1
|
Mogheiseh A, Derakhshandeh N, Divar MR, Nazifi S, Ahmadi I. Effects of short-term oral letrozole on fresh semen parameters, endocrine balance, and prostate gland dimensions in domestic dogs. BMC Vet Res 2024; 20:416. [PMID: 39289700 PMCID: PMC11406820 DOI: 10.1186/s12917-024-04278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Aromatase inhibitors improve male fertility by modifying the hormonal control of spermatogenesis. The present study aimed to investigate the effects of oral administration of letrozole on testosterone and estradiol concentrations and their ratios in blood serum, seminal plasma, prostatic fluid, sperm quality in fresh semen, and prostate gland dimensions. Seven adult male intact mixed-breed dogs were selected. The animals received letrozole (72 µg/kg, PO) daily for four weeks. Blood samplings and semen collections were carried out on days 0 (control), 14 (treatment), 28 (treatment), and 42 (post-treatment). RESULTS Our results showed that letrozole administration resulted in a 4.3 fold significant increase in serum, seminal plasma, and prostatic fluid testosterone levels after 14 days. This remained high until the end of the study. Serum and prostatic fluid estradiol levels did not change significantly over the study period. However, the seminal plasma estradiol level showed a significant increase on day 14. The estradiol: testosterone ratio was significantly reduced on day 14 in serum, seminal plasma, and prostatic fluid samples. Letrozole significantly improved the ejaculated spermatozoa viability and concentration after 28 days of oral administration. However, the sperm plasma membrane functional integrity and kinematic parameters were not significantly affected by the treatment. Transabdominal ultrasound examination revealed a significant increase in the height, width, and volume of the prostate gland after 28 days of treatment. CONCLUSIONS According to the present research, oral administration of letrozole for 28 days affects local and systemic sex hormone balance leading to an improvement of the ejaculated canine spermatozoa viability and concentration concurrent with an increase in the prostate gland dimensions.
Collapse
Affiliation(s)
- Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran.
| | - Nooshin Derakhshandeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| | - Mohammad-Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| | - Iman Ahmadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P.O. Box: 7144169155, Shiraz, Fars, Iran
| |
Collapse
|
2
|
Kadiwala RS, Dhadwad JS. Andropause in Diabetic and Non-diabetic Males: A Cross-Sectional Observational Study in Western India. Cureus 2024; 16:e65152. [PMID: 39176331 PMCID: PMC11341080 DOI: 10.7759/cureus.65152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Andropause is defined as late-onset hypogonadism that increases with advancing age and is diagnosed based on symptoms of hypogonadism like loss of libido, loss of morning penile tumescence, and laboratory confirmation of low testosterone. Unlike menopause, it is a slow and progressive condition with varying symptoms and presentations. There is very little awareness and insufficient utilization of screening methods, and the majority of the cases remain undiagnosed. This study was done to get deeper insight into this topic and elicit correlations among different variables. Objectives The primary objective is to assess the prevalence of andropause in diabetic and non-diabetic males aged 40-60 years in the Maharashtra state of western India. Material and methods After ethics committee clearance, exclusion criteria were applied, and 120 participants were enrolled over a period of 21 months. All enrolled subjects were thoroughly evaluated for andropause symptoms. An early morning venous blood sample was taken and sent for routine blood tests, including HbA1c, serum total testosterone, and serum luteinizing hormone. Total testosterone values were compared in patients with symptoms of hypogonadism, loss of libido, and erectile dysfunction. The effects of HbA1c levels, duration of diabetes, body mass index (BMI), smoking, alcoholism, and hypertension on hypogonadism and low testosterone were assessed. Luteinizing hormone levels were compared among the case and control groups in subjects with low total testosterone. Results Total testosterone levels were low for age, loss of libido and erectile dysfunction were more common, and symptoms of hypogonadism appeared at an earlier age in diabetics compared to non-diabetics. The duration of diabetes and HbA1c had a negative impact on serum testosterone levels and andropause symptoms. Diabetic patients with low testosterone levels had significantly lower LH levels. Conclusions Andropause is a syndrome of hypogonadism that occurs due to low serum testosterone levels. This study puts emphasis on secondary hypogonadism playing an important role in diabetic patients, causing the early occurrence of andropause in them. Glycemic control and BMI have a significant effect on both andropause symptoms and total testosterone levels, necessitating strict glycemic control and lifestyle modifications to delay or prevent the occurrence of andropause.
Collapse
Affiliation(s)
- Ramiz S Kadiwala
- General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Jagannath S Dhadwad
- General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
3
|
Leite PLDA, Maciel LA, da Silva Aguiar S, Sousa CV, Neves RVP, de Sousa Neto IV, Campbell Simões L, Rosa TDS, Simões HG. Systemic Sirtuin 1 as a Potential Target to Mediate Interactions Between Body Fat and Testosterone Concentration in Master Athletes. J Aging Phys Act 2024; 32:438-445. [PMID: 38417433 DOI: 10.1123/japa.2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 03/01/2024]
Abstract
Evidence indicates that master athletes have higher concentration of Sirtuin 1 (Sirt1), lower body fat (BF), and greater activity of the hypothalamic-pituitary-gonadal axis in comparison to untrained peers. However, no published data have demonstrated possible mediation effect of Sirt1 in the interaction of BF and testosterone in this population. Therefore, this study compared and verified possible associations between Sirt1, BF, fat mass index (FMI), testosterone, luteinizing hormone (LH), and testosterone/luteinizing hormone (T/LH) ratio in middle-aged master athletes (n = 54; 51.22 ± 7.76 years) and control middle-aged peers (n = 21; 47.76 ± 8.47 years). Venous blood was collected for testosterone, LH, and Sirt1. BF was assessed through skinfold protocol. Although LH concentration did not differ between groups, master athletes presented higher concentration of Sirt1, testosterone, and T/LH ratio, and lower BF and FMI in relation to age-matched nonathletes. Moreover, Sirt1 correlated positively with testosterone and T/LH ratio, negatively with BF, and was not significantly correlated with LH (mediation analysis revealed the effect of BF on testosterone is mediated by Sirt1 and vice versa; R2 = .1776; p = .032). In conclusion, master athletes have higher testosterone, T/LH ratio, and Sirt1, and lower BF and FMI in relation to untrained peers. Furthermore, Sirt1 was negatively associated with BF and positively associated with testosterone and T/LH ratio. These findings suggest that increased circulating Sirt1, possibly due to the master athlete's training regimens and lifestyle, exhibits a potential mediation effect on the interaction between endocrine function and body composition.
Collapse
Affiliation(s)
- Patricio Lopes de Araújo Leite
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Larissa Alves Maciel
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Samuel da Silva Aguiar
- Physical Education Department, University Centre of the Federal District, Brasilia, Brazil
| | - Caio Victor Sousa
- Department of Health and Human Sciences, Loyola Marymount University, Los Angeles, CA, USA
| | - Rodrigo Vanerson Passos Neves
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Thiago Dos Santos Rosa
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Herbert Gustavo Simões
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| |
Collapse
|
4
|
Lee SJ, Park MJ, Jeong DH, Arunachalam R, Yoo E, Kim HK, Park MH. Protective effect of gomisin N on benzyl butyl phthalate-induced dysfunction of testosterone production in TM3 Leydig cells. Mol Biol Rep 2024; 51:117. [PMID: 38227285 DOI: 10.1007/s11033-023-09060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/30/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Exposure to benzyl butyl phthalate (BBP) may induce disorders in the male reproductive system. However, the molecular mechanisms remain unknown. Here we investigated the effect of BBP on testosterone production and its molecular mechanisms. Furthermore, we also investigated the role of gomisin N (GN) from Schisandra chinensis (S. chinensis) in testosterone synthesis in TM3 Leydig cells. METHOD AND RESULTS First, we examined the effects of BBP on expression levels of testosterone biosynthesis-related genes (StAR, CYP11α1, CYP17α1, 3βHSD, and 17βHSD) and attenuation-related genes (CYP1β1, CYP19α1, and Srd5α1-3). Although testosterone biosynthesis-related genes did not change, attenuation-related genes such as CYP1β1 and CYP19α1 were upregulated with ROS generation and testosterone level attenuation in the presence of 50 µM of BBP. However, the compound with the highest ROS and ONOO- scavenging activity from S. chinensis, GN, significantly reversed the expression of BBP-induced testosterone attenuation-related gene to normal levels. Subsequently, GN improved the testosterone production levels in TM3 Leydig cells. These events may be regulated by the antioxidant effect of GN. CONCLUSIONS On conclusion, our study suggests, for the first time, that BBP impairs testosterone synthesis by the modulation of CYP1β1 and CYP19α1 expression in TM3 cells; GN could potentially minimize the BBP-induced dysfunction of TM3 cells to produce testosterone by suppressing CYP19α1 expression.
Collapse
Affiliation(s)
- Seung Ju Lee
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan, 48434, Republic of Korea
| | - Min Ju Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Dong Hyeok Jeong
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Rohith Arunachalam
- College of Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Eunsoo Yoo
- College of Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea.
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Min Hi Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea.
- Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan, 48434, Republic of Korea.
| |
Collapse
|
5
|
Ding Y, Liu G, Zeng F, Yan Y, Jing H, Jiang X. Adrenal gland responses surgical castration and immunocastration by different compensatory manners to increase DHEA secretion. Anim Biotechnol 2023; 34:966-973. [PMID: 34904516 DOI: 10.1080/10495398.2021.2007116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Androgen from the testis and weak androgens from the adrenal cortex may interact with each other and affect their synthesis and secretion due to their similar functions. The purpose of this study was to investigate the compensatory effect of adrenal in rats after immunocastration and surgical castration, and the interaction between the hypothalamic-pituitary-testis (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis. 24 male SD rats aged 8 weeks were randomly divided into three groups and accepted treatments: surgical castration group, immunocastration group and control group. In both surgical castration and immunocastration groups, the secretion of adrenocorticotropic hormone (ACTH) and dehydroepiandrosterone (DHEA) hormones was significantly increased compared with the control group (p < 0.05). In the HPT axis of the immunocastration group, the KISS1 expression was up-regulated, whereas GPR54, LH and LHR expression were down-regulated (p < 0.05). The expression levels of CRH, POMC and MC2R genes were also significantly up-regulated (p < 0.05). In addition, in the immunocastration group, the expression of adrenal LHR mRNA expression was decreased (p < 0.05). The expression of HPT axis genes and adrenal LHR were up-regulated in the surgical castration group (p < 0.05). These results show that in both immunocastration and surgical castration, adrenal androgen is increased, suggesting that the adrenal gland plays a compensatory role. Moreover, it also shows that different castration treatments have effects on adrenal steroid secretion through different mechanisms.
