1
|
Dimai HP, Muschitz C, Amrein K, Bauer R, Cejka D, Gasser RW, Gruber R, Haschka J, Hasenöhrl T, Kainberger F, Kerschan-Schindl K, Kocijan R, König J, Kroißenbrunner N, Kuchler U, Oberforcher C, Ott J, Pfeiler G, Pietschmann P, Puchwein P, Schmidt-Ilsinger A, Zwick RH, Fahrleitner-Pammer A. [Osteoporosis-Definition, risk assessment, diagnosis, prevention and treatment (update 2024) : Guidelines of the Austrian Society for Bone and Mineral Research]. Wien Klin Wochenschr 2024; 136:599-668. [PMID: 39356323 PMCID: PMC11447007 DOI: 10.1007/s00508-024-02441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Austria is among the countries with the highest incidence and prevalence of osteoporotic fractures worldwide. Guidelines for the prevention and management of osteoporosis were first published in 2010 under the auspices of the then Federation of Austrian Social Security Institutions and updated in 2017. The present comprehensively updated guidelines of the Austrian Society for Bone and Mineral Research are aimed at physicians of all specialties as well as decision makers and institutions in the Austrian healthcare system. The aim of these guidelines is to strengthen and improve the quality of medical care of patients with osteoporosis and osteoporotic fractures in Austria. METHODS These evidence-based recommendations were compiled taking randomized controlled trials, systematic reviews and meta-analyses as well as European and international reference guidelines published before 1 June 2023 into consideration. The grading of recommendations used ("conditional" and "strong") are based on the strength of the evidence. The evidence levels used mutual conversions of SIGN (1++ to 3) to NOGG criteria (Ia to IV). RESULTS The guidelines include all aspects associated with osteoporosis and osteoporotic fractures, such as secondary causes, prevention, diagnosis, estimation of the 10-year fracture risk using FRAX®, determination of Austria-specific FRAX®-based intervention thresholds, drug-based and non-drug-based treatment options and treatment monitoring. Recommendations for the office-based setting and decision makers and institutions in the Austrian healthcare system consider structured care models and options for osteoporosis-specific screening. CONCLUSION The guidelines present comprehensive, evidence-based information and instructions for the treatment of osteoporosis. It is expected that the quality of medical care for patients with this clinical picture will be substantially improved at all levels of the Austrian healthcare system.
Collapse
Affiliation(s)
- Hans Peter Dimai
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | - Christian Muschitz
- healthPi Medical Center, Medizinische Universität Wien, Wollzeile 1-3, 1010, Wien, Österreich.
- Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| | - Karin Amrein
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | | | - Daniel Cejka
- Interne 3 - Nieren- und Hochdruckerkrankungen, Transplantationsmedizin, Rheumatologie, Ordensklinikum Linz Elisabethinen, Linz, Österreich
| | - Rudolf Wolfgang Gasser
- Universitätsklinik für Innere Medizin, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Reinhard Gruber
- Universitätszahnklinik, Medizinische Universität Wien, Wien, Österreich
| | - Judith Haschka
- Hanusch Krankenhaus Wien, 1. Medizinische Abteilung, Ludwig Boltzmann Institut für Osteologie, Wien, Österreich
- Rheuma-Zentrum Wien-Oberlaa, Wien, Österreich
| | - Timothy Hasenöhrl
- Universitätsklinik für Physikalische Medizin, Rehabilitation und Arbeitsmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Franz Kainberger
- Klinische Abteilung für Biomedizinische Bildgebung und Bildgeführte Therapie, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Katharina Kerschan-Schindl
- Universitätsklinik für Physikalische Medizin, Rehabilitation und Arbeitsmedizin, Medizinische Universität Wien, Wien, Österreich
| | - Roland Kocijan
- Hanusch Krankenhaus Wien, 1. Medizinische Abteilung, Ludwig Boltzmann Institut für Osteologie, Wien, Österreich
| | - Jürgen König
- Department für Ernährungswissenschaften, Universität Wien, Wien, Österreich
| | | | - Ulrike Kuchler
- Universitätszahnklinik, Medizinische Universität Wien, Wien, Österreich
| | | | - Johannes Ott
- Klinische Abteilung für gynäkologische Endokrinologie und Reproduktionsmedizin, Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Georg Pfeiler
- Klinische Abteilung für Gynäkologie und Gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Österreich
| | - Peter Pietschmann
- Institut für Pathophysiologie und Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie (CEPII), Medizinische Universität Wien, Wien, Österreich
| | - Paul Puchwein
- Universitätsklinik für Orthopädie und Traumatologie, Medizinische Universität Graz, Graz, Österreich
| | | | - Ralf Harun Zwick
- Ludwig Boltzmann Institut für Rehabilitation Research, Therme Wien Med, Wien, Österreich
| | - Astrid Fahrleitner-Pammer
- Privatordination Prof. Dr. Astrid Fahrleitner-Pammer
- Klinische Abteilung für Endokrinologie und Diabetes, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| |
Collapse
|
2
|
Shigeno R, Horie I, Haraguchi A, Niimi R, Chiba K, Tashiro S, Kawazoe Y, Sato S, Osaki M, Kawakami A, Abiru N. A Randomized Controlled Trial on the Effect of Luseogliflozin on Bone Microarchitecture Evaluated Using HR-pQCT in Elderly Type 2 Diabetes. Diabetes Ther 2024; 15:2233-2248. [PMID: 39153152 PMCID: PMC11410743 DOI: 10.1007/s13300-024-01634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION Bone fragility is a critical issue in the treatment of elderly people with type 2 diabetes (T2D). In the Canagliflozin Cardiovascular Assessment Study, the subjects with T2D who were treated with canagliflozin showed a significant increase in fracture events compared to a placebo group as early as 12 weeks post-initiation. In addition, it has been unclear whether sodium-glucose co-transporter 2 (SGLT2) inhibitors promote bone fragility. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) to prospectively evaluate the short-term effect of the SGLT2 inhibitor luseogliflozin on bone strength and microarchitecture in elderly people with T2D. METHODS This was a single-center, randomized, open-label, active-controlled pilot trial for ≥ 60-year-old Japanese individuals with T2D without osteoporosis. A total of 22 subjects (seven women and 15 men) were randomly assigned to a Lusefi group (added luseogliflozin 2.5 mg) or a control group (added metformin 500 mg) and treated for 48 weeks. We used the second-generation HR-pQCT (Xtreme CT II®, Scanco Medical, Brüttisellen, Switzerland) before and 48 weeks after the treatment to evaluate the subjects' bone microarchitecture and estimate their bone strength. RESULTS Twenty subjects (Lusefi group, n = 9; control group, n = 11) completed the study, with no fracture events. As the primary outcome, the 48-week changes in the bone strength (stiffness and failure load) estimated by micro-finite element analysis were not significantly different between the groups. As the secondary outcome, the changes in all of the cortical/trabecular microarchitectural parameters at the radius and tibia from baseline to 48 weeks were not significantly different between the groups. CONCLUSIONS In the pilot trial, we observed no negative effect of 48-week luseogliflozin treatment on bone microarchitecture or bone strength in elderly people with T2D. TRIAL REGISTRATION UMIN-CTR no. 000036202 and jRCT 071180061.
Collapse
Affiliation(s)
- Riyoko Shigeno
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Ai Haraguchi
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryuji Niimi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeki Tashiro
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yurika Kawazoe
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
3
|
Samakkarnthai P, Sribenjalak D, Wattanachanya L, Pongchaiyakul C. Prevalence of vertebral fractures and associated factors in thai diabetic postmenopausal women. Sci Rep 2024; 14:22404. [PMID: 39333407 PMCID: PMC11436870 DOI: 10.1038/s41598-024-74463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024] Open
Abstract
T2DM (Type 2 Diabetes Mellitus) patients with vertebral fractures have a higher mortality rate than non-DM (nondiabetic patients). However, the prevalence of vertebral fractures in the Asian diabetic population is not well established. Moreover, despite an apparent increase in fracture risk in patients with diabetes, Asian countries have provided contradictory data demonstrating that bone mineral density (BMD) varies significantly in T2DM patients. The aim of this study was to examine and compare the prevalence of vertebral fractures and osteoporosis, as well as BMD and the FRAX score, between individuals with and without T2DM and assess the association of these factors with vertebral fractures. Postmenopausal Thai women attending diabetic and health check-up clinics were recruited. BMD at the lumbar spine, total hip, and femoral neck was measured via dual-energy X-ray absorptiometry. A morphometric vertebral fracture (VF) was defined by a lateral thoracolumbar (T-L) X-ray radiograph. The Fracture Risk Assessment Tool (FRAX) was used to calculate the 10-year probabilities of hip and major osteoporotic fracture (MOF), which were calculated on the basis of the Thai FRAX model. A total of 435 participants were recruited, including 145 postmenopausal women with T2DM and 290 non-DM individuals. T2DM patients had a significantly greater BMI (p = 0.006) and BMD at the femoral neck (p = 0.024) and total hip (p = 0.017), but there was no significant difference in the FRAX score, including the 10-year probability of hip fracture or MOF, either with or without BMD, between individuals with and without T2DM. The prevalence of osteoporosis in non-DM women was significantly higher at the femoral neck (OR = 0.56, 95% CI: 0.34 to 0.93, p = 0.029) but comparable at the lumbar spine. Individuals with T2DM had a significantly higher rate of vertebral fractures, particularly those involving two or more levels, than those without T2DM. Diabetes was significantly associated with [Formula: see text]2 VF (OR = 3.83, 95% CI: 1.77 to 8.28, p = 0.001), and the association remained unchanged after controlling for other clinical factors (adjusted OR = 3.72, 95% CI 1.70-8.15; p = 0.001). Our study demonstrated a greater prevalence of multiple ([Formula: see text] two levels) VFs in women with T2DM than in non-DM controls.
Collapse
Affiliation(s)
- Parinya Samakkarnthai
- Division of Endocrinology, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Dueanchonnee Sribenjalak
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lalita Wattanachanya
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chatlert Pongchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Agarwal S, Germosen C, Rosillo I, Bucovsky M, Colon I, Kil N, Wang Z, Dinescu A, Guo XDE, Walker M. Fractures in women with type 2 diabetes are associated with marked deficits in cortical parameters and trabecular plates. J Bone Miner Res 2024; 39:1083-1093. [PMID: 38861455 PMCID: PMC11337576 DOI: 10.1093/jbmr/zjae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology, and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0%-6.5% higher at all sites (all p<.005) in T2DM vs controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3%-6.4%) and number (3.8%-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM vs controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2%-8.5% lower adjusted aBMD at all sites by DXA compared with those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2%-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1 and 17.2% lower failure load at the radius and tibia, respectively (all p<.05); plate volume and thickness were 5.7% and 4.7% lower, respectively, (p<.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p=.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.
Collapse
Affiliation(s)
- Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Zexi Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Andreea Dinescu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Xiang-Dong Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
5
|
Zhang SC, Makebeh T, Mesinovic J, Djopseu K, Martin C, Lui LY, Cawthon PM, Schneider ALC, Zmuda JM, Strotmeyer ES, Schafer A, Ebeling PR, Zebaze RM. Epidemiology of fractures in adults of African ancestry with diabetes mellitus: A systematic review and meta-analysis. Bone 2024; 185:117133. [PMID: 38789095 DOI: 10.1016/j.bone.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetes mellitus (DM) is associated with increased fracture risk in White adults. However, the impact of DM on fractures in Black adults is unknown. This systematic review and meta-analysis investigated the association between DM and fractures in adults of African ancestry. MEDLINE, Scopus, CINAHL and Embase databases were searched from their inception up to November 2023 for all studies in the English language investigating the epidemiology of fractures (prevalence, incidence, or risk) in Black men and women (age ≥ 18 years) with type 1 or type 2 DM. Effect sizes for prevalence of previous fractures (%) and incident fracture risk (hazard ratio [HR]) were calculated using a random-effects model on Stata (version 18.0). There were 13 eligible studies, of which 12 were conducted in Black adults from the United States, while one was conducted in adults of West African ancestry from Trinidad and Tobago. We found no fracture data in Black adults with DM living in Africa. Five studies were included in a meta-analysis of incident fracture risk, reporting data from 2926 Black and 6531 White adults with DM. There was increased risk of fractures in Black adults with DM compared to non-DM (HR = 1.65; 95 % confidence interval [CI]: 1.14, 2.39). The risk of fractures was also higher in White adults with DM compared to non-DM (HR = 1.31; 95 % CI: 1.06, 1.61) among these studies. Five studies were included in a meta-analysis of fracture prevalence, of which three also reported fracture prevalence in White adults. There were 175 previous fractures among 993 Black adults with DM and 384 previous fractures among 1467 White adults with DM, with a pooled prevalence of 17.5 % (95 % CI: 15.4, 19.6) and 25.8 % (95 % CI: 4.8, 46.8), respectively. Our results indicate a high burden of fractures in Black adults with DM.
