumin, insulin autoantibody, and total serum testosterone. We assessed the correlation between serum testosterone levels and clinical characteristics. Total testosterone levels were higher in T1D patients than in controls (694.6 ± 182.2 vs. 554.1 ± 147.3 ng/dL, p = 0.001), and 24-h urine albumin level positively correlated with total testosterone levels (correlation coefficient 0.415, p = 0.004). T1D patients with nephropathy showed higher total testosterone levels than those without nephropathy (778.4 ± 198.9 vs. 655.4 ± 162.5 ng/dL, p = 0.029). However, diabetic nephropathy and testosterone levels were not significantly associated after adjusting for confounders (β ± SE 77.5 ± 55.2, p = 0.169). Further longitudinal studies are imperative to confirm a causal relationship between testosterone levels and T1D.
Collapse
|
20
|
Takahashi RH, Forrest WF, Smith AD, Badee J, Qiu N, Schmidt S, Collier AC, Parrott N, Fowler S. Characterization of Hepatic UDP-Glucuronosyltransferase Enzyme Abundance-Activity Correlations and Population Variability Using a Proteomics Approach and Comparison with Cytochrome P450 Enzymes. Drug Metab Dispos 2021; 49:760-769. [PMID: 34187837 DOI: 10.1124/dmd.121.000474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
The expression of ten major drug-metabolizing UDP-glucuronosyltransferase (UGT) enzymes in a panel of 130 human hepatic microsomal samples was measured using a liquid chromatography-tandem mass spectrometry-based approach. Simultaneously, ten cytochromes P450 and P450 reductase were also measured, and activity-expression relationships were assessed for comparison. The resulting data sets demonstrated that, with the exception of UGT2B17, 10th to 90th percentiles of UGT expression spanned 3- to 8-fold ranges. These ranges were small relative to ranges of reported mean UGT enzyme expression across different laboratories. We tested correlation of UGT expression with enzymatic activities using selective probe substrates. A high degree of abundance-activity correlation (Spearman's rank correlation coefficient > 0.6) was observed for UGT1As (1A1, 3, 4, 6) and cytochromes P450. In contrast, protein abundance and activity did not correlate strongly for UGT1A9 and UGT2B enzymes (2B4, 7, 10, 15, and 17). Protein abundance was strongly correlated for UGTs 2B7, 2B10, and 2B15. We suggest a number of factors may contribute to these differences including incomplete selectivity of probe substrates, correlated expression of these UGT2B isoforms, and the impact of splice and polymorphic variants on the peptides used in proteomics analysis, and exemplify this in the case of UGT2B10. Extensive correlation analyses identified important criteria for validating the fidelity of proteomics and enzymatic activity approaches for assessing UGT variability, population differences, and ontogenetic changes. SIGNIFICANCE STATEMENT: Protein expression data allow detailed assessment of interindividual variability and enzyme ontogeny. This study has observed that expression and enzyme activity are well correlated for hepatic UGT1A enzymes and cytochromes P450. However, for the UGT2B family, caution is advised when assuming correlation of expression and activity as is often done in physiologically based pharmacokinetic modeling. This can be due to incomplete probe substrate specificities, but may also be related to presence of inactive UGT protein materials and the effect of splicing variations.
Collapse
Affiliation(s)
- Ryan H Takahashi
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - William F Forrest
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Alexander D Smith
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Justine Badee
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - NaHong Qiu
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Stephan Schmidt
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Abby C Collier
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Neil Parrott
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Stephen Fowler
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| |
Collapse
|
21
|
Gasser BA, Kurz J, Dick B, Mohaupt MG. A reply to 'Alteration of steroidogenesis in boys with autism spectrum disorders'. Transl Psychiatry 2021; 11:278. [PMID: 33972510 PMCID: PMC8111024 DOI: 10.1038/s41398-021-01393-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria
| | - Bernhard Dick
- grid.5734.50000 0001 0726 5157Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | | |
Collapse
|
22
|
Schulze J, Pettersson-Bohlin K, Thörngren JO, Ekström L. Re-evaluation of combined ((ES/EG)/(TS/TG)) ratio as a marker of testosterone intake in men. Drug Test Anal 2021; 13:1576-1579. [PMID: 33864421 DOI: 10.1002/dta.3045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/08/2022]
Abstract
To detect doping with pseudo-endogenous anabolic steroids in sports, a urinary steroid profile with glucuronidated plus unconjugated androgens is used. In addition to analyze androgen glucuronide metabolites, it can be of interest to also include sulfate metabolites in the urinary steroid profile. The combined ratios of epitestosterone sulfate/epitestosterone glucuronide to the ratios of testosterone sulfate/testosterone glucuronide ((ES/EG)/(TS/TG)) have previously been investigated as a complementary biomarker for testosterone doping. In this restudy, the aim was to evaluate this biomarker in a larger study sample population. A single dose of 500-mg testosterone enanthate was administered to 54 healthy male volunteers. Urine was collected prior to (Day 0) administration and throughout 15 days and analyzed for the sulfate and glucuronide conjugates of testosterone and epitestosterone. The results show that the combined ratio increased to a larger extent than the traditional T/E ratio in all subjects. This increase was independent on UGT2B17 gene polymorphism. Moreover, a delayed peak of the combined ratio was observed in ~60% of the participants. The results confirm that complementary analyses of the sulfate metabolites may be a useful approach to detect testosterone doping in men.
Collapse
Affiliation(s)
- Jenny Schulze
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kim Pettersson-Bohlin
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - John-Olof Thörngren
- Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Ekström
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Nair VS, Sharpe K, Husk J, Miller GD, Van Eenoo P, Crouch A, Eichner D. Evaluation of blood parameters by linear discriminant models for the detection of testosterone administration. Drug Test Anal 2021; 13:1270-1281. [PMID: 33629499 DOI: 10.1002/dta.3017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/09/2022]
Abstract
The steroidal module of the Athlete Biological Passport (ABP) has been used since 2014 for the longitudinal monitoring of urinary testosterone and its metabolites to identify samples suspicious for the use of synthetic forms of Endogenous Anabolic Androgenic Steroids (EAAS). Multiple recent studies have suggested that monitoring of blood parameters may provide enhanced detectability of exogenous testosterone administration. Transdermal and intramuscular testosterone administration studies were carried out in 15 subjects, and the effect on blood steroidal levels, hematological parameters, and gonadotropins was evaluated. Serum testosterone and dihydrotestosterone levels increased while gonadotropin levels were suppressed after administration. A modest increase in reticulocytes was also observed. The blood parameters that were responsive to the administrations were combined into several linear discriminant models targeting both administration (on) and washout (off) phases. The models were effective in detecting the large dose intramuscular administration but were less successful in the detection of the lower dose transdermal application. The blood profiling models may provide complementary value but do not appear to be substantially more advantageous than longitudinal urinary profiling.
