1
|
Xie C, Huang W, Watson LE, Soenen S, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Plasma GLP-1 Response to Oral and Intraduodenal Nutrients in Health and Type 2 Diabetes-Impact on Gastric Emptying. J Clin Endocrinol Metab 2022; 107:e1643-e1652. [PMID: 34791325 DOI: 10.1210/clinem/dgab828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT Both gastric emptying and the secretion of glucagon-like peptide-1 (GLP-1) are major determinants of postprandial glycemia in health and type 2 diabetes (T2D). GLP-1 secretion after a meal is dependent on the entry of nutrients into the small intestine, which, in turn, slows gastric emptying. OBJECTIVE To define the relationship between gastric emptying and the GLP-1 response to both oral and small intestinal nutrients in subjects with and without T2D. METHODS We evaluated: (i) the relationship between gastric emptying (breath test) and postprandial GLP-1 levels after a mashed potato meal in 73 individuals with T2D; (ii) inter-individual variations in GLP-1 response to (a) intraduodenal glucose (4 kcal/min) during euglycemia and hyperglycemia in 11 healthy and 12 T2D, subjects, (b) intraduodenal fat (2 kcal/min) in 15 T2D subjects, and (c) intraduodenal protein (3 kcal/min) in 10 healthy subjects; and (iii) the relationship between gastric emptying (breath test) of 75 g oral glucose and the GLP-1 response to intraduodenal glucose (4 kcal/min) in 21 subjects (9 healthy, 12 T2D). RESULTS The GLP-1 response to the mashed potato meal was unrelated to the gastric half-emptying time (T50). The GLP-1 responses to intraduodenal glucose, fat, and protein varied substantially between individuals, but intra-individual variation to glucose was modest. The T50 of oral glucose was related directly to the GLP-1 response to intraduodenal glucose (r = 0.65, P = 0.002). CONCLUSION In a given individual, gastric emptying is not a determinant of the postprandial GLP-1 response. However, the intrinsic gastric emptying rate is determined in part by the responsiveness of GLP-1 to intestinal nutrients.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Linda E Watson
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, QLD 4226, Australia
| | - Richard L Young
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, SA 5000, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Rosen R, Garza JM, Tipnis N, Nurko S. An ANMS-NASPGHAN consensus document on esophageal and antroduodenal manometry in children. Neurogastroenterol Motil 2018; 30:10.1111/nmo.13239. [PMID: 29178261 PMCID: PMC5823717 DOI: 10.1111/nmo.13239] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Upper gastrointestinal symptoms in children are common and motility disorders are considered in the differential diagnosis. High resolution esophageal manometry (HRM) has revolutionized the study of esophageal physiology, and the addition of impedance has provided new insights into esophageal function. Antroduodenal motility has provided insight into gastric and small bowel function. PURPOSE This review highlights some of the recent advances in pediatric esophageal and antroduodenal motility testing including indications, preparation, performance, and interpretation of the tests. This update is the second part of a two part series on manometry studies in children (first part was on anorectal and colonic manometry [Neurogastroenterol Motil. 2016;29:e12944]), and has been endorsed by the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) and the American Neurogastroenterology and Motility Society (ANMS).