Collapse
Affiliation(s)
- Yi Ding
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fanmei Zeng
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yinan Yan
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Haijing Jing
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xunping Jiang
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Li J, Zheng H, Hou J, Chen J, Zhang F, Yang X, Jin F, Xi Y. X-linked RBBP7 mutation causes maturation arrest and testicular tumors. J Clin Invest 2023; 133:e171541. [PMID: 37843278 PMCID: PMC10575721 DOI: 10.1172/jci171541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Maturation arrest (MA) is a subtype of non-obstructive azoospermia, and male infertility is a known risk factor for testicular tumors. However, the genetic basis for many affected individuals remains unknown. Here, we identified a deleterious hemizygous variant of X-linked retinoblastoma-binding protein 7 (RBBP7) as a potential key cause of MA, which was also found to be associated with the development of Leydig cell tumors. This mutation resulted in premature protein translation termination, affecting the sixth WD40 domain of the RBBP7 and the interaction of the mutated RBBP7 with histone H4. Decreased BRCA1 and increased γH2AX were observed in the proband. In mouse spermatogonial and pachytene spermatocyte-derived cells, deprivation of rbbp7 led to cell cycle arrest and apoptosis. In Drosophila, knockdown of RBBP7/Caf1-55 in germ cells resulted in complete absence of germ cells and reduced testis size, whereas knockdown of RBBP7/Caf1-55 in cyst cells resulted in hyperproliferative testicular cells. Interestingly, male infertility caused by Caf1-55 deficiency was rescued by ectopic expression of wild-type human RBBP7 but not mutant variants, suggesting the importance of RBBP7 in spermatogenesis. Our study provides insights into the mechanisms underlying the co-occurrence of MA and testicular tumors and may pave the way for innovative genetic diagnostics of these 2 diseases.
Collapse
Affiliation(s)
- Jingping Li
- Department of Reproductive Endocrinology and
| | - Huimei Zheng
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaru Hou
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Chen
- Department of Pathology, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology and
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Mohanty SK, Lobo A, Williamson SR, Shah RB, Trpkov K, Varma M, Sirohi D, Aron M, Kandukari SR, Balzer BL, Luthringer DL, Ro J, Osunkoya AO, Desai S, Menon S, Nigam LK, Sardana R, Roy P, Kaushal S, Midha D, Swain M, Ambekar A, Mitra S, Rao V, Soni S, Jain K, Diwaker P, Pattnaik N, Sharma S, Chakrabarti I, Sable M, Jain E, Jain D, Samra S, Vankalakunti M, Mohanty S, Parwani AV, Sancheti S, Kumari N, Jha S, Dixit M, Malik V, Arora S, Munjal G, Gopalan A, Magi-Galluzzi C, Dhillon J. Reporting Trends, Practices, and Resource Utilization in Neuroendocrine Tumors of the Prostate Gland: A Survey among Thirty-Nine Genitourinary Pathologists. Int J Surg Pathol 2023; 31:993-1005. [PMID: 35946087 DOI: 10.1177/10668969221116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Neuroendocrine differentiation in the prostate gland ranges from clinically insignificant neuroendocrine differentiation detected with markers in an otherwise conventional prostatic adenocarcinoma to a lethal high-grade small/large cell neuroendocrine carcinoma. The concept of neuroendocrine differentiation in prostatic adenocarcinoma has gained considerable importance due to its prognostic and therapeutic ramifications and pathologists play a pivotal role in its recognition. However, its awareness, reporting, and resource utilization practice patterns among pathologists are largely unknown. Methods. Representative examples of different spectrums of neuroendocrine differentiation along with a detailed questionnaire were shared among 39 urologic pathologists using the survey monkey software. Participants were specifically questioned about the use and awareness of the 2016 WHO classification of neuroendocrine tumors of the prostate, understanding of the clinical significance of each entity, and use of different immunohistochemical (IHC) markers. De-identified respondent data were analyzed. Results. A vast majority (90%) of the participants utilize IHC markers to confirm the diagnosis of small cell neuroendocrine carcinoma. A majority (87%) of the respondents were in agreement regarding the utilization of type of IHC markers for small cell neuroendocrine carcinoma for which 85% of the pathologists agreed that determination of the site of origin of a high-grade neuroendocrine carcinoma is not critical, as these are treated similarly. In the setting of mixed carcinomas, 62% of respondents indicated that they provide quantification and grading of the acinar component. There were varied responses regarding the prognostic implication of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and for Paneth cell-like differentiation. The classification of large cell neuroendocrine carcinoma was highly varied, with only 38% agreement in the illustrated case. Finally, despite the recommendation not to perform neuroendocrine markers in the absence of morphologic evidence of neuroendocrine differentiation, 62% would routinely utilize IHC in the work-up of a Gleason score 5 + 5 = 10 acinar adenocarcinoma and its differentiation from high-grade neuroendocrine carcinoma. Conclusion. There is a disparity in the practice utilization patterns among the urologic pathologists with regard to diagnosing high-grade neuroendocrine carcinoma and in understanding the clinical significance of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and Paneth cell-like neuroendocrine differentiation. There seems to have a trend towards overutilization of IHC to determine neuroendocrine differentiation in the absence of neuroendocrine features on morphology. The survey results suggest a need for further refinement and development of standardized guidelines for the classification and reporting of neuroendocrine differentiation in the prostate gland.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Urology Center and Pathology Laboratory, Raipur, India
| | | | - Rajal B Shah
- Department of Pathology, UT Southwestern University, Dallas, TX, USA
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Murali Varma
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Deepika Sirohi
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Manju Aron
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Shivani R Kandukari
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Bonnie L Balzer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel L Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Ro
- Department of Pathology and Genomic Medicine, Methodist Hospital, Houston, TX, USA
| | - Adeboye O Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Santosh Menon
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Lovelesh K Nigam
- Department of Pathology and Division of Renal and Urologic Pathology, Lal Pathology Laboratory, New Delhi, India
| | - Rohan Sardana
- Department of Pathology, Ampath Pathological Laboratory, Hyderabad, India
| | - Paromita Roy
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Seema Kaushal
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Midha
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Minakshi Swain
- Department of Pathology and Laboratory Medicine, Apollo Hospital, Hyderabad, India
| | - Asawari Ambekar
- Department of Pathology and Laboratory Medicine, Apollo Hospital, Mumbai, India
| | - Suvradeep Mitra
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vishal Rao
- Department of Pathology and Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, India
| | - Shailesh Soni
- Department of Pathology and Laboratory Medicine, Muljibhai Patel Urological Hospital, Gujarat, India
| | - Kavita Jain
- Department of Pathology and Laboratory Medicine, Max Superspeciality Hospital, New Delhi, India
| | - Preeti Diwaker
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Niharika Pattnaik
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | | | - Mukund Sable
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ekta Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Deepika Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Spinder Samra
- Department of Pathology, Dubbo Base Hospital, Dubbo, NSW, Australia
| | - Mahesha Vankalakunti
- Department of Pathology and Laboratory Medicine, Manipal Hospital, Bangalore, India
| | - Subhashis Mohanty
- Department of Histopathology, SUM Ultimate Medicare, Bhubaneswar, India
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Sankalp Sancheti
- Department of Pathology and Laboratory Medicine, Homi Bhabha Cancer Hospital & Research Centre, Punjab (A Unit of Tata Memorial Centre, Mumbai), India
| | - Niraj Kumari
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raebareli, India
| | - Shilpy Jha
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Mallika Dixit
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Vipra Malik
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Samriti Arora
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Gauri Munjal
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer, New York, NY, USA
| | | | | |
Collapse
|
8
|
Tang P, Zhang J, Peng S, Wang Y, Li H, Wang Z, Zhang Y, Huang Y, Xu J, Zhang D, Liu Q, Wang L, Lan W, Jiang J. Genotype-phenotype correlation in patients with 21-hydroxylase deficiency. Front Endocrinol (Lausanne) 2023; 14:1095719. [PMID: 36992809 PMCID: PMC10042299 DOI: 10.3389/fendo.2023.1095719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION 21-hydroxylase deficiency (21OHD) is the most common cause of congenital adrenal hyperplasia (CAH). However, patients with 21OHD manifest various phenotypes due to a wide-spectrum residual enzyme activity of different CYP21A2 mutations. METHODS A total of 15 individuals from three unrelated families were included in this study. Target Capture-Based Deep Sequencing and Restriction Fragment Length Polymorphism was conducted on peripheral blood DNA of the three probands to identify potential mutations/deletions in CYP21A2; Sanger sequencing was conducted with the DNA from the family members of the probands. RESULTS Dramatically different phenotypes were seen in the three probands of CAH with different compound heterozygous mutations in CYP21A2. Proband 1 manifested simple virilizing with mutations of 30-kb deletion/c.[188A>T;518T>A], the latter is a novel double mutants classified as SV associated mutation. Although both probands carry the same compound mutations [293-13C>G]:[518T>A], gonadal dysfunction and giant bilateral adrenal myelolipoma were diagnosed for proband 2 and proband 3, respectively. CONCLUSION Both gender and mutations contribute to the phenotypes, and patients with the same compound mutations and gender could present with different phenotypes. Genetic analysis could help the etiologic diagnosis, especially for atypical 21OHD patients.
Collapse
Affiliation(s)
- Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Haoyang Li
- Fifteen Squadron Five Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Weihua Lan,
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Weihua Lan,
| |
Collapse
|
9
|
Bond P, Smit DL, de Ronde W. Anabolic-androgenic steroids: How do they work and what are the risks? Front Endocrinol (Lausanne) 2022; 13:1059473. [PMID: 36644692 PMCID: PMC9837614 DOI: 10.3389/fendo.2022.1059473] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are a class of hormones that are widely abused for their muscle-building and strength-increasing properties in high, nontherapeutic, dosages. This review provides an up-to-date and comprehensive overview on how these hormones work and what side effects they might elicit. We discuss how AAS are absorbed into the circulation after intramuscular injection or oral ingestion and how they are subsequently transported to the tissues, where they will move into the extravascular compartment and diffuse into their target cells. Inside these cells, AAS can biotransform into different metabolites or bind to their cognate receptor: the androgen receptor. AAS and their metabolites can cause side effects such as acne vulgaris, hypertension, hepatotoxicity, dyslipidemia, testosterone deficiency, erectile dysfunction, gynecomastia, and cardiomyopathy. Where applicable, we mention treatment options and self-medication practices of AAS users to counteract these side effects. Clinicians may use this review as a guide for understanding how AAS use can impact health and to assist in patient education and, in some cases, the management of side effects.
Collapse
Affiliation(s)
| | - Diederik L. Smit
- Department of Internal Medicine, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - Willem de Ronde
- Department of Internal Medicine, Spaarne Gasthuis, Haarlem, Netherlands
| |
Collapse
|
10
|
Salehisedeh N, Parhizkar A, Yaghmaei P, Sabbaghian M. Male Idiopathic Hypogonadotropic Hypogonadism: Serum Insulin-like Growth Factor-1 and Oestradiol Levels. J Hum Reprod Sci 2022; 15:351-356. [PMID: 37033129 PMCID: PMC10077747 DOI: 10.4103/jhrs.jhrs_132_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 04/11/2023] Open
Abstract
Background Idiopathic hypogonadotropic hypogonadism (IHH) is a form of male infertility caused by a congenital defect in the secretion or action of gonadotropin-releasing hormone from the hypothalamus. Oestradiol emerged as the main sex steroid in the regulation of the hypothalamic-pituitary-testicular axis, reproductive function and growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis in men. Moreover, GH/IGF-1 axis has been suggested to play a role in IHH. Aims This study evaluated serum IGF-1 in IHH men and controls. Furthermore, we evaluated the association between serum total oestradiol (TE2) and IGF-1 levels in patients and controls. Parameters including age, body mass index and fertility history were analysed. Settings and Design This prospective study was conducted at the Royan institute. Materials and Methods In 20 men with IHH and 20 controls, serum IGF-1 levels were estimated using chemiluminescence immunoassay and serum E2 levels were assessed by means of the electrochemiluminescence method. Statistical Analysis Used Kolmogorov-Smirnov test, parametric t-test or the Mann-Whitney and the Pearson correlation coefficient were performed. SPSS version 22 was used for the analysis of data. Results There was a significant decrease in serum IGF-1 levels in IHH patients compared with controls (145.1 ± 8.9 ng/ml vs. 229.6 ± 7.3 ng/ml P < 0.001, respectively). Furthermore, a significant decrease was observed in TE2 levels in IHH male patients (12.3 ± 2.5 pg/ml) compared with controls (31.9 ± 5.3 pg/ml P < 0.001). A positive correlation was observed between serum IGF-1 and TE2 levels in the total number of participants, suggesting that E2 deficiency in IHH cases can explain the lower levels of serum IGF-1. Conclusions These findings suggest that the reduction in IGF-1 levels may be associated with the influence of E2 on the GH/IGF-1 axis, and may confirm the role of the GH/IGF-1 axis in IHH. Further investigations will be required to determine the exact mechanisms by which E2 and IGF-1 affect the reproductive neuroendocrine function.