Collapse
Affiliation(s)
- Vinod S Nair
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA.,DoCoLab, Department of Diagnostic Science, Ghent University, Ghent, Belgium
| | - Ken Sharpe
- Statistical Consulting Centre, School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jacob Husk
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Peter Van Eenoo
- DoCoLab, Department of Diagnostic Science, Ghent University, Ghent, Belgium
| | - Andre Crouch
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, South Jordan, Utah, USA
| |
Collapse
|
24
|
Elings Knutsson J, Andersson A, Baekken LV, Pohanka A, Ekström L, Hirschberg AL. Disposition of Urinary and Serum Steroid Metabolites in Response to Testosterone Administration in Healthy Women. J Clin Endocrinol Metab 2021; 106:697-707. [PMID: 33274381 DOI: 10.1210/clinem/dgaa904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 02/05/2023]
Abstract
CONTEXT Little is known about how exogenous testosterone (T) affects the steroid profile in women. More knowledge would give the antidoping community keys as to how to interpret tests and detect doping. OBJECTIVE This work aimed to investigate the steroid profile in serum and urine in young healthy women after T administration. METHODS In a randomized, double-blind, placebo-controlled study, 48 healthy young women were assigned to daily treatment with T cream (10 mg) or placebo (1:1) for 10 weeks. Urine and blood were collected before and at the end of treatment. Serum steroids were analyzed with liquid chromatography-tandem mass spectrometry, and urine levels of T, epitestosterone (E), and metabolites included in the Athlete Biological Passport (ABP) were analyzed with gas chromatography-tandem mass spectrometry. RESULTS In serum, T and dihydrotestosterone levels increased, whereas sex hormone-binding globulin and 17-hydroxyprogesterone decreased after T treatment as compared to placebo. In urine, T and 5α-androstanediol increased in the T group. The median T increase in serum was 5.0-fold (range, 1.2-18.2) and correlated to a 2.2-fold (range, 0.4-14.4) median increase in T/E in urine (rs = 0.76). Only 2 of the 24 women receiving T reached the T/E cutoff ratio of 4, whereas when the results were added to the ABP, 6 of 15 participants showed atypically high T/E (40%). In comparison, 22/24 women in the T group increased serum T more than 99.9% of the upper confidence interval of nontreated values. CONCLUSION It seems that the T/E ratio is not sufficient to detect exogenous T in women. Serum total T concentrations could serve as a complementary marker of doping.
Collapse
Affiliation(s)
- Jona Elings Knutsson
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Andersson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Lasse Vestli Baekken
- Nordic Athlete Passport Management Unit, Anti-Doping Norway, Sognsveien, Oslo, Norway
| | - Anton Pohanka
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Ekström
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Gasser B, Kurz J, Mohaupt M. Testosterone/Epitestosterone Ratios-Further Hints to Explain Hyperandrogenemia in Children with Autism. Diseases 2021; 9:diseases9010013. [PMID: 33535392 PMCID: PMC7931062 DOI: 10.3390/diseases9010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epitestosterone [E] has for a long time been considered as a biologically inactive androgen. However, recently a distinct antiandrogenic activity of this naturally occurring endogenous epimer of Testosterone has been demonstrated. Especially the ratios of testosterone/epitestosterone (T/E) seem to be key as inhibition of epitestosterone on androgen activity was postulated. As in autism, a higher androgen activity was implied. We, therefore, suggested higher levels of T/E ratios of children with autism versus children with typical development. METHODS Urine probes of 22 girls with autism (BMI 18.7 ± 4.3; average age 12.3 ± 3.8 years) and a sample of 51 controls (BMI 17.0 ± 2.6; average age 11.9 ± 4 years), as well as 61 boys with autism (BMI 17.04 ± 2. average age 11.9 ± 2.5 years) and 61 control boys (BMI 17.0 ± 2.6; average age 11.1 ± 3.0 years), were analyzed with gas chromatography mass spectrometry. RESULTS The average T/E ratio of all boys with autism was 2.5 ± 1.8 versus 2.4 ± 1.3 in boys with typical development, respectively. No significant difference between boys with autism versus boys with typical development could be detected (p = 0.977). In girls with autism, the average T/E ratio was 1.4 ± 0.9 versus 2.0 ± 1.4 in girls with typical development, whereby a significant difference could be detected (p = 0.0285). Further, polynomial analysis of the third degree were conducted, showing a dependence from age with reasonable coefficients of determination (0.075 < R2 < 0.22, all samples). DISCUSSION As encompassing steroid hormone analysis are expensive and work-intensive, we hoped to find an easily applicable biomarker to support diagnostics in autism. However, as a relatively small sample of only 22 girls with autism were analyzed and menstrual cycle and pubertal status were only partly controllable through the matching of BMI and age, the question arises if it was an incidental finding. Nevertheless, one suggestion might be that epitestosterone has the effect of a competitive inhibition on the androgen receptor, which would probably help to explain the higher prevalence of autism in boys as compared to girls. Presumably, as no significant difference was detected in boys, this effect might not be as relevant from a steroid hormone perspective, and other effects such as altered 17/20-hydroxylase activity as previously shown in boys and girls with autism seem to have more relevance. Analysis of larger samples, including plenty of metabolites and enzymatic cascades, as well as the role of backdoor pathway activity of androgen synthesis of girls with autism, are demanded in order to validate current findings of altered steroid hormones in autism.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department für Sport, Bewegung und Gesundheit, Universität Basel, 4052 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-207-63-18
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria;
| | - Markus Mohaupt
- Teaching Hospital Internal Medicine, Lindenhofgruppe, 3006 Berne, Switzerland;
| |
Collapse
|
26
|
Schulze J, Suominen T, Bergström H, Ericsson M, Björkhem Bergman L, Ekström L. Urinary steroid profile in relation to the menstrual cycle. Drug Test Anal 2020; 13:550-557. [PMID: 33142032 PMCID: PMC7984021 DOI: 10.1002/dta.2960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
The interpretation of the steroidal module of the Athlete Biological Passport (ABP) in female athletes is complex due to the large variation of the endogenous urinary steroids. The menstrual cycle seems to be one of the largest confounders of the steroid profile. The duration of the different phases in the menstrual cycle differs between women and is difficult to predict only by counting days after menstruation. Here, we have determined the follicle, ovulation, and luteal phases, by assessing the menstrual hormones in serum samples collected from 17 healthy women with regular menses. Urine samples were collected three times per week during two consecutive cycles to measure the urinary steroid concentrations used in the ABP. The metabolite that was mostly affected by the menstrual phases was epitestosterone (E), where the median concentration was 133% higher in the ovulation phase compared to the follicle phase (p < 0.0001). The women with a large coefficient of variation (CV) in their first cycle also had a large CV in their second cycle and vice versa. The inter-individual difference was extensive with a range of 11%-230% difference between the lowest and the highest T/E ratio during a cycle. In conclusion, E and ratios with E as denominator are problematic biomarkers for doping in female athletes. The timing of the sample collection in the menstrual cycle will have a large influence on the steroid profile. The results of this study highlight the need to find additional biomarkers for T doping in females.