Collapse
Affiliation(s)
- Rachel Rosen
- Aerodigestive Center, Boston Children’s Hospital
| | - Jose M. Garza
- Children’s Center for Digestive Health Care, and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Neelesh Tipnis
- Department of Pediatrics University of Mississippi Medical Center
| | - Samuel Nurko
- Center for Motility and Functional Gastrointestinal Disorders, Boston Children’s Hospital
| |
Collapse
|
3
|
Thazhath SS, Wu T, Bound MJ, Checklin HL, Standfield S, Jones KL, Horowitz M, Rayner CK. Effects of intraduodenal hydroxycitrate on glucose absorption, incretin release, and glycemia in response to intraduodenal glucose infusion in health and type 2 diabetes: A randomised controlled trial. Nutrition 2016; 32:553-9. [PMID: 26792024 DOI: 10.1016/j.nut.2015.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hydroxycitric acid (HCA), derived from the fruit Garcinia cambogia, reduces the rate of glucose absorption and lowers postprandial glycemia in rodents, but its effect in humans is unknown. The aim of this study was to investigate the effects of small intestinal perfusion with HCA on glucose absorption, as well as the incretin and glycemic responses to a subsequent intraduodenal glucose infusion, in both healthy individuals and patients with type 2 diabetes. METHODS Twelve healthy participants and 8 patients with type 2 diabetes received an intraduodenal infusion of HCA (2800 mg in water) or control (water) over 60 min, followed by an intraduodenal infusion of 60 g glucose over 120 min, in a double-blind, randomized crossover design. In healthy individuals, 5 g 3-O-methylglucose (3-OMG) was co-infused with glucose as a marker of glucose absorption. Blood was sampled frequently. RESULTS In healthy individuals, blood glucose was lower with HCA than control, both before and during the intraduodenal glucose infusion (P < 0.05 for each). Plasma glucose-dependent insulinotropic polypeptide (GIP; P = 0.01) and glucagon (P = 0.06) were higher with HCA, but there were no differences in plasma glucagon-like peptide (GLP)-1, insulin, or serum 3-OMG concentrations. In patients with type 2 diabetes, blood glucose, and plasma GIP, GLP-1, and insulin did not differ between HCA and control either before or after intraduodenal glucose, but during glucose infusion, plasma glucagon was higher with HCA (P = 0.04). CONCLUSION In healthy individuals, small intestinal exposure to HCA resulted in a modest reduction in glycemia and stimulation of plasma GIP and glucagon, but no effect on plasma GLP-1 or insulin, or on glucose absorption. HCA had no effect on glycemia in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michelle J Bound
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Helen L Checklin
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Scott Standfield
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
4
|
A novel dynamic scintigraphic technique for assessing duodenal contractions during gastric emptying in humans: a feasibility study. Nucl Med Commun 2015; 36:95-101. [PMID: 25299468 DOI: 10.1097/mnm.0000000000000220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duodenal contractions are thought to play a role in the control of gastric emptying. Although noninvasive techniques, such as ultrasonography and MRI, have been proposed for studying duodenal contractile activity in humans, there are no reports on the use of scintigraphy for this purpose. This work aimed to describe a novel scintigraphic technique for assessing duodenal contractility during gastric emptying in humans, and to present preliminary data on the frequency and amplitude of contractions detected in three different duodenal segments. Fasted young healthy volunteers (N=12) were given either a liquid or a solid test meal of similar calorie content (400 kcal) labeled with 99mTc-phytate. Static images were collected to determine gastric emptying. Dynamic images of the anterior aspect of the abdomen (1 frame/s) were also acquired periodically in a standard position for 256 s at 15-30 min intervals. 'Activity versus time' curves were generated for regions of interest corresponding to the proximal, middle, and distal duodenal segments. Curves were digitally filtered and processed to estimate both dominant frequency (fast Fourier transform) and amplitude (mean ejection fraction) of postprandial duodenal contractions. There were no significant differences regarding dominant frequency among proximal, middle, and distal duodenal regions of interest. In addition, there were no significant differences between the liquid and the solid meal in terms of either frequency or amplitude of duodenal contractions. Characterization of duodenal contractions in humans using scintigraphy is feasible and yields consistent data for both the frequency and the amplitude of postprandial contractions, which seems to be rather independent of meal consistency.