Collapse
Affiliation(s)
- Simon C Zhang
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | | | - Catherine Martin
- School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
| | - Li-Yung Lui
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph M Zmuda
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elsa S Strotmeyer
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne Schafer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, USA.; Department of Medicine, University of California, San Francisco, CA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| | - Roger M Zebaze
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Zoulakis M, Johansson L, Litsne H, Axelsson K, Lorentzon M. Type 2 Diabetes and Fracture Risk in Older Women. JAMA Netw Open 2024; 7:e2425106. [PMID: 39106069 PMCID: PMC11304123 DOI: 10.1001/jamanetworkopen.2024.25106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Importance The reasons for the increased fracture risk in type 2 diabetes (T2D) are not fully understood. Objective To determine if poorer skeletal characteristics or worse physical function explain the increased fracture risk in T2D. Design, Setting, and Participants This prospective observational study is based on the population-based Sahlgrenska University Hospital Prospective Evaluation of Risk of Bone Fractures study cohort of older women, performed in the Gothenburg area between March 2013 and May 2016. Follow-up of incident fracture data was completed in March 2023. Data analysis was performed between June and December 2023. Exposures Data were collected from questionnaires and through examination of anthropometrics, physical function, and bone measurements using bone densitometry (dual-energy x-ray absorptiometry), and high-resolution peripheral computed tomography. A subsample underwent bone microindentation to assess bone material strength index (BMSi). Main Outcomes and Measures Baseline assessment of bone characteristics and physical function and radiograph verified incident fractures. Results Of 3008 women aged 75 to 80 years, 294 women with T2D (mean [SD] age, 77.8 [1.7] years) were compared with 2714 women without diabetes (mean [SD] age, 77.8 [1.6] years). Women with T2D had higher bone mineral density (BMD) at all sites (total hip, 4.4% higher; femoral neck (FN), 4.9% higher; and lumbar spine, 5.2% higher) than women without. At the tibia, women with T2D had 7.4% greater cortical area and 1.3% greater density, as well as 8.7% higher trabecular bone volume fraction. There was no difference in BMSi (T2D mean [SD], 78.0 [8.3] vs controls, 78.1 [7.3]). Women with T2D had lower performance on all physical function tests. The study found 9.7% lower grip strength, 9.9% slower gait speed, and 13.9% slower timed up-and-go time than women without diabetes. During a median (IQR) follow-up of 7.3 (4.4-8.4) years, 1071 incident fractures, 853 major osteoporotic fractures (MOF), and 232 hip fractures occurred. In adjusted (for age, body mass index, clinical risk factors, and FN BMD) Cox regression models, T2D was associated with an increased risk of any fracture (HR, 1.26; 95% CI, 1.04-1.54) and MOF (HR, 1.25; 95% CI, 1.00-1.56). Conclusions and Relevance In this cohort study of older women, T2D was associated with higher BMD, better bone microarchitecture, and no different BMSi but poorer physical function, suggesting that poor physical function is the main reason for the increased fracture risk in T2D women.
Collapse
Affiliation(s)
- Michail Zoulakis
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lisa Johansson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kristian Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm, Health Centre, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| |
Collapse
|
7
|
Faraj M, Schwartz AV, Burghardt AJ, Black D, Orwoll E, Strotmeyer ES, Vittinghoff E, Banfi G, Lombardi G, Woods G, Lui LY, Bouxsein M, Napoli N. Risk Factors for Bone Microarchitecture Impairments in Older Men with Type 2 Diabetes - The MrOS Study. J Clin Endocrinol Metab 2024:dgae452. [PMID: 38994585 DOI: 10.1210/clinem/dgae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
CONTEXT Impaired bone microarchitecture, assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), may contribute to bone fragility in type 2 diabetes (T2DM) but data on men are lacking. OBJECTIVE To investigate the association between T2DM and HR-pQCT parameters in older men. METHODS HR-pQCT scans were acquired on 1794 participants in the Osteoporotic Fractures in Men (MrOS) study. T2DM was ascertained by self-report or medication use. Linear regression models, adjusted for age, race, BMI, limb length, clinic site, and oral corticosteroid use, were used to compare HR-pQCT parameters by diabetes status. RESULTS Among 1777 men, 290 had T2DM (mean age 84.4 years). T2DM men had smaller total cross-sectional area (Tt.AR) at the distal tibia (p=0.028) and diaphyseal tibia (p=0.025), and smaller cortical area at the distal (p= 0.009) and diaphyseal tibia (p= 0.023). Trabecular indices and cortical porosity were similar between T2DM and non-T2DM. Among men with T2DM, in a model including HbA1c, diabetes duration, and insulin use, diabetes duration ≥ 10 years, compared with <10 years, was significantly associated with higher cortical porosity but with higher trabecular thickness at the distal radius. Insulin use was significantly associated with lower cortical area and thickness at the distal radius and diaphyseal tibia and lower failure load at all three scan sites. Lower cortical area, cortical thickness, total BMD, cortical BMD, and failure load of the distal sites were associated with increased risk of incident non-vertebral fracture in T2DM. CONCLUSIONS Older men with T2DM have smaller bone size compared to non-T2DM, which may contribute to diabetic skeletal fragility. Longer diabetes duration was associated with higher cortical porosity and insulin use with cortical bone deficits and lower failure load.
Collapse
Affiliation(s)
- Malak Faraj
- Research Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Dennis Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Eric Orwoll
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elsa S Strotmeyer
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Laboratory of Experimental Biochemistry Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Li-Yung Lui
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, BIDMC, Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Nicola Napoli
- Research Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
8
|
Chowdhury NN, Surowiec RK, Kohler RK, Reul ON, Segvich DM, Wallace JM. Metabolic and Skeletal Characterization of the KK/A y Mouse Model-A Polygenic Mutation Model of Obese Type 2 Diabetes. Calcif Tissue Int 2024; 114:638-649. [PMID: 38642089 PMCID: PMC11184323 DOI: 10.1007/s00223-024-01216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
Type 2 diabetes (T2D) increases fracture incidence and fracture-related mortality rates (KK.Cg-Ay/J. The Jackson Laboratory; Available from: https://www.jax.org/strain/002468 ). While numerous mouse models for T2D exist, few effectively stimulate persistent hyperglycemia in both sexes, and even fewer are suitable for bone studies. Commonly used models like db/db and ob/ob have altered leptin pathways, confounding bone-related findings since leptin regulates bone properties (Fajardo et al. in Journal of Bone and Mineral Research 29(5): 1025-1040, 2014). The Yellow Kuo Kondo (KK/Ay) mouse, a polygenic mutation model of T2D, is able to produce a consistent diabetic state in both sexes and addresses the lack of a suitable model of T2D for bone studies. The diabetic state of KK/Ay stems from a mutation in the agouti gene, responsible for coat color in mice. This mutation induces ectopic gene expression across various tissue types, resulting in diabetic mice with yellow fur coats (Moussa and Claycombe in Obesity Research 7(5): 506-514, 1999). Male and female KK/Ay mice exhibited persistent hyperglycemia, defining them as diabetic with blood glucose (BG) levels consistently exceeding 300 mg/dL. Notably, male control mice in this study were also diabetic, presenting a significant limitation. Nevertheless, male and female KK/Ay mice showed significantly elevated BG levels, HbA1c, and serum insulin concentration when compared to the non-diabetic female control mice. Early stages of T2D are characterized by hyperglycemia and hyperinsulinemia resulting from cellular insulin resistance, whereas later stages may feature hypoinsulinemia due to β-cell apoptosis (Banday et al. Avicenna Journal of Medicine 10(04): 174-188, 2020 and Klein et al. Cell Metabolism 34(1): 11-20, 2022). The observed hyperglycemia, hyperinsulinemia, and the absence of differences in β-cell mass suggest that KK/Ay mice in this study are modeling the earlier stages of T2D. While compromised bone microarchitecture was observed in this study, older KK/Ay mice, representing more advanced stages of T2D, might exhibit more pronounced skeletal manifestations. Compared to the control group, the femora of KK/Ay mice had higher cortical area and cortical thickness, and improved trabecular properties which would typically be indicative of greater bone strength. However, KK/Ay mice displayed lower cortical tissue mineral density in both sexes and increased cortical porosity in females. Fracture instability toughness of the femora was lower in KK/Ay mice overall compared to controls. These findings indicate that decreased mechanical integrity noted in the femora of KK/Ay mice was likely due to overall bone quality being compromised.
Collapse
Affiliation(s)
- Nusaiba N Chowdhury
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Rachel K Surowiec
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel K Kohler
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Olivia N Reul
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Dyann M Segvich
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Forner P, Sheu A. Bone Health in Patients With Type 2 Diabetes. J Endocr Soc 2024; 8:bvae112. [PMID: 38887632 PMCID: PMC11181004 DOI: 10.1210/jendso/bvae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 06/20/2024] Open
Abstract
The association between type 2 diabetes mellitus (T2DM) and skeletal fragility is complex, with effects on bone at the cellular, molecular, and biomechanical levels. As a result, people with T2DM, compared to those without, are at increased risk of fracture, despite often having preserved bone mineral density (BMD) on dual-energy x-ray absorptiometry (DXA). Maladaptive skeletal loading and changes in bone architecture (particularly cortical porosity and low cortical volumes, the hallmark of diabetic osteopathy) are not apparent on routine DXA. Alternative imaging modalities, including quantitative computed tomography and trabecular bone score, allow for noninvasive visualization of cortical and trabecular compartments and may be useful in identifying those at risk for fractures. Current fracture risk calculators underestimate fracture risk in T2DM, partly due to their reliance on BMD. As a result, individuals with T2DM, who are at high risk of fracture, may be overlooked for commencement of osteoporosis therapy. Rather, management of skeletal health in T2DM should include consideration of treatment initiation at lower BMD thresholds, the use of adjusted fracture risk calculators, and consideration of metabolic and nonskeletal risk factors. Antidiabetic medications have differing effects on the skeleton and treatment choice should consider the bone impacts in those at risk for fracture. T2DM poses a unique challenge when it comes to assessing bone health and fracture risk. This article discusses the clinical burden and presentation of skeletal disease in T2DM. Two clinical cases are presented to illustrate a clinical approach in assessing and managing fracture risk in these patients.
