1
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Khademi Z, Pourreza S, Hamedi-Shahraki S, Amirkhizi F. Association Between Selenium and Circulating Adipokine Levels in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:3442-3448. [PMID: 37910262 DOI: 10.1007/s12011-023-03935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
There is increasing evidence that selenium (Se) and its major transport protein, selenoprotein-P (SePP), may be associated with polycystic ovary syndrome (PCOS). However, the association of serum Se and SePP levels with circulating adipokines in this population has not received sufficient attention. In the present study, we aimed to investigate the associations of serum Se and SePP with circulating adipokine levels in patients with PCOS. In this cross-sectional study, 115 patients aged 18-45 years with PCOS diagnosed according to the Rotterdam Consensus Criteria were recruited. The general characteristics of the participants were collected using a general questionnaire and anthropometric measurements were taken. Blood samples were obtained and serum levels of leptin, adiponectin, visfatin, resistin, and omentin-1, as well as markers of glucose metabolism, were measured. Serum levels of Se and SePP were inversely correlated with fasting blood glucose (FBS), serum insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). In addition, serum levels of Se and SePP were positively correlated with serum levels of adiponectin and visfatin. Although there was no significant correlation between serum Se and serum omentin-1 levels, a significant positive correlation was found between serum SePP levels and this adipokine. The present study found that serum Se and SePP levels were positively correlated with serum adiponectin and visfatin levels. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zeinab Khademi
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
3
|
Rosenfield RL. The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015. Endocr Rev 2024; 45:553-592. [PMID: 38457123 DOI: 10.1210/endrev/bnae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 94109, USA
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Fordham TM, Morelli NS, Garcia-Reyes Y, Ware MA, Rahat H, Sundararajan D, Fuller KNZ, Severn C, Pyle L, Malloy CR, Jin ES, Parks EJ, Wolfe RR, Cree MG. Metabolic effects of an essential amino acid supplement in adolescents with PCOS and obesity. Obesity (Silver Spring) 2024; 32:678-690. [PMID: 38439205 DOI: 10.1002/oby.23988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, insulin resistance, and hepatic steatosis (HS). Because dietary essential amino acid (EAA) supplementation has been shown to decrease HS in various populations, this study's objective was to determine whether supplementation would decrease HS in PCOS. METHODS A randomized, double-blind, crossover, placebo-controlled trial was conducted in 21 adolescents with PCOS (BMI 37.3 ± 6.5 kg/m2, age 15.6 ± 1.3 years). Liver fat, very low-density lipoprotein (VLDL) lipogenesis, and triacylglycerol (TG) metabolism were measured following each 28-day phase of placebo or EAA. RESULTS Compared to placebo, EAA was associated with no difference in body weight (p = 0.673). Two markers of liver health improved: HS was lower (-0.8% absolute, -7.5% relative reduction, p = 0.013), as was plasma aspartate aminotransferase (AST) (-8%, p = 0.004). Plasma TG (-9%, p = 0.015) and VLDL-TG (-21%, p = 0.031) were reduced as well. VLDL-TG palmitate derived from lipogenesis was not different between the phases, nor was insulin sensitivity (p > 0.400 for both). Surprisingly, during the EAA phase, participants reported consuming fewer carbohydrates (p = 0.038) and total sugars (p = 0.046). CONCLUSIONS Similar to studies in older adults, short-term EAA supplementation in adolescents resulted in significantly lower liver fat, AST, and plasma lipids and thus may prove to be an effective treatment in this population. Additional research is needed to elucidate the mechanisms for these effects.
Collapse
Affiliation(s)
- Talyia M Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nazeen S Morelli
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yesenia Garcia-Reyes
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Meredith A Ware
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Haseeb Rahat
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Divya Sundararajan
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly N Z Fuller
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cameron Severn
- Child Health Biostatistics Core, Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Pyle
- Child Health Biostatistics Core, Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Robert R Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie G Cree
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, Bertrand F, Gower B, Azziz R. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2023; 109:10-24. [PMID: 37329216 PMCID: PMC10735305 DOI: 10.1210/clinem/dgad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a complex genetic trait and the most common endocrine disorder of women, clinically evident in 5% to 15% of reproductive-aged women globally, with associated cardiometabolic dysfunction. Adipose tissue (AT) dysfunction appears to play an important role in the pathophysiology of PCOS even in patients who do not have excess adiposity. METHODS We undertook a systematic review concerning AT dysfunction in PCOS, and prioritized studies that assessed AT function directly. We also explored therapies that targeted AT dysfunction for the treatment of PCOS. RESULTS Various mechanisms of AT dysfunction in PCOS were identified including dysregulation in storage capacity, hypoxia, and hyperplasia; impaired adipogenesis; impaired insulin signaling and glucose transport; dysregulated lipolysis and nonesterified free fatty acids (NEFAs) kinetics; adipokine and cytokine dysregulation and subacute inflammation; epigenetic dysregulation; and mitochondrial dysfunction and endoplasmic reticulum and oxidative stress. Decreased glucose transporter-4 expression and content in adipocytes, leading to decreased insulin-mediated glucose transport in AT, was a consistent abnormality despite no alterations in insulin binding or in IRS/PI3K/Akt signaling. Adiponectin secretion in response to cytokines/chemokines is affected in PCOS compared to controls. Interestingly, epigenetic modulation via DNA methylation and microRNA regulation appears to be important mechanisms underlying AT dysfunction in PCOS. CONCLUSION AT dysfunction, more than AT distribution and excess adiposity, contributes to the metabolic and inflammation abnormalities of PCOS. Nonetheless, many studies provided contradictory, unclear, or limited data, highlighting the urgent need for additional research in this important field.
Collapse
Affiliation(s)
- Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Uche Ezeh
- California IVF Fertility Center, Sacramento, CA 95833, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Mina Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Lauren Pace
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Yen-Hao Chen
- Department of Research, Biomere-West, Richmond, CA 94806, USA
| | - Fred Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Barbara Gower
- Department of Nutrition Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Ricardo Azziz
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
- Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, AL 35233, USA
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Rensselaer, NY 12144, USA
| |
Collapse
|
6
|
Burwitz BJ, Yusova S, Robino JJ, Takahashi D, Luo A, Slayden OD, Bishop CV, Hennebold JD, Roberts CT, Varlamov O. Western-style diet in the presence of elevated circulating testosterone induces adipocyte hypertrophy without proinflammatory responses in rhesus macaques. Am J Reprod Immunol 2023; 90:e13773. [PMID: 37766405 PMCID: PMC10544858 DOI: 10.1111/aji.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Anovulatory infertility is commonly associated with hyperandrogenemia (elevated testosterone, T), insulin resistance, obesity, and white adipose tissue (WAT) dysfunction associated with adipocyte hypertrophy. However, whether hyperandrogenemia and adipocyte hypertrophy per se induce a proinflammatory response is unknown. METHOD OF STUDY Young adult female rhesus macaques were exposed to an obesogenic Western-style diet (WSD) in the presence of elevated circulating testosterone (T+WSD) or a low-fat control diet with no exogenous T. Immune cells residing in visceral omental white adipose tissue (OM-WAT), corpus luteum and the contralateral ovary, endometrium, lymph nodes, bone marrow, and peripheral blood mononuclear cells were characterized by flow cytometry during the luteal phase of the reproductive cycle. RESULTS Following one year of treatment, T+WSD animals became more insulin-resistant and exhibited increased body fat and adipocyte hypertrophy compared to controls. T+WSD treatment did not induce macrophage polarization toward a proinflammatory phenotype in the tissues examined. Additionally, T+WSD treatment did not affect TNFα production by bone marrow macrophages in response to toll-like receptor agonists. While the major lymphoid subsets were not significantly affected by T+WSD treatment, we observed a significant reduction in the frequency of effector memory CD8+ T-cells (Tem) in OM-WAT, but not in other tissues. Notably, OM-WAT Tem frequencies were negatively correlated with insulin resistance as assessed by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). CONCLUSION This study shows that short-term T+WSD treatment induces weight gain, insulin resistance, and adipocyte hypertrophy, but does not have a significant effect on systemic and tissue-resident proinflammatory markers, suggesting that adipocyte hypertrophy and mild hyperandrogenemia alone are not sufficient to induce a proinflammatory response.
Collapse
Affiliation(s)
- Benjamin J. Burwitz
- Divisions of Pathobiology and Immunology
- Divisions of Metabolic Health and Disease
| | | | | | | | - Addie Luo
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Ov D. Slayden
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Cecily V. Bishop
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jon D. Hennebold
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | - Charles T. Roberts
- Divisions of Metabolic Health and Disease
- Reproductive and Developmental Sciences, Oregon National Primate Research Center
| | | |
Collapse
|
7
|
Di Lorenzo M, Cacciapuoti N, Lonardo MS, Nasti G, Gautiero C, Belfiore A, Guida B, Chiurazzi M. Pathophysiology and Nutritional Approaches in Polycystic Ovary Syndrome (PCOS): A Comprehensive Review. Curr Nutr Rep 2023; 12:527-544. [PMID: 37213054 PMCID: PMC10444658 DOI: 10.1007/s13668-023-00479-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in women of reproductive age worldwide. This disease causes menstrual, metabolic, and biochemical abnormalities such as hyperandrogenism, oligo-anovulatory menstrual cycles, polycystic ovary, hyperleptinemia, insulin resistance (IR), and cardiometabolic disorders, often associated with overweight or obesity and visceral adiposity. RECENT FINDINGS The etiology and pathophysiology of PCOS are not yet fully understood, but insulin seems to play a key role in this disease. PCOS shares an inflammatory state with other chronic diseases such as obesity, type II diabetes, and cardiovascular diseases; however, recent studies have shown that a healthy nutritional approach can improve IR and metabolic and reproductive functions, representing a valid therapeutic strategy to ameliorate PCOS symptomatology. This review aimed to summarize and collect evidence about different nutritional approaches such as the Mediterranean diet (MedDiet) and the ketogenic diet (KD), as well as bariatric surgery and nutraceutical supplementation as probiotics, prebiotics, and synbiotics, among the others, used in patients with PCOS.