Collapse
|
5
|
Dobbins RL, Greenway FL, Chen L, Liu Y, Breed SL, Andrews SM, Wald JA, Walker A, Smith CD. Selective sodium-dependent glucose transporter 1 inhibitors block glucose absorption and impair glucose-dependent insulinotropic peptide release. Am J Physiol Gastrointest Liver Physiol 2015; 308:G946-54. [PMID: 25767259 DOI: 10.1152/ajpgi.00286.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/04/2015] [Indexed: 02/07/2023]
Abstract
GSK-1614235 and KGA-2727 are potent, selective inhibitors of the SGLT1 sodium-dependent glucose transporter. Nonclinical (KGA-2727) and clinical (GSK-1614235) trials assessed translation of SGLT1 inhibitor effects from rats to normal human physiology. In rats, KGA-2727 (0.1 mg/kg) or vehicle was given before oral administration of 3-O-methyl-α-d-glucopyranose (3-O-methylglucose, 3-OMG) containing 3-[3H]OMG tracer. Tracer absorption and distribution were assessed from plasma, urine, and fecal samples. SGLT1 inhibition reduced urine 3-OMG recovery and increased fecal excretion. SGLT1 inhibitor effects on plasma glucose, insulin, gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) concentrations were also measured during a standard meal. Incremental glucose, insulin, and GIP concentrations were decreased, indicating downregulation of β-cell and K cell secretion. Minimal effects were observed in the secretion of the L cell product, GLP-1. With the use of a three-way, crossover design, 12 healthy human subjects received placebo or 20 mg GSK-1614235 immediately before or after a meal. Five minutes into the meal, 3-OMG was ingested. Postmeal dosing had little impact, yet premeal dosing delayed and reduced 3-OMG absorption, with an AUC0-10 of 231±31 vs. 446±31 μg·h(-1)·ml(-1), for placebo. Recovery of tracer in urine was 1.2±0.7 g for premeal dosing and 2.2±0.1 g for placebo. Incremental concentrations of insulin, C-peptide, and GIP were reduced for 2 h with premeal GSK-1614235. Total GLP-1 concentrations were significantly increased, and a trend for increased peptide YY (PYY) was noted. SGLT1 inhibitors block intestinal glucose absorption and reduce GIP secretion in rats and humans, suggesting SGLT1 glucose transport is critical for GIP release. Conversely, GLP-1 and PYY secretion are enhanced by SGLT1 inhibition in humans.
Collapse
Affiliation(s)
- Robert L Dobbins
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Lihong Chen
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Yaping Liu
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Sharon L Breed
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Susan M Andrews
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Jeffrey A Wald
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Ann Walker
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| | - Chari D Smith
- GlaxoSmithKline, Enteroendocrine Unit, Research Triangle Park, North Carolina; and
| |
Collapse
|
6
|
Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová-Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol Res 2014; 64:537-46. [PMID: 25470519 DOI: 10.33549/physiolres.932916] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impairment of mucosal barrier integrity of small intestine might be causative in immune-mediated gastrointestinal diseases. We tested the markers of epithelial apoptosis - cytokeratin 18 caspase-cleaved fragment (cCK-18), and enterocyte damage - intestinal fatty acid-binding protein (I-FABP) and soluble CD14 (sCD14) in sera of patients with untreated celiac disease (CLD), those on gluten-free diet (CLD-GFD), patients with autoimmune diabetes mellitus (T1D), T1D with insulitis (T1D/INS), and diabetes mellitus type 2 (T2D). We found elevated levels of cCK-18 (P<0.001), I-FABP (P<0.01) and sCD14 (P<0.05) in CLD when compared to healthy controls. However, the levels of cCK-18 (P<0.01) and I-FABP (P<0.01) in CLD-GFD were higher when compared with controls. Interestingly, elevated levels of cCK-18 and I-FABP were found in T2D and T1D (P<0.001), and T1D/INS (P<0.01, P<0.001). Twenty-two out of 43 CLD patients were seropositive for cCK-18, 19/43 for I-FABP and 11/43 for sCD14; 9/30 of T2D patients were positive for cCK-18 and 5/20 of T1D/INS for sCD14, while in controls only 3/41 were positive for cCK-18, 3/41 for I-FABP and 1/41 for sCD14. We documented for the first time seropositivity for sCD14 in CLD and potential usefulness of serum cCK-18 and I-FABP as markers of gut damage in CLD, CLD-GFD, and diabetes.
Collapse
Affiliation(s)
- I Hoffmanová
- Second Department of Internal Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, Department of Immunology, Institute of Microbiology, v.v.i., Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Lou J, Zhou H, Li C, Hu L, Lu X, Li J, Yao H, Li W, Zhang X, Xu M. ABCA1 and ABCG1 expression in the small intestine of type 2 diabetic rats. Lab Med 2014; 45:17-24. [PMID: 24719980 DOI: 10.1309/lmo485spyxbqanxj] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Inflammation of the small intestine may occur in type 2 diabetes. This study aimed to investigate whether ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) were altered in chronic inflammation of the small intestine of type 2 diabetic rats. METHODS Thirty-two male Sprague-Dawley rats were used. Eight rats in the control group were fed with regular chow, and 24 rats were fed a high-fat diet and injected with a single low dose of streptozotocin. All of the control rats and diabetic rats were bred for 10 months. Immunohistochemistry detected ABCA1 and ABCG1 in the small intestine in all the rats. RESULTS Hematoxylin-eosin staining showed chronic inflammation in the small intestine of the diabetic rats. Immunohistochemistry staining showed that alteration of ABCA1 and ABCG1 was different in the inflammatory and epithelial cells. Quantitative analysis showed that the overall expression of ABCA1 and ABCG1 increased in the diabetic rats compared to the control rats. Both ABCA1 and ABCG1 were enriched in the inflammatory cells of the small intestine in diabetic rats. In the epithelial cells, ABCA1, but not ABCG1, was detected in significantly more diabetic rats than control rats. CONCLUSION Both ABCA1 and ABCG1 are enriched in chronic inflammation of the small intestine of type 2 diabetic rats. ABCA1, but not ABCG1, is activated in the intestinal epithelial cells of type 2 diabetic rats.