Collapse
Affiliation(s)
- Jenny Schulze
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Pharmacology C1:68Karolinska University HospitalStockholmSweden
| | - Tina Suominen
- Helsinki Doping Control Laboratory, Forensic Toxicology UnitFinnish Institute for Health and Welfare (THL)HelsinkiFinland
| | - Helena Bergström
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical GeriatricsKarolinska InstituteStockholmSweden
| | - Magnus Ericsson
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Pharmacology C1:68Karolinska University HospitalStockholmSweden
- French Doping Control Laboratory, Agence Française de lutte contre le dopage (AFLD) Département des AnalysesFrance
| | - Linda Björkhem Bergman
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical GeriatricsKarolinska InstituteStockholmSweden
| | - Lena Ekström
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Pharmacology C1:68Karolinska University HospitalStockholmSweden
- Department of Clinical Pharmacology C1:68Karolinska University Laboratory, Karolinska HospitalStockholmSweden
| |
Collapse
|
27
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
28
|
Nair VS, Husk J, Miller GD, Eenoo P, Crouch A, Eichner D. Evaluation of longitudinal steroid profiling with the ADAMS adaptive model for detection of transdermal, intramuscular, and subcutaneous testosterone administration. Drug Test Anal 2020; 12:1419-1431. [DOI: 10.1002/dta.2885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Vinod S. Nair
- Sports Medicine Research and Testing Laboratory South Jordan UT USA
- DoCoLab, Department of Diagnostic Science Ghent University Ghent Belgium
| | - Jacob Husk
- Sports Medicine Research and Testing Laboratory South Jordan UT USA
| | | | - Peter Eenoo
- DoCoLab, Department of Diagnostic Science Ghent University Ghent Belgium
| | - Andre Crouch
- Sports Medicine Research and Testing Laboratory South Jordan UT USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory South Jordan UT USA
| |
Collapse
|
29
|
Solheim SA, Mørkeberg J, Dehnes Y, Hullstein I, Juul A, Upners EN, Nordsborg NB. Changes in blood parameters after intramuscular testosterone ester injections – Implications for anti‐doping. Drug Test Anal 2020; 12:1019-1030. [DOI: 10.1002/dta.2803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Anti Doping Denmark Brøndby Denmark
| | | | - Yvette Dehnes
- Norwegian Doping Control Laboratory Oslo University Hospital Oslo Norway
| | - Ingunn Hullstein
- Norwegian Doping Control Laboratory Oslo University Hospital Oslo Norway
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Emmie N. Upners
- Department of Growth and Reproduction, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | | |
Collapse
|
30
|
Järvinen E, Kidron H, Finel M. Human efflux transport of testosterone, epitestosterone and other androgen glucuronides. J Steroid Biochem Mol Biol 2020; 197:105518. [PMID: 31704245 DOI: 10.1016/j.jsbmb.2019.105518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 01/01/2023]
Abstract
Several drug-metabolizing enzymes are known to control androgen homeostasis in humans. UDP-glucuronosyltransferases convert androgens to glucuronide conjugates in the liver and intestine, which enables subsequent elimination of these conjugated androgens via urine. The most important androgen is testosterone, while others are the testosterone metabolites androsterone and etiocholanolone, and the testosterone precursor dehydroepiandrosterone. Epitestosterone is another endogenous androgen, which is included as a crucial marker in urine doping tests. Since glucuronide conjugates are hydrophilic, efflux transporters mediate their excretion from tissues. In this study, we employed the membrane vesicle assay to identify the efflux transporters for glucuronides of androsterone, dehydroepiandrosterone, epitestosterone, etiocholanolone and testosterone. The human hepatic and intestinal transporters MRP2 (ABCC2), MRP3 (ABCC3), MRP4 (ABCC4), BCRP (ABCG2) and MDR1 (ABCB1) were studied in vitro. Of these transporters, only MRP2 and MRP3 transported the androgen glucuronides investigated. In kinetic analyses, MRP3 transported glucuronides of androsterone, epitestosterone and etiocholanolone at low Km values, between 0.4 and 4 μM, while the Km values for glucuronides of testosterone and dehydroepiandrosterone were 14 and 51 μM, respectively. MRP2 transported the glucuronides at lower affinity, as indicated by Km values over 100 μM. Interestingly, the MRP2-mediated transport of androsterone and epitestosterone glucuronides was best described by sigmoidal kinetics. The inability of BCRP to transport any of the androgen glucuronides investigated is drastically different from its highly active transport of several estrogen conjugates. Our results explain the transporter-mediated disposition of androgen glucuronides in humans, and shed light on differences between the human efflux transporters MRP2, MRP3, MRP4, BCRP and MDR1.
Collapse
Affiliation(s)
- Erkka Järvinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
31
|
Mullen J, Bækken LV, Törmäkangas T, Ekström L, Ericsson M, Hullstein IR, Schulze JJ. Inter‐individual variation of the urinary steroid profiles in Swedish and Norwegian athletes. Drug Test Anal 2020; 12:720-730. [DOI: 10.1002/dta.2778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jenny Mullen
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Sweden
| | | | - Timo Törmäkangas
- Health Sciences, Faculty of Sport and Health SciencesUniversity of Jyväskylä Finland
| | - Lena Ekström
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Sweden
| | - Magnus Ericsson
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Sweden
- French Doping Control LaboratoryAgence Française de lutte contre le dopage (AFLD) Département des Analyses France
| | | | - Jenny J. Schulze
- Department of Laboratory Medicine, Division of Clinical PharmacologyKarolinska Institutet Sweden
- The Swedish National Anti‐Doping OrganisationSwedish Sports Confederation Sweden
| |
Collapse
|
32
|
Zhang H, Basit A, Wolford C, Chen KF, Gaedigk A, Lin YS, Leeder JS, Prasad B. Normalized Testosterone Glucuronide as a Potential Urinary Biomarker for Highly Variable UGT2B17 in Children 7-18 Years. Clin Pharmacol Ther 2020; 107:1149-1158. [PMID: 31900930 DOI: 10.1002/cpt.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase 2B17 (UGT2B17) is a highly variable androgen-metabolizing and drug-metabolizing enzyme. UGT2B17 exhibits a unique ontogeny profile characterized by a dramatic increase in hepatic protein expression from prepubertal age to adulthood. Age, sex, copy number variation (CNV), and single nucleotide polymorphisms only explain 26% of variability in protein expression, highlighting the need for a phenotypic biomarker for predicting interindividual variability in glucuronidation of UGT2B17 substrates. Here, we propose testosterone glucuronide (TG) normalized by androsterone glucuronide (TG/AG) as a urinary UGT2B17 biomarker, and examine the associations among urinary TG/AG and age, sex, and CNV. We performed targeted metabolomics of 12 androgen conjugates with liquid-chromatography tandem mass spectrometry in 63 pediatric subjects ages 7-18 years followed over 7 visits in 3 years. Consistent with the reported developmental trajectory of UGT2B17 protein expression, urinary TG/AG is significantly associated with age, sex, and CNV. In conclusion, TG/AG shows promise as a phenotypic urinary UGT2B17 biomarker.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Chris Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kuan-Fu Chen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Ponzetto F, Baume N, Schweizer C, Saugy M, Kuuranne T. Steroidal module of the Athlete Biological Passport. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Saad K, Vonaparti A, Athanasiadou I, Saleh A, Abushareeda W, Alwahaibi A, Khan BFA, Aguilera R, Kraiem S, Horvatovich PL, Al-Muraikhi AE, Al Maadheed M, Georgakopoulos C. Population reference ranges of urinary endogenous sulfate steroids concentrations and ratios as complement to the steroid profile in sports antidoping. Steroids 2019; 152:108477. [PMID: 31446013 DOI: 10.1016/j.steroids.2019.108477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023]
Abstract
The population based Steroid Profile (SP) ratio of testosterone (T) and epitestosterone (E) has been considered as a biomarker approach to detect testosterone abuse in '80s. The contemporary Antidoping Laboratories apply the World Antidoping Agency (WADA) Technical Document (TD) for Endogenous Androgenic Anabolic Steroids (EAAS) in the analysis of SP during their screening. The SP Athlete Biological Passport (ABP) adaptive model uses the concentrations of the total of free and glucuronide conjugated forms of six EAASs concentrations and ratios measured by GC/MS. In the Antidoping Lab Qatar (ADLQ), the routine LC/MS screening method was used to quantitatively estimate the sulfate conjugated EAAS in the same analytical run as for the rest qualitative analytes. Seven sulfate EAAS were quantified for a number of routine antidoping male and female urine samples during screening. Concentrations, statistical parameters and selected ratios for the 6 EAAS, the 6 sulfate EAAS and 29 proposed ratios of concentrations from both EAAS and sulfate EAAS, which potentially used as SP ABP biomarkers, population reference limits and distributions have been estimated after the GC/MSMS analysis for EAAS and LC/Orbitrap/MS analysis for sulfate EAAS.