Collapse
Affiliation(s)
- Nastaran Salehisedeh
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biology, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Amir Parhizkar
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Zhang X, Peng Z, Zheng H, Zhang C, Lin H, Qin X. The Potential Protective Effect and Possible Mechanism of Peptides from Oyster ( Crassostrea hongkongensis) Hydrolysate on Triptolide-Induced Testis Injury in Male Mice. Mar Drugs 2021; 19:566. [PMID: 34677464 PMCID: PMC8539321 DOI: 10.3390/md19100566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Peptides from oyster hydrolysate (OPs) have a variety of biological activities. However, its protective effect and exact mechanism on testicular injury remain poorly understood. This study aimed to evaluate the protective effect of OPs on triptolide (TP)-induced testis damage and spermatogenesis dysfunction and investigate its underlying mechanism. In this work, the TP-induced testis injury model was created while OPs were gavaged in mice for 4 weeks. The results showed that OPs significantly improved the sperm count and motility of mice, and alleviated the seminiferous tubule injury. Further study showed that OPs decreased malonaldehyde (MDA) level and increased antioxidant enzyme (SOD and GPH-Px) activities, attenuating oxidative stress and thereby reducing the number of apoptotic cells in the testis. In addition, OPs improved the activities of enzymes (LDH, ALP and ACP) related to energy metabolism in the testis and restored the serum hormone level of mice to normal. Furthermore, OPs promoted the expression of Nrf2 protein, and then increased the expression of antioxidant enzyme regulatory protein (HO-1 and NQO1) in the testis. OPs inhibited JNK phosphorylation and Bcl-2/Bax-mediated apoptosis. In conclusion, OPs have a protective effect on testicular injury and spermatogenesis disorders caused by TP, suggesting the potential protection of OPs on male reproduction.
Collapse
Affiliation(s)
- Xueyan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Zhilan Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Chin HB, Kelly A, Adgent MA, Patchel SA, James K, Vesper HW, Botelho JC, Chandler DW, Zemel BS, Schall JI, Ford EG, Darge K, Stallings VA, Baird DD, Rogan WJ, Umbach DM. Reproductive Hormone Concentrations and Associated Anatomical Responses: Does Soy Formula Affect Minipuberty in Boys? J Clin Endocrinol Metab 2021; 106:2635-2645. [PMID: 34013335 PMCID: PMC8372659 DOI: 10.1210/clinem/dgab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Soy formula feeding is common in infancy and is a source of high exposure to phytoestrogens, documented to influence vaginal cytology in female infants. Its influence on minipuberty in males has not been established. OBJECTIVE To assess the association between infant feeding practice and longitudinally measured reproductive hormones and hormone-responsive tissues in infant boys. METHODS The Infant Feeding and Early Development study was a prospective cohort of maternal-infant dyads requiring exclusive soy formula, cow milk formula, or breast milk feeding during study follow-up. In the 147 infant boy participants, serum testosterone, luteinizing hormone, stretched penile length, anogenital distance, and testis volume were longitudinally assessed from birth to 28 weeks. We examined feeding-group differences in age trajectories for these outcomes using mixed-effects regression splines. RESULTS Median serum testosterone was at pubertal levels at 2 weeks (176 ng/dL [quartiles: 124, 232]) and remained in this range until 12 weeks in all feeding groups. We did not observe differences in trajectories of hormone concentrations or anatomical measures between boys fed soy formula (n = 55) and boys fed cow milk formula (n = 54). Compared with breastfed boys (n = 38), soy formula-fed boys had a more rapid increase in penile length (P = .004) and slower initial lengthening of anogenital distance (P = .03), but no differences in hormone trajectories. CONCLUSION Reproductive hormone concentrations and anatomical responses followed similar trajectories in soy and cow milk formula-fed infant boys. Our findings suggest that these measures of early male reproductive development do not respond to phytoestrogen exposure during infancy.
Collapse
Affiliation(s)
- Helen B Chin
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA
| | - Andrea Kelly
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret A Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | | | - Kerry James
- Social & Scientific Systems, Inc., Durham, NC 27703, USA
| | - Hubert W Vesper
- Clinical Standardization Programs, CDC, Atlanta, GA 30341, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, CDC, Atlanta, GA 30341, USA
| | | | - Babette S Zemel
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joan I Schall
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eileen G Ford
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kassa Darge
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Virginia A Stallings
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Walter J Rogan
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Del Giudice F, Busetto GM, De Berardinis E, Sperduti I, Ferro M, Maggi M, Gross MS, Sciarra A, Eisenberg ML. A systematic review and meta-analysis of clinical trials implementing aromatase inhibitors to treat male infertility. Asian J Androl 2021; 22:360-367. [PMID: 31621654 PMCID: PMC7406101 DOI: 10.4103/aja.aja_101_19] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aromatase activity has commonly been associated with male infertility characterized by testicular dysfunction with low serum testosterone and/or testosterone to estradiol ratio. In this subset of patients, and particularly in those with hypogonadism, elevated levels of circulating estradiol may establish a negative feedback on the hypothalamic-pituitary-testicular axis by suppressing follicle-stimulating hormone (FSH) and luteinizing hormone (LH) production and impaired spermatogenesis. Hormonal manipulation via different agents such as selective estrogen modulators or aromatase inhibitors to increase endogenous testosterone production and improve spermatogenesis in the setting of infertility is an off-label option for treatment. We carried out a systematic review and meta-analysis of the literature of the past 30 years in order to evaluate the benefits of the use of aromatase inhibitors in the medical management of infertile/hypoandrogenic males. Overall, eight original articles were included and critically evaluated. Either steroidal (Testolactone) or nonsteroidal (Anastrozole and Letrozole) aromatase inhibitors were found to statistically improve all the evaluated hormonal and seminal outcomes with a safe tolerability profile. While the evidence is promising, future prospective randomized placebo-controlled multicenter trials are necessary to better define the efficacy of these medications.
Collapse
Affiliation(s)
- Francesco Del Giudice
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, Rome 00161, Italy
| | - Gian Maria Busetto
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, Rome 00161, Italy
| | - Ettore De Berardinis
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, Rome 00161, Italy
| | - Isabella Sperduti
- Biostatistical Unit, IRCCS, Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, Milan 20141, Italy
| | - Martina Maggi
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, Rome 00161, Italy
| | - Martin S Gross
- Section of Urology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Alessandro Sciarra
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, Rome 00161, Italy
| | - Michael L Eisenberg
- Department of Urology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Reyes-Vallejo L. Current use and abuse of anabolic steroids. Actas Urol Esp 2020; 44:309-313. [PMID: 32113828 DOI: 10.1016/j.acuro.2019.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Common abuse of anabolic androgenic steroids (AAS) is no longer confined to high performance athletes, as it has spread among the general population. Epidemiological data about the abuse of these substances show that it is a common practice in young populations. Its use is based on the desire to increase muscle mass and strength, as well as improving physical performance. The ease of acquisition of this type of substances has developed a "sophisticated" knowledge of steroid pharmacology based on subjective and anecdotal analysis with no adverse event information, which translates into a public health crisis. Unfortunately, athletes seem to be more influenced by these experiences than by their physician's advice. The abuse of AAS by the athlete and non-athlete population and its adverse events ought to be evaluated in order to improve routine clinical practice on this regard.
Collapse
|
15
|
|
16
|
Abstract
This article contains a systematic review of the main developments that have occurred in the area of male hypogonadism between the publication of the Endocrine Society Guidelines of 2010 and 2018 and after 2018.
Collapse
Affiliation(s)
- Marco Marcelli
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houson, Texas, USA .,Section of Endocrinology, Michael E DeBakey VA Medical Center, Houston, Texas, USA
| | - Sanjay Navin Mediwala
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houson, Texas, USA.,Section of Endocrinology, Michael E DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
17
|
Abstract
Elevated latent prenatal steroidogenic activity has been found in the amniotic fluid of autistic boys, based on measuring prenatal androgens and other steroid hormones. To date, it is unclear if other prenatal steroids also contribute to autism likelihood. Prenatal oestrogens need to be investigated, as they play a key role in synaptogenesis and corticogenesis during prenatal development, in both males and females. Here we test whether levels of prenatal oestriol, oestradiol, oestrone and oestrone sulphate in amniotic fluid are associated with autism, in the same Danish Historic Birth Cohort, in which prenatal androgens were measured, using univariate logistic regression (n = 98 cases, n = 177 controls). We also make a like-to-like comparison between the prenatal oestrogens and androgens. Oestradiol, oestrone, oestriol and progesterone each related to autism in univariate analyses after correction with false discovery rate. A comparison of standardised odds ratios showed that oestradiol, oestrone and progesterone had the largest effects on autism likelihood. These results for the first time show that prenatal oestrogens contribute to autism likelihood, extending the finding of elevated prenatal steroidogenic activity in autism. This likely affects sexual differentiation, brain development and function.
Collapse
|
18
|
Dwyer AA, Chavan NR, Lewkowitz-Shpuntoff H, Plummer L, Hayes FJ, Seminara SB, Crowley WF, Pitteloud N, Balasubramanian R. Functional Hypogonadotropic Hypogonadism in Men: Underlying Neuroendocrine Mechanisms and Natural History. J Clin Endocrinol Metab 2019; 104:3403-3414. [PMID: 31220265 PMCID: PMC6594303 DOI: 10.1210/jc.2018-02697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT After completion of puberty a subset of men experience functional hypogonadotropic hypogonadism (FHH) secondary to excessive exercise or weight loss. This phenomenon is akin to hypothalamic amenorrhea (HA) in women, yet little is known about FHH in men. OBJECTIVE To investigate the neuroendocrine mechanisms, genetics, and natural history underlying FHH. DESIGN Retrospective study in an academic medical center. PARTICIPANTS Healthy postpubertal men presenting with symptoms of hypogonadism in the setting of excessive exercise (>10 hours/week) or weight loss (>10% of body weight). Healthy age-matched men served as controls. INTERVENTIONS Clinical assessment, biochemical and neuroendocrine profiling, body composition, semen analysis, and genetic evaluation of genes known to cause isolated GnRH deficiency. MAIN OUTCOME MEASURES Reproductive hormone levels, endogenous GnRH-induced LH pulse patterns, and rare genetic variants. RESULTS Ten men with FHH were compared with 18 age-matched controls. Patients had significantly lower body mass index, testosterone, LH, and mean LH pulse amplitudes yet normal LH pulse frequency, serum FSH, and sperm counts. Some patients exhibited nocturnal, sleep-entrained LH pulses characteristic of early puberty, and one FHH subject showed a completely apulsatile LH secretion. After decreased exercise and weight gain, five men with men had normalized serum testosterone levels, and symptoms resolved. Rare missense variants in NSMF (n = 1) and CHD7 (n = 1) were identified in two men with FHH. CONCLUSIONS FHH is a rare, reversible form of male GnRH deficiency. LH pulse patterns in male FHH are similar to those observed in women with HA. This study expands the spectrum of GnRH deficiency disorders in men.