Collapse
Affiliation(s)
- Patrice Forner
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Angela Sheu
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales Sydney, Sydney, NSW 2010, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, NSW 2010, Australia
- Skeletal Diseases Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2035, Australia
| |
Collapse
|
10
|
Martiniakova M, Biro R, Penzes N, Sarocka A, Kovacova V, Mondockova V, Omelka R. Links among Obesity, Type 2 Diabetes Mellitus, and Osteoporosis: Bone as a Target. Int J Mol Sci 2024; 25:4827. [PMID: 38732046 PMCID: PMC11084398 DOI: 10.3390/ijms25094827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and osteoporosis are serious diseases with an ever-increasing incidence that quite often coexist, especially in the elderly. Individuals with obesity and T2DM have impaired bone quality and an elevated risk of fragility fractures, despite higher and/or unchanged bone mineral density (BMD). The effect of obesity on fracture risk is site-specific, with reduced risk for several fractures (e.g., hip, pelvis, and wrist) and increased risk for others (e.g., humerus, ankle, upper leg, elbow, vertebrae, and rib). Patients with T2DM have a greater risk of hip, upper leg, foot, humerus, and total fractures. A chronic pro-inflammatory state, increased risk of falls, secondary complications, and pharmacotherapy can contribute to the pathophysiology of aforementioned fractures. Bisphosphonates and denosumab significantly reduced the risk of vertebral fractures in patients with both obesity and T2DM. Teriparatide significantly lowered non-vertebral fracture risk in T2DM subjects. It is important to recognize elevated fracture risk and osteoporosis in obese and T2DM patients, as they are currently considered low risk and tend to be underdiagnosed and undertreated. The implementation of better diagnostic tools, including trabecular bone score, lumbar spine BMD/body mass index (BMI) ratio, and microRNAs to predict bone fragility, could improve fracture prevention in this patient group.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (R.B.); (V.K.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (R.B.); (V.K.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (N.P.); (A.S.); (V.M.); (R.O.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (N.P.); (A.S.); (V.M.); (R.O.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (N.P.); (A.S.); (V.M.); (R.O.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia; (N.P.); (A.S.); (V.M.); (R.O.)
| |
Collapse
|
11
|
Löffler MT, Wu PH, Pirmoazen AM, Joseph GB, Stewart JM, Saeed I, Liu J, Schafer AL, Schwartz AV, Link TM, Kazakia GJ. Microvascular disease not type 2 diabetes is associated with increased cortical porosity: A study of cortical bone microstructure and intracortical vessel characteristics. Bone Rep 2024; 20:101745. [PMID: 38444830 PMCID: PMC10912053 DOI: 10.1016/j.bonr.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Fracture risk is elevated in type 2 diabetes (T2D) despite normal or even high bone mineral density (BMD). Microvascular disease (MVD) is a diabetic complication, but also associated with other diseases, for example chronic kidney disease. We hypothesize that increased fracture risk in T2D could be due to increased cortical porosity (Ct.Po) driven by expansion of the vascular network in MVD. The purpose of this study was to investigate associations of T2D and MVD with cortical microstructure and intracortical vessel parameters. Methods The study group consisted of 75 participants (38 with T2D and 37 without T2D). High-resolution peripheral quantitative CT (HR-pQCT) and dynamic contrast-enhanced MRI (DCE-MRI) of the ultra-distal tibia were performed to assess cortical bone and intracortical vessels (outcomes). MVD was defined as ≥1 manifestation including neuropathy, nephropathy, or retinopathy based on clinical exams in all participants. Adjusted means of outcomes were compared between groups with/without T2D or between participants with/without MVD in both groups using linear regression models adjusting for age, sex, BMI, and T2D as applicable. Results MVD was found in 21 (55 %) participants with T2D and in 9 (24 %) participants without T2D. In T2D, cortical pore diameter (Ct.Po.Dm) and diameter distribution (Ct.Po.Dm.SD) were significantly higher by 14.6 μm (3.6 %, 95 % confidence interval [CI]: 2.70, 26.5 μm, p = 0.017) and by 8.73 μm (4.8 %, CI: 0.79, 16.7 μm, p = 0.032), respectively. In MVD, but not in T2D, cortical porosity was significantly higher by 2.25 % (relative increase = 12.9 %, CI: 0.53, 3.97 %, p = 0.011) and cortical BMD (Ct.BMD) was significantly lower by -43.6 mg/cm3 (2.6 %, CI: -77.4, -9.81 mg/cm3, p = 0.012). In T2D, vessel volume and vessel diameter were significantly higher by 0.02 mm3 (13.3 %, CI: 0.004, 0.04 mm3, p = 0.017) and 15.4 μm (2.9 %, CI: 0.42, 30.4 μm, p = 0.044), respectively. In MVD, vessel density was significantly higher by 0.11 mm-3 (17.8 %, CI: 0.01, 0.21 mm-3, p = 0.033) and vessel volume and diameter were significantly lower by -0.02 mm3 (13.7 %, CI: -0.04, -0.004 mm3, p = 0.015) and - 14.6 μm (2.8 %, CI: -29.1, -0.11 μm, p = 0.048), respectively. Conclusions The presence of MVD, rather than T2D, was associated with increased cortical porosity. Increased porosity in MVD was coupled with a larger number of smaller vessels, which could indicate upregulation of neovascularization triggered by ischemia. It is unclear why higher variability and average diameters of pores in T2D were accompanied by larger vessels.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-hung Wu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Amir M. Pirmoazen
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Gabby B. Joseph
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jay M. Stewart
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Isra Saeed
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Anne L. Schafer
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
12
|
Tramontana F, Napoli N, Litwack-Harrison S, Bauer DC, Orwoll ES, Cauley JA, Strotmeyer ES, Schwartz AV. More rapid bone mineral density loss in older men with diabetes: The Osteoporotic Fractures in Men (MrOS) Study. J Clin Endocrinol Metab 2024:dgae045. [PMID: 38407631 DOI: 10.1210/clinem/dgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
CONTEXT Type 2 diabetes mellitus (T2D) is associated with more rapid bone loss in women, but less evidence is available for men or those with prediabetes. OBJECTIVE To determine whether bone loss rate is affected by diabetes status in older men, we analyzed data from the Osteoporotic Fractures in Men (MrOS) study. METHODS The multisite MrOS study enrolled 5,994 men aged ≥65 years. Diabetes status was defined by self-report, diabetes medication use, or elevated fasting serum glucose at baseline. Hip bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at baseline and a follow-up visit after 4.6 ± 0.4 years. This analysis included 4095 men, excluding those without a follow-up DXA or with unknown diabetes status. Changes in hip BMD in participants with normoglycemia (NG), prediabetes, or T2D, excluding thiazolidinedione (TZD) users, were evaluated using generalized linear models (GLM). Diabetes medication use and BMD loss among those with T2D were also evaluated with GLM. RESULTS In adjusted models, loss in hip BMD was greater in men with T2D (- 2.23%: 95% CI: -2.54 to -1.91; p<0.001) but not in men with prediabetes (-1.45%; 95% CI -1.63 to -1.26; p=0.33) compared to NG (-1.57%: 95% CI -1.73 to -1.41). Among men with T2D, TZD, insulin and sulfonylurea use were associated with greater hip BMD loss. CONCLUSIONS Men with T2D, but not prediabetes, experienced an accelerated bone loss compared to participants with normoglycemia. More rapid bone loss predicts increased risk of fractures and mortality in broader populations.
Collapse
Affiliation(s)
- Flavia Tramontana
- Operative Research Unit of Osteo-Metabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Nicola Napoli
- Operative Research Unit of Osteo-Metabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | | | - Douglas C Bauer
- Departments of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Eric S Orwoll
- Oregon Health & Science University, Portland, OR, USA
| | - Jane A Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elsa S Strotmeyer
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann V Schwartz
- Department Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Emerzian SR, Johannesdottir F, Yu EW, Bouxsein ML. Use of noninvasive imaging to identify causes of skeletal fragility in adults with diabetes: a review. JBMR Plus 2024; 8:ziae003. [PMID: 38505529 PMCID: PMC10945731 DOI: 10.1093/jbmrpl/ziae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. Although traditional DXA-BMD does not fully capture the increased fracture risk in diabetes, recent techniques such as quantitative computed tomography, peripheral quantitative computed tomography, high-resolution quantitative computed tomography, and MRI provide insights into 3D bone density, microstructure, and strength. Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, and potential misclassification between T1D and T2D. Thus, the true nature of diabetic skeletal fragility is yet to be fully understood. As T1D and T2D are diverse conditions with heterogeneous subtypes, future research should delve deeper into skeletal fragility by diabetic phenotypes and focus on longitudinal studies in larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes.
Collapse
Affiliation(s)
- Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Elaine W Yu
- Department of Medicine, Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
- Department of Medicine, Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
14
|
Wölfel EM, Bartsch B, Koldehoff J, Fiedler IAK, Dragoun‐Kolibova S, Schmidt FN, Krug J, Lin M, Püschel K, Ondruschka B, Zimmermann EA, Jelitto H, Schneider G, Gludovatz B, Busse B. When Cortical Bone Matrix Properties Are Indiscernible between Elderly Men with and without Type 2 Diabetes, Fracture Resistance Follows Suit. JBMR Plus 2023; 7:e10839. [PMID: 38130774 PMCID: PMC10731113 DOI: 10.1002/jbm4.10839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting bone tissue and leading to increased fracture risk in men and women, independent of bone mineral density (BMD). Thus, bone material quality (i.e., properties that contribute to bone toughness but are not attributed to bone mass or quantity) is suggested to contribute to higher fracture risk in diabetic patients and has been shown to be altered. Fracture toughness properties are assumed to decline with aging and age-related disease, while toughness of human T2DM bone is mostly determined from compression testing of trabecular bone. In this case-control study, we determined fracture resistance in T2DM cortical bone tissue from male individuals in combination with a multiscale approach to assess bone material quality indices. All cortical bone samples stem from male nonosteoporotic individuals and show no significant differences in microstructure in both groups, control and T2DM. Bone material quality analyses reveal that both control and T2DM groups exhibit no significant differences in bone matrix composition assessed with Raman spectroscopy, in BMD distribution determined with quantitative back-scattered electron imaging, and in nanoscale local biomechanical properties assessed via nanoindentation. Finally, notched three-point bending tests revealed that the fracture resistance (measured from the total, elastic, and plastic J-integral) does not significantly differ in T2DM and control group, when both groups exhibit no significant differences in bone microstructure and material quality. This supports recent studies suggesting that not all T2DM patients are affected by a higher fracture risk but that individual risk profiles contribute to fracture susceptibility, which should spur further research on improving bone material quality assessment in vivo and identifying risk factors that increase bone fragility in T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eva M. Wölfel
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Bartsch
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasmin Koldehoff
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sofie Dragoun‐Kolibova
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mei‐Chun Lin
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Klaus Püschel
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Ondruschka
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Hans Jelitto
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Gerold Schneider
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUniversity of New South Wales, Sydney (UNSW Sydney)SydneyAustralia
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
15
|
Zhao R, Xiong C, Zhao Z, Zhang J, Huang Y, Xie Z, Qu X, Luo X, Li Z. Exploration of the Shared Hub Genes and Biological Mechanism in Osteoporosis and Type 2 Diabetes Mellitus based on Machine Learning. Biochem Genet 2023; 61:2531-2547. [PMID: 37140844 DOI: 10.1007/s10528-023-10390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
A substantial amount of evidence suggests a close relationship between osteoporosis (OP) and Type 2 Diabetes Mellitus (T2DM), but the mechanisms involved remain unknown. Therefore, we conducted this study with the aim of screening for hub genes common to both diseases and conducting a preliminary exploration of common regulatory mechanisms. In the present study, we first screened genes significantly associated with OP and T2DM by the univariate logistic regression algorithm. And then, based on cross-analysis and random forest algorithm, we obtained three hub genes (ACAA2, GATAD2A, and VPS35) and validated the critical roles and predictive performance of the three genes in both diseases by differential expression analysis, receiver operating characteristic (ROC) curves, and genome wide association study (GWAS) analysis. Finally, based on gene set enrichment analysis (GSEA) and the construction of the miRNA-mRNA regulatory network, we conducted a preliminary exploration of the co-regulatory mechanisms of three hub genes in two diseases. In conclusion, this study provides promising biomarkers for predicting and treating both diseases and offers novel directions for exploring the common regulatory mechanisms of both diseases.
Collapse
Affiliation(s)
- Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Chuang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Zenghui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Xiao Qu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China.
- Orthopedic Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China.
| | - Zefang Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, People's Republic of China.