Collapse
Affiliation(s)
- Khadija Saad
- Anti-Doping Lab Qatar, Sports City, P.O. Box 27775, Doha, Qatar
| | | | | | - Amal Saleh
- Anti-Doping Lab Qatar, Sports City, P.O. Box 27775, Doha, Qatar
| | | | - Aisha Alwahaibi
- Anti-Doping Lab Qatar, Sports City, P.O. Box 27775, Doha, Qatar
| | | | | | - Souheil Kraiem
- Anti-Doping Lab Qatar, Sports City, P.O. Box 27775, Doha, Qatar
| | - Peter L Horvatovich
- University of Groningen, Groningen Research Institute of Pharmacy, P.O. Box 196, 9700 AD Groningen, the Netherlands
| | | | | | | |
Collapse
|
35
|
Yap YS, Lu YS, Tamura K, Lee JE, Ko EY, Park YH, Cao AY, Lin CH, Toi M, Wu J, Lee SC. Insights Into Breast Cancer in the East vs the West: A Review. JAMA Oncol 2019; 5:1489-1496. [PMID: 31095268 DOI: 10.1001/jamaoncol.2019.0620] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance During the past few decades, the incidence of breast cancer (BC) has been increasing rapidly in East Asia, and BC is currently the most common cancer in several countries. The rising incidence is likely related to changing lifestyle and environmental factors in addition to the increase in early diagnosis with BC awareness and screening. The understanding and management of BC are generally based on research and data from the West. However, emerging differences in BC epidemiology and tumor and host biology in Asian populations may be clinically relevant. Observations A higher proportion of premenopausal BCs occur in Asia, although this factor is possibly an age-cohort effect. Although the relative frequencies of different immunohistochemical subtypes of BC may be similar between the East and West, the higher prevalence of luminal B subtypes with more frequent mutations in TP53 may be confounded by disparities in early detection. In addition, Asian BCs appear to harbor a more immune-active microenvironment than BCs in the West. The spectra of germline mutations in BC predisposition genes and single-nucleotide polymorphisms contributing to BC risk vary with ethnicity as well. Differences in tolerability of certain cytotoxic and targeted agents used in BC treatment may be associated with pharmacogenomic factors, whereas the lower body mass of the average woman in East Asia may contribute to higher toxicities from drugs administered at fixed doses. Phenotypic characteristics, such as lower breast volume, may influence the type of surgery performed in East Asian women. On the other hand, increased breast density may affect the sensitivity of mammography in detecting BCs, limiting the benefits of screening mammography. Conclusions and Relevance Breast cancer has become a major health problem in Asia. The inclusion of more women from Asia in clinical trials and epidemiologic and translational studies may help unravel the interethnic heterogeneity of BCs and elucidate the complex interplay between environmental and intrinsic factors in its pathogenesis. These insights may help to refine prevention, diagnosis, and management strategies for BC in the setting of ethnic diversity.
Collapse
Affiliation(s)
- Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Jeong Eon Lee
- Breast Division, Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Eun Young Ko
- Department of Radiology, Samsung Medical Center, Seoul, South Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul, South Korea
| | - A-Yong Cao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Masakazu Toi
- Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Soo-Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.,Cancer Science Institute, National University of Singapore, Singapore
| |
Collapse
|
36
|
UGT2B17 and miR-224 contribute to hormone dependency trends in adenocarcinoma and squamous cell carcinoma of esophagus. Biosci Rep 2019; 39:BSR20190472. [PMID: 31164411 PMCID: PMC6609598 DOI: 10.1042/bsr20190472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) are the two main subtypes of esophageal cancer. Genetics underpinnings of EA are substantially less understood than that of ESCC. A large-scale relation data analysis was conducted to explore the genes implicated with either EA or ESCC, or both. Each gene linked to ESCC but not EA was further explored in mega-analysis of six independently collected EA RNA expression datasets. A multiple linear regression (MLR) model was built to study the possible influence of sample size, population region, and study date on the gene expression data in EA. Finally, a functional pathway analysis was conducted to identify the possible linkage between EA and the genes identified as novel significant contributors. We have identified 276 genes associated with EA, 1088 with ESCC, with a significant (P<5.14e-143) overlap between these two gene groups (n=157). Mega-analysis showed that two ESCC-related genes, UGT2B17 and MIR224, were significantly associated with EA (P-value <1e-10), with multiple connecting pathways revealed by functional analysis. ESCC and EA share some common pathophysiological pathways. Further study of UGT2B17 and MIR224, which are differentially dysregulated in ESCC and EA tumors, is warranted. Enhanced expression of UGT2B17 and the lack of miR-224 signaling may contribute to the responsiveness of EA to the male sex steroids.
Collapse
|
37
|
Amante E, Pruner S, Alladio E, Salomone A, Vincenti M, Bro R. Multivariate interpretation of the urinary steroid profile and training-induced modifications. The case study of a Marathon runner. Drug Test Anal 2019; 11:1556-1565. [PMID: 31307117 DOI: 10.1002/dta.2676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022]
Abstract
The steroidal module of the athlete biological passport (ABP) introduced by the World Anti-Doping Agency (WADA) in 2014 includes six endogenous androgenic steroids and five of their concentration ratios, monitored in urine samples collected repeatedly from the same athlete, whose values are interpreted by a Bayesian model on the basis of intra-individual variability. The same steroid profile, plus dihydrotestosterone (DHT) and DHEA, was determined in 198 urine samples collected from an amateur marathon runner monitored over three months preceding an international competition. Two to three samples were collected each day and subsequently analyzed by a fully validated gas chromatography-mass spectrometry protocol. The objective of the study was to identify the potential effects of physical activity at different intensity levels on the physiological steroid profile of the athlete. The results were interpreted using principal component analysis and Hotelling's T2 vs Q residuals plots, and were compared with a profile model based on the samples collected after rest. The urine samples collected after activity of moderate or high intensity, in terms of cardiac frequency and/or distance run, proved to modify the basal steroid profile, with particular enhancement of testosterone, epitestosterone, and 5α-androstane-3α,17β-diol. In contrast, all steroid concentration ratios were apparently not modified by intense exercise. The alteration of steroid profiles seemingly lasted for few hours, as most of the samples collected 6 or more hours after training showed profiles compatible with the "after rest" model. These observations issue a warning about the ABP results obtained immediately post-competition.