Collapse
Affiliation(s)
- Andrew A Dwyer
- Boston College William F. Connell School of Nursing, Chestnut Hill, Massachusetts
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Niraj R Chavan
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hilana Lewkowitz-Shpuntoff
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Lacey Plummer
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Frances J Hayes
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephanie B Seminara
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - William F Crowley
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Nelly Pitteloud
- Endocrinology, Diabetes, and Metabolism Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Correspondence and Reprint Requests: Ravikumar Balasubramanian, MD, PhD, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, Massachusetts 02114. E-mail:
| |
Collapse
|
19
|
Bobjer J, Katrinaki M, Dermitzaki E, Margioris AN, Giwercman A, Tsatsanis C. Serum chemerin levels are negatively associated with male fertility and reproductive hormones. Hum Reprod 2019; 33:2168-2174. [PMID: 30304526 DOI: 10.1093/humrep/dey310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION Are chemerin levels different in subfertile men compared to men from the general population, and how does chemerin relate to reproductive hormonal status? SUMMARY ANSWER Chemerin is negatively associated to LH, SHBG and estradiol and lower levels of chemerin are detected among subfertile men compared to controls. WHAT IS KNOWN ALREADY Adipokines have pleiotropic effects on tissue homeostasis and have been shown to affect both sex steroid production and action. Among adipokines the newly characterized chemokine chemerin is suggested to influence testosterone production in males, but whether serum levels associate with testosterone or male subfertility has not yet been reported. STUDY DESIGN, SIZE, DURATION Case control study comprising a consecutive group of men from infertile couples referred to Reproductive Medicine Centre at Skane University Hospital from 2006 through 2012, and age-matched controls. Participants were enrolled in years 2011-2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Males from infertile couples (n = 180) aged 18-50 years with sperm concentration <20 × 106/ml and age-matched controls (n = 139) from the general population were enrolled. Serum concentrations of total testosterone (TT), calculated free testosterone (cFT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2) and sex-hormone binding globuline (SHBG) as well as the adipokines chemerin, adiponectin and leptin were measured. Anthropometrics and biochemical parameters of glucose and lipid metabolism were assessed. MAIN RESULTS AND THE ROLE OF CHANCE Chemerin levels were lower in subfertile men compared to controls (mean diff. 7.1 ng/ml; 95% CI, 3.7; 11 ng/ml; P < 0.001) even after adjustment for BMI. After adjustment for age, BMI, smoking, leptin and adiponectin, chemerin associated negatively with LH (ß = -4.2; P = 0.02), E2 (ß = -10; P = 0.004) and SHBG (ß = -7.4, P = 0.003). Men with elevated LH levels had lower chemerin levels compared to those with LH levels within the normal range (mean diff. 4.8 ng/ml; 95% CI, 0.16; 9.4 ng/ml; P = 0.04). LIMITATIONS, REASONS FOR CAUTION Single sample blood test with immunoassays for determination of hormone levels. Heterogeneous group of subfertile subjects. WIDER IMPLICATIONS OF THE FINDINGS Even though chemerin has been positively associated with BMI, inverse association with subfertility suggests that it is independently linked to reproductive function, a hypothesis that warrants further assessment. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from EU Interreg V (ReproUnion) program as well as Swedish Governmental Fund for Clinical Research. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Johannes Bobjer
- Department of Urology, Skåne University Hospital, Malmö, Sweden.,Department of Translational Medicine, Molecular Reproductive Medicine, Lund University, Malmö, Sweden
| | - Marianna Katrinaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Erini Dermitzaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Andrew N Margioris
- Department of Clinical Chemistry, School of Medicine, University of Crete, Medical School, Heraklion, Crete, Greece
| | - Aleksander Giwercman
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.,Department of Translational Medicine, Molecular Reproductive Medicine, Lund University, Malmö, Sweden
| | - Christos Tsatsanis
- Department of Translational Medicine, Molecular Reproductive Medicine, Lund University, Malmö, Sweden.,Department of Clinical Chemistry, School of Medicine, University of Crete, Medical School, Heraklion, Crete, Greece
| |
Collapse
|
20
|
Juel Mortensen L, Lorenzen M, Jørgensen N, Andersson AM, Nielsen JE, Petersen LI, Lanske B, Juul A, Hansen JB, Blomberg Jensen M. Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome. Bone 2019; 123:103-114. [PMID: 30914274 DOI: 10.1016/j.bone.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The FSH receptor (FSHR) has been found to be expressed in human bone cells and bone marrow-adipocytes, and highly-debated mouse studies have suggested extra-gonadal effects of gonadotropins on glucose, adipocyte and bone homeostasis. These putative effects could be direct or indirectly mediated by endocrine factors released from bone-cells or adipocytes. Here, we investigated whether gonadotropins are linked with glucose- and lipid-metabolism in hypergonadotropic men. METHODS Single centre, cross-sectional study of 307 men with idiopathic infertility and 28 men with Klinefelter syndrome (KS). OUTCOME associations between serum LH and FSH with soluble-RANKL (sRANKL), osteoprotegerin (OPG), osteocalcin, fasting glucose and insulin, sex steroids, and body composition. Expression of FSHR was studied in human-derived adipocyte-cell-models (hMADS, TERT-hWA) and FSH stimulation of RANKL expression and secretion in hMADS in vitro. RESULTS Serum FSH was not directly linked with glucose- and lipid-metabolism. However, FSH was inversely associated with sRANKL in both infertile men and KS men (p = .023 and p = .012). Infertile men with elevated FSH (>11 U/L) had significantly lower sRANKL (p = .015). sRANKL was positively associated with fat percentage, fasting insulin, and glucose (all p < .05). Men with prediabetes had higher sRANKL (p = .021), but lower testosterone (p < .0001) and Inhibin B (p = .005). The FSHR was expressed in the investigated human derived adipocytes, and 3-6 h treatment with FSH markedly increased RANKL release (p < .05). CONCLUSION KS and infertile men with prediabetes have low Inhibin B, and testosterone but elevated RANKL compared with non-prediabetic men despite comparable levels of serum gonadotropins. Serum FSH and sRANKL was inversely associated in both infertile and KS men, but the increased release of RANKL from FSH treated adipocytes suggest a direct effect of FSH on RANKL production in some tissues. Further studies are required to clarify whether FSH targets RANKL in the skeleton. ClinicalTrial_ID:NCT01304927.
Collapse
Affiliation(s)
- Li Juel Mortensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Mette Lorenzen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Anna-Maria Andersson
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Louise I Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Anders Juul
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Jacob B Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA.
| |
Collapse
|
21
|
Earl JA, Kim ED. Enclomiphene citrate: A treatment that maintains fertility in men with secondary hypogonadism. Expert Rev Endocrinol Metab 2019; 14:157-165. [PMID: 31063005 DOI: 10.1080/17446651.2019.1612239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Hypogonadism is an important issue among the male population. Treatments such as exogenous testosterone have become very popular. One of the adverse effects of testosterone is its suppression of fertility. This has lead to the use of alternative therapies such as selective estrogen receptor modulators (SERMs) that aim to correct hypogonadism without reducing fertility. Areas covered: The SERM, clomiphene citrate, which is approved by the FDA for the treatment of ovarian dysfunction, has been shown to have beneficial effects on male hypogonadism. Clomiphene citrate exists as a mixture of both the cis-isomer (zuclomiphene) and the trans-isomer (enclomiphene). The literature has suggested that most of the beneficial effects of clomiphene are due to the trans-isomer enclomiphene. Zuclomiphene contributes little to the intended outcomes. The purpose of this drug profile is to examine the available literature on the trans-isomer enclomiphene. Expert opinion: Enclomiphene has been shown to increase testosterone levels while stimulating FSH and LH production. Initial studies demonstrated that enclomiphene maintains the androgenic benefit of clomiphene citrate without the undesirable effects attributable to zuclomiphene. This article reviews the difficulties associated with the FDA approval of a new molecular entity related to the treatment of hypogonadism.
Collapse
Affiliation(s)
- Joshua A Earl
- a Department of Urology , University of Tennessee, Graduate School of Medicine , Knoxville , TN , USA
| | - Edward D Kim
- a Department of Urology , University of Tennessee, Graduate School of Medicine , Knoxville , TN , USA
| |
Collapse
|
22
|
Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect 2019; 8:R10-R26. [PMID: 30640710 PMCID: PMC6365668 DOI: 10.1530/ec-18-0425] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Hormonal cancers affect over 400,000 men and women and contribute collectively to over 100,000 deaths in the United States alone. Thanks to advances in the understanding of these cancers at the molecular level and to the discovery of several disease-modifying therapeutics, the last decade has seen a plateauing or even a decreasing trend in the number of deaths from these cancers. These advanced therapeutics not only effectively slow the growth of hormonal cancers, but also provide an insight on how these cancers become refractory and evolve as an altogether distinct subset. This review summarizes the current therapeutic trends in hormonal cancers, with focus on prostate, breast and ovarian cancers. The review discusses the clinical drugs being used now, promising molecules that are going through various stages of development and makes some predictions on how the therapeutic landscape will shift in the next decade.
Collapse
Affiliation(s)
- Michael Ulm
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| | | | | | - Suriyan Ponnusamy
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ramesh Narayanan
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Wassie T, Liu G, Jiang X, Tesema B, Han Y, Zhao J, Girmay S, Ahmad HI. Immunization against Kisspeptin-54 perturb hypothalamic–pituitary–testicular signaling pathway in ram lambs. Theriogenology 2019; 125:193-202. [DOI: 10.1016/j.theriogenology.2018.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/01/2023]
|
24
|
Zhang H, Liu W, Chen B, He J, Chen F, Shan X, Du Q, Li N, Jia X, Tang J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:394-403. [PMID: 30199813 DOI: 10.1016/j.envpol.2018.08.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) are persistent toxic environmental pollutants that cause severe reproductive toxicity in animals. The goal of this study was to compare the reproductive toxic effects of TBBPA and TCBPA on male Rana nigromaculata and to expound on the mechanisms leading to these effects. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L of TBBPA and TCBPA for 14 days. Sperm numbers were counted by erythrometry. Sperm mobility and deformities were observed under a light microscope (400 × ). We used commercial ELISA kits to determine the serum content of testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Expression of androgen receptor (AR) mRNA was detected using real-time qPCR. Sperm numbers and sperm mobility were significantly decreased and sperm deformity was significantly increased in a concentration dependent manner following exposure to TBBPA and TCBPA. Sperm deformity was significantly greater in the 1 mg/L TCBPA (0.549) treatment group than in the 1 mg/L TBBPA (0.397) treatment group. Serum T content was significantly greater in the 0.01, 0.1 and 1 mg/L TBBPA and TCBPA experimental groups compared with controls, while E2 content was significantly greater in only the 1 mg/L TBBPA and TCBPA experimental groups. Expression levels of LH and FSH significantly decreased in the 1 mg/L TBBPA and TCBPA treatment groups. AR mRNA expression decreased markedly in all the treated groups. Our results indicated that TBBPA and TCBPA induced reproductive toxicity in a dose-dependent manner, with TCBPA having greater toxicity than TBBPA. Furthermore, changes in T, E2, LH, and FSH levels induced by TBBPA and TCBPA exposure, which led to endocrine disorders, also caused disturbance of spermatogenesis through abnormal gene expressions of AR in the testes.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Qiongxia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Ning Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiuying Jia
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China.