Collapse
Affiliation(s)
- M Di Lorenzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Infectious Diseases and Gender Medicine Unit, Cotugno Hospital, AO Dei Colli, Naples, Italy
| | - N Cacciapuoti
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - M S Lonardo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - G Nasti
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - C Gautiero
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - A Belfiore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - B Guida
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - M Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
- Department of Medical Oncology, AO "A. Cardarelli", Naples, Italy.
| |
Collapse
|
8
|
Singh R, Kaur S, Yadav S, Bhatia S. Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends Endocrinol Metab 2023; 34:194-215. [PMID: 36863888 DOI: 10.1016/j.tem.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrinopathy associated with subfertility/infertility and pregnancy complications. Most PCOS women opt for assisted reproductive technologies (ART) for successful conception; however, optimization of the relative doses of the gonadotropins [follicle-stimulating hormone (FSH), luteinizing hormone (LH)/human chorionic gonadotropin (hCG)] for appropriate steroidogenesis, without causing ovarian hyperstimulatory syndrome (OHSS), is challenging. Embryonic factors probably do not contribute to pregnancy loss in PCOS women, albeit hormonal imbalance impairs the metabolic microenvironment critical for oocyte maturation and endometrial receptivity. Certain clinical studies have confirmed the role of metabolic corrections in increasing the rate of pregnancy in PCOS women. This review focuses on the impact of untimely high LHCGR and/or LH levels on oocyte/embryo quality, pregnancy outcomes in ART, and exploring LHCGR as a potential drug target in PCOS women.
Collapse
Affiliation(s)
- Rita Singh
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi, India.
| | - Surleen Kaur
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi, India
| | - Suman Yadav
- Division of Molecular Endocrinology and Reproduction, Department of Zoology, University of Delhi, Delhi, India
| | - Smita Bhatia
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
10
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Walters KA, Moreno-Asso A, Stepto NK, Pankhurst MW, Rodriguez Paris V, Rodgers RJ. Key signalling pathways underlying the aetiology of polycystic ovary syndrome. J Endocrinol 2022; 255:R1-R26. [PMID: 35980384 DOI: 10.1530/joe-22-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine condition characterised by a range of reproductive, endocrine, metabolic and psychological abnormalities. Reports estimate that around 10% of women of reproductive age are affected by PCOS, representing a significant prevalence worldwide, which poses a high economic health burden. As the origin of PCOS remains largely unknown, there is neither a cure nor mechanism-based treatments leaving patient management suboptimal and focused solely on symptomatic treatment. However, if the underlying mechanisms underpinning the development of PCOS were uncovered then this would pave the way for the development of new interventions for PCOS. Recently, there have been significant advances in our understanding of the underlying pathways likely involved in PCOS pathogenesis. Key insights include the potential involvement of androgens, insulin, anti-Müllerian hormone and transforming growth factor beta in the development of PCOS. This review will summarise the significant scientific discoveries on these factors that have enhanced our knowledge of the mechanisms involved in the development of PCOS and discuss the impact these insights may have in shaping the future development of effective strategies for women with PCOS.
Collapse
Affiliation(s)
- Kirsty A Walters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
- Monash Centre for Health Research and Implementation, Monash University and Monash Health, Clayton, Victoria, Australia
- Medicine at Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valentina Rodriguez Paris
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Raymond J Rodgers
- The Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Vitale SG, Fulghesu AM, Mikuš M, Watrowski R, D’Alterio MN, Lin LT, Shah M, Reyes-Muñoz E, Sathyapalan T, Angioni S. The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside—A Systematic Literature Review. Biomedicines 2022; 10:biomedicines10081816. [PMID: 36009364 PMCID: PMC9405312 DOI: 10.3390/biomedicines10081816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are essential for the regulation of post-transcriptional gene expression during tissue development and differentiation. They are involved in the regulation of manifold metabolic and hormonal processes and, within the female reproductive tract, in oocyte maturation and folliculogenesis. Altered miRNA levels have been observed in oncological and inflammatory diseases, diabetes or polycystic ovary syndrome (PCOS). Therefore, miRNAs are proving to be promising potential biomarkers. In women with PCOS, circulating miRNAs can be obtained from whole blood, serum, plasma, urine, and follicular fluid. Our systematic review summarizes data from 2010–2021 on miRNA expression in granulosa and theca cells; the relationship between miRNAs, hormonal changes, glucose and lipid metabolism in women with PCOS; and the potential role of altered miRNAs in fertility (oocyte quality) in PCOS. Furthermore, we discuss miRNAs as a potential therapeutic target in PCOS and as a diagnostic marker for PCOS.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy;
| | - Anna Maria Fulghesu
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.M.F.); (M.N.D.)
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Rafał Watrowski
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Maurizio Nicola D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.M.F.); (M.N.D.)
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Pei-Tou, Taipei 112, Taiwan
- Department of Biological Science, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung City 80424, Taiwan
| | - Mohsin Shah
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Enrique Reyes-Muñoz
- Department of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK;
| | - Stefano Angioni
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy;
- Correspondence:
| |
Collapse
|
13
|
Shen H, Xu X, Fu Z, Xu C, Wang Y. The interactions of CAP and LYN with the insulin signaling transducer CBL play an important role in polycystic ovary syndrome. Metabolism 2022; 131:155164. [PMID: 35217034 DOI: 10.1016/j.metabol.2022.155164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/28/2022] [Accepted: 02/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a hormonal disorder characterized by hyperandrogenism, ovulatory dysfunction, and insulin resistance. Evidence suggests that aberrations in insulin signaling-associated pathways may underlie PCOS pathogenesis. Our aim was to investigate the molecular mechanisms underlying PCOS and associated insulin resistance using in silico analyses, in vitro cell models, and in vivo murine models. METHODS R-based bioinformatics analysis was performed on granulosa cell microarray data from three human cohorts: healthy control, PCOS patients without insulin resistance, and PCOS patients with insulin resistance. Transgenic human granulosa cell models were utilized for in vitro studies. Transgenic murine models of dehydroepiandrosterone (DHEA)-induced PCOS were utilized for in vivo studies. RESULTS Sorbin and SH3 Domain Containing 1 (SORBS1), the parent gene of the insulin receptor-associated Casitas B-lineage lymphoma protein (CBL)-associated protein (CAP), is a key downregulated gene in PCOS patients with insulin resistance. CAP binding to CBL reduced CBLY731 phosphorylation, CBL-phosphoinositide 3-kinase (PI3K) p85α interactivity, protein kinase B (Akt)S473 phosphorylation, and NFκB-induced inflammatory marker expression but enhanced CRKII-mediated membrane GLUT4 translocation in granulosa cells. In contrast, the tyrosine kinase Lck/Yes-Related Novel Protein (LYN) is upregulated in PCOS patients with insulin resistance. LYN binding to CBL enhanced CBLY731 phosphorylation, CBL-PI3K p85α interactivity, AktS473 phosphorylation, and NFκB-induced inflammatory marker expression but did not impact membrane GLUT4 translocation. In PCOS mice, Cap overexpression, Cap transactivation by metformin, or enhancing Cbl-CrkII binding improved insulin sensitivity and ovarian dysfunction (i.e., estrous cycle disruption, cyst-like follicle formation, and sex hormone dysregulation). In contrast, Lyn knockdown, Lyn inhibition by PP2, or CBL-PI3K p85α blockade improved only ovarian dysfunction. Cbl3YF phosphomutant overexpression (which enhances Cbl-CrkII binding but blocks Cbl-PI3K p85α binding) ameliorated both ovarian dysfunction and insulin resistance. CONCLUSIONS The interactions of CAP and LYN with CBL, and the resulting effects on CBL phosphorylation and activity, may play an important role in PCOS pathogenesis. Targeting these players may be a viable therapeutic strategy for PCOS.
Collapse
Affiliation(s)
- Haoran Shen
- Department of Gynecology, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, PR China.
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhongpeng Fu
- Department of Ultrasonography, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Chengjie Xu
- Department of Intelligence Science, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Yao Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, PR China.
| |
Collapse
|
14
|
Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9240569. [PMID: 35356614 PMCID: PMC8959968 DOI: 10.1155/2022/9240569] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022]
Abstract
The polycystic ovary syndrome (PCOS) is the disease featured by elevated levels of androgens, ovulatory dysfunction, and morphological abnormalities. At reproductive stage of women, the rate of PCOS occurrence is measured as 6–10% and the prevalence rate may be double. There are different pathophysiological factors involved in PCOS, and they play a major role in various abnormalities in individual patient. It is clear that there is noteworthy elevation of androgen in PCOS, causing substantial misery and infertility problems. The overexposure of androgen is directly linked with insulin resistance and hyperinsulinaemia. It has been reported previously that PCOS is related to cardiac metabolic miseries and potently increases the risk of heart diseases. Endometrial cancer is also a serious concern which is reported with exceedingly high incidence in women with PCOS. However, the overexposure of androgen has direct and specific influence on the development of insulin resistance. Although many factors are involved, resistance to the insulin and enhanced level of androgen are considered the major causes of PCOS. In the present review, we have focused on the pathophysiology and major revolutions of insulin resistance and excessive levels of androgen in females with PCOS.