Collapse
Affiliation(s)
- Eleonora Amante
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043, Orbassano, Torino, Italy
| | - Serena Pruner
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Eugenio Alladio
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043, Orbassano, Torino, Italy
| | - Alberto Salomone
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043, Orbassano, Torino, Italy
| | - Marco Vincenti
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043, Orbassano, Torino, Italy
| | - Rasmus Bro
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30 - 1958, Frederiksberg, Denmark
| |
Collapse
|
38
|
Sim J, Cho B, Park M, Rhee J, In S, Choe S. Monitoring urinary testosterone and epitestosterone levels, and their ratio, in Korean chemical castration subjects using liquid chromatography–tandem mass spectrometry. J Anal Toxicol 2019; 44:192-199. [DOI: 10.1093/jat/bkz002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/16/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
In Europe, chemical castration has been adopted as a treatment for paraphilia since the 1930s. Among the various chemical castration agents, luteinizing hormone-releasing hormone (LHRH) agonists are now used widely because of their effectiveness and safety. In South Korea, a legislation of chemical castration to control the sexual impulses of sexual offenders was enforced in July 2011. Most of these subjects are treated with leuprorelin acetate, an LHRH agonist, for chemical castration. Despite this, there are few studies that address the long-term influence of LHRH agonists on testosterone (T) and epitestosterone (E) levels in chemical castration subjects. In order to analyze the urinary levels of T in chemical castration subjects, whose T levels are extremely low, we developed and validated an analytical method for the detection of both T and E in human urine using a liquid chromatography-tandem mass spectrometry (LC–MS/MS) system. The urine samples were hydrolyzed, extracted, and analyzed by LC–MS/MS with electrospray ionization in the positive-ion mode. The limits of detection were 0.02 ng/mL and the limits of quantitation were 0.05 ng/mL, which provided great sensitivity. The established method was applied to urine samples from chemical castration subjects and healthy male volunteers. The chemical castration subjects showed significantly lower urinary T levels than the control subjects. In addition, the urinary E levels were also lower in the chemical castration subjects; however, the T/E ratios were constant and did not show a notable decrease because of the simultaneous decrease in both urinary T and E. The urinary T levels and T/E ratio did not exceed the doping control criteria for exogenous T ingestion for any subject. This study shows the trend of urinary T and E levels in long-term treated chemical castration subjects by establishing a highly sensitive LC–MS/MS method, that provides useful information for monitoring chemical castration.
Collapse
Affiliation(s)
- Juhyun Sim
- National Forensic Service, 26460, 10 Ipchun-ro, Wonju, Gangwon-do, Republic of Korea
| | - Byungsuk Cho
- National Forensic Service, 26460, 10 Ipchun-ro, Wonju, Gangwon-do, Republic of Korea
| | - Meejung Park
- National Forensic Service, 26460, 10 Ipchun-ro, Wonju, Gangwon-do, Republic of Korea
| | - Jongsook Rhee
- National Forensic Service Busan institute, 50612, 50, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | - Sangwhan In
- National Forensic Service, 26460, 10 Ipchun-ro, Wonju, Gangwon-do, Republic of Korea
| | - Sanggil Choe
- National Forensic Service Seoul institute, 08036, 139, Jiyang-ro, Yangcheon-gu, Seoul, Republic of Korea
| |
Collapse
|
39
|
Steroidomics for highlighting novel serum biomarkers of testosterone doping. Bioanalysis 2019; 11:1171-1187. [DOI: 10.4155/bio-2019-0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Quantification of testosterone (T) and 5α-dihydrotestosterone serum concentrations proved to be an efficient alternative to urinary steroid profiling for the detection of T doping. In this context, additional serum markers could be discovered by exploratory untargeted steroidomics studies. Results: Endogenous steroid metabolites were monitored by ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry in serum samples collected during a T administration clinical trial. A three-step workflow for accurate review of annotation was used and multifactorial data analysis allowed highlighting promising serum biomarkers. Longitudinal monitoring of selected compounds was performed to assess T abuse detection capabilities. Conclusion: Application of serum steroidomics showed high potential for biomarker discovery of T doping, suggesting longitudinal monitoring of steroid hormones in serum as a significant improvement in detection of endogenous steroids abuse.
Collapse
|
40
|
Esquivel A, Alechaga É, Monfort N, Yang S, Xing Y, Moutian W, Ventura R. Evaluation of sulfate metabolites as markers of intramuscular testosterone administration in Caucasian and Asian populations. Drug Test Anal 2019; 11:1218-1230. [PMID: 30932347 DOI: 10.1002/dta.2598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 01/29/2023]
Abstract
The introduction of alternative markers to the steroid profile can be an effective approach to improving the screening capabilities for the detection of testosterone (T) misuse. In this work, endogenous steroid sulfates were evaluated as potential markers to detect intramuscular (IM) T administration. Fourteen sulfate metabolites were quantified using mixed-mode solid-phase extraction and analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Urine samples after a single IM injection (100 mg) of T cypionate to six Caucasian and six Asian healthy male volunteers were analyzed. Principal component analysis (PCA) was used to characterize the sample cohort and to obtain the most useful markers for discrimination between pre- and post-administration samples. For Caucasian volunteers, a separation between pre- and post-administration samples was observed in PCA, whereas for Asian volunteers no separation was obtained. Seventeen ratios between sulfate metabolites were selected and further considered. Detection times (DTs) of each marker were evaluated using individual thresholds for each volunteer. The best results were obtained using ratios involving T and epitestosterone (E) sulfates in the denominator. The best marker was the ratio androsterone sulfate/testosterone sulfate (A-S/T-S) which prolonged the DT 1.2-2.1 times in respect to those obtained using T/E ratio in all Caucasian volunteers and 1.3-1.5 times in two Asian volunteers. Other ratios between A-S or etiocholanolone sulfate and E-S, and sulfates of etiocholanolone, dehydroandrosterone or epiandrosterone, and T-S were also found adequate. These ratios improve the DT after IM T administration and their incorporation to complement the current steroid profile is recommended.