- Department of Orthopedics, Qianjiang Central Hospital of Chongqing, Qianjiang, Chongqing, 409000, People's Republic of China.
| |
Collapse
|
16
|
Emini L, Salbach‐Hirsch J, Krug J, Jähn‐Rickert K, Busse B, Rauner M, Hofbauer LC. Utility and Limitations of TALLYHO/JngJ as a Model for Type 2 Diabetes-Induced Bone Disease. JBMR Plus 2023; 7:e10843. [PMID: 38130754 PMCID: PMC10731141 DOI: 10.1002/jbm4.10843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases risk of fractures due to bone microstructural and material deficits, though the mechanisms remain unclear. Preclinical models mimicking diabetic bone disease are required to further understand its pathogenesis. The TALLYHO/JngJ (TH) mouse is a polygenic model recapitulating adolescent-onset T2DM in humans. Due to incomplete penetrance of the phenotype ~25% of male TH mice never develop hyperglycemia, providing a strain-matched nondiabetic control. We performed a comprehensive characterization of the metabolic and skeletal phenotype of diabetic TH mice and compared them to either their nondiabetic TH controls or the recommended SWR/J controls to evaluate their suitability to study diabetic bone disease in humans. Compared to both controls, male TH mice with T2DM exhibited higher blood glucose levels, weight along with impaired glucose tolerance and insulin sensitivity. TH mice with/without T2DM displayed higher cortical bone parameters and lower trabecular bone parameters in the femurs and vertebrae compared to SWR/J. The mechanical properties remained unchanged for all three groups except for a low-energy failure in TH mice with T2DM only compared to SWR/J. Histomorphometry analyses only revealed higher number of osteoclasts and osteocytes for SWR/J compared to both groups of TH. Bone turnover markers procollagen type 1 N-terminal propeptide (P1NP) and tartrate-resistant acid phosphatase (TRAP) were low for both groups of TH mice compared to SWR/J. Silver nitrate staining of the femurs revealed low number of osteocyte lacunar and dendrites in TH mice with T2DM. Three-dimensional assessment showed reduced lacunar parameters in trabecular and cortical bone. Notably, osteocyte morphology changed in TH mice with T2DM compared to SWR/J. In summary, our study highlights the utility of the TH mouse to study T2DM, but not necessarily T2DM-induced bone disease, as there were no differences in bone strength and bone cell parameters between diabetic and non-diabetic TH mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lejla Emini
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Juliane Salbach‐Hirsch
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Jähn‐Rickert
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Mildred Scheel Cancer Career Center HamburgUniversity Cancer Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Mildred Scheel Cancer Career Center HamburgUniversity Cancer Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Lorenz C. Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| |
Collapse
|
17
|
Vilaca T, Eastell R. Antiresorptive Versus Anabolic Therapy in Managing Osteoporosis in People with Type 1 and Type 2 Diabetes. JBMR Plus 2023; 7:e10838. [PMID: 38025034 PMCID: PMC10652175 DOI: 10.1002/jbm4.10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes is characterized by hyperglycemia, but the two main types, type 1 diabetes (T1D) and type 2 diabetes (T2D), have distinct pathophysiology and epidemiological profiles. Individuals with T1D and T2D have an increased risk of fractures, particularly of the hip, upper arm, ankle, and nonvertebral sites. The risk of fractures is higher in T1D compared to T2D. The diagnosis of osteoporosis in individuals with T1D and T2D follows similar criteria as in the general population, but treatment thresholds may differ. Antiresorptive therapies, the first-line treatment for osteoporosis, are effective in individuals with T2D. Observational studies and post hoc analyses of previous trials have indicated that antiresorptive drugs, such as bisphosphonates and selective estrogen receptor modulators, are equally effective in reducing fracture risk and increasing bone mineral density (BMD) in individuals with and without T2D. Denosumab has shown similar effects on vertebral fracture risk but increases the risk of nonvertebral fractures. Considering the low bone turnover observed in T1D and T2D, anabolic therapies, which promote bone formation and resorption, have emerged as a potential treatment option for bone fragility in this population. Data from observational studies and post hoc analyses of previous trials also showed similar results in increasing BMD and reducing the risk of fractures in people with or without T2D. However, no evidence suggests that anabolic therapy has greater efficacy than antiresorptive drugs. In conclusion, there is an increased risk of fractures in T1D and T2D. Reductions in BMD cannot solely explain the relationship between T1D and T2D and fractures. Bone microarchitecture and other factors play a role. Antiresorptive and anabolic therapies have shown efficacy in reducing fracture risk in individuals with T2D, but the evidence is more robust for antiresorptive drugs. Evidence in T1D is scant. Further research is needed to fully understand the underlying mechanisms and optimize management strategies for bone fragility in T1D and T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tatiane Vilaca
- Mellanby Centre for Musculoskeletal Research, Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Richard Eastell
- Mellanby Centre for Musculoskeletal Research, Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| |
Collapse
|
18
|
Zanner S, Goff E, Ghatan S, Wölfel EM, Ejersted C, Kuhn G, Müller R, Frost M. Microvascular Disease Associates with Larger Osteocyte Lacunae in Cortical Bone in Type 2 Diabetes Mellitus. JBMR Plus 2023; 7:e10832. [PMID: 38025042 PMCID: PMC10652180 DOI: 10.1002/jbm4.10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Clinical studies indicate that microvascular disease (MVD) affects bone microstructure and decreases bone strength in type 2 diabetes mellitus (T2D). Osteocytes are housed in small voids within the bone matrix and lacunae and act as sensors of mechanical forces in bone. These cells regulate osteoclastic bone resorption and osteoblastic bone formation as well as osteocytic perilacunar remodeling. We hypothesized that MVD changes morphometric osteocyte lacunar parameters in individuals with T2D. We collected iliac crest bone biopsies from 35 individuals (10 female, 25 male) with T2D with MVD (15%) or without MVD (21%) with a median age of 67 years (interquartile range [IQR] 62-72 years). The participants were included based on c-peptide levels >700 pmol L-1, absence of anti-GAD65 antibodies, and glycated hemoglobin (HbA1c) levels between 40 and 82 mmol mol-1 or 5.8% and 9.7%, respectively. We assessed osteocyte lacunar morphometric parameters in trabecular and cortical bone regions using micro-computed tomography (micro-CT) at a nominal resolution of 1.2 μm voxel size. The cortical osteocyte lacunar volume (Lc.V) was 7.7% larger (p = 0.05) and more spherical (Lc.Sr, p < 0.01) in the T2D + MVD group. Using linear regression, we found that lacunar density (Lc.N/BV) in trabecular but not cortical bone was associated with HbA1c (p < 0.05, R 2 = 0.067) independently of MVD. Furthermore, Lc.V was larger and Lc.Sr higher in the center than in the periphery of the trabecular and cortical bone regions (p < 0.05). In conclusion, these data imply that MVD may impair skeletal integrity, possibly contributing to increased skeletal fragility in T2D complicated by MVD. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sebastian Zanner
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
- Clinical InstituteUniversity of Southern DenmarkOdenseDenmark
| | - Elliott Goff
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Samuel Ghatan
- Department of Internal MedicineErasmus MC University—Medical Center RotterdamRotterdamThe Netherlands
| | - Eva Maria Wölfel
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
| | | | - Gisela Kuhn
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Ralph Müller
- Institute for BiomechanicsETH ZurichZurichSwitzerland
| | - Morten Frost
- Molecular Endocrinology Department, Department MOdense University HospitalOdenseDenmark
- Clinical InstituteUniversity of Southern DenmarkOdenseDenmark
- Steno Diabetes Centre OdenseOUHOdenseDenmark
| |
Collapse
|
19
|
Kuzu TE, Öztürk K, Gürgan CA, Yay A, Göktepe Ö, Kantarcı A. Anti-inflammatory and pro-regenerative effects of a monoterpene glycoside on experimental periodontitis in a rat model of diabetes. J Periodontal Res 2023; 58:932-938. [PMID: 37340760 DOI: 10.1111/jre.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Paeoniflorin (Pae) is a monoterpene glycoside with immune-regulatory effects. Several studies have already demonstrated the impact of Pae on periodontitis, but its effect on diabetic periodontitis is unclear. In this study, our aim was to test the hypothesis that Pae had a strong anti-inflammatory effect that prevented bone loss in diabetic periodontitis. METHODS Thirty male Wistar albino rats were randomly divided into control (healthy, n = 10), periodontitis (PD) + diabetes (DM; n = 10), and PD + DM + Pae (n = 10) groups. Ligature-induced periodontitis was created by placing 4-0 silk ligatures around the lower first molars on both sides of the mandibulae. Experimental DM was created via an injection of 50 mg/kg and streptozotocin (STZ). Hyperglycemia was confirmed by the blood glucose levels of rats (>300 mg/dL). The bone mineral density (BMD), trabecular number, trabecular thickness, and bone loss were measured by micro-CT. The expression levels of IL-1β, IL-6, and TNF-α were measured in tissue homogenates by ELISA. RESULTS The PD + DM + Pae group had significantly less alveolar crest resorption when compared to the PD + DM group. There was also a significant difference between the PD + DM + Pae group compared to PD + DM group in trabecular thickness, BMD, and the number of trabeculae. Pae application led to a statistically significant decrease in IL-1β, IL-6, and TNF-α levels in diabetic periodontitis. CONCLUSION Systemic application of Pae suppressed inflammation caused by PD and DM, leading to reduced bone loss and enhanced bone quality.
Collapse
Affiliation(s)
- Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Cem A Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
20
|
Bergamo ET, Witek L, Ramalho I, Lopes ACO, Vivekanand Nayak V, Bonfante EA, Tovar N, Torroni A, Coelho PG. Bone healing around implants placed in subjects with metabolically compromised systemic conditions. J Biomed Mater Res B Appl Biomater 2023; 111:1664-1671. [PMID: 37184298 PMCID: PMC10330391 DOI: 10.1002/jbm.b.35264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The aim of this study was to evaluate the bone healing of tight-fit implants placed in the maxilla and mandible of subjects compromised with metabolic syndrome (MS) and type-2 Diabetes Mellitus (T2DM). Eighteen Göttingen minipigs were randomly distributed into three groups: (i) control (normal diet), (ii) MS (cafeteria diet for obesity induction), (iii) T2DM (cafeteria diet for obesity induction + Streptozotocin for T2DM induction). Maxillary and mandibular premolars and molar were extracted. After 8 weeks of healing, implants with progressive small buttress threads were placed, and allowed to integrate for 6 weeks after which the implant/bone blocks were retrieved for histological processing. Qualitative and quantitative histomorphometric analyses (percentage of bone-to-implant contact, %BIC, and bone area fraction occupancy within implant threads, %BAFO) were performed. The bone healing process around the implant occurred predominantly through interfacial remodeling with subsequent bone apposition. Data as a function of systemic condition yielded significantly higher %BIC and %BAFO values for healthy and MS relative to T2DM. Data as a function of maxilla and mandible did not yield significant differences for either %BIC and %BAFO. When considering both factors, healthy and MS subjects had %BIC and %BAFO trend towards higher values in the mandible relative to maxilla, whereas T2DM yielded higher %BIC and %BAFO in the maxilla relative to mandible. All systemic conditions presented comparable levels of %BIC and %BAFO in the maxilla; healthy and MS presented significantly higher %BIC and %BAFO relative to T2DM in the mandible. T2DM presented lower amounts of bone formation around implants relative to MS and healthy. Implants placed in the maxilla and in the mandible showed comparable amounts of bone in proximity to implants.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY USA
| | - Ilana Ramalho
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Adolfo CO Lopes
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, Brooklyn, NY USA
| | - Estevam A Bonfante
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, Grossman School of Medicine, New York University, New York, NY USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Naseri A, Shojaeefard E, Bakhshayeshkaram M, Dabbaghmanesh MM, Heydari ST, Talezadeh P, Farhadi M, Nikkhah A, Dabbaghmanesh MH. Hip structural analysis, trabecular bone score, and bone mineral density in post-menopausal women with type-2 diabetes mellitus: a multi-center cross-sectional study in the south of Iran. Arch Osteoporos 2023; 18:98. [PMID: 37454358 DOI: 10.1007/s11657-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to evaluate bone mineral density (BMD), trabecular microarchitecture, and proximal hip geometry in diabetic postmenopausal women, where BMD alone cannot reflect bone strength adequately. We found significantly lower trabecular bone score and BMD at the distal radius and total forearm in diabetic subjects compared to controls. PURPOSE The limitations resulting from the exclusive assessment of bone mineral density (BMD) in people with diabetes can lead to underestimation of microarchitectural and geometric changes, both of which play an essential role in the fracture risk. Therefore, we aimed to evaluate BMD, trabecular bone score (TBS), and hip structural analysis (HSA) in diabetic type-2 post-menopausal women and compare them with healthy postmenopausal subjects. METHODS BMD was assessed at the lumbar spine, femoral sites, distal radius, and total forearm using dual-energy X-ray absorptiometry (DXA); TBS was measured based on DXA images using the software at the same region of interest as the BMD measurements; geometric assessment at the proximal femur was performed by the HSA program. RESULTS A total of 348 ambulatory type-2 diabetic postmenopausal women and 539 healthy postmenopausal women were enrolled. TBS and BMD at the distal radius and total forearm were significantly (P value < 0.05) lower in cases compared to controls after age and body mass index (BMI) adjustment. In addition, degraded bone microarchitecture was significantly (P value < 0.05) more prevalent in diabetic subjects than in non-diabetic controls after adjusting for age and BMI. A number of geometric indices of the proximal hip were significantly lower in the controls than in those with diabetes (P-value < 0.05). CONCLUSION This study may highlight the utility of the TBS and BMD at the distal radius and total forearm in subjects with type-2 diabetes mellitus, where the BMD at central sites may not adequately predict fracture risk.