Collapse
|
15
|
Amisi CA. Markers of insulin resistance in Polycystic ovary syndrome women: An update. World J Diabetes 2022; 13:129-149. [PMID: 35432749 PMCID: PMC8984569 DOI: 10.4239/wjd.v13.i3.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/14/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, affecting 5%-10% of women of reproductive age. The importance of this syndrome lies in the magnitude of associated comorbidities: infertility, metabolic dysfunction, cardiovascular disease (CVD), plus psychological and oncological complications. Insulin resistance (IR) is a prominent feature of PCOS with a prevalence of 35%-80%. Without adequate management, IR with compensatory hyperinsulinemia contributes directly to reproductive dysfunction in women with PCOS. Furthermore, epidemiological data shows compelling evidence that PCOS is associated with an increased risk of impaired glucose tolerance, gestational diabetes mellitus and type 2 diabetes. In addition, metabolic dysfunction leads to a risk for CVD that increases with aging in women with PCOS. Indeed, the severity of IR in women with PCOS is associated with the amount of abdominal obesity, even in lean women with PCOS. Given these drastic implications, it is important to diagnose and treat insulin resistance as early as possible. Many markers have been proposed. However, quantitative assessment of IR in clinical practice remains a major challenge. The gold standard method for assessing insulin sensitivity is the hyperinsulinemic euglycemic glucose clamp. However, it is not used routinely because of the complexity of its procedure. Consequently, there has been an urgent need for surrogate markers of IR that are more applicable in large population-based epidemiological investigations. Despite this, many of them are either difficult to apply in routine clinical practice or useless for women with PCOS. Considering this difficulty, there is still a need for an accurate marker for easy, early detection and assessment of IR in women with PCOS. This review highlights markers of IR already used in women with PCOS, including new markers recently reported in literature, and it establishes a new classification for these markers.
Collapse
Affiliation(s)
- Chantal Anifa Amisi
- Endocrinology and Diabetes Unit, Department of Medicine, Universita Campus Bio-medico di Rome, Rome 00128, Italy
| |
Collapse
|
16
|
Jensterle M, Kravos NA, Dolžan V, Goričar K, Herman R, Rizzo M, Janež A. Glucose transporter 4 mRNA expression in subcutaneous adipose tissue of women with PCOS remains unchanged despite metformin withdrawal: is there a cellular metabolic treatment legacy effect? Endocrine 2022; 75:804-813. [PMID: 34761355 DOI: 10.1007/s12020-021-02934-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Metformin induces GLUT-4 mRNA expression in insulin target tissues in PCOS. It is unclear how long this impact is sustained after withdrawal of metformin. We aimed to compare the effect of metformin withdrawal on GLUT-4 mRNA expression in subcutaneous adipose tissue after prior short (ST, 1 year, N = 11) and long term (LT, at least 3 years, N = 13) treatment in obese PCOS women. METHODS At baseline and 6 months after withdrawal, biopsy of subcutaneous adipose tissue followed by quantitative PCR analysis was performed to determine GLUT-4 mRNA expression. RESULTS We found no time/effect differences in GLUT-4 mRNA expression in ST (2-dCt at baseline 0.42 (0.16-0.48) vs 2-dCt after 6 months 0.31 (0.22-0.56), p = 0.594) and no time/effect difference in LT group (2-dCt at baseline 0.24 (0.14-0.39) vs 2-dCt after 6 months 0.25 (0.20-0.38), p = 0.382). There was also no difference in GLUT-4 mRNA expression between both groups at baseline and after 6 months. CONCLUSIONS In summary, 6 months after metformin withdrawal, GLUT-4 mRNA expression in subcutaneous adipose tissue remained stable, regardless of the prior treatment duration.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Nika Aleksandra Kravos
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, 90133, Italy
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
17
|
Ware MA, Kaar JL, Behn CD, Bartlette K, Carreau AM, Lopez-Paniagua D, Scherzinger A, Xie D, Rahat H, Garcia-Reyes Y, Nadeau KJ, Cree-Green M. Pancreatic fat relates to fasting insulin and postprandial lipids but not polycystic ovary syndrome in adolescents with obesity. Obesity (Silver Spring) 2022; 30:191-200. [PMID: 34932884 PMCID: PMC10786704 DOI: 10.1002/oby.23317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Adolescents with polycystic ovary syndrome (PCOS) and obesity can have insulin resistance, dysglycemia, and hepatic steatosis. Excess pancreatic fat may disturb insulin secretion and relate to hepatic fat. Associations between pancreatic fat fraction (PFF) and metabolic measures in PCOS were unknown. METHODS This secondary analysis included 113 sedentary, nondiabetic adolescent girls (age = 15.4 [1.9] years), with or without PCOS and BMI ≥ 90th percentile. Participants underwent fasting labs, oral glucose tolerance tests, and magnetic resonance imaging for hepatic fat fraction (HFF) and PFF. Groups were categorized by PFF (above or below the median of 2.18%) and compared. RESULTS Visceral fat and HFF were elevated in individuals with PCOS versus control individuals, but PFF was similar. PFF did not correlate with serum androgens. Higher and lower PFF groups had similar HFF, with no correlation between PFF and HFF, although hepatic steatosis was more common in those with higher PFF (≥5.0% HFF; 60% vs. 36%; p = 0.014). The higher PFF group had higher fasting insulin (p = 0.026), fasting insulin resistance (homeostatic model assessment of insulin resistance, p = 0.032; 1/fasting insulin, p = 0.028), free fatty acids (p = 0.034), and triglycerides (p = 0.004) compared with those with lower PFF. β-Cell function and insulin sensitivity were similar between groups. CONCLUSIONS Neither PCOS status nor androgens related to PFF. However, fasting insulin and postprandial lipids were worse with higher PFF.
Collapse
Affiliation(s)
- Meredith A. Ware
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Modern Human Anatomy, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado, USA
| | - Jill L. Kaar
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cecilia Diniz Behn
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, USA
| | - Kai Bartlette
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, USA
| | - Anne-Marie Carreau
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, School of Medicine, Québec CHU Research Center, Laval University, Québec City, Québec, Canada
| | - Dan Lopez-Paniagua
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann Scherzinger
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Danielle Xie
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Haseeb Rahat
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado, USA
| | - Yesenia Garcia-Reyes
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen J. Nadeau
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
18
|
Emanuel RHK, Roberts J, Docherty PD, Lunt H, Campbell RE, Möller K. A review of the hormones involved in the endocrine dysfunctions of polycystic ovary syndrome and their interactions. Front Endocrinol (Lausanne) 2022; 13:1017468. [PMID: 36457554 PMCID: PMC9705998 DOI: 10.3389/fendo.2022.1017468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects up to 20% of women but remains poorly understood. It is a heterogeneous condition with many potential comorbidities. This review offers an overview of the dysregulation of the reproductive and metabolic systems associated with PCOS. Review of the literature informed the development of a comprehensive summarizing 'wiring' diagram of PCOS-related features. This review provides a justification for each diagram aspect from the relevant academic literature, and explores the interactions between the hypothalamus, ovarian follicles, adipose tissue, reproductive hormones and other organ systems. The diagram will provide an efficient and useful tool for those researching and treating PCOS to understand the current state of knowledge on the complexity and variability of PCOS.
Collapse
Affiliation(s)
- Rebecca H. K. Emanuel
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Josh Roberts
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Paul D. Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- *Correspondence: Paul D. Docherty,
| | - Helen Lunt
- Diabetes Services, Te Whatu Ora Waitaha Canterbury, Canterbury, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Rebecca E. Campbell
- School of Biomedical Sciences, Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
19
|
Moreno-Asso A, Altıntaş A, McIlvenna LC, Patten RK, Botella J, McAinch AJ, Rodgers RJ, Barrès R, Stepto NK. Non-cell autonomous mechanisms control mitochondrial gene dysregulation in polycystic ovary syndrome. J Mol Endocrinol 2021; 68:63-76. [PMID: 34752415 PMCID: PMC8679849 DOI: 10.1530/jme-21-0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with insulin resistance and impaired energy metabolism in skeletal muscle, the aetiology of which is currently unclear. Here, we mapped the gene expression profile of skeletal muscle from women with PCOS and determined if cultured primary myotubes retain the gene expression signature of PCOS in vivo. Transcriptomic analysis of vastus lateralis biopsies collected from PCOS women showed lower expression of genes associated with mitochondrial function, while the expression of genes associated with the extracellular matrix was higher compared to controls. Altered skeletal muscle mRNA expression of mitochondrial-associated genes in PCOS was associated with lower protein expression of mitochondrial complex II-V, but not complex I, with no difference in mitochondrial DNA content. Transcriptomic analysis of primary myotube cultures established from biopsies did not display any differentially expressed genes between controls and PCOS. Comparison of gene expression profiles in skeletal muscle biopsies and primary myotube cultures showed lower expression of mitochondrial and energy metabolism-related genes in vitro, irrespective of the group. Together, our results show that the altered mitochondrial-associated gene expression in skeletal muscle in PCOS is not preserved in cultured myotubes, indicating that the in vivo extracellular milieu, rather than genetic or epigenetic factors, may drive this alteration. Dysregulation of mitochondrial-associated genes in skeletal muscle by extracellular factors may contribute to the impaired energy metabolism associated with PCOS.