Collapse
|
8
|
Young RL, Chia B, Isaacs NJ, Ma J, Khoo J, Wu T, Horowitz M, Rayner CK. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. Diabetes 2013; 62:3532-41. [PMID: 23761104 PMCID: PMC3781477 DOI: 10.2337/db13-0581] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously established that the intestinal sweet taste receptors (STRs), T1R2 and T1R3, were expressed in distinct epithelial cells in the human proximal intestine and that their transcript levels varied with glycemic status in patients with type 2 diabetes. Here we determined whether STR expression was 1) acutely regulated by changes in luminal and systemic glucose levels, 2) disordered in type 2 diabetes, and 3) linked to glucose absorption. Fourteen healthy subjects and 13 patients with type 2 diabetes were studied twice, at euglycemia (5.2 ± 0.2 mmol/L) or hyperglycemia (12.3 ± 0.2 mmol/L). Endoscopic biopsy specimens were collected from the duodenum at baseline and after a 30-min intraduodenal glucose infusion of 30 g/150 mL water plus 3 g 3-O-methylglucose (3-OMG). STR transcripts were quantified by RT-PCR, and plasma was assayed for 3-OMG concentration. Intestinal STR transcript levels at baseline were unaffected by acute variations in glycemia in healthy subjects and in type 2 diabetic patients. T1R2 transcript levels increased after luminal glucose infusion in both groups during euglycemia (+5.8 × 10(4) and +5.8 × 10(4) copies, respectively) but decreased in healthy subjects during hyperglycemia (-1.4 × 10(4) copies). T1R2 levels increased significantly in type 2 diabetic patients under the same conditions (+6.9 × 10(5) copies). Plasma 3-OMG concentrations were significantly higher in type 2 diabetic patients than in healthy control subjects during acute hyperglycemia. Intestinal T1R2 expression is reciprocally regulated by luminal glucose in health according to glycemic status but is disordered in type 2 diabetes during acute hyperglycemia. This defect may enhance glucose absorption in type 2 diabetic patients and exacerbate postprandial hyperglycemia.
Collapse
Affiliation(s)
- Richard L. Young
- Nerve-Gut Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Corresponding author: Richard L. Young,
| | - Bridgette Chia
- Nerve-Gut Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Nicole J. Isaacs
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Jing Ma
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology and Metabolism, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Joan Khoo
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K. Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Deane AM, Besanko LK, Burgstad CM, Chapman MJ, Horowitz M, Fraser RJL. Modulation of individual components of gastric motor response to duodenal glucose. World J Gastroenterol 2013; 19:5863-5869. [PMID: 24124331 PMCID: PMC3793140 DOI: 10.3748/wjg.v19.i35.5863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/11/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate individual components of the antro-pyloro-duodenal (APD) motor response to graded small intestinal glucose infusions in healthy humans.
METHODS: APD manometry was performed in 15 healthy subjects (12 male; 40 ± 5 years, body mass index 26.5 ± 1.6 kg/m2) during four 20-min intraduodenal infusions of glucose at 0, 0.5, 1.0 and 1.5 kcal/min, in a randomised double-blinded fashion. Glucose solutions were infused at a rate of 1 mL/min and separated by 40-min “wash-out” period. Data are mean ± SE. Inferential analyses are repeated measure analysis of variance with Bonferroni post-hoc testing.