Collapse
Affiliation(s)
- Arzhang Naseri
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Shojaeefard
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Bakhshayeshkaram
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Taghi Heydari
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pedram Talezadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Farhadi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nikkhah
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Arora D, Taylor EA, King KB, Donnelly E. Increased tissue modulus and hardness in the TallyHO mouse model of early onset type 2 diabetes mellitus. PLoS One 2023; 18:e0287825. [PMID: 37418415 PMCID: PMC10328374 DOI: 10.1371/journal.pone.0287825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a higher fracture risk compared to those without T2DM despite having higher bone mineral density (BMD). Thus, T2DM may alter other aspects of resistance to fracture beyond BMD such as bone geometry, microarchitecture, and tissue material properties. We characterized the skeletal phenotype and assessed the effects of hyperglycemia on bone tissue mechanical and compositional properties in the TallyHO mouse model of early-onset T2DM using nanoindentation and Raman spectroscopy. Femurs and tibias were harvested from male TallyHO and C57Bl/6J mice at 26 weeks of age. The minimum moment of inertia assessed by micro-computed tomography was smaller (-26%) and cortical porosity was greater (+490%) in TallyHO femora compared to controls. In three-point bending tests to failure, the femoral ultimate moment and stiffness did not differ but post-yield displacement was lower (-35%) in the TallyHO mice relative to that in C57Bl/6J age-matched controls after adjusting for body mass. The cortical bone in the tibia of TallyHO mice was stiffer and harder, as indicated by greater mean tissue nanoindentation modulus (+22%) and hardness (+22%) compared to controls. Raman spectroscopic mineral:matrix ratio and crystallinity were greater in TallyHO tibiae than in C57Bl/6J tibiae (mineral:matrix +10%, p < 0.05; crystallinity +0.41%, p < 0.10). Our regression model indicated that greater values of crystallinity and collagen maturity were associated with reduced ductility observed in the femora of the TallyHO mice. The maintenance of structural stiffness and strength of TallyHO mouse femora despite reduced geometric resistance to bending could potentially be explained by increased tissue modulus and hardness, as observed at the tibia. Finally, with worsening glycemic control, tissue hardness and crystallinity increased, and bone ductility decreased in TallyHO mice. Our study suggests that these material factors may be sentinels of bone embrittlement in adolescents with T2DM.
Collapse
Affiliation(s)
- Daksh Arora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, United States of America
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Karen B. King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, United States of America
- Research Institute, Hospital for Special Surgery, New York, New York, United States of America
| |
Collapse
|
23
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
24
|
Rasmussen NH, Kvist AV, Dal J, Jensen MH, van den Bergh JP, Vestergaard P. Bone parameters in T1D and T2D assessed by DXA and HR-pQCT - A cross-sectional study: The DIAFALL study. Bone 2023; 172:116753. [PMID: 37001628 DOI: 10.1016/j.bone.2023.116753] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION/AIM People with type 1 diabetes(T1D) and type 2 diabetes(T2D) have an increased risk of fractures due to skeletal fragility. We aimed to compare areal bone mineral density(aBMD), volumetric BMD(vBMD), cortical and trabecular measures, and bone strength parameters in participants with diabetes vs. controls. METHODS In a cross-sectional study, we included participants with T1D(n = 111), T2D(n = 106) and controls(n = 328). The study comprised of whole-body DXA and HR-pQCT scans, biochemistry, handgrip strength(HGS), Timed Up and GO(TUG), vibration perception threshold (VPT), questionnaires, medical histories, alcohol use, and previous fractures. Group comparisons were performed after adjustment for sex, age, BMI, diabetes duration, HbA1c, alcohol, smoking, previous fractures, postmenopausal, HGS, TUG, and VPT. RESULTS We found decreased aBMD in participants with T1D at the femoral neck(p = 0.028), whereas T2D had significantly higher aBMD at peripheral sites(legs, arms, p < 0.01) vs. controls. In T1D we found higher vBMD(p < 0.001), cortical vBMD (p < 0.001), cortical area(p = 0.002) and thickness(p < 0.001), lower cortical porosity(p = 0.008), higher stiffness(p = 0.002) and failure load(p = 0.003) at radius and higher vBMD(p = 0.003), cortical vBMD(p < 0.001), bone stiffness(p = 0.023) and failure load(p = 0.044) at the tibia than controls. In T2D we found higher vBMD(p < 0.001), cortical vBMD(p < 0.001), trabecular vBMD(p < 0.001), cortical area (p < 0.001) and thickness (p < 0.001), trabecular number (p = 0.024), lower separation(p = 0.010), higher stiffness (p < 0.001) and failure load (p < 0.001) at the radius and higher total vBMD(p < 0.001), cortical vBMD(p < 0.011), trabecular vBMD(p = 0.001), cortical area(p = 0.002) and thickness(p = 0.021), lower trabecular separation(p = 0.039), higher stiffness(p < 0.001) and failure load(p = 0.034) at tibia compared with controls. CONCLUSION aBMD measures were as expected but favorable bone microarchitecture and strength parameters were seen at the tibia and radius for T1D and T2D.
Collapse
Affiliation(s)
| | - Annika Vestergaard Kvist
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University Hospital, Odense, Denmark,; University of Southern Denmark, Odense, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH-Zurich, Zurich, Switzerland
| | - Jakob Dal
- Department of Endocrinology, Aalborg University Hospital, Denmark
| | - Morten H Jensen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark; Department of Health Science and Technology, Aalborg University, Denmark
| | - Joop P van den Bergh
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark
| |
Collapse
|
25
|
Sheu A, Greenfield JR, White CP, Center JR. Contributors to impaired bone health in type 2 diabetes. Trends Endocrinol Metab 2023; 34:34-48. [PMID: 36435679 DOI: 10.1016/j.tem.2022.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Type 2 diabetes (T2D) is associated with numerous complications, including increased risk of fragility fractures, despite seemingly protective factors [e.g., normal bone mineral density and increased body mass index(BMI)]. However, fracture risk in T2D is underestimated by current fracture risk calculators. Importantly, post-fracture mortality is worse in T2D following any fracture, highlighting the importance of identifying high-risk patients that may benefit from targeted management. Several diabetes-related factors are associated with increased fracture risk, including exogenous insulin therapy, vascular complications, and poor glycaemic control, although detailed comprehensive studies to identify the independent contributions of these factors are lacking. The underlying pathophysiological mechanisms are complex and multifactorial, with different factors contributing during the course of T2D disease. These include obesity, hyperinsulinaemia, hyperglycaemia, accumulation of advanced glycation end products, and vascular supply affecting bone-cell function and survival and bone-matrix composition. This review summarises the current understanding of the contributors to impaired bone health in T2D, and proposes an updated approach to managing these patients.
Collapse
Affiliation(s)
- Angela Sheu
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia.
| | - Jerry R Greenfield
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia; Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, Australia
| | - Christopher P White
- Clinical School, Prince of Wales Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Metabolism, Prince of Wales Hospital, Sydney, Australia
| | - Jacqueline R Center
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
26
|
Cifuentes-Mendiola SE, Solís-Suárez DL, Martínez-Dávalos A, Perrusquía-Hernández E, García-Hernández AL. Aerobic training improves bone fragility by reducing the inflammatory microenvironment in bone tissue in type 2 diabetes. J Biomech 2022; 145:111354. [PMID: 36335825 DOI: 10.1016/j.jbiomech.2022.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Aerobic training (AT) is indicated in type 2 diabetes mellitus (T2DM) to control hyperglycaemia and inflammation. AT improves bone microarchitecture and resistance to fracture. The intensity of AT and the mechanisms that lead to the improvement in bone quality are still unknown. Using a mouse model of T2DM, we evaluated the effects of two intensities of forced AT. We divided mice into: sedentary (SED), T2DM-SED, low runners (LOW), T2DM-LOW, high runners (HIGH) and T2DM-HIGH. The AT for low was 8 m/minute (m/min); 5° slope or high 18 m/min; 15° slope for 2 months. We measured metabolic parameters, the serum cytokines concentration, lipocalin-2 (LCN-2) and adiponectin; and the tibial concentrations of LCN-2, tumour necrosis factor alpha (TNF-α) and protein carbonylation (CO). We evaluated femur morphometry and biomechanical properties. We performed multiple correlation analysis. The T2DM-LOW versus T2DM-SED group, shown an increase of interleukin (IL)-10 (417 ± 90 vs 102 ± 25 pg/mL) and improved trabecular bone (BV/TV: 31.8 ± 2.3 vs 19.25 ± 1.4%; Tb.Sp.: 1.62 ± 0.02 vs 2.0 ± 0.07 mm), by a decrease bone CO (3.4 ± 0.1 vs 6.0 ± 0.5 nmol/mg), bone TNF-α (84 ± 4 vs 239 ± 13 pg/mL) and LCN-2 (2887 ± 23 vs 3418 ± 105 pg/mL). The T2DM-HIGH versus T2DM-SED group showed a greater hypoglycaemic effect (228 ± 10 vs 408 ± 5 mg/dL), with improved cortical bone density (0.26 ± 0.012 vs 0.21 ± 0.007 mm) and fracture resistance (102 ± 8 vs 78 ± 5 MPa), by a reduction of bone TNF-α (77 ± 34 vs 239 ± 13 pg/mL); LCN-2 (2768 ± 20 vs 3418 ± 105 pg/mL) and CO (4.8 ± 0.5 vs 6.0 ± 0.5 nmol/mg). In conclusion, AT improves bone morphometry and biomechanical properties by reducing the bone inflammatory microenvironment.