Collapse
Affiliation(s)
- Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
- Correspondence should be addressed to A Moreno-Asso or R Barrès: or
| | - Ali Altıntaş
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke C McIlvenna
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Javier Botella
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Andrew J McAinch
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| | - Raymond J Rodgers
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to A Moreno-Asso or R Barrès: or
| | - Nigel K Stepto
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Australia
| |
Collapse
|
20
|
Amanat S, Ashkar F, Eftekhari MH, Tanideh N, Doaei S, Gholamalizadeh M, Koohpeyma F, Mokhtari M. The effect of genistein on insulin resistance, inflammatory factors, lipid profile, and histopathologic indices in rats with polycystic ovary syndrome. Clin Exp Reprod Med 2021; 48:236-244. [PMID: 34488288 PMCID: PMC8421656 DOI: 10.5653/cerm.2020.04231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/01/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, irregular menstruation, ovulatory dysfunction, and insulin resistance. Recent studies have reported the possible role of phytoestrogens in PCOS. This animal study aimed to evaluate the effects of genistein on insulin resistance, inflammatory factors, lipid profile, and histopathologic indices on PCOS. METHODS PCOS was induced by 1 mg/kg of letrozole in adult Sprague-Dawley rats. The rats then received normal saline (PCOS group), 150 mg/kg of metformin, or 20 mg/kg of genistein dissolved in 1% methylcellulose solution for 42 days. Body weight, the glycemic and lipid profile, and inflammatory, antioxidative, and histopathological parameters were assessed at the end of the intervention. RESULTS Treatment with genistein significantly alleviated the increased level of fasting blood insulin (p=0.16) and the homeostatic model assessment of insulin resistance (p=0.012). In addition, the genistein group had significantly lower levels of serum malondialdehyde (p=0.039) and tumor necrosis factor-alpha (p=0.003), and higher superoxide dismutase enzyme activity (p<0.001). Furthermore, the histopathological analysis indicated that genistein administration led to an increase in luteinization and the development of fewer cysts (p<0.05). CONCLUSION Biochemical and histopathological analyses indicated that genistein administration to rats with PCOS induced significant remission in oxidative, inflammatory, and glycemic and histopathologic parameters.
Collapse
Affiliation(s)
- Sasan Amanat
- Department of Nutrition, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Fatemeh Ashkar
- Food and Nutrition Research Center, Shiraz, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Doaei
- Department of Public Health, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Koohpeyma
- Department of Endocrinology, Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Kazemi M, Pierson RA, Parry SA, Kaviani M, Chilibeck PD. Obesity, but not hyperandrogenism or insulin resistance, predicts skeletal muscle mass in reproductive-aged women with polycystic ovary syndrome: A systematic review and meta-analysis of 45 observational studies. Obes Rev 2021; 22:e13255. [PMID: 33855800 DOI: 10.1111/obr.13255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit reduced muscle insulin-mediated glucose uptake, potentially attributed to altered muscle mass; however, this is inconclusive. Altered muscle mass may aggravate PCOS complications. Our systematic review and meta-analysis evaluated whether PCOS alters muscle mass and function. Databases (MEDLINE, Web of Science, Scopus) were searched through September 2, 2020, for studies documenting skeletal muscle mass (lean tissue mass) and function (strength) in PCOS and control groups. The primary outcome was total lean body mass (LBM) or fat-free mass (FFM). Data were pooled by random-effects models and expressed as mean differences and 95% confidence intervals. Forty-five studies (n = 3676 participants) were eligible. Women with PCOS had increased total (0.83 [0.08,1.58] kg; p = 0.03; I2 = 72.0%) yet comparable trunk (0.84 [-0.37,2.05] kg; p = 0.15; I2 = 73.0%) LBM or FFM versus controls. Results of meta-regression analyses showed no associations between mean differences between groups in total testosterone or homeostatic model assessment of insulin resistance and total or trunk LBM or FFM (All: p ≥ 0.75). Mean differences in body mass index (BMI) were associated with total (0.65 [0.23,1.06] kg; p < 0.01; I2 = 56.9%) and trunk (0.56 [0.11,1.01] kg; p = 0.02; I2 = 42.8%) LBM or FFM. The PCOS subgroup with BMI ≥ 25 kg/m2 had greater total LBM or FFM versus controls (1.58 [0.82,2.34] kg; p < 0.01; I2 = 64.0%) unlike the PCOS subgroup with BMI < 25 kg/m2 (-0.45 [-1.94,1.05] kg; p = 0.53; I2 = 69.5%). Appendicular lean mass and muscle strength data were contradictory and described narratively, as meta-analyses were impossible. Women with PCOS have higher total and trunk lean tissue mass attributed to overweight/obesity, unlike hyperandrogenism or insulin resistance.
Collapse
Affiliation(s)
- Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Roger A Pierson
- Obstetrics and Gynecology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stephen A Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, USA
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Philip D Chilibeck
- College of Kinesiology, Physical Activity Complex, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
22
|
Vanhauwaert PS. Síndrome de ovario poliquístico e infertilidad. REVISTA MÉDICA CLÍNICA LAS CONDES 2021. [DOI: 10.1016/j.rmclc.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Chien YJ, Chang CY, Wu MY, Chen CH, Horng YS, Wu HC. Effects of Curcumin on Glycemic Control and Lipid Profile in Polycystic Ovary Syndrome: Systematic Review with Meta-Analysis and Trial Sequential Analysis. Nutrients 2021; 13:684. [PMID: 33669954 PMCID: PMC7924860 DOI: 10.3390/nu13020684] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic effects of curcumin for polycystic ovary syndrome (PCOS) remain inconclusive. The present study aims to evaluate the effects of curcumin on glycemic control and lipid profile in patients with PCOS. PubMed, Embase, Scopus, Web of Science, and Cochrane Library were searched from the inception through 28 November 2020. Randomized control trials (RCTs), which enrolled adult patients with PCOS, compared curcumin with placebo regarding the glycemic control and lipid profile, and reported sufficient information for performing meta-analysis, were included. Three RCTs were included. Curcumin significantly improves fasting glucose (mean difference (MD): -2.77, 95% confidence interval (CI): -4.16 to -1.38), fasting insulin (MD: -1.33, 95% CI: -2.18 to -0.49), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) (MD: -0.32, 95% CI: -0.52 to -0.12), and quantitative insulin sensitivity check index (QUICKI) (MD: 0.010, 95% CI: 0.003-0.018). It also significantly improves high-density lipoprotein (MD: 1.92, 95% CI: 0.33-3.51) and total cholesterol (MD: -12.45, 95% CI: -22.05 to -2.85). In contrast, there is no statistically significant difference in the improvement in low-density lipoprotein (MD: -6.02, 95% CI: -26.66 to 14.62) and triglyceride (MD: 8.22, 95% CI: -26.10 to 42.53) between curcumin and placebo. The results of the fasting glucose, fasting insulin, HOMA-IR, QUICKI, and total cholesterol are conclusive as indicated by the trial sequential analysis. Curcumin may improve glycemic control and lipid metabolism in patients with PCOS and metabolic abnormality without significant adverse effects. Further studies are advocated to investigate the potential effects of curcumin on hyperandrogenism.
Collapse
Affiliation(s)
- Yung-Jiun Chien
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
| | - Chun-Yu Chang
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Meng-Yu Wu
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Chih-Hao Chen
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Yi-Shiung Horng
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
| | - Hsin-Chi Wu
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (C.-Y.C.); (M.-Y.W.)
| |
Collapse
|
24
|
McIlvenna LC, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK, Moreno-Asso A. Transforming Growth Factor Beta 1 Alters Glucose Uptake but Not Insulin Signalling in Human Primary Myotubes From Women With and Without Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:732338. [PMID: 34707569 PMCID: PMC8544291 DOI: 10.3389/fendo.2021.732338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal muscle insulin resistance which can worsen other clinical features. The heterogeneity of the condition has made it challenging to identify the precise mechanisms that cause this insulin resistance. A possible explanation for the underlying insulin resistance may be the dysregulation of Transforming Growth Factor-beta (TGFβ) signalling. TGFβ signalling contributes to the remodelling of reproductive and hepatic tissues in women with PCOS. Given the systemic nature of TGFβ signalling and its role in skeletal muscle homeostasis, it may be possible that these adverse effects extend to other peripheral tissues. We aimed to determine if TGFβ1 could negatively regulate glucose uptake and insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes from women with PCOS and healthy women displayed an increase in glucose uptake, independent of changes in insulin signalling, following short term (16 hr) TGFβ1 treatment. This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and connective tissue growth factor in both groups following treatment with TGFβ1. Collectively, our findings show that short-term treatment with TGFβ1 does not appear to influence insulin signalling or promote insulin resistance in myotubes. These findings suggest that aberrant TGFβ signalling is unlikely to directly contribute to skeletal muscle insulin resistance in women with PCOS in the short term but does not rule out indirect or longer-term effects.
Collapse
Affiliation(s)
- Luke C. McIlvenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Rhiannon K. Patten
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nigel K. Stepto
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- *Correspondence: Alba Moreno-Asso,
| |
Collapse
|
25
|
Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, Xie Q. Resistance to the Insulin and Elevated Level of Androgen: A Major Cause of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:741764. [PMID: 34745009 PMCID: PMC8564180 DOI: 10.3389/fendo.2021.741764] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 01/27/2023] Open
Abstract
PCOS has a wide range of negative impacts on women's health and is one of the most frequent reproductive systemic endocrine disorders. PCOS has complex characteristics and symptom heterogeneity due to the several pathways that are involved in the infection and the absence of a comm14on cause. A recent study has shown that the main etiology and endocrine aspects of PCOS are the increased level of androgen, which is also known as "hyperandrogenemia (HA)" and secondly the "insulin resistance (IR)". The major underlying cause of the polycystic ovary is these two IR and HA, by initiating the disease and its severity or duration. As a consequence, study on Pathogenesis is crucial to understand the effect of "HA" and "IR" on the pathophysiology of numerous symptoms linked to PCOS. A deep understanding of the pattern of the growth in PCOS for HA and IR can help ameliorate the condition, along with adjustments in nutrition and life, as well as the discovery of new medicinal products. However, further research is required to clarify the mutual role of IR and HA on PCOS development.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| | - Qiong Xie
- Department of Gynecology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qiong Xie, ; Wenqing Liang,
| |
Collapse
|
26
|
Huang J, Zhao J, Geng X, Chu W, Li S, Chen ZJ, Du Y. Long non-coding RNA lnc-CCNL1-3:1 promotes granulosa cell apoptosis and suppresses glucose uptake in women with polycystic ovary syndrome. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:614-628. [PMID: 33552682 PMCID: PMC7819816 DOI: 10.1016/j.omtn.2020.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in premenopausal women. Long non-coding RNAs (lncRNAs) constitute important factors in numerous biological processes. However, their roles in PCOS pathogenesis require further clarification. Our study aims to elucidate the roles of lncRNA lnc-CCNL1-3:1 (CCNL) in PCOS. CCNL expression in human luteinized granulosa cells (hLGCs) derived from women with and without PCOS was detected. The full length of CCNL was obtained by 5' and 3' rapid amplification of cDNA ends. CCNL roles in granulosa cell apoptosis, mitochondrial function, and glucose uptake were evaluated. The binding relationship between CCNL and forkhead box O1 (FOXO1) was determined by RPISeq, RNA immunoprecipitation, subcellular fractionation, and immunofluorescence. In KGN cells and hLGCs, CCNL overexpression upregulated FOXO1 expression, promoted cell apoptosis, reduced glucose transport capability, and impaired mitochondrial function, and these effects were partially abolished by silencing FOXO1. The interaction of CCNL with FOXO1 might prevents FOXO1 exclusion from the nucleus and subsequent degradation in the cytosol. We determined that CCNL serve as a facilitator in the processes of PCOS. CCNL might participate in PCOS pathologies such as follicular atresia and insulin resistance.