RESULTS: At 0 kcal/min frequency of pressure waves were: antrum (7.5 ± 1.8 waves/20 min) and isolated pyloric pressure waves (IPPWs) (8.0 ± 2.3 waves/20 min) with pyloric tone (0.0 ± 0.9 mmHg). Intraduodenal glucose infusion acutely increased IPPW frequency (P < 0.001) and pyloric tone (P = 0.015), and decreased antral wave frequency (P = 0.007) in a dose-dependent fashion. A threshold for stimulation was observed at 1.0 kcal/min for pyloric phasic pressure waves (P = 0.002) and 1.5 kcal/min for pyloric tone and antral contractility.
CONCLUSION: There is hierarchy for the activation of gastrointestinal motor responses to duodenal glucose infusion. An increase in IPPWs is the first response observed.
Collapse
|
10
|
Sim JA, Horowitz M, Summers MJ, Trahair LG, Goud RS, Zaknic AV, Hausken T, Fraser JD, Chapman MJ, Jones KL, Deane AM. Mesenteric blood flow, glucose absorption and blood pressure responses to small intestinal glucose in critically ill patients older than 65 years. Intensive Care Med 2013; 39:258-66. [PMID: 23096428 DOI: 10.1007/s00134-012-2719-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare nutrient-stimulated changes in superior mesenteric artery (SMA) blood flow, glucose absorption and glycaemia in individuals older than 65 years with, and without, critical illness. METHODS Following a 1-h 'observation' period (t (0)-t (60)), 0.9 % saline and glucose (1 kcal/ml) were infused directly into the small intestine at 2 ml/min between t (60)-t (120), and t (120)-t (180), respectively. SMA blood flow was measured using Doppler ultrasonography at t (60) (fasting), t (90) and t (150) and is presented as raw values and nutrient-stimulated increment from baseline (Δ). Glucose absorption was evaluated using serum 3-O-methylglucose (3-OMG) concentrations during, and for 1 h after, the glucose infusion (i.e. t (120)-t (180) and t (120)-t (240)). Mean arterial pressure was recorded between t (60)-t (240). Data are presented as median (25th, 75th percentile). RESULTS Eleven mechanically ventilated critically ill patients [age 75 (69, 79) years] and nine healthy volunteers [70 (68, 77) years] were studied. The magnitude of the nutrient-stimulated increase in SMA flow was markedly less in the critically ill when compared with healthy subjects [Δt (150): patients 115 (-138, 367) versus health 836 (618, 1,054) ml/min; P = 0.001]. In patients, glucose absorption was reduced during, and for 1 h after, the glucose infusion when compared with health [AUC(120-180): 4.571 (2.591, 6.551) versus 11.307 (8.447, 14.167) mmol/l min; P < 0.001 and AUC(120-240): 26.5 (17.7, 35.3) versus 40.6 (31.7, 49.4) mmol/l min; P = 0.031]. A close relationship between the nutrient-stimulated increment in SMA flow and glucose absorption was evident (3-OMG AUC(120-180) and ∆SMA flow at t (150): r (2) = 0.29; P < 0.05). CONCLUSIONS In critically ill patients aged >65 years, stimulation of SMA flow by small intestinal glucose infusion may be attenuated, which could account for the reduction in glucose absorption.
Collapse
Affiliation(s)
- Jennifer A Sim
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hormones from the gastrointestinal (GI) tract are released following food ingestion and trigger a range of physiological responses including the coordination of appetite and glucose homoeostasis. The aim of this review is to discuss the pathways by which food ingestion triggers secretion of cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) and the altered patterns of gut hormone release observed following gastric bypass surgery. Our understanding of how ingested nutrients trigger secretion of these gut hormones has increased dramatically, as a result of physiological studies in human subjects and animal models and in vitro studies on cell lines and primary intestinal cultures. Specialised enteroendocrine cells located within the gut epithelium are capable of directly detecting a range of nutrient stimuli through a range of receptors and transporters. It is concluded that the arrival of nutrients at the apical surface of enteroendocrine cells is a major stimulus for gut hormone release, thereby coupling these endocrine signals to the arrival of absorbed nutrients in the bloodstream.