| |
Collapse
|
25
|
Roelfsema F, Yang RJ, Liu PY, Takahashi PY, Veldhuis JD. Feedback on LH in Testosterone-Clamped Men Depends on the Mode of Testosterone Administration and Body Composition. J Endocr Soc 2018; 3:235-249. [PMID: 30623162 PMCID: PMC6320245 DOI: 10.1210/js.2018-00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022] Open
Abstract
Context Quantitative studies of the short-term feedback of testosterone (T) on luteinizing hormone (LH) secretion in healthy men are relatively rare. Such studies require the shutting down of endogenous T secretion and the imposition of experimentally controlled IV T addback. Objective To evaluate whether pulsatile and continuous T delivery confers equivalent negative feedback on LH secretion. Design This was a placebo-controlled, blinded, and prospectively randomized crossover study comprising 16 healthy men [age range 23 to 54 years and a body mass index (BMI) between 22.3 and 34.2 kg/m2]. Subjects received ketoconazole to block endogenous T secretion and received continuous or 90-minute pulses of IV T addback. Setting The study was performed in a Clinical Translational Research Unit. Interventions Subjects underwent 14 hours of blood sampling at 10-minute intervals, with a bolus IV injection of 33 ng/kg gonadotropin-releasing hormone (GnRH). Main Outcome Measures Log-transformed LH and T concentration ratios before and after GnRH administration. Results Despite higher T concentrations during pulsatile T feedback, LH concentrations and secretion rates, whether driven by endogenous or exogenous GnRH, were similar to those during continuous T infusion, indicating diminished pulsatile T feedback. Feedback correlated negatively with BMI. Under controlled T feedback, basal but not pulsatile LH secretion correlated negatively with CT-estimated visceral fat mass. Conclusion Feedback by pulsatile T delivery has diminished inhibitory strength compared with continuous infusion. Feedback is negatively correlated with BMI.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology and Metabolism, Leiden University Medical Center, Leiden, Netherlands
| | - Rebecca J Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| | - Peter Y Liu
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota.,Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Harbor-University of California Los Angeles Medical Center, and Los Angeles Biomedical Research Institute, Los Angeles, California
| | - Paul Y Takahashi
- Department of Primary Care Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Monnerat G, Seara FAC, Evaristo JAM, Carneiro G, Evaristo GPC, Domont G, Nascimento JHM, Mill JG, Nogueira FCS, Campos de Carvalho AC. Aging-related compensated hypogonadism: Role of metabolomic analysis in physiopathological and therapeutic evaluation. J Steroid Biochem Mol Biol 2018; 183:39-50. [PMID: 29920416 DOI: 10.1016/j.jsbmb.2018.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/29/2018] [Accepted: 05/20/2018] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that increases the risk of chronic disease development. Hormonal and metabolic alterations occur with aging, such as androgen activity decrease. Studies aim to understand the role of testosterone replacement therapy (TRT) in males, however biomarkers and the metabolic responses to TRT are not well characterized. Therefore, the present study investigated TRT effect in young adult and aged rats by metabolomics. Male Wistar rats were divided into four groups: adult and adult + testo (6months), old and old + testo (25-27months). TRT animals received daily testosterone propionate (1 mg/kg/subcutaneous). TRT changed the testicular weight index decrease induced by aging but did not change the body weight and liver weight index. Sera were analyzed by liquid chromatograph high resolution mass spectrometry (LCMS/MS). Testosterone was quantified by target LCMS/MS. A total of 126 metabolites were detected with known identification altered by TRT by non-target metabolomics analysis. Multivariate statistics shows that all groups segregated individually after principal component analysis. The treatment with testosterone induced several metabolic alterations in adult and old rats that were summarized by variable importance on projection score, metabolite interaction and pathway analysis. Aging-related hypogonadism induces a pattern of systemic metabolic alterations that can be partially reversed by TRT, however, this treatment in aged rats induces novel alterations in some metabolites that are possible new targets for monitoring in patients submitted to TRT.
Collapse
Affiliation(s)
- Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fernando A C Seara
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gabriel Carneiro
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gilberto Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jose Geraldo Mill
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Fabio Cesar Souza Nogueira
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Abstract
Practitioners of male reproductive and sexual medicine must have an intimate understanding of the physiology of male reproductive endocrinology, as such a knowledge is the cornerstone on which hormonal treatments are based. In this review, we highlight what is known about male reproductive endocrine physiology and the various control mechanisms for the system. We also discuss the limitations of our current understanding of the reproductive physiology. We hope that this review is helpful for male reproductive medicine practitioners in understanding the principles on which hormonal treatments are based.
Collapse
Affiliation(s)
- Raul I Clavijo
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Wayland Hsiao
- Department of Urology, Kaiser Permanente, Oakland Medical Center, Oakland, California, USA
| |
Collapse
|
28
|
Jia X, Liu Z, Lu X, Tang J, Wu Y, Du Q, He J, Zhang X, Jiang J, Liu W, Zheng Y, Ding Y, Zhu W, Zhang H. Effects of MCLR exposure on sex hormone synthesis and reproduction-related genes expression of testis in male Rana nigromaculata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:12-20. [PMID: 29414332 DOI: 10.1016/j.envpol.2018.01.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-leucine-arginine (MCLR) is the most popular and toxic variant among microcystins, which can cause severe reproductive toxicity to animals. However, the mechanisms of reproductive toxicity induced by MCLR in amphibians are still not entirely clear. In the current study, toxicity mechanisms of MCLR on the reproductive system of male Rana nigromaculata followed by low concentration (0, 0.1, 1, and 10 μg/L) and short-term (0, 7, and 14 days) MCLR exposure were shown. It was observed that MCLR could be bioaccumulated in the testes of male frogs, and the theoretical bioaccumulation factor values were 0.24 and 0.19 exposed to 1 μg/L and 10 μg/L MCLR for 14 days, respectively. MCLR exposure significantly decreased testosterone (T) concentrations and increased estradiol (E2) concentrations exposed to 1 and 10 μg/L MCLR for 14 days. The mRNA levels of HSD17B3 were downregulated, and HSD17B1 and CYP19A1 mRNA expression levels were upregulated, respectively. Only 10 μg/L MCLR group showed significant induction of follicle-stimulating hormone (FSH) levels and cyclic adenosine monophosphate (cAMP) content. Moreover, AR and ESR1 mRNA expression levels were significantly upregulated exposed to 1 and 10 μg/L MCLR for 14 days, respectively. Our results suggested that low-concentration MCLR induced transcription changes of CYP19A1, HSD17B3, and HSD17B1 led to endocrine disorders, and caused interference of spermatogenesis by the decrease of T and abnormal gene expressions of AR and ESR1 in the testes of R. nigromaculata.
Collapse
Affiliation(s)
- Xiuying Jia
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Zhengquan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiangjun Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Yingzhu Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Qiongxia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xinyun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Jinxiao Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Wenli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Yuqing Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Ying Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Weiqin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
29
|
Makary S, Abdo M, Fekry E. Oxidative stress burden inhibits spermatogenesis in adult male rats: testosterone protective effect. Can J Physiol Pharmacol 2018; 96:372-381. [DOI: 10.1139/cjpp-2017-0459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we aimed to investigate the protective effects of androgens, using letrozole (LET; an aromatase inhibitor), grape seed extract (GSE; a naturally occurring aromatase inhibitor and antioxidant), and testosterone propionate (Tp), against methotrexate (MTX)-induced testicular toxicity in adult male rats. MTX has been shown to induce oxidative stress and exhibit antiproliferative effects in the testes. Adult male rats received oral saline gavage (control group with no treatment), the potential protective agents (LET, GSE, or Tp) alone, MTX alone, or a combination of one of the potential protective agents and MTX. The testicular levels of oxidative stress markers and cytokines (tumor necrosis factor-α and interleukin-1β) were measured. Spermatogenesis and sperm viability were microscopically evaluated. Administration of LET and GSE 7 days before MTX improved spermatogenesis and sperm viability, as well as reduced the levels of oxidative stress markers and cellular cytokines. Exogenous testosterone exhibited anti-inflammatory and antioxidant activities, similar to GSE and LET. We also showed that enhancing the endogenous androgenic activity by LET and GSE protected spermatogenesis against MTX-induced testicular toxicity via reduction of inflammation and oxidative stress in the testes. Our data suggest that testosterone protected spermatogenesis owing to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Abdo
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ereny Fekry
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
30
|
Schiffer L, Kempegowda P, Arlt W, O’Reilly MW. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease. Eur J Endocrinol 2017; 177:R125-R143. [PMID: 28566439 PMCID: PMC5510573 DOI: 10.1530/eje-17-0124] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Edgbaston, Birmingham, UK
| | - Punith Kempegowda
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Edgbaston, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Edgbaston, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| | - Michael W O’Reilly
- Institute of Metabolism and Systems ResearchUniversity of Birmingham, Edgbaston, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
- Correspondence should be addressed to M W O’Reilly;
| |
Collapse
|
31
|
Han X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology 2017; 97:89-97. [PMID: 28583614 DOI: 10.1016/j.theriogenology.2017.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/17/2022]
Abstract
The objective was to compare effects of anti-GnRH immunization (immunocastration) versus surgical castration on hypothalamic-pituitary function in boars. Thirty-six boars were randomly divided into three groups (n = 12/group): control, surgically castrated, or immunized against GnRH at 10 wk of age (boostered 8 wk later). Compared to intact boars, immunocastration reduced (P < 0.05) serum concentrations of LH, FSH, testosterone and inhibin B and caused severe testicular atrophy, whereas surgical castration increased (P < 0.05) serum concentrations of LH and FSH. Both immunocastration and surgical castration consistently reduced hypothalamic GnRH synthesis, with decreased (P < 0.05) mRNA expressions of GnRH, GnRH up-stream gatekeeper genes kiss1 and its receptor (GPR54), and androgen receptor in the hypothalamic arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV), as well as GnRH content in the median eminence. Inconsistently, mRNA expressions of gonadotropin-inhibitory hormone (GnIH) in ARC and AVPV as well as its receptor (GPR147) in pituitary were selectively reduced (P < 0.05), but mRNA expressions of estrogen receptor alpha and aromatase (CPY17A1) in pituitary were selectively increased (P < 0.05) in surgical castrates. In response to selectively attenuated suppressive signaling from GnIH and testosterone, mRNA expressions of GnRH receptor (GnRHR), LH-β and FSH-β in pituitary were increased (P < 0.05) in surgical castrates, whereas these pituitary gene expressions were decreased (P < 0.05) in immunocastrates, due to loss of hypothalamic GnRH signaling. We concluded that immunocastration and surgical castration consistently reduced hypothalamic GnRH synthesis due to a testosterone deficiency disrupting testosterone-Kisspeptin-GPR54-GnRH signaling pathways. Furthermore, selectively attenuated GnIH and testosterone signaling in the pituitary increased gonadotropin production in surgical castrates.