Collapse
Affiliation(s)
- Jiayu Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jun Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Xueying Geng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.,Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong Provincial Key Laboratory of Reproductive Medicine, No. 157 Jingliu Road, Jinan 250001, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
27
|
Zehsaz F, Farhangi N, Gahremani M. Influence of endurance training-induced weight loss on the levels of ghrelin and obestatin of obese women with polycystic ovary syndrome. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00646-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Increased Skeletal Muscle Fiber Cross-Sectional Area, Muscle Phenotype Shift, and Altered Insulin Signaling in Rat Hindlimb Muscles in a Prenatally Androgenized Rat Model for Polycystic Ovary Syndrome. Int J Mol Sci 2020; 21:ijms21217918. [PMID: 33113794 PMCID: PMC7662395 DOI: 10.3390/ijms21217918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are reported to have greater lean mass and insulin resistance. To examine muscular changes in a prenatally androgenized (PNA) rat model for PCOS, Sprague-Dawley rats were exposed to 5 mg testosterone or vehicle daily on gestational days 16-19. At 15 weeks of age, endurance on a rota-rod treadmill was measured. At 16 weeks of age, fasting blood glucose and insulin, hindlimb skeletal muscle mass, muscle fiber cross-sectional area (CSA) and composition, and intra- and peri-muscular lipid droplets were examined. Expression of mitochondrial marker ATP synthase and insulin signaling proteins were also investigated. Compared with controls, PNA female rats demonstrated greater total body and hindlimb muscle weights, greater muscle fiber CSA, and trending reduced time on the rota-rod. An increase in fibers co-expressing the slow and fast isoforms of myosin (90 vs. 86%, p < 0.05) and greater expression of ATP synthase (6-fold, p < 0.005) were observed in the gastrocnemius (GN) muscle. More lipid content was observed in GN and tibialis anterior (TA) muscles. PNA rats had elevated fasting serum insulin (1.9 vs. 1.2 ng/mL, p < 0.005) but comparable fasting glucose. Expression of total and Ser636/9-phosphorylated IRS1 were altered in PNA rat hindlimb muscles. Together, skeletal muscle alterations in hindlimb muscles of a PNA rat model for PCOS may represent consequences of, or adaptations to, insulin resistance in this model.
Collapse
|
29
|
Abstract
Polycystic ovary syndrome is a complex and heterogenous disorder involving multiple organ systems and different molecular pathways. It is tightly associated with obesity and especially abdominal obesity. As body weight reduction is the main modifiable risk factor for polycystic ovary syndrome, therapeutic approaches in overweight or obese women with polycystic ovary syndrome have been developed. Liraglutide is a glucagon-like peptide-1 receptor agonist that promotes sustained weight loss, as well as abdominal fat reduction, in individuals with obesity, prediabetes, and type 2 diabetes mellitus. The majority of current clinical studies have demonstrated that liraglutide therapy achieved significant reductions in body weight, body mass index, and abdominal circumference in overweight and obese women with polycystic ovary syndrome. Liraglutide therapy promoted significant improvements in free testosterone and sex hormone-binding globulin levels in some studies. Important metabolic and hormonal improvements were also reported after the combination of liraglutide with metformin. Increased menstrual frequency, as well as potential positive effects in reproduction, were described. However, the small number of participants, short duration, and low daily liraglutide dose are some of the main limitations of these studies. Larger and longer, multi-centred, double-blind, placebo-controlled trials of liraglutide monotherapy or combination therapy, with prolonged post-interventional monitoring, are crucially anticipated. Metabolic, hormonal, and reproductive primary outcomes should be uniformly addressed, to tailor future targeted treatment approaches, according to the patient phenotype and needs. This will improve long-term therapeutic outcomes in this population.
Collapse
|
30
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
31
|
Identification of microRNAs that Regulate the MAPK Pathway in Human Cumulus Cells from PCOS Women with Insulin Resistance. Reprod Sci 2020; 27:833-844. [PMID: 32046427 DOI: 10.1007/s43032-019-00086-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynaecological endocrine disorders, and more than 60% of PCOS patients have varying degrees of insulin resistance (IR). The regulatory role of microRNAs (miRNAs) at post-transcriptional levels in human cumulus cells relating to IR in PCOS remains unclear. In this case-control study, 26 PCOS patients with IR (PCOS-IR) and 24 patients without IR (PCOS-control) were enrolled. We determined the differentially expressed miRNA and mRNA using next-generation sequencing technology, and these miRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (PCR). These miRNA regulating pathways (e.g., MAPK pathway) were analysed by bioinformatics analysis, and the Rap1b was demonstrated to be targeted by miR-612 based on quantitative real-time PCR, western blot and luciferase activity assay. A total of 59 known miRNAs and 617 differentially expressed genes were identified that differentially expressed between PCOS-IR and PCOS-control cumulus cells. Moreover, the potential regulating roles of miRNAs and their targeting genes in pathophysiology of IR and PCOS were analysed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and several key processes were enriched, such as MAPK activity. Furthermore, Rap1b, a regulator of the MAPK pathway, was demonstrated to be suppressed directly by miR-612 in PCOS-IR cumulus cells based on negative expression correlation validation, dual luciferase activity assay and reduction of Rap1b expression after miR-612 mimics transfection. Our results suggested that miRNAs and their targeted pathways in ovarian cumulus cells may play important roles in the aetiology and pathophysiology of PCOS with IR.
Collapse
|
32
|
Yang K, Zeng L, Bao T, Long Z, Jin B. Exploring the Pharmacological Mechanism of Quercetin-Resveratrol Combination for Polycystic Ovary Syndrome: A Systematic Pharmacological Strategy-Based Research. Sci Rep 2019; 9:18420. [PMID: 31804513 PMCID: PMC6895093 DOI: 10.1038/s41598-019-54408-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Resveratrol and quercetin have effects on polycystic ovary syndrome (PCOS). Hence, resveratrol combined with quercetin may have better effects on it. However, because of the limitations in animal and human experiments, the pharmacological and molecular mechanism of quercetin-resveratrol combination (QRC) remains to be clarified. In this research, a systematic pharmacological approach comprising multiple compound target collection, multiple potential target prediction, and network analysis was used for comparing the characteristic of resveratrol, quercetin and QRC, and exploring the mechanism of QRC. After that, four networks were constructed and analyzed: (1) compound-compound target network; (2) compound-potential target network; (3) QRC-PCOS PPI network; (4) QRC-PCOS-other human proteins (protein-protein interaction) PPI network. Through GO and pathway enrichment analysis, it can be found that three compounds focus on different biological processes and pathways; and it seems that QRC combines the characteristics of resveratrol and quercetin. The in-depth study of QRC further showed more PCOS-related biological processes and pathways. Hence, this research not only offers clues to the researcher who is interested in comparing the differences among resveratrol, quercetin and QRC, but also provides hints for the researcher who wants to explore QRC's various synergies and its pharmacological and molecular mechanism.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Capital Medical University, Beijing, China
| | - Liuting Zeng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Tingting Bao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine (Xiyuan Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Bing Jin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
33
|
Stepto NK, Moreno-Asso A, McIlvenna LC, Walters KA, Rodgers RJ. Molecular Mechanisms of Insulin Resistance in Polycystic Ovary Syndrome: Unraveling the Conundrum in Skeletal Muscle? J Clin Endocrinol Metab 2019; 104:5372-5381. [PMID: 30938770 DOI: 10.1210/jc.2019-00167] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a common endocrine condition affecting 8% to 13% of women across the lifespan. PCOS affects reproductive, metabolic, and mental health, generating a considerable health burden. Advances in treatment of women with PCOS has been hampered by evolving diagnostic criteria and poor recognition by clinicians. This has resulted in limited clinical and basic research. In this study, we provide insights into the current and future research on the metabolic features of PCOS, specifically as they relate to PCOS-specific insulin resistance (IR), that may affect the most metabolically active tissue, skeletal muscle. CURRENT KNOWLEDGE PCOS is a highly heritable condition, yet it is phenotypically heterogeneous in both reproductive and metabolic features. Human studies thus far have not identified molecular mechanisms of PCOS-specific IR in skeletal muscle. However, recent research has provided new insights that implicate energy-sensing pathways regulated via epigenomic and resultant transcriptomic changes. Animal models, while in existence, have been underused in exploring molecular mechanisms of IR in PCOS and specifically in skeletal muscle. FUTURE DIRECTIONS Based on the latest evidence synthesis and technologies, researchers exploring molecular mechanisms of IR in PCOS, specifically in muscle, will likely need to generate new hypothesis to be tested in human and animal studies. CONCLUSION Investigations to elucidate the molecular mechanisms driving IR in PCOS are in their early stages, yet remarkable advances have been made in skeletal muscle. Overall, investigations have thus far created more questions than answers, which provide new opportunities to study complex endocrine conditions.