Collapse
Affiliation(s)
- Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology. FES Iztacala, National Autonomous University of Mexico (UNAM), Mexico; Postgraduate in Biological Sciences. National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Diana Laura Solís-Suárez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology. FES Iztacala, National Autonomous University of Mexico (UNAM), Mexico; Postgraduate in Dentistry Sciencies. National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Elías Perrusquía-Hernández
- Laboratory of Dental Research, Neurobiology of Oral Sensations and Movements Section, FES Iztacala, National Autonomous University of Mexico (UNAM), Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology. FES Iztacala, National Autonomous University of Mexico (UNAM), Mexico.
| |
Collapse
|
27
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Færgeman N, Rauch A, Tencerova M, Kassem M. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell 2022; 21:e13726. [PMID: 36217558 PMCID: PMC9741509 DOI: 10.1111/acel.13726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022] Open
Abstract
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Atenisa Caci
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Clarissa Schmal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Greet Kerckhofs
- Biomechanics Section, Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Nils Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Molecular Physiology of Bone, Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB) Odense University HospitalUniversity of Southern DenmarkOdenseDenmark,Department of Cellular and Molecular Medicine, Danish Stem Cell Centre (DanStem)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
28
|
Wölfel EM, Fiedler IAK, Dragoun Kolibova S, Krug J, Lin MC, Yazigi B, Siebels AK, Mushumba H, Wulff B, Ondruschka B, Püschel K, Glüer CC, Jähn-Rickert K, Busse B. Human tibial cortical bone with high porosity in type 2 diabetes mellitus is accompanied by distinctive bone material properties. Bone 2022; 165:116546. [PMID: 36113843 DOI: 10.1016/j.bone.2022.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Diabetes mellitus is a metabolic disease affecting bone tissue at different length-scales. Higher fracture risk in diabetic patients is difficult to detect with common clinical fracture risk assessment due to normal or high bone mineral density in diabetic patients. The observed higher fracture risk despite normal to high areal bone mineral density in diabetic patients points towards impaired bone material quality. Here, we analyze tibial bone from individuals with type 2 diabetes mellitus using a multiscale-approach, which includes clinical and laboratory-based bone quality measures. Tibial cortical bone tissue from individuals with type 2 diabetes mellitus (T2DM) and age-matched healthy controls (n = 15 each) was analyzed with in situ impact indentation, dual energy X-ray absorptiometry (DXA), high resolution peripheral microcomputed tomography (HR-pQCT), micro-computed tomography (microCT), cyclic indentation, quantitative backscattered electron microscopy (qBEI), vibrational spectroscopy (Raman), nanoindentation, and fluorescence spectroscopy. With this approach, a high cortical porosity subgroup of individuals with T2DM was discriminated from two study groups: individuals with T2DM and individuals without T2DM, while both groups were associated with similar cortical porosity quantified by means of microCT. The high porosity T2DM group, but not the T2DM group, showed compromised bone quality expressed by altered cyclic indentation properties (transversal direction) in combination with a higher carbonate-to-amide I ratio in endocortical bone. In addition, in the T2DM group with high cortical porosity group, greater cortical pore diameter was identified with HR-pQCT and lower tissue mineral density using microCT, both compared to T2DM group. Micromechanical analyses of cross-sectioned osteons (longitudinal direction) with cyclic indentation, qBEI, and nanoindentation showed no differences between the three groups. High tibial cortical porosity in T2DM can be linked to locally altered bone material composition. As the tibia is an accessible skeletal site for fracture risk assessment in the clinics (CT, indentation), our findings may contribute to further understanding the site-specific structural and compositional factors forming the basis of bone quality in diabetes mellitus. Refined diagnostic strategies are needed for a comprehensive fracture risk assessment in diabetic bone disease.
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Sofie Dragoun Kolibova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Mei-Chun Lin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bashar Yazigi
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universitat zu Kiel, MOIN CC, 24118 Kiel, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| |
Collapse
|
29
|
Surowiec RK, Swallow EA, Warden SJ, Allen MR. Tracking changes of individual cortical pores over 1 year via HR-pQCT in a small cohort of 60-year-old females. Bone Rep 2022; 17:101633. [PMID: 36337684 PMCID: PMC9634666 DOI: 10.1016/j.bonr.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction High-resolution peripheral quantitative computed tomography (HR-pQCT) is a powerful tool that has revolutionized 3D longitudinal assessment of bone microarchitecture. However, cortical porosity, a common characteristic of cortical bone loss, is still often determined by static evaluation of overall porosity at one timepoint. Therefore, we sought to 1) describe a technique to evaluate individual cortical pore dynamics in aging females over one year using HR-pQCT imaging and 2) determine whether formation and expansion of pores would exceed contraction and infilling of pores. Methods HR-pQCT (60.7 μm resolution) images were acquired one year apart at the distal tibia and distal radius in seven female volunteers (60-72 years of age). Baseline and one-year images were registered at each bone site and a custom software was used to quantify dynamic activity of individual cortical pores using the following categories: developed, infilled, expanded, contracted, and static. Results Over the one-year period, cortical pores actively developed, contracted, expanded, and infilled. More pores expanded and developed vs. infilled or contracted leading to increased pore area in both tibial and radial sites (p = 0.0034 and p = 0.0474, respectively). Closed pores in the tibia, those that were not connected to the endosteal or periosteal surfaces, were the most dynamic of any pores type (open/closed) at either bone site. Conclusion This study demonstrates an approach to longitudinally track individual cortical pore activity in tibial and radial sites. These data expand conventional parameters for assessing cortical porosity and show increased porosity in one year of aging is caused by newly developed pores and expansion of existing pores.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stuart J. Warden
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
30
|
Walle M, Whittier DE, Frost M, Müller R, Collins CJ. Meta-analysis of Diabetes Mellitus-Associated Differences in Bone Structure Assessed by High-Resolution Peripheral Quantitative Computed Tomography. Curr Osteoporos Rep 2022; 20:398-409. [PMID: 36190648 PMCID: PMC9718715 DOI: 10.1007/s11914-022-00755-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is defined by elevated blood glucose levels caused by changes in glucose metabolism and, according to its pathogenesis, is classified into type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Diabetes mellitus is associated with multiple degenerative processes, including structural alterations of the bone and increased fracture risk. High-resolution peripheral computed tomography (HR-pQCT) is a clinically applicable, volumetric imaging technique that unveils bone microarchitecture in vivo. Numerous studies have used HR-pQCT to assess volumetric bone mineral density and microarchitecture in patients with diabetes, including characteristics of trabecular (e.g. number, thickness and separation) and cortical bone (e.g. thickness and porosity). However, study results are heterogeneous given different imaging regions and diverse patient cohorts. RECENT FINDINGS This meta-analysis assessed T1DM- and T2DM-associated characteristics of bone microarchitecture measured in human populations in vivo reported in PubMed- and Embase-listed publications from inception (2005) to November 2021. The final dataset contained twelve studies with 516 participants with T2DM and 3067 controls and four studies with 227 participants with T1DM and 405 controls. While T1DM was associated with adverse trabecular characteristics, T2DM was primarily associated with adverse cortical characteristics. These adverse effects were more severe at the radius than the load-bearing tibia, indicating increased mechanical loading may compensate for deleterious bone microarchitecture changes and supporting mechanoregulation of bone fragility in diabetes mellitus. Our meta-analysis revealed distinct predilection sites of bone structure aberrations in T1DM and T2DM, which provide a foundation for the development of animal models of skeletal fragility in diabetes and may explain the uncertainty of predicting bone fragility in diabetic patients using current clinical algorithms.
Collapse
Affiliation(s)
- Matthias Walle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Morten Frost
- Molecular Endocrinology Laboratory & Steno Diabetes Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Caitlyn J Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 323 Kelly Hall, 325 Stanger Street, Blacksburg, 24061, VA, USA.
| |
Collapse
|
31
|
Araújo IMD, Moreira MLM, Paula FJAD. Diabetes and bone. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:633-641. [PMID: 36382752 PMCID: PMC10118819 DOI: 10.20945/2359-3997000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Globally, one in 11 adults has diabetes mellitus of which 90% have type 2 diabetes. The numbers for osteoporosis are no less staggering: 1 in 3 women has a fracture after menopause, and the same is true for 1 in 5 men after the age of 50 years. Aging is associated with several physiological changes that cause insulin resistance and impaired insulin secretion, which in turn lead to hyperglycemia. The negative balance between bone resorption and formation is a natural process that appears after the fourth decade of life and lasts for the following decades, eroding the bone structure and increasing the risk of fractures. Not incidentally, it has been acknowledged that diabetes mellitus, regardless of whether type 1 or 2, is associated with an increased risk of fracture. The nuances that differentiate bone damage in the two main forms of diabetes are part of the intrinsic heterogeneity of diabetes, which is enhanced when associated with a condition as complex as osteoporosis. This narrative review addresses the main parameters related to the increased risk of fractures in individuals with diabetes, and the mutual factors affecting the treatment of diabetes mellitus and osteoporosis.
Collapse
|
32
|
Faienza MF, Pontrelli P, Brunetti G. Type 2 diabetes and bone fragility in children and adults. World J Diabetes 2022; 13:900-911. [PMID: 36437868 PMCID: PMC9693736 DOI: 10.4239/wjd.v13.i11.900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a global epidemic disease. The prevalence of T2D in adolescents and young adults is increasing alarmingly. The mechanisms leading to T2D in young people are similar to those in older patients. However, the severity of onset, reduced insulin sensitivity and defective insulin secretion can be different in subjects who develop the disease at a younger age. T2D is associated with different complications, including bone fragility with consequent susceptibility to fractures. The purpose of this systematic review was to describe T2D bone fragility together with all the possible involved pathways. Numerous studies have reported that patients with T2D show preserved, or even increased, bone mineral density compared with controls. This apparent paradox can be explained by the altered bone quality with increased cortical bone porosity and compr-omised mechanical properties. Furthermore, reduced bone turnover has been described in T2D with reduced markers of bone formation and resorption. These findings prompted different researchers to highlight the mechanisms leading to bone fragility, and numerous critical altered pathways have been identified and studied. In detail, we focused our attention on the role of microvascular disease, advanced glycation end products, the senescence pathway, the Wnt/β-catenin pathway, the osteoprotegerin/receptor-activator of nuclear factor kappa B ligand, osteonectin and fibroblast growth factor 23. The understanding of type 2 myeloid bone fragility is an important issue as it could suggest possible interventions for the prevention of poor bone quality in T2D and/or how to target these pathways when bone disease is clearly evident.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Paola Pontrelli
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
33
|
Wölfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Püschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jähn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B. Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation. J Bone Miner Res 2022; 37:2259-2276. [PMID: 36112316 DOI: 10.1002/jbmr.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcif Tissue Int 2022; 111:457-465. [PMID: 35871240 PMCID: PMC9308472 DOI: 10.1007/s00223-022-01007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck-the common fracture-initiating site-are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
35
|
Collins CJ, Atkins PR, Ohs N, Blauth M, Lippuner K, Müller R. Clinical observation of diminished bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation. Sci Rep 2022; 12:17960. [PMID: 36289391 PMCID: PMC9606273 DOI: 10.1038/s41598-022-22678-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
High resolution peripheral quantitative computed tomography (HR-pQCT) provides methods for quantifying volumetric bone mineral density and microarchitecture necessary for early diagnosis of bone disease. When combined with a longitudinal imaging protocol and finite element analysis, HR-pQCT can be used to assess bone formation and resorption (i.e., remodeling) and the relationship between this remodeling and mechanical loading (i.e., mechanoregulation) at the tissue level. Herein, 25 patients with a contralateral distal radius fracture were imaged with HR-pQCT at baseline and 9-12 months follow-up: 16 patients were prescribed vitamin D3 with/without calcium supplement based on a blood biomarker measures of bone metabolism and dual-energy X-ray absorptiometry image-based measures of normative bone quantity which indicated diminishing (n = 9) or poor (n = 7) bone quantity and 9 were not. To evaluate the sensitivity of this imaging protocol to microstructural changes, HR-pQCT images were registered for quantification of bone remodeling and image-based micro-finite element analysis was then used to predict local bone strains and derive rules for mechanoregulation. Remodeling volume fractions were predicted by both average values of trabecular and cortical thickness and bone mineral density (R2 > 0.8), whereas mechanoregulation was affected by dominance of the arm and group classification (p < 0.05). Overall, longitudinal, extended HR-pQCT analysis enabled the identification of changes in bone quantity and quality too subtle for traditional measures.