Collapse
Affiliation(s)
- Fiona M Gribble
- Cambridge Institute for Medical Research, WT/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
12
|
Di Bartolomeo AE, Chapman MJ, V Zaknic A, Summers MJ, Jones KL, Nguyen NQ, Rayner CK, Horowitz M, Deane AM. Comparative effects on glucose absorption of intragastric and post-pyloric nutrient delivery in the critically ill. Crit Care 2012; 16:R167. [PMID: 22985684 PMCID: PMC3682265 DOI: 10.1186/cc11522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/14/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Studies in the critically ill that evaluate intragastric and post-pyloric delivery of nutrient have yielded conflicting data. A limitation of these studies is that the influence in the route of feeding on glucose absorption and glycaemia has not been determined. METHODS In 68 mechanically ventilated critically ill patients, liquid nutrient (100 ml; 1 kcal/ml containing 3 g of 3-O-Methyl-D-glucopyranose (3-OMG), as a marker of glucose absorption), was infused into either the stomach (n = 24) or small intestine (n = 44) over six minutes. Blood glucose and serum 3-OMG concentrations were measured at regular intervals for 240 minutes and the area under the curves (AUCs) calculated for 'early' (AUC60) and 'overall' (AUC240) time periods. Data are presented as mean (95% confidence intervals). RESULTS Glucose absorption was initially more rapid following post-pyloric, when compared with intragastric, feeding (3-OMG AUC60: intragastric 7.3 (4.3, 10.2) vs. post-pyloric 12.5 (10.1, 14.8) mmol/l.min; P = 0.008); however, 'overall' glucose absorption was similar (AUC240: 49.1 (34.8, 63.5) vs. 56.6 (48.9, 64.3) mmol/l.min; P = 0.31). Post-pyloric administration of nutrients was also associated with greater increases in blood glucose concentrations in the 'early' period (AUC60: 472 (425, 519) vs. 534 (501, 569) mmol/l.min; P = 0.03), but 'overall' glycaemia was also similar (AUC240: 1,875 (1,674, 2,075) vs. 1,898 (1,755, 2,041) mmol/l.min; P = 0.85). CONCLUSIONS In the critically ill, glucose absorption was similar whether nutrient was administered via a gastric or post-pyloric catheter. These data may have implications for the perceived benefit of post-pyloric feeding on nutritional outcomes and warrant further investigation.
Collapse
Affiliation(s)
- Anna E Di Bartolomeo
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Marianne J Chapman
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Antony V Zaknic
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Matthew J Summers
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Karen L Jones
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
| | - Nam Q Nguyen
- Department of Gastroenterology, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| | - Christopher K Rayner
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
| | - Michael Horowitz
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
| | - Adam M Deane
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- National Health and Medical Research Council of Australia, Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, SA 5000, Australia
- Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
13
|
Decision support for optimized blood glucose control and nutrition in a neurotrauma intensive care unit: preliminary results of clinical advice and prediction accuracy of the Glucosafe system. J Clin Monit Comput 2012; 26:319-28. [PMID: 22581038 DOI: 10.1007/s10877-012-9364-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
Assessment of glycemic control with model-based decision support ("Glucosafe") in neurotrauma intensive care patients in an ongoing randomized controlled trial with a blood glucose (BG) target of 5-8 mmol/L. Assessment of BG prediction accuracy of the model and assessment of the effect that two potential model extensions would have on prediction accuracy in this trial. In the intervention group insulin infusion rates and nutrition are varied based on Glucosafe's decision support. In the control group, the caloric target is 25-30 kcal/kg per day and insulin is regulated according to department rules. BG concentrations, insulin infusion rates, and feed rates are compared from the data of 12 consecutive patients. BG measurements are predicted retrospectively and the mean relative prediction error is calculated using (1) the current model from the trial, (2) the current model modified by using a BG-dependent variable endogenous insulin appearance rate, (3) the current model modified by a patient-specific carbohydrate absorption factor. BG control was improved by Glucosafe. 76 % of BG measurements in Glucosafe patients were in the 5-8 mmol/L band (Controls: 51 %). BG means (log-normal) ± SD were 7.0 ± 1.19 mmol/L in Glucosafe patients compared to 8.0 ± 1.24 mmol/L in controls (P = 0.05). Mean caloric intake was 93.5 ± 15 % of resting energy expenditure in Glucosafe patients (Controls: 129 ± 29 %). The BG-dependent variable insulin appearance rate had no measurable effect on prediction accuracy. The patient-specific carbohydrate absorption factor improved prediction accuracy significantly (P = 0.001). Glucosafe advice reduces hyperglycemia in neurotrauma intensive care patients. Further parameterization can improve model prediction accuracy.