Collapse
Affiliation(s)
- Nigel K Stepto
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Monash Centre for Health Research and Implementation, Monash University and Monash Health, Clayton, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
- Medicine at Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
| | - Luke C McIlvenna
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
| | - Kirsty A Walters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Raymond J Rodgers
- The Robinson Research Institute, The University of Adelaide, North Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Mu L, Li R, Lai Y, Zhao Y, Qiao J. Adipose insulin resistance is associated with cardiovascular risk factors in polycystic ovary syndrome. J Endocrinol Invest 2019; 42:541-548. [PMID: 30206805 DOI: 10.1007/s40618-018-0949-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The effects of adipose insulin resistance on cardiovascular risk factors in polycystic ovary syndrome (PCOS) remain largely unknown. We aimed to investigate associations between adipose insulin resistance and cardiovascular risk factors in PCOS. METHODS A total of 207 PCOS and 47 non-PCOS women were recruited from a large reproductive medicine center in this cross-sectional study. The PCOS diagnosis was based on the Rotterdam Criteria. The subjects received a standard oral glucose tolerance test. Adipose insulin resistance was evaluated using a validated index (adipose-IR = fasting insulin × free fatty acid concentrations). RESULTS The women with PCOS showed a higher adipose-IR index, and the adipose-IR index was tightly associated with the blood pressure, glucose and lipid parameters. A total of 98.0% of the women with PCOS in the highest adipose-IR quartile showed cardiovascular risk factors (obesity, hypertension, glucose intolerance or dyslipidemia), and this percentage was significantly higher than the percentage of those in the lowest quartile (32.7%). In addition, the percentages of women with three (31.4%) and four (13.7%) cardiovascular risk factors were significantly elevated in the highest adipose-IR quartile. The multivariable logistic regression analysis indicated that each 1-SD increment in the adipose-IR index resulted in higher risks of obesity (OR = 3.18, 95% CI = 2.12-4.76), hypertension (OR = 1.89, 95% CI = 1.31-2.73), glucose intolerance (OR = 2.45, 95% CI = 1.73-3.48), and dyslipidemia (OR = 2.18, 95% CI = 1.57-3.01). The C-reactive protein (CRP) level was positively associated with the adipose-IR index in women with PCOS (r = 0.45, P < 0.001). CONCLUSIONS The adipose-IR index was associated with cardiovascular risk factors in women with PCOS. Chronic inflammation may induce insulin resistance in the adipose tissue of women with PCOS.
Collapse
Affiliation(s)
- L Mu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - R Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Y Lai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Y Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - J Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Zhu S, Zhang B, Jiang X, Li Z, Zhao S, Cui L, Chen ZJ. Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril 2019; 111:168-177. [PMID: 30611404 DOI: 10.1016/j.fertnstert.2018.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore metabolic disturbances in nonobese women with polycystic ovary syndrome (PCOS) compared with nonobese healthy controls. DESIGN Systematic review and meta-analysis. SETTING Not applicable. PATIENT(S) Nonobese women with PCOS and nonobese healthy controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Prevalence of metabolic disturbances including hyperinsulinemia, insulin resistance (IR), impaired fasting glucose (IFG), impaired glucose intolerance (IGT), prediabetes, dyslipidemia, hypercholesterolemia, hypertriglyceridemia, and low high-density lipoprotein (low-HDL), as well as other metabolic outcomes such as type 2 diabetes mellitus (T2DM), hypertension, metabolic syndrome (Mets), myocardial infarction, stroke, cerebrovascular accident, arterial occlusive disease, and coronary heart disease. RESULT(S) Compared to nonobese controls, nonobese women with PCOS showed a higher prevalence of hyperinsulinemia (odds ratio [OR], 36.27; 95% confidence interval [CI] 1.76-747.12), IR (OR, 5.70; 95% CI 1.46-22.32), IGT (OR, 3.42; 95% CI 1.56-7.52), T2DM (OR, 1.47; 95% CI 1.11-1.93), hypertriglyceridemia (OR, 10.46; 95% CI 1.39-78.56), low-HDL (OR, 4.03; 95% CI 1.26-12.95), and Mets (OR, 2.57; 95% CI 1.30-5.07). No significant difference was observed for IFG, pre-DM, dyslipidemia, hypercholesterolemia, and hypertension. In subgroup analysis, Whites exhibited increased risks of IR, IGT, IFG, T2DM, hypertension, and Mets, whereas no significant metabolic change was found in Asians. No study reported specifically an incidence of myocardial infarction, stroke, cerebrovascular accident, arterial occlusive disease, and coronary heart disease in nonobese women with PCOS. CONCLUSION(S) Nonobese women with PCOS also suffer from metabolic disturbances and the risk of long-term metabolic complications. Further efforts should be made to elucidate underlying mechanisms and possible interventions in the early phase.
Collapse
Affiliation(s)
- Shiqin Zhu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China
| | - Bingqian Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China
| | - Xiao Jiang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China
| | - Zeyan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China
| | - Linlin Cui
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, People's Republic of China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Jinan, People's Republic of China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Stener-Victorin E, Zhang H, Li R, Friden C, Li D, Wang W, Wang H, Chang C, Li S, Huo Z, Zhang H, Ji X, Linden-Hirschberg A, Qiao J. Acupuncture or metformin to improve insulin resistance in women with polycystic ovary syndrome: study protocol of a combined multinational cross sectional case-control study and a randomised controlled trial. BMJ Open 2019; 9:e024733. [PMID: 30612112 PMCID: PMC6326273 DOI: 10.1136/bmjopen-2018-024733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is linked to hyperinsulinemia and insulin resistance with dysfunctional glucose metabolism. Pilot studies suggests that acupuncture treatment with combined manual and low-frequency electrical stimulation (electroacupuncture (EA)) of the needles decrease circulating glycated haemoglobulin (HbA1c) and homeostatic model assessment-insulin resistance. Therefore, we here aim to investigate if acupuncture treatment or metformin together with lifestyle or lifestyle management alone improves insulin sensitivity and related symptoms in overweight/obese women with PCOS. METHODS AND ANALYSIS This is a two-centre multinational (Sweden and China), cross-sectional case-control study combined with an open-labelled randomised controlled trial (RCT). Participants are randomised to one of three groups: (1) EA 2-3 times/week during 4 months+lifestyle management; (2) metformin, 500 mg, three/day during 4 months+lifestyle management; or (3) lifestyle management alone. The primary outcome measure in the RCT is changes in HbA1C. A total of 123 obese overweight women with PCOS will be enrolled and randomised into one of the three groups with a target power of at least 80% and 5% significance level based on two-sided tests. ETHICS AND DISSEMINATION The study has been approved by the Regional Ethical Review Board of Stockholm and of Peking University Third Hospital, China. Primary outcome data of the RCT will be published in a relevant journal together with supporting secondary outcome measurements. Further, outcome measurements will be published in separate papers as well as case-control data. EXPECTED RESULTS We anticipate that EA and metformin, both with lifestyle management, are equally effective and superior to lifestyle management alone for improvement of glycaemic control. TRIAL REGISTRATION NUMBERS NCT02647827 and EudraCT2015-004250-18.