Collapse
Affiliation(s)
- Argitxu Esquivel
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Sheng Yang
- National Anti-Doping Laboratory, China Anti-Doping Agency, 100029, Beijing, China
| | - Yanyi Xing
- National Anti-Doping Laboratory, China Anti-Doping Agency, 100029, Beijing, China
| | - Wu Moutian
- China Anti-Doping Agency, 100029, Beijing, China
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain.,Barcelona Antidoping Laboratory, Doping Control Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
41
|
Thomson RJ, McMorran B, Hoy W, Jose M, Whittock L, Thornton T, Burgio G, Mathews JD, Foote S. New Genetic Loci Associated With Chronic Kidney Disease in an Indigenous Australian Population. Front Genet 2019; 10:330. [PMID: 31040861 PMCID: PMC6476903 DOI: 10.3389/fgene.2019.00330] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
The common occurrence of renal disease in Australian Aboriginal populations such as Tiwi Islanders may be determined by environmental and genetic factors. To explore genetic contributions, we performed a genome-wide association study (GWAS) of urinary albumin creatinine ratio (ACR) in a sample of 249 Tiwi individuals with genotype data from a 370K Affymetrix single nucleotide polymorphism (SNP) array. A principal component analysis (PCA) of the 249 individual Tiwi cohort and samples from 11 populations included in phase III of the HapMap Project indicated that Tiwi Islanders are a relatively distinct and unique population with no close genetic relationships to the other ethnic groups. After adjusting for age and sex, the proportion of ACR variance explained by the 370K SNPs was estimated to be 37% (using the software GCTA.31; likelihood ratio = 8.06, p-value = 0.002). The GWAS identified eight SNPs that were nominally significantly associated with ACR (p < 0.0005). A replication study of these SNPs was performed in an independent cohort of 497 individuals on the eight SNPs. Four of these SNPs were significantly associated with ACR in the replication sample (p < 0.05), rs4016189 located near the CRIM1 gene (p = 0.000751), rs443816 located in the gene encoding UGT2B11 (p = 0.022), rs6461901 located near the NFE2L3 gene, and rs1535656 located in the RAB14 gene. The SNP rs4016189 was still significant after adjusting for multiple testing. A structural equation model (SEM) demonstrated that the rs4016189 SNP was not associated with other phenotypes such as estimated glomerular filtration rate (eGFR), diabetes, and blood pressure.
Collapse
Affiliation(s)
- Russell J. Thomson
- Centre for Research in Mathematics, School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, NSW, Australia
| | - Brendan McMorran
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew Jose
- Menzies Institute of Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lucy Whittock
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Tim Thornton
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, United States
| | - Gaétan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - John Duncan Mathews
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon Foote
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Martín-Escudero P, Muñoz-Guerra JA, García-Tenorio SV, Garde ES, Soldevilla-Navarro AB, Galindo-Canales M, Prado N, Fuentes-Ferrer ME, Fernández-Pérez C. Impact of the UGT2B17 polymorphism on the steroid profile. Results of a crossover clinical trial in athletes submitted to testosterone administration. Steroids 2019; 141:104-113. [PMID: 30503386 DOI: 10.1016/j.steroids.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 11/27/2022]
Abstract
This article studies the genetic influence of polymorphism of the UGT2B17 gen on the urinary steroid profile and its implications for the anti-doping field. The study presents the results of a triple-blind randomized placebo-controlled crossover trial with healthy athletes submitted to a single dose of 250 mg of testosterone cypionate. Forty urine samples were collected from each participant. Mass spectrometry-based techniques commonly used in Anti-Doping laboratories, were employed to measure the urinary concentration and the Δδ13C values of a selection of target compounds for testosterone (T) administration together with LH. Twelve volunteers were included in the study; the polymorphism was evenly distributed among them. After T administration, the most meaningful change affected the Testosterone/Epitestosterone ratio (T/E) and the urinary concentration of LH. In relation with T/E, the wild type homozygous (ins/ins) group there was a mean relative increase of 30 (CI 95%: 25.2 to 36.7); in the heterozygous mutant (del/ins) group it was 19.8 (CI 95%:15.9 to 24.7); and in the homozygous mutant (del/del) group it was 19.7 (CI 95% 14.9 to 26.2). In the case of LH, it́s observed how LH values decrease significantly after the administration of Testex homogeneously among the three groups. The main outcome was related to the (del/del) group (homozygous mutant), where due to the depressed basal level of the steroid profile, if the longitudinal steroid profile of the athlete was not available, the analysis by GC/MS would not produce an "atypical" result according to the WADA TD2016EAAS despite the T administration. However, the genotyping of the UGT2B17 polymorphism, the follow up of LH and the use of GC-C-IRMS makes it possible to identify most of these samples as Adverse.
Collapse
Affiliation(s)
- Pilar Martín-Escudero
- Professional School of Sports Medicine, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain.
| | | | | | - Ester Serrano Garde
- Doping Control Laboratory of Madrid and Anti-Doping State Agency, AEPSAD, Madrid, Spain
| | | | - Mercedes Galindo-Canales
- Professional School of Sports Medicine, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Nayade Prado
- Preventive Medicine Service, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Manuel E Fuentes-Ferrer
- Preventive Medicine Service, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Cristina Fernández-Pérez
- Preventive Medicine Service, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
43
|
Bentz AB, Dossey EK, Rosvall KA. Tissue-specific gene regulation corresponds with seasonal plasticity in female testosterone. Gen Comp Endocrinol 2019; 270:26-34. [PMID: 30291863 DOI: 10.1016/j.ygcen.2018.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023]
Abstract
Testosterone (T) is a sex steroid hormone that often varies seasonally and mediates trade-offs between territorial aggression and parental care. Prior work has provided key insights into the 'top-down' hypothalamic control of this seasonal plasticity in T, yet mechanisms acting outside of the brain may also influence circulating T levels. We hypothesized that peripheral mechanisms may be especially critical for females, because peripheral regulation may mitigate the costs of systemically elevated T. Here, we begin to test this hypothesis using a seasonal comparative approach, measuring gene expression in peripheral tissues in tree swallows (Tachycineta bicolor), a songbird with intense female-female competition and T-mediated aggression. We focused on the gonad and liver for their role in T production and metabolism, respectively, and we contrasted females captured during territory establishment versus incubation. During territory establishment, when T levels are highest, we found elevated gene expression of the hepatic steroid metabolizing enzyme CYP2C19 along with several ovarian steroidogenic enzymes, including the androgenic 5α-reductase. Despite these seasonal changes in gene expression along the steroidogenic pathway, we did not observe seasonal changes in sensitivity to upstream signals, measured as ovarian mRNA abundance of luteinizing hormone receptor. Together, these data suggest that differential regulation of steroidogenic gene expression in the ovary is a potentially major contributor to seasonal changes in T levels in females. Furthermore, these data provide a unique and organismal glimpse into tissue-specific gene regulation and its potential role in hormonal plasticity in females.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Emma K Dossey
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
44
|
Damkjaer K, Weisser JJ, Msigala SC, Mdegela R, Styrishave B. Occurrence, removal and risk assessment of steroid hormones in two wastewater stabilization pond systems in Morogoro, Tanzania. CHEMOSPHERE 2018; 212:1142-1154. [PMID: 30286543 DOI: 10.1016/j.chemosphere.2018.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the occurrence and removal of 10 steroid hormones (4 androgens, 3 progestagens and 3 estrogens) in two WSP systems, Mafisa and Mzumbe in Morogoro, Tanzania. All 10 steroid hormones were detected in the influent of both WSP systems in the dry as well as in the rainy season. The concentrations of steroids in influent wastewater ranged from 0.1 ng/L for 17-OH-pregnenolone to 445 ng/L for estrone and from below limit of detection for 17-OH-pregnenolone to 45 ng/L for estrone in effluent. During dry season, the overall mean ± standard deviation removal efficiency for the 10 steroids were 70 ± 21% for Mzumbe WSP and 97 ± 3% for Mafisa WSP. During the rainy season the overall mean removal efficiency for all the steroid hormones were 52 ± 32% for Mzumbe WSP and 94 ± 8% for Mafisa WSP. Risk was characterized by calculating the risk quotients (RQs) for fish and humans. 46% of the total RQs calculated were above one, indicating high risk. Low RQs were estimated for androgens and progestagens but the estrogen concentrations measured in the WSP systems and Morogoro River indicated a high risk for fish. However, estrogens appeared not to pose an appreciable risk to human health from water intake and fish consumption. The results indicated that WSP systems are quite effective in removing steroid hormones from wastewater. Thus, low technology systems such as WSP systems are suitable techniques in low income counties due to relatively low costs of building, operating and maintaining these systems.