Collapse
Affiliation(s)
- Xingfa Han
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yuqin Zhou
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yu Zeng
- College of Animal Science, Sichuan Agricultural University, Chengdu Campus, Chengdu, Sichuan, 611130, PR China
| | - Fenfen Sui
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yacheng Liu
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yao Tan
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaohan Cao
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaogang Du
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xianyin Zeng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|
32
|
Negative Impact of Testosterone Deficiency and 5α-Reductase Inhibitors Therapy on Metabolic and Sexual Function in Men. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:473-526. [DOI: 10.1007/978-3-319-70178-3_22] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Lucas-Herald A, Bertelloni S, Juul A, Bryce J, Jiang J, Rodie M, Sinnott R, Boroujerdi M, Lindhardt Johansen M, Hiort O, Holterhus PM, Cools M, Guaragna-Filho G, Guerra-Junior G, Weintrob N, Hannema S, Drop S, Guran T, Darendeliler F, Nordenstrom A, Hughes IA, Acerini C, Tadokoro-Cuccaro R, Ahmed SF. The Long-Term Outcome of Boys With Partial Androgen Insensitivity Syndrome and a Mutation in the Androgen Receptor Gene. J Clin Endocrinol Metab 2016; 101:3959-3967. [PMID: 27403927 PMCID: PMC5095251 DOI: 10.1210/jc.2016-1372] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND In boys with suspected partial androgen insensitivity syndrome (PAIS), systematic evidence that supports the long-term prognostic value of identifying a mutation in the androgen receptor gene (AR) is lacking. OBJECTIVE To assess the clinical characteristics and long-term outcomes in young men with suspected PAIS in relation to the results of AR analysis. METHODS Through the International Disorders of Sex Development Registry, clinical information was gathered on young men suspected of having PAIS (n = 52) who presented before the age of 16 years and had genetic analysis of AR. RESULTS The median ages at presentation and at the time of the study were 1 month (range, 1 day to 16 years) and 22 years (range, 16 to 52 years), respectively. Of the cohort, 29 men (56%) had 20 different AR mutations reported. At diagnosis, the median external masculinization scores were 7 and 6 in cases with and without AR mutation, respectively (P = .9), and median current external masculinization scores were 9 and 10, respectively (P = .28). Thirty-five men (67%) required at least one surgical procedure, and those with a mutation were more likely to require multiple surgeries for hypospadias (P = .004). All cases with an AR mutation had gynecomastia, compared to 9% of those without an AR mutation. Of the six men who had a mastectomy, five (83%) had an AR mutation. CONCLUSIONS Boys with genetically confirmed PAIS are likely to have a poorer clinical outcome than those with XY DSD, with normal T synthesis, and without an identifiable AR mutation. Routine genetic analysis of AR to confirm PAIS informs long-term prognosis and management.
Collapse
MESH Headings
- Adolescent
- Adult
- Aging
- Androgen-Insensitivity Syndrome/diagnosis
- Androgen-Insensitivity Syndrome/genetics
- Androgen-Insensitivity Syndrome/physiopathology
- Child
- Child, Preschool
- Cohort Studies
- Disease Progression
- Disorder of Sex Development, 46,XY/diagnosis
- Disorder of Sex Development, 46,XY/genetics
- Disorder of Sex Development, 46,XY/physiopathology
- Gynecomastia/etiology
- Gynecomastia/surgery
- Humans
- Hypospadias/etiology
- Hypospadias/surgery
- Infant
- Infant, Newborn
- International Agencies
- Male
- Mastectomy
- Middle Aged
- Mutation
- Prognosis
- Puberty, Delayed
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Registries
- Retrospective Studies
- Severity of Illness Index
- Young Adult
Collapse
Affiliation(s)
- A Lucas-Herald
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - S Bertelloni
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - A Juul
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - J Bryce
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - J Jiang
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - M Rodie
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - R Sinnott
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - M Boroujerdi
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - M Lindhardt Johansen
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - O Hiort
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - P M Holterhus
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - M Cools
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - G Guaragna-Filho
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - G Guerra-Junior
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - N Weintrob
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - S Hannema
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - S Drop
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - T Guran
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - F Darendeliler
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - A Nordenstrom
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - I A Hughes
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - C Acerini
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - R Tadokoro-Cuccaro
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| | - S F Ahmed
- University of Glasgow (A.L.-H., J.B., J.J., M.R., R.S., M.B., S.F.A.), Glasgow G51 4TF, United Kingdom; University Hospital Pisa (S.B.), 56125 Pisa, Italy; Copenhagen University Hospital (A.J., M.L.J.), 2100 Copenhagen, Denmark; University of Luebeck (O.H.), 23562 Luebeck, Germany; Christian-Albrechts-University of Kiel and University Hospital of Schleswig-Holstein (P.M.H.), 24105 Kiel, Germany; University Hospital Ghent and Ghent University (M.C.), B-9000 Ghent, Belgium; State University of Campinas (UNICAMP) (G.G.-F., G.G.-J.), Campinas 13083-970, Brazil; Dana Dwek Children's Hospital (N.W.), Tel Aviv University, Tel Aviv 64239, Israel; Leids Universitair Medisch Centrum (S.H.), 2333 ZA Leiden, The Netherlands; Sophia Children's Hospital (S.H.), Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; Marmara University (T.G.), 34722 Istanbul, Turkey; Istanbul University (F.D.), 34452 Istanbul, Turkey; Karolinska Institutet (A.N.), SE-171 77 Stockholm, Sweden; and University of Cambridge (I.A.H., C.A., R.T.-C.), Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
34
|
Carretero J, López F, Catalano-Iniesta L, Sanchez-Robledo V, Garcia-Barrado MJ, Iglesias-Osma MC, Carretero-Hernandez M, Blanco EJ, Burks DJ. Pituitary Aromatase P450 May Be Involved in Maintenance of the Population of Luteinizing Hormone-Positive Pituitary Cells in Mice. Cells Tissues Organs 2016; 201:390-8. [DOI: 10.1159/000445478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
As aromatase P450 is located in several pituitary cells, testosterone can be transformed into 17β-estradiol in the gland by the enzyme. The possible role of this transformation in pituitary function remains to be elucidated, but some evidence suggests a physiological and pathophysiological role for pituitary aromatase. To determine its relevance in the modulation of pituitary function, mainly associated with reproduction, luteinizing hormone (LH)-positive cells in the hypophysis of female and male aromatase knockout (ArKO) mice were studied. In all LH-positive cells, significant increases in the cellular (p < 0.01) and nuclear (p < 0.05) areas were found in the ArKO mice compared to the wild-type mice. In the ArKO mice, LH-positive cells were more abundant (p < 0.01); they were characterized by a stronger cytoplasmic reaction and the cells were more polygonal and exhibited more short, thick cytoplasmic prolongations than those in the wild-type mice. Moreover, LH-positive cells showed a greater proliferation rate in the ArKO mice compared to the wild-type mice (p < 0.01). These findings suggest that the local production of estradiol mediated by pituitary aromatase is necessary for the regulation of LH-positive gonadotropic cells, exerting an autoparacrine inhibitory regulation. These results could underlie the higher pituitary aromatase expression observed in male versus female mice. Similar effects were found in ArKO male and female mice, suggesting that in both sexes the effects of estrogens on maintenance of the LH-positive pituitary cell population could be related to the local aromatization of testosterone to estradiol inside the hypophysis. Therefore, aromatase could modulate pituitary LH-positive cells in males through local estradiol synthesis.
Collapse
|
35
|
Caglar AS, Kapucu A, Dar KA, Ozkaya HM, Caglar E, Ince H, Kadioglu P. Localization of the aromatase enzyme expression in the human pituitary gland and its effect on growth hormone, prolactin, and thyroid stimulating hormone axis. Endocrine 2015; 49:761-8. [PMID: 25697985 DOI: 10.1007/s12020-015-0537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/16/2015] [Indexed: 01/27/2023]
Abstract
The aim of this study is to evaluate aromatase expression in prolactin (PRL), thyroid stimulating hormone (TSH), and growth hormone (GH) secreting cells. Nontumoral human pituitary specimens were obtained from autopsy samples. Aromatase co-expression was determined by double immunohistochemical staining and assessed using H scores. H scores for GH-aromatase co-expression (GH-aromatase), TSH-aromatase co-expression (TSH-aromatase), and PRL-aromatase co-expression (PRL-aromatase) were 83.1 ± 13.1, 95.6 ± 16.1, and 83.7 ± 14.5, respectively. TSH producing cells exhibited the highest H score for co-expression of aromatase (p < 0.001). There was no gender difference in terms of H scores for aromatase expression and double immunohistochemical staining results (p > 0.05 for all). There was a negative correlation between the H scores for aromatase and PRL-aromatase, GH-aromatase and TSH-aromatase, respectively (r = -0.592, p < 0.001; r = -0.593, p < 0.001; r = -0.650, p < 0.001, respectively). Also, H scores for aromatase co-expression of each hormone were negatively correlated with the H scores for the corresponding hormone (r = -0.503, p < 0.001 for PRL-aromatase and PRL; r = -0.470, p < 0.001 for GH-aromatase, and GH; r = -0.641, p < 0.001 for TSH-aromatase and TSH). H scores for mean aromatase, GH-aromatase, TSH-aromatase were invariant of age (p > 0.05 for all). Age was negatively correlated with PRL-aromatase H score (r = -0.373, p = 0.008). Our study demonstrated significant aromatase co-expression in PRL, GH, and TSH secreting cells of the human anterior pituitary gland. The mutual paracrinal regulation between aromatase and three adenohypophyseal hormones indicates that aromatase may have a regulatory role on the synthesis and secretion of these hormones.
Collapse
Affiliation(s)
- Asli Sezgin Caglar
- Endocrinology and Metabolism Department, Cerrahpasa Medical School, University of Istanbul, 34303, Cerrahpasa, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
36
|
Dwyer AA, Quinton R, Pitteloud N, Morin D. Psychosexual development in men with congenital hypogonadotropic hypogonadism on long-term treatment: a mixed methods study. Sex Med 2015; 3:32-41. [PMID: 25844173 PMCID: PMC4380912 DOI: 10.1002/sm2.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetic, reproductive endocrine disorder characterized by absent puberty and infertility. Limited information is available on the psychosocial impact of CHH and psychosexual development in these patients. Aim The aim of this study was to determine the impact of CHH on psychosexual development in men on long-term treatment. Methods A sequential mixed methods explanatory design was used. First, an online survey (quantitative) was used to quantify the frequency of psychosexual problems among CHH men. Second, patient focus groups (qualitative) were conducted to explore survey findings in detail and develop a working model to guide potential nursing and interdisciplinary interventions. Main Outcome Measures Patient characteristics, frequency of body shame, difficulty with intimate relationships, and never having been sexually active were assessed. Additionally, we collected subjective patient-reported outcomes regarding the impact of CHH on psychological/emotional well-being, intimate relationships, and sexual activity. Results A total of 101 CHH men on long-term treatment (>1 year) were included for the analysis of the online survey (mean age 37 ± 11 years, range 19–66, median 36). Half (52/101, 51%) of the men had been seen at a specialized academic center and 37/101 (37%) reported having had fertility-inducing treatment. A high percentage of CHH men experience psychosexual problems including difficulty with intimate relationships (70%) and body image concerns/body shame (94/101, 93%), and the percentage of men never having been sexually active is five times the rate in a reference group (26% vs. 5.4%, P < 0.001). Focus groups revealed persisting body shame and low self-esteem despite long-term treatment that has lasting impact on psychosexual functioning. Conclusions CHH men frequently experience psychosexual problems that pose barriers to intimate relationships and initiating sexual activity. These lingering effects cause significant distress and are not ameliorated by long-term treatment. Psychosexual assessment in CHH men with appropriate psychological support and treatment should be warranted in these patients. Dwyer AA, Quinton R, Pitteloud N, and Morin D. Psychosexual development in men with congenital hypogonadotropic hypogonadism on long-term treatment: A mixed methods study. Sex Med 2015;3:32–41.