Collapse
Affiliation(s)
| | - Haolin Zhang
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Cecilia Friden
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Huddinge, Sweden
| | - Dong Li
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Cuiqing Chang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Shi Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - ZeJun Huo
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, Beijing, China
| | - Xiaolan Ji
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | | | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
37
|
Gong P, Shi B, Wang J, Cao P, Diao Z, Wang Y, Hu Y, Li S. Association between Th1/Th2 immune imbalance and obesity in women with or without polycystic ovary syndrome. Gynecol Endocrinol 2018; 34:709-714. [PMID: 29447491 DOI: 10.1080/09513590.2018.1428301] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the Th1/Th2 cells in peripheral blood of PCOS patients, and assess the potential correlation between Th1/Th2 imbalance and obesity. METHODS Thirty-nine PCOS patients and 23 age-matched controls were enrolled. The PBMCs were obtained before pharmacological intervention in women with or without PCOS. The profiles of Th1 (IFN-γ) and Th2 (IL-4) cytokines of CD3+CD- T lymphocyte subsets were analyzed by flow cytometry. Plasma sex hormones including E2, T, FSH, LH, and FINS, FPG were measured, together with BMI, WC, LH/FSH, E2/T and HOMA-IR index being calculated. Association between Th1/Th2 imbalance and BMI, WC were evaluated. RESULTS The proportion of Th1 cells and Th1/Th2 ratio were significantly higher in PCOS patients than those in controls, accompanied by elevated T, LH, LH/FSH, FINS, HOMA-IR index and reduced E2/T. The Th1/Th2 ratio was increased when BMI and WC were enhanced in PCOS. Moreover, the significant difference of Th1/Th2 ratio was observed between WC subgroups of PCOS. CONCLUSIONS It is concluded that Th1 type immunity is predominant in systemic immunization of PCOS patients. Th1/Th2 immune imbalance is connected with obesity, especially abdominal obesity, and may be one of the underlying mechanism for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ping Gong
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
- b Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China
| | - Bingwei Shi
- c Department of Laboratory Medicine , Changzhou Hospital of Traditional Chinese Medicine , Changzhou , China
| | - Juan Wang
- c Department of Laboratory Medicine , Changzhou Hospital of Traditional Chinese Medicine , Changzhou , China
| | - Peixia Cao
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
| | - Zhenyu Diao
- b Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China
| | - Yuji Wang
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
| | - Yali Hu
- b Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China
| | - Shuping Li
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
| |
Collapse
|
38
|
Varlamov O, Bishop CV, Handu M, Takahashi D, Srinivasan S, White A, Roberts CT. Combined androgen excess and Western-style diet accelerates adipose tissue dysfunction in young adult, female nonhuman primates. Hum Reprod 2018; 32:1892-1902. [PMID: 28854720 DOI: 10.1093/humrep/dex244] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION What are the separate and combined effects of mild hyperandrogenemia and consumption of a high-fat Western-style diet (WSD) on white adipose tissue (WAT) morphology and function in young adult female nonhuman primates? SUMMARY ANSWER Combined exposure to mild hyperandrogenemia and WSD induces visceral omental (OM-WAT) but not subcutaneous (SC-WAT) adipocyte hypertrophy that is associated with increased uptake and reduced mobilization of free fatty acids. WHAT IS KNOWN ALREADY Mild hyperandrogenemia in females, principally in the context of polycystic ovary syndrome, is often associated with adipocyte hypertrophy, but the mechanisms of associated WAT dysfunction and depot specificity remain poorly understood. STUDY DESIGN, SIZE AND DURATION Female rhesus macaques were randomly assigned at 2.5 years of age (near menarche) to receive either cholesterol (C; n = 20) or testosterone (T; n = 20)-containing silastic implants to elevate T levels 5-fold above baseline. Half of each of these groups was then fed either a low-fat monkey chow diet or WSD, resulting in four treatment groups (C, control diet; T alone; WSD alone; T + WSD; n = 10/group) that were maintained until the current analyses were performed at 5.5 years of age (3 years of treatment, young adults). PARTICIPANTS/MATERIALS, SETTING AND METHODS OM and SC-WAT biopsies were collected and analyzed longitudinally for in vivo changes in adipocyte area and blood vessel density, and ex vivo basal and insulin-stimulated fatty acid uptake and basal and isoproterenol-stimulated lipolysis. MAIN RESULTS AND THE ROLE OF CHANCE In years 2 and 3 of treatment, the T + WSD group exhibited a significantly greater increase in OM adipocyte size compared to all other groups (P < 0.05), while the size of SC adipocytes measured at the end of the study was not significantly different between groups. In year 3, both WAT depots from the WSD and T + WSD groups displayed a significant reduction in local capillary length and vessel junction density (P < 0.05). In year 3, insulin-stimulated fatty acid uptake in OM-WAT was increased in the T + WSD group compared to year 2 (P < 0.05). In year 3, basal lipolysis was blunted in the T and T + WSD groups in both WAT depots (P < 0.01), while isoproterenol-stimulated lipolysis was significantly blunted in the T and T + WSD groups only in SC-WAT (P < 0.01). LIMITATIONS, REASONS FOR CAUTION At this stage of the study, subjects were still relatively young adults, so that the effects of mild hyperandrogenemia and WSD may become more apparent with increasing age. WIDER IMPLICATIONS OF THE FINDINGS The combination of mild hyperandrogenemia and WSD accelerates the development of WAT dysfunction through T-specific (suppression of lipolytic response by T), WSD-dependent (reduced capillary density) and combined T + WSD (increased fatty acid uptake) mechanisms. These data support the idea that combined hyperandrogenemia and WSD increases the risk of developing obesity in females. STUDY FUNDING/COMPETING INTEREST(S) Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award number P50 HD071836 to C.T.R. and award number OD 011092 from the Office of the Director, National Institutes of Health, for operation of the Oregon National Primate Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Mithila Handu
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Sathya Srinivasan
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Ashley White
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.,Department of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
39
|
Andrisse S, Billings K, Xue P, Wu S. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice. Am J Physiol Endocrinol Metab 2018; 314:E353-E365. [PMID: 29351485 PMCID: PMC5966754 DOI: 10.1152/ajpendo.00195.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023]
Abstract
Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.
Collapse
Affiliation(s)
- Stanley Andrisse
- Division of Pediatric Endocrinology, Johns Hopkins School of Medicine , Baltimore, Maryland
- Department of Physiology and Biophysics, Howard University College of Medicine , Washington, District of Columbia
| | - Katelyn Billings
- Division of Pediatric Endocrinology, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Ping Xue
- Division of Pediatric Endocrinology, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Sheng Wu
- Division of Pediatric Endocrinology, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
40
|
Kim C, Aroda VR, Goldberg RB, Younes N, Edelstein SL, Carrion-Petersen M, Ehrmann DA. Androgens, Irregular Menses, and Risk of Diabetes and Coronary Artery Calcification in the Diabetes Prevention Program. J Clin Endocrinol Metab 2018; 103:486-496. [PMID: 29220533 PMCID: PMC5800828 DOI: 10.1210/jc.2017-01829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
CONTEXT It is unclear whether relative elevations in androgens or irregular menses (IM) are associated with greater cardiometabolic risk among women who are already overweight and glucose intolerant. RESEARCH DESIGN AND METHODS We conducted a secondary analysis of the Diabetes Prevention Program (DPP) and the Diabetes Prevention Program Outcomes Study (DPPOS). Participants included women with sex hormone measurements who did not use exogenous estrogen (n = 1422). We examined whether free androgen index (FAI) or IM was associated with diabetes risk during the DPP/DPPOS or with coronary artery calcification (CAC) at DPPOS year 10. Models were adjusted for menopausal status, age, race or ethnicity, randomization arm, body mass index (BMI), and hemoglobin A1c. RESULTS Women had an average age of 48.2 ± 9.9 years. Elevations in FAI and IM were associated with greater BMI, waist circumference, and blood pressure and lower adiponectin. FAI was not associated with diabetes risk during the DPP/DPPOS [hazard ratio (HR) 0.97; 95% confidence interval (CI), 0.93 to 1.02] or increased odds of CAC [odds ratio (OR) 1.06; 95% CI, 0.92 to 1.23]. IM was also not associated with diabetes risk during the DPP/DPPOS (HR 1.07; 95% CI, 0.87 to 1.31) or increased odds of CAC (OR 0.89; 95% CI, 0.53 to 1.49). Women who had both relative elevations in FAI and IM had similar diabetes risk and odds of CAC as women without these conditions. Differences by treatment arm and menopausal status were not observed. CONCLUSIONS Among midlife women who were already glucose intolerant and overweight, androgen concentrations and IM did not additionally contribute to increased risk for diabetes or CAC.
Collapse
Affiliation(s)
- Catherine Kim
- Departments of Medicine, Obstetrics & Gynecology, and Epidemiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vanita R. Aroda
- MedStar Health Research Institute, Hyattsville, Maryland 20782
| | | | - Naji Younes
- Biostatistics Center, George Washington University, Rockville, Maryland 20852
| | - Sharon L. Edelstein
- Biostatistics Center, George Washington University, Rockville, Maryland 20852
| | - MaryLou Carrion-Petersen
- Department of Family and Preventive Medicine, University of California, San Diego, California 92093
| | - David A. Ehrmann
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. RECENT FINDINGS Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed.
Collapse
Affiliation(s)
- Laura C Torchen
- Division of Endocrinology, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Box 54, Chicago, IL, 60611, USA.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
42
|
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy among women during reproductive age. PCOS is characterised by hyperandrogenaemia, hyperinsulinaemia, and deranged adipokines secretion from the adipose tissue. In addition to the reduced insulin sensitivity, PCOS women exhibit β-cell dysfunction as well. Low birth weight and foetal exposure to androgens may contribute to the development of the PCOS phenotype during life. Further metabolic complications lead to dyslipidaemia, worsening obesity and glucose tolerance, high prevalence of metabolic syndrome, and greater susceptibility to diabetes. PCOS women show age-related existence of hypertension, and subtle endothelial and vascular changes. Adverse reproductive outcomes include anovulatory infertility, and unrecognised potentiation of the hormone-dependent endometrial cancer. The main therapeutic approach is lifestyle modification. Metformin is the primary insulin-sensitising drug to be used as an adjuvant therapy to lifestyle modification in patients with insulin resistance and impaired glucose tolerance, as well as in those referred to infertility treatment. Thiazolidinediones should be reserved for women intolerant of or refractory to metformin, while glucagon-like peptide 1 analogues has a potential therapeutic use in obese PCOS women. Randomised clinical trials and repetitive studies on different PCOS phenotypes for the preventive actions and therapeutic options are still lacking, though.