Collapse
Affiliation(s)
- Katrine Damkjaer
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Johan J Weisser
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sijaona C Msigala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Morogoro, Tanzania
| | - Robinson Mdegela
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Morogoro, Tanzania
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
45
|
Amante E, Alladio E, Salomone A, Vincenti M, Marini F, Alleva G, De Luca S, Porpiglia F. Correlation between chronological and physiological age of males from their multivariate urinary endogenous steroid profile and prostatic carcinoma-induced deviation. Steroids 2018; 139:10-17. [PMID: 30232035 DOI: 10.1016/j.steroids.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022]
Abstract
The biosynthesis of endogenous androgenic anabolic steroids (EAAS) in males varies with age. Knowledge of the general urinary EAAS profile's dependence from aging - not reported up to now - may represents a prerequisite for its exploitation in the screening and diagnostic support for several pathologies. Extended urinary EAAS profiles were obtained from healthy and pathological individuals, using a GC-MS method which was fully validated by a stepwise, analyst-independent scheme. Seventeen EAAS and five of their concentration ratios were determined and investigated using multivariate statistical methods. A regression model based on Kernel partial least squares algorithm was built to correlate the chronological age of healthy male individuals with their "physiological age" as determined from their urinary EAAS profile. Strong correlation (R2 = 0.75; slope = 0.747) and good prediction ability of the real chronological age was inferred from EAAS data. In contrast, patients with recent diagnosis (not pharmacologically treated) of prostatic carcinoma (PCa) exhibited a comprehensive EAAS profile with strong negative deviation from the model, corresponding a younger predicted age. This result is possibly related to the activation of anomalous steroid biosynthesis induced from PCa. Over a restricted 60-80 years-old population, PLS-discriminant analysis (DA) was used to distinguish healthy subjects from patients with untreated PCa. PLS-DA yielded excellent discrimination (sensitivity and specificity >90%) between healthy and pathological individuals. This proof-of-concept study provides a preliminary evaluation of multivariate DA on wide EAAS profiles as a screening method to distinguish PCa from non-pathological conditions, overcoming the potentially interfering effect of ageing.
Collapse
Affiliation(s)
- Eleonora Amante
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Torino, Italy
| | - Eugenio Alladio
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Torino, Italy
| | - Alberto Salomone
- Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Torino, Italy
| | - Marco Vincenti
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy; Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Torino, Italy.
| | - Federico Marini
- Dipartimento di Chimica - Sapienza, Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Alleva
- Divisione di Urologia, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Stefano De Luca
- Divisione di Urologia, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Francesco Porpiglia
- Divisione di Urologia, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
46
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
47
|
Zhang H, Basit A, Busch D, Yabut K, Bhatt DK, Drozdzik M, Ostrowski M, Li A, Collins C, Oswald S, Prasad B. Quantitative characterization of UDP-glucuronosyltransferase 2B17 in human liver and intestine and its role in testosterone first-pass metabolism. Biochem Pharmacol 2018; 156:32-42. [PMID: 30086285 PMCID: PMC6188809 DOI: 10.1016/j.bcp.2018.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
Protein abundance and activity of UGT2B17, a highly variable drug- and androgen-metabolizing enzyme, were quantified in microsomes, S9 fractions, and primary cells isolated from human liver and intestine by validated LC-MS/MS methods. UGT2B17 protein abundance showed >160-fold variation (mean ± SD, 1.7 ± 2.7 pmol/mg microsomal protein) in adult human liver microsomes (n = 26) and significant correlation (r2 = 0.77, p < 0.001) with testosterone glucuronide (TG) formation. Primary role of UGT2B17 in TG formation compared to UGT2B15 was confirmed by performing activity assays in UGT2B17 gene deletion samples and with a selective UGT2B17 inhibitor, imatinib. Human intestinal microsomes isolated from small intestine (n = 6) showed on average significantly higher protein abundance (7.4 ± 6.6 pmol/mg microsomal protein, p = 0.016) compared to liver microsomes, with an increasing trend towards distal segments of the gastrointestinal (GI) tract. Commercially available pooled microsomes and S9 fractions confirmed greater abundance and activity of UGT2B17 in intestinal fractions compared to liver fractions. To further investigate the quantitative role of UGT2B17 in testosterone metabolism in whole cell system, a targeted metabolomics study was performed in hepatocytes (n = 5) and enterocytes (n = 16). TG was the second most abundant metabolite after androstenedione in both cell systems. Reasonable correlation between UGT2B17 abundance and activity were observed in enterocytes (r2 = 0.69, p = 0.003), but not in hepatocytes. These observational and mechanistic data will be useful in developing physiologically-based pharmacokinetic (PBPK) models for predicting highly-variable first-pass metabolism of testosterone and other UGT2B17 substrates.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Diana Busch
- Department of Clinical Pharmacology, University of Greifswald, Greifswald, Germany
| | - King Yabut
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Albert Li
- In Vitro ADMET Laboratories (IVAL), Columbia, MD, USA
| | - Carol Collins
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Stefan Oswald
- Department of Clinical Pharmacology, University of Greifswald, Greifswald, Germany
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
48
|
Daca-Roszak P, Swierniak M, Jaksik R, Tyszkiewicz T, Oczko-Wojciechowska M, Zebracka-Gala J, Jarzab B, Witt M, Zietkiewicz E. Transcriptomic population markers for human population discrimination. BMC Genet 2018; 19:54. [PMID: 30086702 PMCID: PMC6081795 DOI: 10.1186/s12863-018-0663-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
Background Numerous studies have demonstrated significant differences in the expression level across continental human populations. Most of published results were performed on B-cell lines materials examined under specific laboratory conditions, without further validation in a primary biological material. The goal of our study was to identify mRNA markers characterized by a significant and stable difference in the gene expression profile in Caucasian and Chinese populations, both in the commercially available B-lymphocyte cell lines and in the primary samples of the peripheral blood. Results The preliminary selection of population-differentiating transcripts was based on Illumina expression microarray analysis of the representative group of ethnically-specified B-lymphocyte cell lines. Twenty genes with the inter-population difference in the mean expression characterized by the at least 1.5-fold change and FDR < 0.05 were identified. Subsequently, a two-step validation procedure was carried out. In the first step, a subset of selected population- differentiating transcripts was tested in the independent set of B-lymphocyte cell lines, using TLDA cards. Based on TLDA analysis, three transcripts representing Fch > 2 were chosen for validation. The differentiating status was confirmed for all of them: UTS2, UGT2B17 and SLC7A7. The mean expression of UTS2 was higher in CHB (25.8-fold change compared to CEU), while the expression of UGT2B17 and SLC7A7 was higher in CEU (3.2- and 2.2-fold change, respectively). In the next validation step, two transcripts were verified in the primary biological material. As an ultimate result of our study, two mRNA markers (UTS2 and UGT2B17) exhibiting population differences in the expression level in both B-cell line and in the blood were identified. Further statistical analysis confirmed the discriminatory potential of these two markers. Conclusions An inter-population differences on the level of gene expression were identified in both B-cell lines and peripheral blood samples. These findings may have a practical application in the field of forensic science. In particular, these transcripts, targeted by specific probes, may be used as population-specific targets in the efforts aiming to separate mixture of blood from individuals of different populations. Notwithstanding, these results have to be confirmed on extended population group. Electronic supplementary material The online version of this article (10.1186/s12863-018-0663-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Daca-Roszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Swierniak
- Maria Sklodowska-Curie, Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.,Present address: Laboratory of Human Cancer Genetics, Center of New Technologies, CENT, University of Warsaw, Warsaw, Poland.,Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - R Jaksik
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - T Tyszkiewicz
- Maria Sklodowska-Curie, Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - M Oczko-Wojciechowska
- Maria Sklodowska-Curie, Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - J Zebracka-Gala
- Maria Sklodowska-Curie, Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - B Jarzab
- Maria Sklodowska-Curie, Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - M Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - E Zietkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
49
|
Savkovic S, Lim S, Jayadev V, Conway A, Turner L, Curtis D, Goebel C, Handelsman DJ. Urine and Serum Sex Steroid Profile in Testosterone-Treated Transgender and Hypogonadal and Healthy Control Men. J Clin Endocrinol Metab 2018; 103:2277-2283. [PMID: 29584875 DOI: 10.1210/jc.2018-00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The impact of testosterone (T) treatment on antidoping detection tests in female-to-male (F2M) transgender men is unknown. We investigated urine and serum sex steroid and luteinizing hormone (LH) profiles in T-treated F2M men to determine whether and, if so, how they differed from hypogonadal and healthy control men. METHOD Healthy transgender (n = 23) and hypogonadal (n = 24) men aged 18 to 50 years treated with 1000 mg injectable T undecanoate provided trough urine and blood samples and an additional earlier postinjection sample (n = 21). Healthy control men (n = 20) provided a single blood and urine sample. Steroids were measured by mass spectrometry-based methods in urine and serum, LH by immunoassay, and uridine 5'-diphospho-glucuronosyltransferase 2B17 genotype by polymerase chain reaction. RESULTS Urine LH, human chorionic gonadotropin, T, epitestosterone (EpiT), androsterone (A), etiocholanolone (Etio), A/Etio ratio, dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), and 5α,3α- and 5β,3α-androstanediols did not differ between groups or by time since last T injection. Urine T/EpiT ratio was <4 in all controls and 12/68 (18%) samples from T-treated men, but there was no difference between T-treated groups. Serum estradiol, estrone, and DHEA were higher in transgender men, and serum T and DHT were higher in earlier compared with trough blood samples, but serum LH, follicle-stimulating hormone, and 3α- and 3β,5α-diols did not differ between groups. CONCLUSION Urine antidoping detection tests in T-treated transgender men can be interpreted like those of T-treated hypogonadal men and are unaffected by time since last T dose. Serum steroids are more sensitive to detect exogenous T administration early but not later after the last T dose.
Collapse
Affiliation(s)
- Sasha Savkovic
- Andrology Department, Concord Hospital, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Sarina Lim
- Andrology Department, Concord Hospital, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Veena Jayadev
- Andrology Department, Concord Hospital, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Ann Conway
- Andrology Department, Concord Hospital, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Leo Turner
- Andrology Department, Concord Hospital, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Douglas Curtis
- Australian Sports Drug Testing Laboratory, National Measurement Institute, Sydney, New South Wales, Australia
| | - Catrin Goebel
- Australian Sports Drug Testing Laboratory, National Measurement Institute, Sydney, New South Wales, Australia
| | - David J Handelsman
- Andrology Department, Concord Hospital, ANZAC Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Gadot Y, Thörngren JO, Eklund E, Ekström L, Rane A. Pregnancy-Induced Perturbation of Urinary Androgenic Steroid Disposition. J Endocr Soc 2018; 2:597-608. [PMID: 29942924 PMCID: PMC6007248 DOI: 10.1210/js.2018-00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the excretion and conjugation profile of testosterone (T), Epitestosterone (EpiT), and other androgen metabolites in different phases of pregnancy and postpregnancy as a reflection of the “androgenic exposure.” Design Consecutive recruitment of pregnant women. Setting Maternity outpatient low-risk pregnancy clinic. Patients Seventy-seven pregnant women. Interventions Collection of urine for analyses of sulfate (S) and glucuronide (G) conjugates and metabolic ratios of androgens and androgen metabolites using liquid chromatography-tandem mass spectrometry. Main Outcome Measures Excretion profiles and metabolic ratios of G and S conjugates of T, EpiT, dehydroepiandrosterone (DHEA), androsterone (A), etiocholanolone (Etio), and dihydrotestosterone in relation to trimester and postpartum, body mass index, fetal sex, and ethnicity. Results T-S excretion increased significantly between the second and third trimester, whereas excretion of T-G did not change. In contrast, both conjugates of EpiT increased markedly, more so for the S-(17-fold) than the G-conjugate (1.6-fold). The preference for S over G conjugation was conspicuous for EpiT and DHEA (S/G ratio 2.1 and 4.7, respectively, in the third trimester), whereas the reverse was true for T, A, and Etio (S/G 0.6, 0.13, and 0.11, respectively). Conclusions Pregnancy influences the androgen excretion profile, with the most profound change being an increase in EpiT excretion throughout the trimesters. EpiT may modulate the effect of T, but its exact role during pregnancy is not known. There were marked differences in the S/G conjugate ratios between androgens upstream and downstream from T in the metabolic network. These results are interesting to compare with the androgen disposition in women with endocrine disorders or abuse of steroids.
Collapse
Affiliation(s)
- Yifat Gadot
- St Michael's Hospital and Hospital for Sick Children, Toronto, Ontario, Canada
| | - John-Olof Thörngren
- Division of Clinical Pharmacology, Anti-Doping Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Eklund
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Ekström
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|