Collapse
Affiliation(s)
- Andrew A Dwyer
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland ; Institut universitaire de formation et de recherche en soins, University of Lausanne Lausanne, Switzerland
| | - Richard Quinton
- Institute of Genetic Medicine and the Royal Victoria Infirmary, University of Newcastle-upon-Tyne Newcastle-upon-Tyne, UK
| | - Nelly Pitteloud
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland ; Department of Physiology, Faculty of Biology & Medicine, University of Lausanne Lausanne, Switzerland
| | - Diane Morin
- Institut universitaire de formation et de recherche en soins, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
37
|
O’Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith LB. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS One 2015; 10:e0121657. [PMID: 25799562 PMCID: PMC4370825 DOI: 10.1371/journal.pone.0121657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/11/2015] [Indexed: 12/02/2022] Open
Abstract
Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males.
Collapse
Affiliation(s)
- Laura O’Hara
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Curley
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Tedim Ferreira
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lyndsey Cruickshanks
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Milne
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee B. Smith
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Gonzales PH, Mezzomo LC, Ferreira NP, Roehe AV, Kohek MBF, Oliveira MDC. Aromatase P450 expression in human pituitary adenomas. Neuropathology 2014; 35:16-23. [DOI: 10.1111/neup.12145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
| | - Lisiane Cervieri Mezzomo
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Laboratory of Molecular Biology; UFCSPA; Porto Alegre RS Brazil
| | - Nelson Pires Ferreira
- Neuroendocrinology Center; Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA); Porto Alegre RS Brazil
| | | | - Maria Beatriz Fonte Kohek
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Laboratory of Molecular Biology; UFCSPA; Porto Alegre RS Brazil
| | - Miriam da Costa Oliveira
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Neuroendocrinology Center; Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA); Porto Alegre RS Brazil
| |
Collapse
|
39
|
Zhang S, Zhang Y, Chen W, Wu Y, Ge W, Zhang L, Zhang W. Aromatase (Cyp19a1b) in the pituitary is dynamically involved in the upregulation of lhb but not fshb in the vitellogenic female ricefield eel Monopterus albus. Endocrinology 2014; 155:4531-41. [PMID: 25105781 DOI: 10.1210/en.2014-1069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aromatase, encoded by Cyp19a1, is expressed in the pituitary of vertebrates; however, its physiological relevance remains poorly defined. In teleosts, the duplicated cyp19a1b is preferentially expressed in the pituitary where LH and FSH are synthesized in distinct gonadotropes. Our present study demonstrated that Cyp19a1b is colocalized with Lhb, but not Fshb, during vitellogenesis in female ricefield eels. The immunoreactive levels of Cyp19a1b and Lhb, as well as their colocalization frequency, increased during vitellogenesis toward maturation. The expression of lhb but not fshb in the pituitary fragments of female ricefield eels was induced by both estradiol (E2) and testosterone (T). In agreement, the promoter of lhb but not fshb was activated by both E2 and T. T is more potent than E2 in inducing lhb expression, whereas E2 is much more effective in activating the lhb promoter. T-induced lhb expression in the pituitary fragments was abolished by the estrogen receptor (Esr) antagonist fulvestrant and suppressed by the aromatase inhibitor letrozole, suggesting that the effect of T on lhb expression at the pituitary is largely mediated by E2. Furthermore, Lhb was shown to colocalize with Esr1 but not Esr2a. Taken together, results of the present study suggest that Cyp19a1b in LH cells may greatly upregulate lhb expression during vitellogenesis, possibly via E2 and Esr1 in an intracrine manner. The absence of Cyp19a1b in FSH cells and the insensitivity of fshb to sex steroids may contribute to the differential expression of lhb and fshb in ricefield eels and possibly other vertebrates as well.
Collapse
Affiliation(s)
- Shen Zhang
- School of Life Sciences (S.Z., Y.Z., W.C., Y.W., L.Z., W.Z.), Sun Yat-sen University, Guangzhou 510275, People's Republic of China; and Faculty of Heath Sciences (W.G.), University of Macau, Taipa, Macau Special Administrative Region (SAR), China, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Guerrero-Bosagna C, Weeks S, Skinner MK. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One 2014; 9:e100194. [PMID: 24937757 PMCID: PMC4061094 DOI: 10.1371/journal.pone.0100194] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
A variety of environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. The process involves exposure of a gestating female and the developing fetus to environmental factors that promote permanent alterations in the epigenetic programming of the germline. The molecular aspects of the phenomenon involve epigenetic modifications (epimutations) in the germline (e.g. sperm) that are transmitted to subsequent generations. The current study integrates previously described experimental epigenomic transgenerational data and web-based bioinformatic analyses to identify genomic features associated with these transgenerationally transmitted epimutations. A previously identified genomic feature associated with these epimutations is a low CpG density (<12/100bp). The current observations suggest the transgenerational differential DNA methylation regions (DMR) in sperm contain unique consensus DNA sequence motifs, zinc finger motifs and G-quadruplex sequences. Interaction of molecular factors with these sequences could alter chromatin structure and accessibility of proteins with DNA methyltransferases to alter de novo DNA methylation patterns. G-quadruplex regions can promote the opening of the chromatin that may influence the action of DNA methyltransferases, or factors interacting with them, for the establishment of epigenetic marks. Zinc finger binding factors can also promote this chromatin remodeling and influence the expression of non-coding RNA. The current study identified genomic features associated with sperm epimutations that may explain in part how these sites become susceptible for transgenerational programming.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Physics, Biology and Chemistry, Linköping University, Linköping, Sweden
| | - Shelby Weeks
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Shozu M, Fukami M, Ogata T. Understanding the pathological manifestations of aromatase excess syndrome: lessons for clinical diagnosis. Expert Rev Endocrinol Metab 2014; 9:397-409. [PMID: 25264451 PMCID: PMC4162655 DOI: 10.1586/17446651.2014.926810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CYP19A1 Aromatase excess syndrome is characterized by pre- or peripubertal onset of gynecomastia due to estrogen excess because of a gain-of-function mutation in the aromatase gene (CYP19A1). Subchromosomal recombination events including duplication, deletion, and inversion has been identified. The latter two recombinations recruit novel promoters for CYP19A1 through a unique mechanism. Gynecomastia continues for life, and although the general condition is well preserved, it may cause psychological issues. Minor symptoms (variably advanced bone age and short adult height), if present, are exclusively because of estrogen excess. Serum estradiol levels are elevated in 48% of affected males, but are not necessarily useful for diagnosis. Molecular analysis of CYP19A1 mutations is mandatory to confirm aromatase excess syndrome diagnosis. Furthermore, the use of an aromatase inhibitor can ameliorate gynecomastia.
Collapse
Affiliation(s)
- Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8670, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagaya, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
42
|
Rohayem J, Tüttelmann F, Mallidis C, Nieschlag E, Kliesch S, Zitzmann M. Restoration of fertility by gonadotropin replacement in a man with hypogonadotropic azoospermia and testicular adrenal rest tumors due to untreated simple virilizing congenital adrenal hyperplasia. Eur J Endocrinol 2014; 170:K11-7. [PMID: 24394723 DOI: 10.1530/eje-13-0449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CONTEXT Classical congenital adrenal hyperplasia (CAH), a genetic disorder characterized by 21-hydroxylase deficiency, impairs male fertility, if insufficiently treated. PATIENT A 30-year-old male was referred to our clinic for endocrine and fertility assessment after undergoing unilateral orchiectomy for a suspected testicular tumor. Histopathological evaluation of the removed testis revealed atrophy and testicular adrenal rest tumors (TARTs) and raised the suspicion of underlying CAH. The remaining testis was also atrophic (5 ml) with minor TARTs. Serum 17-hydroxyprogesterone levels were elevated, cortisol levels were at the lower limit of normal range, and gonadotropins at prepubertal levels, but serum testosterone levels were within the normal adult range. Semen analysis revealed azoospermia. CAH was confirmed by a homozygous mutation g.655A/C>G (IVS2-13A/C>G) in CYP21A2. Hydrocortisone (24 mg/m(2)) administered to suppress ACTH and adrenal androgen overproduction unmasked deficient testicular testosterone production. As azoospermia persisted due to sustained hypogonadotropic hypogonadism, a combined s.c. gonadotropin replacement with human chorionic gonadotropin (hCG) (1500 IU twice weekly) and FSH (human menopausal gondadotropin (hMG) 150 IU three times weekly) was initiated. RESULTS Normalization of testosterone levels and a stable low sperm concentration (0.5 mill/ml) with good sperm motility (85% A+B progressive) were achieved within 21 months of treatment. Despite persisting TARTs, while receiving treatment, the patient successfully impregnated his wife twice, the latter impregnation leading to the birth of a healthy girl. CONCLUSIONS TARTs in unrecognized (simple virilizing) CAH may lead to unnecessary orchiectomy. In hypogonadotropic, azoospermic CAH, a combined treatment with oral corticosteroids and subcutaneously administered hCG and FSH can successfully restore testicular testosterone production and fertility, even if only one hypoplastic and atrophic testis with adrenal rest tumors is present.
Collapse
Affiliation(s)
- Julia Rohayem
- Center of Reproductive Medicine and Andrology, Clinical Andrology, University of Muenster, Albert-Schweitzer-Campus 1, Building D11, D-48149 Muenster, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Dougan GC, Uli N, Shulman DI. Progressive central puberty in a toddler with partial androgen insensitivity. J Pediatr 2014; 164:655-7. [PMID: 24367986 DOI: 10.1016/j.jpeds.2013.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/22/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
Abstract
A male infant was diagnosed with partial androgen insensitivity caused by a novel mutation in the androgen receptor. At 3.5 months of age, he received 100 mg of testosterone intramuscularly over the course of 3 months to increase phallic size. He developed pubic hair after 5 months and signs of progressive central precocious puberty when re-examined at 17.5 months, which subsequently was suppressed with depot leuprolide.
Collapse
Affiliation(s)
- Grace C Dougan
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Naveen Uli
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Dorothy I Shulman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL.
| |
Collapse
|
44
|
Lin YT, Huang CC, Chyau CC, Chen KC, Peng RY. Sixteen years post radiotherapy of nasopharyngeal carcinoma elicited multi-dysfunction along PTX and chronic kidney disease with microcytic anemia. BMC Urol 2014; 14:19. [PMID: 24520983 PMCID: PMC3931662 DOI: 10.1186/1471-2490-14-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/28/2014] [Indexed: 11/16/2022] Open
Abstract
Background The hypothalamic–pituitary (h-p) unit is a particularly radiosensitive region in the central nervous system. As a consequence, radiation-induced irreversible, progressively chronic onset hypopituitarism (RIH) commonly develops after radiation treatments and can result in variably impaired pituitary function, which is frequently associated with increased morbidity and mortality. Case presentation A 38-year-old male subject, previously having received radiotherapy for treatment of nasopharygeal carcinoma (NPCA) 16 years ago, appeared at OPD complaining about his failure in penile erection, loss of pubic hair, atrophy of external genitalia: testicles reduced to 2×1.5 cm; penile size shrunk to only 4 cm long. Characteristically, he showed extremely lowered human growth hormone, (HGH, 0.115 ng/mL), testosterone (<0.1 ng/mL), total thyroxine (tT4: 4.740 g/mL), free T4 (fT4, 0.410 ng/mL), cortisol (2.34 g/dL); lowered LH (1.37 mIU/mL) and estradiol (22 pg/mL); highly elevated TSH (7.12 IU/mL). As contrast, he had low end normal ACTH, FSH, total T3, free T3, and estriol; high end normal prolactin (11.71 ng/mL), distinctly implicating hypopituitarism-induced hypothyroidism and hypogonadism. serologically, he showed severely lowered Hb (10.6 g/dL), HCT (32.7%), MCV (77.6 fL), MCH (25.3 pg), MCHC (32.6 g/dL), and platelet count (139×103/L) with extraordinarily elevated RDW (18.2%), together with severely lowered ferritin (23.6 ng/mL) and serum iron levels; highly elevated total iron binding capacity (TIBC, 509 g/dL) and transferrin (363.4 mg/dL), suggesting microcytic anemia. Severely reduced estimated glomerular filtration rate (e-GFR) (89 mL/mim/1.73 m2) pointed to CKD2. Hypocortisolemia with hyponatremia indicated secondary adrenal insufficiency. Replacement therapy using androgen, cortisol, and Ringer’s solution has shown beneficial in improving life quality. Conclusions To our believe, we are the first group who report such complicate PTX dysfunction with adrenal cortisol insufficiency concomitantly occurring in a single patient.