Collapse
Affiliation(s)
- Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Jelica Bjekić-Macut
- Department of Endocrinology, UMC Bežanijska kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dario Rahelić
- Department of Endocrinology, Diabetes and Clinical Pharmacology, Clinic for Internal Medicine, School of Medicine Zagreb, Dubrava University Hospital, Zagreb, Croatia
| | - Mirjana Doknić
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet 2017. [DOI: 10.1007/s00404-017-4429-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Cree-Green M, Rahat H, Newcomer BR, Bergman BC, Brown MS, Coe GV, Newnes L, Garcia-Reyes Y, Bacon S, Thurston JE, Pyle L, Scherzinger A, Nadeau KJ. Insulin Resistance, Hyperinsulinemia, and Mitochondria Dysfunction in Nonobese Girls With Polycystic Ovarian Syndrome. J Endocr Soc 2017; 1:931-944. [PMID: 29264544 PMCID: PMC5686696 DOI: 10.1210/js.2017-00192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Objective: Obese girls with polycystic ovarian syndrome (PCOS) have decreased insulin sensitivity (IS), muscle mitochondrial dysfunction and increased liver fat, which may contribute to their increased risk for type 2 diabetes. Less is known regarding normal-weight girls with PCOS. Methods: Normal-weight girls with PCOS [n =18, age 15.9 ± 1.8 years, body mass index (BMI) percentile 68 ± 18] and normal-weight controls (NWC; n = 20; age 15.0 ± 2.1 years, BMI percentile 60 ± 21) were studied. Tissue-specific IS was assessed with a four-phase hyperinsulinemic-euglycemic clamp with isotope tracers and a 2-hour oral glucose tolerance test (OGTT). Hepatic fat was determined using magnetic resonance imaging. Postexercise muscle mitochondrial function was assessed with 31P MR spectroscopy. Results: Both groups had similar demographics, anthropomorphics, physical attributes, habitual physical activity levels and fasting laboratory values, except for increased total testosterone and DHEAS in PCOS. Clamp-assessed peripheral IS was lower in PCOS (10.4 ± 2.4 mg/kg/min vs 12.7 ± 2.1; P = 0.024). The 120-minute OGTT insulin and glucose concentrations were higher in PCOS (114 IU/mL ± 26 vs 41 ± 25, P = <0.001 and 119 ± 22 mg/dL vs 85 ± 23, P = 0.01, respectively). Muscle mitochondrial ADP and phosphocreatine time constants were slower in PCOS. Despite a higher percentage liver fat in PCOS, hepatic IS was similar between groups, as was adipose IS. Conclusions: Normal-weight girls with PCOS have decreased peripheral IS and muscle mitochondrial dysfunction, abnormal glucose disposal, relative postprandial hyperinsulinemia, and increased hepatic fat compared to NWC. Despite a normal BMI, multiple aspects of metabolism appear altered in normal-weight girls with PCOS.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.,Center for Women's Health Research, Aurora, Colorado 80045
| | - Haseeb Rahat
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Bradley R Newcomer
- Deptartment of Physics, James Madison University, Harrisburg, Virginia 22807
| | - Bryan C Bergman
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Gregory V Coe
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lindsey Newnes
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Yesenia Garcia-Reyes
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Samantha Bacon
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jessica E Thurston
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado 80045
| | - Laura Pyle
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado 80045.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ann Scherzinger
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristen J Nadeau
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.,Center for Women's Health Research, Aurora, Colorado 80045
| |
Collapse
|
45
|
Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction 2017; 153:R133-R149. [PMID: 28115579 DOI: 10.1530/rep-16-0417] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
With the increasing knowledge that gender influences normal physiology, much biomedical research has begun to focus on the differential effects of sex on tissue function. Sexual dimorphism in mammals is due to the combined effects of both genetic and hormonal factors. Hormonal factors are mutable particularly in females in whom the estrous cycle dominates the hormonal milieu. Given the severity of the obesity epidemic and the fact that there are differences in the obesity rates in men and women, the role of sex in white adipose tissue function is being recognized as increasingly important. Although sex differences in white adipose tissue distribution are well established, the mechanisms affecting differential function of adipocytes within white adipose tissue in males and females remain largely understudied and poorly understood. One of the largest differences in the endocrine environment in males and females is the concentration of circulating androgens and estrogens. This review examines the effects of androgens and estrogens on lipolysis/lipogenesis, adipocyte differentiation, insulin sensitivity and adipokine production in adipocytes from white adipose tissue with a specific emphasis on the sexual dimorphism of adipocyte function in white adipose tissue during both health and disease.
Collapse
Affiliation(s)
- A E Newell-Fugate
- Department of Veterinary Physiology and PharmacologyTexas A&M University, College Station, Texas, USA
| |
Collapse
|
46
|
Cree-Green M, Bergman BC, Coe GV, Newnes L, Baumgartner AD, Bacon S, Sherzinger A, Pyle L, Nadeau KJ. Hepatic Steatosis is Common in Adolescents with Obesity and PCOS and Relates to De Novo Lipogenesis but not Insulin Resistance. Obesity (Silver Spring) 2016; 24:2399-2406. [PMID: 27804265 PMCID: PMC5117819 DOI: 10.1002/oby.21651] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Increased liver fat and type 2 diabetes are prevalent in women with polycystic ovarian syndrome (PCOS) and cause excess mortality, yet little is known about their development during adolescence. The objective of this study was to measure hepatic steatosis and related metabolic contributors in girls with obesity, with and without PCOS. METHODS Nondiabetic adolescents with obesity, 41 with PCOS (PCOS; age 15.0 [13.0-16.0] years, BMI 35.2 ± 0.61 kg/m2 ) and 30 without PCOS (OB; age 14.5 [13.0-17.0], BMI 33.2 ± 1.8), were studied. Visceral and liver fat were assessed with MRI. Serum measures included androgens and 16:1 and 18:1 N7 fatty acids specific to de novo lipogenesis. Adipose, hepatic, and peripheral insulin sensitivity (IS) were assessed with a four-phase hyperinsulinemic-euglycemic clamp with isotope tracers. RESULTS Forty-nine percent of the PCOS group had hepatic steatosis versus fourteen percent of the OB group (P = 0.02), and the PCOS group had higher N7 (43 ± 4 vs. 29 ± 5 nmol/g; P = 0.02). Peripheral IS was lower in PCOS (9.4 [7.2-12.3] vs. 14.5 [13.1-18.05 mg/lean kg/min]; P < 0.001) as was hepatic (P = 0.006) and adipose IS (P = 0.005). Percent liver fat correlated with N7 (R = 0.46, P = 0.02) and visceral fat (R = 0.42, P < 0.001), not androgens or peripheral IS. CONCLUSIONS Nearly 50% of nondiabetic girls with PCOS and obesity have hepatic steatosis, which relates to visceral fat and lipogenesis, but not to IS or androgens.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
- Department of Pediatric Endocrinology, Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Bryan C Bergman
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory V Coe
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lindsey Newnes
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy D Baumgartner
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha Bacon
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann Sherzinger
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Kristen J Nadeau
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatric Endocrinology, Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
47
|
Banerjee U, Dasgupta A, Khan A, Ghosh MK, Roy P, Rout JK, Roy P, Dhara S. A cross-sectional study to assess any possible linkage of C/T polymorphism in CYP17A1 gene with insulin resistance in non-obese women with polycystic ovarian syndrome. Indian J Med Res 2016; 143:739-747. [PMID: 27748298 PMCID: PMC5094113 DOI: 10.4103/0971-5916.191990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Insulin resistance (IR) is a major confounding factor in polycystic ovarian syndrome (PCOS) irrespective of obesity. Its exact mechanism remains elusive till now. C/T polymorphism in the -34 promoter region of the CYP17 gene is inconsistently attributed to elucidate the mechanism of IR and its link to hyperandrogenemia in obese PCOS patients. In the present study we aimed to evaluate any association of this polymorphism with IR in non-obese women with PCOS. METHODS Polymorphism study was performed by restriction fragment length polymorphism (RFLP) analysis of the Msp A1 digest of the PCR product of the target gene in 75 PCOS cases against 73 age and BMI matched control women. Serum testosterone, BMI and HOMA-IR (homeostatic model of assessment-insulin resistance) were analyzed by standard techniques. A realistic cut-off value for the HOMA-IR was obtained through receiver operating characteristic (ROC) curve for exploring any possible link between IR and T/C polymorphism in the case group. RESULTS Significant increases in serum testosterone and HOMA-IR values were observed among the case group (P<0.001) without any significant elevation in BMI and FBG compared to controls. Cut-off value for IR in the PCOS patients was 1.40 against a maximum sensitivity of 0.83 and a minimum false positivity of 0.13. The analysis revealed an inconclusive link between the C/T polymorphic distribution and insulin resistant case subjects. INTERPRETATION & CONCLUSIONS The results showed that CYP17A1 gene was not conclusively linked to either IR or its associated increased androgen secretion in non-obese women with PCOS. We propose that an increased sensitivity of insulin on the ovarian cells may be the predominant reason for the clinical effects and symptoms of androgen excess observed in non-obese PCOS patients in our region.
Collapse
Affiliation(s)
- Ushasi Banerjee
- Department of Biochemistry, Burdwan Medical College & Hospital, Burdwan; Department of Biochemistry, North Bengal Medical College, Siliguri 734 012, India
| | - Anindya Dasgupta
- Department of Biochemistry, Burdwan Medical College & Hospital, Burdwan; Department of Biochemistry, Calcutta National Medical College, Kolkata 700 014, India
| | - Aparna Khan
- Department of Gynecology & Obstetrics, Burdwan Medical College & Hospital, Burdwan; Department of Gynaecology & Obstetrics, R.G. Kar Medical College, Kolkata 700 004, India
| | - Mrinal Kanti Ghosh
- Department of Radiology & Radiodiagnosis, Burdwan Medical College & Hospital, Burdwan, India
| | - Pranab Roy
- Department of Biotechnology, Burdwan University, Burdwan; Department of Biotechnology, Haldia Institute of Technology, Haldia 721 657, West Bengal, India
| | - Jayanta Kumar Rout
- Department of Biochemistry, Burdwan Medical College & Hospital, Burdwan; Department of Biochemistry, R.G. Kar Medical College, Kolkata 700 004, India
| | - Priyankar Roy
- Department of Forensic Medicine & Toxicology, North Bengal Medical College & Hospital, Susrutanagar; North Bengal Medical College, Siliguri 734 012, India
| | - Suparna Dhara
- Department of Biochemistry, Burdwan Medical College & Hospital, Burdwan, India
| |
Collapse
|
48
|
Cassar S, Misso ML, Hopkins WG, Shaw CS, Teede HJ, Stepto NK. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Hum Reprod 2016; 31:2619-2631. [DOI: 10.1093/humrep/dew243] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
|
49
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 732] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
50
|
Abstract
Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.
Collapse
|