Collapse
Affiliation(s)
- Caitlyn J. Collins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.438526.e0000 0001 0694 4940Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA USA
| | - Penny R. Atkins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland ,grid.223827.e0000 0001 2193 0096Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
| | - Nicholas Ohs
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Michael Blauth
- grid.5361.10000 0000 8853 2677Department of Orthopedics and Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria ,Clinical Medical Department DePuy Synthes, Zuchwil, Switzerland
| | - Kurt Lippuner
- grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph Müller
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Zheng Y, Rostami Haji Abadi M, Ghafouri Z, Meira Goes S, Johnston JJD, Nour M, Kontulainen S. Bone deficits in children and youth with type 1 diabetes: A systematic review and meta-analysis. Bone 2022; 163:116509. [PMID: 35914713 DOI: 10.1016/j.bone.2022.116509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Deficits in bone mineral and weaker bone structure in children with type 1 diabetes (T1D) may contribute to a lifelong risk of fracture. However, there is no meta-analysis comparing bone properties beyond density between children with T1D and typically developing children (TDC). This meta-analysis aimed to assess differences and related factors in bone mineral content (BMC), density, area, micro-architecture and estimated strength between children with T1D and TDC. We systematically searched MEDLINE, Embase, CINAHL, Web of Science, Scopus, Cochrane Library databases, and included 36 in the meta-analysis (2222 children and youth with T1D, 2316 TDC; mean age ≤18 yrs., range 1-24). We estimated standardized mean differences (SMD) using random-effects models and explored the role of age, body size, sex ratio, disease duration, hemoglobin A1c in relation to BMC and areal density (aBMD) SMD using meta-regressions. Children and youth with T1D had lower total body BMC (SMD: -0.21, 95% CI: -0.37 to -0.05), aBMD (-0.30, -0.50 to -0.11); lumbar spine BMC (-0.17, -0.28 to -0.06), aBMD (-0.20, -0.32 to -0.08), bone mineral apparent density (-0.30, -0.48 to -0.13); femoral neck aBMD (-0.21, -0.33 to -0.09); distal radius and tibia trabecular density (-0.38, -0.64 to -0.12 and -0.35, -0.51 to -0.18, respectively) and bone volume fraction (-0.33, -0.56 to -0.09 and -0.37, -0.60 to -0.14, respectively); distal tibia trabecular thickness (-0.41, -0.67 to -0.16); and tibia shaft cortical content (-0.33, -0.56 to -0.10). Advanced age was associated with larger SMD in total body BMC (-0.13, -0.21 to -0.04) and aBMD (-0.09; -0.17 to -0.01) and longer disease duration with larger SMD in total body aBMD (-0.14; -0.24 to -0.04). Children and youth with T1D have lower BMC, aBMD and deficits in trabecular density and micro-architecture. Deficits in BMC and aBMD appeared to increase with age and disease duration. Bone deficits may contribute to fracture risk and require attention in diabetes research and care. STUDY REGISTRATION: PROSPERO (CRD42020200819).
Collapse
Affiliation(s)
- Yuwen Zheng
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B2
| | | | - Zahra Ghafouri
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B2
| | - Suelen Meira Goes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B2; College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - James J D Johnston
- College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9
| | - Munier Nour
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B2.
| |
Collapse
|
37
|
Ballato E, Deepika FNU, Russo V, Fleires-Gutiérrez A, Colleluori G, Fuenmayor V, Chen R, Villareal DT, Qualls C, Armamento-Villareal R. One-Year Mean A1c of > 7% is Associated with Poor Bone Microarchitecture and Strength in Men with Type 2 Diabetes Mellitus. Calcif Tissue Int 2022; 111:267-278. [PMID: 35665818 PMCID: PMC9549604 DOI: 10.1007/s00223-022-00993-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with normal or slightly elevated bone mineral density (BMD) but paradoxically increased fracture risk. Although multiple mechanisms have been proposed to explain this observation, one thing is clear from prior studies, T2DM is associated with poor bone quality rather than a defect in bone quantity. The objective of our study is to evaluate the effect of longitudinal glycemic control on bone quality and bone turnover in men with T2DM. METHODS This was a secondary analysis of baseline data from 169 male participants, aged 35-65 in 3 clinical trials. Participants were grouped according to the average of all their A1C measurements between 9 and 15 months prior to study entry (group 1: no T2DM, group 2: T2DM with A1C ≤ 7%, group 3: T2DM with A1C > 7%). At study entry serum osteocalcin and C-terminal telopeptide of type 1 collagen (CTx) were measured by ELISA, and testosterone and estradiol by liquid-chromatography/mass-spectrometry. Areal BMD, trabecular bone score and body composition were measured by dual-energy X-ray absorptiometry while volumetric BMD, bone microarchitecture, and bone strength were assessed by high-resolution peripheral quantitative computed tomography. RESULTS At the tibia, trabecular separation was higher and trabecular number was significantly lower in group 3 compared to both groups 2 and 1, even after adjustments for covariates (p = 0.02 for both). Bone strength indices at the tibia such as stiffness and failure load were lowest in group 3, the difference being significant when compared to group 1 (p = 0.01, p = 0.009 respectively) but not to group 2, after adjustments for covariates. Bone turnover markers (osteocalcin and CTx) were significantly lower in group 3 relative to group 1, with CTx also being significantly lower in group 3 compared with group 2 (p < 0.001, p = 0.001 respectively). CONCLUSION Poor glycemic control over the course of a year in men with T2DM is associated with poorer bone microarchitecture and strength, and reduced bone turnover. Conversely, good glycemic control in the setting of T2DM appears to attenuate this observed impairment in bone quality.
Collapse
Affiliation(s)
- Elliot Ballato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - F N U Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Vittoria Russo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alcibiades Fleires-Gutiérrez
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Georgia Colleluori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Virginia Fuenmayor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Rui Chen
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Clifford Qualls
- Biomedical Research Institute of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
38
|
Jia S, Li J, Hu X, Wu X, Gong H. Improved fatigue properties, bone microstructure and blood glucose in type 2 diabetic rats with verapamil treatment. Clin Biomech (Bristol, Avon) 2022; 98:105719. [PMID: 35882095 DOI: 10.1016/j.clinbiomech.2022.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus is a global epidemic disease, which leads to a severe complication named increased bone fracture risk. This study aimed to explore if verapamil treatment could improve bone quality of type 2 diabetes mellitus. METHODS Rat models of control, diabetes and verapamil treatment with 4/12/24/48 mg/kg/d were established, respectively. Blood glucose was monitored during 12-week treatment, and bilateral tibiae were collected. Microstructural images of bilateral metaphyseal cancellous bone and high-resolution images of cortical bone of left tibial shafts were obtained by micro-computed tomography. Fatigue properties of bone were evaluated via cyclic compressive tests of right tibial shafts. FINDINGS Verapamil treatment had no significant effect on blood glucose, but blood glucose tended to decline with the increase of verapamil-treated time and dose. Compared with controls, osteocyte lacunar and canal porosities in diabetes and verapamil-treated groups were significantly decreased (P < 0.05), trabecular separation and degree of anisotropy were significantly increased (P < 0.05), while trabecular tissue mineral density, trabecular bone volume fraction and trabecular number in verapamil-treated (48 mg/kg/d) group were significantly higher than those in diabetes (P < 0.05). Compared with diabetes, initial compressive elastic moduli in verapamil-treated (12/24/48 mg/kg/d) groups were significantly increased (P < 0.05), while secant modulus degradations in verapamil-treated (24/48 mg/kg/d) groups were significantly decreased (P < 0.05). INTERPRETATION Verapamil could improve bone microstructure and fatigue properties in type 2 diabetic rats; and high-dose verapamil presented a significant effect on improving bone quality. These findings provided a new possibility for preventing the high bone fracture risk of type 2 diabetes mellitus in clinics.
Collapse
Affiliation(s)
- Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jingwen Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaorong Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
39
|
Sfeir JG, Drake MT, Khosla S, Farr JN. Skeletal Aging. Mayo Clin Proc 2022; 97:1194-1208. [PMID: 35662432 PMCID: PMC9179169 DOI: 10.1016/j.mayocp.2022.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Aging represents the single greatest risk factor for chronic diseases, including osteoporosis, a skeletal fragility syndrome that increases fracture risk. Optimizing bone strength throughout life reduces fracture risk. Factors critical for bone strength include nutrition, physical activity, and vitamin D status, whereas unhealthy lifestyles, illnesses, and certain medications (eg, glucocorticoids) are detrimental. Hormonal status is another important determinant of skeletal health, with sex steroid concentrations, particularly estrogen, having major effects on bone remodeling. Aging exacerbates bone loss in both sexes and results in imbalanced bone resorption relative to formation; it is associated with increased marrow adiposity, osteoblast/osteocyte apoptosis, and accumulation of senescent cells. The mechanisms underlying skeletal aging are as diverse as the factors that determine the strength (and thus fragility) of bone. This review updates our current understanding of the epidemiology, pathophysiology, and treatment of osteoporosis and provides an overview of the underlying hallmark mechanisms that drive skeletal aging.
Collapse
Affiliation(s)
- Jad G Sfeir
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Matthew T Drake
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN.
| |
Collapse
|
40
|
Shieh A, Greendale GA, Cauley JA, Karvonen-Gutierriez C, Harlow SD, Finkelstein JS, Liao D, Huang MH, Karlamangla AS. Prediabetes and insulin resistance are associated with lower trabecular bone score (TBS): cross-sectional results from the Study of Women's Health Across the Nation TBS Study. Osteoporos Int 2022; 33:1365-1372. [PMID: 35178609 PMCID: PMC9106606 DOI: 10.1007/s00198-022-06325-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022]
Abstract
In pre- and early perimenopausal women, prediabetes (with blood glucose ≥ 110 mg/dL) and greater insulin resistance are associated with worse trabecular bone quality (as assessed by trabecular bone score). PURPOSE Diabetes mellitus (DM) is associated with lower trabecular bone score (TBS) and fracture; less certain is whether the precursor states of prediabetes and increased insulin resistance are also related to adverse bone outcomes. We examined, in women who do not have DM, the associations of glycemic status (prediabetes vs. normal) and insulin resistance with TBS. METHODS This was a cross-sectional analysis of baseline data collected from 42- to 52-year-old, pre- and perimenopausal participants in the Study of Women's Health Across the Nation (SWAN) TBS Study. Women with prediabetes were categorized as having either high prediabetes if their fasting glucose was between 110 and 125 mg/dL or low prediabetes if their fasting glucose was between 100 and 109 mg/dL. Normoglycemia was defined as a fasting glucose below 100 mg/dL. RESULTS In multivariable linear regression, adjusted for age, race/ethnicity, menopause transition stage, cigarette use, calcium and vitamin D supplementation, lumbar spine bone mineral density, and study site, women with high prediabetes had 0.21 (p < 0.0001) standard deviations (SD) lower TBS than those with normoglycemia. Low prediabetes was not associated with lower TBS. When HOMA-IR levels were ≥ 1.62, each doubling of HOMA-IR was associated with a 0.11 SD decrement in TBS (p = 0.0001). CONCLUSION Similar to diabetics, high prediabetics have lower TBS than normoglycemic individuals. Women with greater insulin resistance have lower TBS even in the absence of DM. Future studies should examine the associations of high prediabetes and insulin resistance with incident fracture.