Collapse
Affiliation(s)
| | | | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung City 43302, Taiwan.
| | | | | |
Collapse
|
45
|
Wang X, Ge L, Cui Y, Lang C, Hao C. A FSH-Secreting Pituitary Macroadenoma Causing A Testosterone Deficiency Syndrome. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2014; 8:99-104. [PMID: 24696774 PMCID: PMC3973166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/12/2013] [Indexed: 10/25/2022]
Abstract
FSH-secreting pituitary adenomas can affect sexual and reproductive function. In this article, we have reported the case of a 32-year-old male with secondary infertility. The patient had sexual and reproductive disturbances. The test results of the blood samples indicated obviously decreased testosterone (T) and estradiol (E2) levels. Based on previous hormonal results, the patient received pituitary stimulation and human chorionic gonadotropin (hCG) tests. Both follicle stimulating hormone (FSH) and luteinizing hormone (LH) showed low response during the pituitary stimulation test. The results of the hCG test indicated that T/E2 could recover to a normal level. In addition, this patient was diagnosed with pituitary macroadenoma, which was supported by the pituitary MRI. The man's sexual and reproductive functions recovered following surgery. The pathological results confirmed that the tumor tissue was an FSH-secreting pituitary adenoma by immunohistochemical staining. The purpose of this report was to review the relative literature and discuss the influence of FSH-secreting pituitary adenomas on hormones through the hypothalamus-pituitary-testis axis.
Collapse
Affiliation(s)
- Xiong Wang
- Reproductive Medicine Center in Qingdao University affiliated Yantai Yuhuangding Hospital, Shandong, China
| | - Li Ge
- Reproductive Medicine Center in Qingdao University affiliated Yantai Yuhuangding Hospital, Shandong, China
| | - Yuanqing Cui
- Reproductive Medicine Center in Qingdao University affiliated Yantai Yuhuangding Hospital, Shandong, China
| | - Cuihong Lang
- Weifang Maternal and Child Health Hospital, Shandong, China
| | - Cuifang Hao
- Reproductive Medicine Center in Qingdao University affiliated Yantai Yuhuangding Hospital, Shandong, China ,
* Corresponding Address:
Reproductive Medicine Center in Qingdao University affiliated Yantai Yuhuangding HospitalShan-dongChina264000
| |
Collapse
|
46
|
Wiehle R, Cunningham GR, Pitteloud N, Wike J, Hsu K, Fontenot GK, Rosner M, Dwyer A, Podolski J. Testosterone Restoration by Enclomiphene Citrate in Men with Secondary Hypogonadism: Pharmacodynamics and Pharmacokinetics. BJU Int 2013; 112:1188-1200. [PMID: 23875626 PMCID: PMC4155868 DOI: 10.1111/bju.12363] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine the pharmacodynamic (PD) profile of serum total testosterone levels (TT) and luteinizing hormone (LH) in men with secondary hypogonadism following initial and chronic daily oral doses of enclomiphene citrate in comparison to transdermal testosterone. To determine the effects of daily oral doses of enclomiphene citrate (Androxal®) in comparison to transdermal testosterone on other hormones and markers in men with secondary hypogonadism. PATIENTS AND METHODS This was a randomized, single blind, two-center phase II study to evaluate three different doses of enclomiphene citrate (6.25mg, 12.5mg and 25 mg Androxal®), versus AndroGel®, a transdermal testosterone, on 24-hour LH and TT in otherwise normal healthy men with secondary hypogonadism. Forty-eight men were enrolled in the trial (ITT Population), but 4 men had T levels >350 ng/dL at baseline. Forty-four men completed the study per protocol (PP population). All subjects enrolled in this trial had serum TT in the low range (<350 ng/dL) and had low to normal LH (<12 IU/L) on at least two occasions. TT and LH levels were assessed each hour for 24 hours to examine the effects at each of three treatment doses of enclomiphene versus a standard dose (5 grams) of transdermal testosterone (AndroGel). In the initial profile TT and LH were determined in a naïve population following a single initial oral or transdermal treatment (Day 1). This was contrasted to that seen after six weeks of continuous daily oral or transdermal treatment (Day 42). The pharmacokinetics of enclomiphene was performed in a select subpopulation. Serum samples were obtained over the course of the study to determine levels of various hormones and lipids. RESULTS After six weeks of continuous use, the mean ± SD concentration of TT at Day 42 C0hrTT, was 604 ± 160 ng/dL for men taking the highest of dose of enclomiphene citrate (enclomiphene, 25 mg daily) and 500 ± 278 ng in those men treated with transdermal testosterone. These values were higher than Day 1 values but not different from each other (p = 0.23, T-test). All three doses of enclomiphene increased C0hrTT, CavgTT, CmaxTT, CminTT and CrangeTT. Transdermal testosterone also raised TT, albeit with more variability, and with suppressed LH levels. The patterns of TT over 24 hour period following six weeks of dosing could be fit to a non-linear function with morning elevations, mid-day troughs, and rising night-time levels. Enclomiphene and transdermal testosterone increased levels of TT within two weeks, but they had opposite effects on FSH and LH Treatment with enclomiphene did not significantly affect levels of TSH, ACTH, cortisol, lipids, or bone markers. Both transdermal testosterone and enclomiphene citrate decreased IGF-1 levels (p<0.05) but suppression was greater in the enclomiphene citrate groups. CONCLUSIONS Enclomiphene citrate increased serum LH and TT; however, there was not a temporal association between the peak drug levels and the Cmax levels LH or TT. Enclomiphene citrate consistently increased serum TT into the normal range and increased LH and FSH above the normal range. The effects on LH and TT persisted for at least one week after stopping treatment.
Collapse
|
47
|
Caronia LM, Dwyer AA, Hayden D, Amati F, Pitteloud N, Hayes FJ. Abrupt decrease in serum testosterone levels after an oral glucose load in men: implications for screening for hypogonadism. Clin Endocrinol (Oxf) 2013; 78:291-6. [PMID: 22804876 DOI: 10.1111/j.1365-2265.2012.04486.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/06/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study examines the physiological impact of a glucose load on serum testosterone (T) levels in men with varying glucose tolerance (GT). DESIGN Cross-sectional study. PATIENTS AND METHODS 74 men (19-74 years, mean 51·4 ± 1·4 years) underwent a standard 75-g oral glucose tolerance test with blood sampling at 0, 30, 60, 90 and 120 min. Fasting serum glucose, insulin, total T (and calculated free T), LH, SHBG, leptin and cortisol were measured. RESULTS 57% of the men had normal GT, 30% had impaired GT and 13% had newly diagnosed type 2 diabetes. Glucose ingestion was associated with a 25% decrease in mean T levels (delta = -4·2 ± 0·3 nm, P < 0·0001). T levels remained suppressed at 120 min compared with baseline (13·7 ± 0·6 vs 16·5 ± 0·7 nm, P < 0·0001) and did not differ across GT or BMI. Of the 66 men with normal T levels at baseline, 10 (15%) had levels that decreased to the hypogonadal range (<9·7 nm) at one or more time points. SHBG, LH and cortisol levels were unchanged. Leptin levels decreased from baseline at all time points (P < 0·0001). CONCLUSIONS Glucose ingestion induces a significant reduction in total and free T levels in men, which is similar across the spectrum of glucose tolerance. This decrease in T appears to be because of a direct testicular defect, but the absence of compensatory changes in LH suggests an additional central component. Men found to have low nonfasting T levels should be re-evaluated in the fasting state.
Collapse
Affiliation(s)
- Lisa M Caronia
- Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
48
|
George JT, Anderson RA, Millar RP. Kisspeptin-10 stimulation of gonadotrophin secretion in women is modulated by sex steroid feedback. Hum Reprod 2012; 27:3552-9. [DOI: 10.1093/humrep/des326] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Blomberg Jensen M. Vitamin D metabolism, sex hormones, and male reproductive function. Reproduction 2012; 144:135-52. [DOI: 10.1530/rep-12-0064] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spectrum of vitamin D (VD)-mediated effects has expanded in recent years, and VD is now recognized as a versatile signaling molecule rather than being solely a regulator of bone health and calcium homeostasis. One of the recently identified target areas of VD is male reproductive function. The VD receptor (VDR) and the VD metabolizing enzyme expression studies documented the presence of this system in the testes, mature spermatozoa, and ejaculatory tract, suggesting that both systemic and local VD metabolism may influence male reproductive function. However, it is still debated which cell is the main VD target in the testis and to what extent VD is important for sex hormone production and function of spermatozoa. This review summarizes descriptive studies on testicular VD metabolism and spatial distribution of VDR and the VD metabolizing enzymes in the mammalian testes and discusses mechanistic and association studies conducted in animals and humans. The reviewed evidence suggests some effects of VD on estrogen and testosterone biosynthesis and implicates involvement of both systemic and local VD metabolism in the regulation of male fertility potential.
Collapse
|
50
|
Gregoriou O, Bakas P, Grigoriadis C, Creatsa M, Hassiakos D, Creatsas G. Changes in hormonal profile and seminal parameters with use of aromatase inhibitors in management of infertile men with low testosterone to estradiol ratios. Fertil Steril 2012; 98:48-51. [PMID: 22579129 DOI: 10.1016/j.fertnstert.2012.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To compare the effects of 2.5 mg letrozole with those of 1 mg anastrazole daily on the hormonal and semen profiles of a subset of infertile men with low T/E(2) ratios. DESIGN Prospective, nonrandomized study. SETTING Reproductive medicine clinic. PATIENT(S) The study group consisted of 29 infertile men with a low serum T/E(2) ratio (<10). INTERVENTION(S) Patients were divided into two groups. Group A included 15 patients treated with 2.5 mg letrozole orally once daily for 6 months, and Group B consisted of 14 patients treated with 1 mg anastrazole orally every day for 6 months. MAIN OUTCOME MEASURE(S) Hormonal evaluation included measurement of serum FSH, LH, PRL, T, and E(2). In all sperm analyses pretreatment and posttreatment total motile sperm counts (ejaculate volume × concentration × motile fraction) were evaluated. RESULT(S) The use of aromatase inhibitors (either letrozole or anastrazole) in cases of infertile men with low T/E(2) ratios improved both hormonal and semen parameters. CONCLUSION(S) This study suggests that some men with severe oligospermia, low T levels, and normal gonadotropin concentration may have a treatable endocrinopathy.
Collapse
Affiliation(s)
- Odysseas Gregoriou
- 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, University of Athens, Athens, Greece.
| | | | | | | | | | | |
Collapse
|