Collapse
|
14
|
Wu T, Zhao BR, Bound MJ, Checklin HL, Bellon M, Little TJ, Young RL, Jones KL, Horowitz M, Rayner CK. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am J Clin Nutr 2012; 95:78-83. [PMID: 22158727 DOI: 10.3945/ajcn.111.021543] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Macronutrient "preloads" can stimulate glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), slow gastric emptying, and reduce postprandial glycemic excursions. After sweet preloads, these effects may be signaled by sodium-glucose cotransporter-1 (SGLT1), sweet taste receptors, or both. OBJECTIVE We determined the effects of 4 sweet preloads on GIP and GLP-1 release, gastric emptying, and postprandial glycemia. DESIGN Ten healthy subjects were studied on 4 separate occasions each. A preload drink containing 40 g glucose, 40 g tagatose/isomalt mixture (TIM), 40 g 3-O-methylglucose (3OMG; a nonmetabolized substrate of SGLT1), or 60 mg sucralose was consumed 15 min before a (13)C-octanoic acid-labeled mashed potato meal. Blood glucose, plasma total GLP-1 and GIP, serum insulin, and gastric emptying were determined. RESULTS Both glucose and 3OMG stimulated GLP-1 and GIP release in advance of the meal (each P < 0.05), whereas TIM and sucralose did not. The overall postprandial GLP-1 response was greater after glucose, 3OMG, and TIM than after sucralose (P < 0.05), albeit later after TIM than the other preloads. The blood glucose and insulin responses in the first 30 min after the meal were greatest after glucose (each P < 0.05). Gastric emptying was slower after both 3OMG and TIM than after sucralose (each P < 0.05). CONCLUSIONS In healthy humans, SGLT1 substrates stimulate GLP-1 and GIP and slow gastric emptying, regardless of whether they are metabolized, whereas the artificial sweetener sucralose does not. Poorly absorbed sweet tastants (TIM), which probably expose a greater length of gut to nutrients, result in delayed GLP-1 secretion but not in delayed GIP release. These observations have the potential to optimize the use of preloads for glycemic control. This trial was registered at www.actr.org.au as ACTRN12611000775910.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deane AM, Summers MJ, Zaknic AV, Chapman MJ, Di Bartolomeo AE, Bellon M, Maddox A, Russo A, Horowitz M, Fraser RJL. Glucose absorption and small intestinal transit in critical illness. Crit Care Med 2011; 39:1282-8. [PMID: 21336122 DOI: 10.1097/ccm.0b013e31820ee21f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Although enteral nutrition is standard care for critically ill patients, nutrient absorption has not been quantified in this group and may be impaired due to intestinal dysmotility. The objectives of this study were to measure small intestinal glucose absorption and duodenocecal transit and determine their relationship with glycemia in the critically ill. DESIGN Prospective observational study of healthy and critically ill subjects. SETTING Tertiary mixed medical-surgical adult intensive care unit. SUBJECTS Twenty-eight critically ill patients and 16 healthy subjects were studied. MATERIALS AND MAIN RESULTS: Liquid feed (100 kcal/100 mL), labeled with Tc-sulfur colloid and including 3 g of 3-O-methylglucose, was infused into the duodenum. Glucose absorption and duodenocecal transit were measured using the area under the 3-O-methylglucose concentration curve and scintigraphy, respectively. Data are median (range). RESULTS AND DISCUSSION Glucose absorption was reduced in critical illness when compared to health (area under the concentration curve: 16 [1-32] vs. 20 [14-34] mmol/L·min; p = .03). Small intestinal transit times were comparable in patients and healthy subjects (192 [9-240] vs. 168 [6-240] min; p = .99) and were not related to glucose absorption. Despite higher fasting blood glucose concentrations (6.3 [5.1-9.3] vs. 5.7 [4.6-7.6] mmol/L; p < .05), the increment in blood glucose was sustained for longer in the critically ill (Δ glucose at t = 60; 1.9 [-2.1-5.0] mmol/L vs. -0.2 [-1.3-2.3] mmol/L; p < .01). CONCLUSIONS Critical illness is associated with reduced small intestinal glucose absorption, but despite this, the glycemic response to enteral nutrient is sustained for longer.
Collapse
Affiliation(s)
- Adam M Deane
- National Health and Medical Research Council of Australia Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|