Collapse
Affiliation(s)
- Albert Shieh
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA.
| | - Gail A Greendale
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Jane A Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | | | - Sioban D Harlow
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joel S Finkelstein
- Division of Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Diana Liao
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Mei-Hua Huang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Arun S Karlamangla
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Sewing L, Potasso L, Baumann S, Schenk D, Gazozcu F, Lippuner K, Kraenzlin M, Zysset P, Meier C. Bone Microarchitecture and Strength in Long-Standing Type 1 Diabetes. J Bone Miner Res 2022; 37:837-847. [PMID: 35094426 PMCID: PMC9313576 DOI: 10.1002/jbmr.4517] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes (T1DM) is associated with an increased fracture risk, specifically at nonvertebral sites. The influence of glycemic control and microvascular disease on skeletal health in long-standing T1DM remains largely unknown. We aimed to assess areal (aBMD) and volumetric bone mineral density (vBMD), bone microarchitecture, bone turnover, and estimated bone strength in patients with long-standing T1DM, defined as disease duration ≥25 years. We recruited 59 patients with T1DM (disease duration 37.7 ± 9.0 years; age 59.9 ± 9.9 years.; body mass index [BMI] 25.5 ± 3.7 kg/m2 ; 5-year median glycated hemoglobin [HbA1c] 7.1% [IQR 6.82-7.40]) and 77 nondiabetic controls. Dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT) at the ultradistal radius and tibia, and biochemical markers of bone turnover were assessed. Group comparisons were performed after adjustment for age, gender, and BMI. Patients with T1DM had lower aBMD at the hip (p < 0.001), distal radius (p = 0.01), lumbar spine (p = 0.04), and femoral neck (p = 0.05) as compared to controls. Cross-linked C-telopeptide (CTX), a marker of bone resorption, was significantly lower in T1DM (p = 0.005). At the distal radius there were no significant differences in vBMD and bone microarchitecture between both groups. In contrast, patients with T1DM had lower cortical thickness (estimate [95% confidence interval]: -0.14 [-0.24, -0.05], p < 0.01) and lower cortical vBMD (-28.66 [-54.38, -2.93], p = 0.03) at the ultradistal tibia. Bone strength and bone stiffness at the tibia, determined by homogenized finite element modeling, were significantly reduced in T1DM compared to controls. Both the altered cortical microarchitecture and decreased bone strength and stiffness were dependent on the presence of diabetic peripheral neuropathy. In addition to a reduced aBMD and decreased bone resorption, long-standing, well-controlled T1DM is associated with a cortical bone deficit at the ultradistal tibia with reduced bone strength and stiffness. Diabetic neuropathy was found to be a determinant of cortical bone structure and bone strength at the tibia, potentially contributing to the increased nonvertebral fracture risk. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lilian Sewing
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
| | - Laura Potasso
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sandra Baumann
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
| | - Denis Schenk
- ARTORG Center, University of Bern, Bern, Switzerland
| | - Furkan Gazozcu
- Department of Osteoporosis, University Hospital Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, University Hospital Bern, Bern, Switzerland
| | | | | | - Christian Meier
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.,Endocrine Clinic and Laboratory, Basel, Switzerland
| |
Collapse
|
42
|
Sheu A, Greenfield JR, White CP, Center JR. Assessment and treatment of osteoporosis and fractures in type 2 diabetes. Trends Endocrinol Metab 2022; 33:333-344. [PMID: 35307247 DOI: 10.1016/j.tem.2022.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
There is substantial, and growing, evidence that type 2 diabetes (T2D) is associated with skeletal fragility, despite often preserved bone mineral density. As post-fracture outcomes, including mortality, are worse in people with T2D, bone management should be carefully considered in this highly vulnerable group. However, current fracture risk calculators inadequately predict fracture risk in T2D, and dedicated randomised controlled trials identifying optimal management in patients with T2D are lacking, raising questions about the ideal assessment and treatment of bone health in these people. We synthesise the current literature on evaluating bone measurements in T2D and summarise the evidence for safety and efficacy of both T2D and anti-osteoporosis medications in relation to bone health in these patients.
Collapse
Affiliation(s)
- Angela Sheu
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia.
| | - Jerry R Greenfield
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia; Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, Australia
| | - Christopher P White
- Clinical School, Prince of Wales Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Metabolism, Prince of Wales Hospital, Sydney, Australia
| | - Jacqueline R Center
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
43
|
Martínez-Montoro JI, García-Fontana B, García-Fontana C, Muñoz-Torres M. Evaluation of Quality and Bone Microstructure Alterations in Patients with Type 2 Diabetes: A Narrative Review. J Clin Med 2022; 11:2206. [PMID: 35456299 PMCID: PMC9024806 DOI: 10.3390/jcm11082206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
44
|
Zengin A, Shore-Lorenti C, Sim M, Maple-Brown L, Brennan-Olsen SL, Lewis JR, Ockwell J, Walker T, Scott D, Ebeling P. Why Aboriginal and Torres Strait Islander Australians fall and fracture: the codesigned Study of Indigenous Muscle and Bone Ageing (SIMBA) protocol. BMJ Open 2022; 12:e056589. [PMID: 35379631 PMCID: PMC8981296 DOI: 10.1136/bmjopen-2021-056589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Aboriginal and Torres Strait Islander Australians have a substantially greater fracture risk, where men are 50% and women are 26% more likely to experience a hip fracture compared with non-Indigenous Australians. Fall-related injuries in this population have also increased by 10%/year compared with 4.3%/year in non-Indigenous Australians. This study aims to determine why falls and fracture risk are higher in Aboriginal and Torres Strait Islander Australians. SETTING All clinical assessments will be performed at one centre in Melbourne, Australia. At baseline, participants will have clinical assessments, including questionnaires, anthropometry, bone structure, body composition and physical performance tests. These assessments will be repeated at follow-up 1 and follow-up 2, with an interval of 12 months between each clinical visit. PARTICIPANTS This codesigned prospective observational study aims to recruit a total of 298 adults who identify as Aboriginal and Torres Strait Islander and reside within Victoria, Australia. Stratified sampling by age and sex will be used to ensure equitable distribution of men and women across four age-bands (35-44, 45-54, 55-64 and 65+ years). PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome is within-individual yearly change in areal bone mineral density at the total hip, femoral neck and lumbar spine assessed by dual energy X-ray absorptiometry. Within-individual change in cortical and trabecular volumetric bone mineral density at the radius and tibia using high-resolution peripheral quantitative computed tomography will be determined. Secondary outcomes include yearly differences in physical performance and body composition. ETHICAL APPROVAL Ethics approval for this study has been granted by the Monash Health Human Research Ethics Committee (project number: RES-19-0000374A). TRIAL REGISTRATION NUMBER ACTRN12620000161921.
Collapse
Affiliation(s)
- Ayse Zengin
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Cat Shore-Lorenti
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Marc Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia
| | - Louise Maple-Brown
- Charles Darwin University, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Endocrinology Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Sharon Lee Brennan-Olsen
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- Institute for Health Transformation, Deakin University, Geelong, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Victoria, Australia
- Department of Medicine-Western Health, University of Melbourne, St Albans, Victoria, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Ockwell
- Bunurong Health Service, Dandenong & District Aborigines Co-operative Ltd (DDACL), Dandenong, Victoria, Australia
| | - Troy Walker
- Health & Wellbeing, A2B Personnel, Echuca, Victoria, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Peter Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Jia S, Gong H, Zhang Y, Liu H, Cen H, Zhang R, Fan Y. Prediction of Femoral Strength Based on Bone Density and Biochemical Markers in Elderly Men With Type 2 Diabetes Mellitus. Front Bioeng Biotechnol 2022; 10:855364. [PMID: 35419355 PMCID: PMC8995504 DOI: 10.3389/fbioe.2022.855364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Effects of bone density, bone turnover and advanced glycation end products (AGEs) on femoral strength (FS) are still unclear in patients with type 2 diabetes mellitus (T2DM). This study aims to assess and predict femoral strength and its influencing factors in elderly men with T2DM. Methods: T2DM patients (n = 10, mean age, 66.98 years) and age-matched controls (n = 8, mean age, 60.38 years) were recruited. Femoral bone mineral density (BMD) and serum biochemical indices of all subjects were measured. FS was evaluated through finite element analysis based on quantitative computed tomography. Multiple linear regression was performed to obtain the best predictive models of FS and to analyze the ability of predictors of FS in both groups. Results: FS (p = 0.034), HbA1c (p = 0.000) and fasting blood glucose (p = 0.000) levels of T2DM group were significantly higher than those of control group; however, the P1NP level (p = 0.034) was significantly lower. FS was positively correlated with femoral neck T score (FNTS) (r = 0.794, p < 0.01; r = 0.881, p < 0.01) in both groups. FS was correlated with age (r = -0.750, p < 0.05) and pentosidine (r = -0.673, p < 0.05) in T2DM group. According to multiple linear regression, FNTS and P1NP both contributed to FS in two groups. P1NP significantly improved the prediction of FS in both groups, but significant effect of FNTS on predicting FS was only presented in control group. Furthermore, pentosidine, age and HbA1c all played significant roles in predicting FS of T2DM. Conclusion: Femoral strength was higher in elderly men with T2DM, which might be caused by higher BMD and lower bone turnover rate. Moreover, besides BMD and bone formation level, AGEs, blood glucose and age might significantly impact the prediction of femoral strength in T2DM.
Collapse
Affiliation(s)
- Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hongmei Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rui Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
46
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
47
|
Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 2022; 10:207-220. [PMID: 35101185 DOI: 10.1016/s2213-8587(21)00347-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Increased fracture risk represents an emerging and severe complication of diabetes. The resulting prolonged immobility and hospitalisations can lead to substantial morbidity and mortality. In type 1 diabetes, bone mass and bone strength are reduced, resulting in up to a five-times greater risk of fractures throughout life. In type 2 diabetes, fracture risk is increased despite a normal bone mass. Conventional dual-energy x-ray absorptiometry might underestimate fracture risk, but can be improved by applying specific adjustments. Bone fragility in diabetes can result from cellular abnormalities, matrix interactions, immune and vascular changes, and musculoskeletal maladaptation to chronic hyperglycaemia. This Review summarises how the bone microenvironment responds to type 1 and type 2 diabetes, and the mechanisms underlying fragility fractures. We describe the value of novel imaging technologies and the clinical utility of biomarkers, and discuss current and future therapeutic approaches that protect bone health in people with diabetes.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Morten Frost
- Molecular Endocrinology Laboratory and Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| | - Ralph Müller
- Institute of Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea M Burden
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Nicola Napoli
- RU of Endocrinology and Diabetes, Campus Bio-Medico University of Rome and Fondazione Policlinico Campus Bio-Medico, Rome, Italy; Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
48
|
Abstract
Peak bone mass (PBM) is a key determinant of bone mass and fragility fractures later in life. The increase in bone mass during childhood and adolescence is mainly related to an increase in bone size rather to changes in volumetric bone density. Race, gender, and genetic factors are the main determinants of PBM achievement. Nevertheless, environmental factors such as physical activity, calcium and protein intakes, weight and age at menarche, are also playing an important role in bone mass accrual during growth. Therefore, optimization of calcium and protein intakes and weight-bearing physical activity during growth is an important strategy for optimal acquisition of PBM and bone strength and for contributing to prevent fractures later in life.
Collapse
Affiliation(s)
- Thierry Chevalley
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
49
|
Lee SE, Yoo J, Kim KA, Han K, Choi HS. Hip Fracture Risk According to Diabetic Kidney Disease Phenotype in a Korean Population. Endocrinol Metab (Seoul) 2022; 37:148-158. [PMID: 35255607 PMCID: PMC8901970 DOI: 10.3803/enm.2021.1315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is associated with an elevated risk of fractures. However, little is known about the association between proteinuric or non-proteinuric DKD and the risk of hip fracture. Thus, we investigated the incidence of hip fractures among Korean adults with type 2 diabetes mellitus (T2DM) stratified by DKD phenotype. METHODS In this retrospective cohort study using the Korean National Health Insurance Service database, patients with T2DM who received at least one general health checkup between 2009 and 2012 were followed until the date of hip fracture, death, or December 31, 2018. We classified the DKD phenotype by proteinuria and estimated glomerular filtration rate (eGFR), as follows: no DKD (PU-GFR-), proteinuric DKD with normal eGFR (PU+GFR-), non-proteinuric DKD with reduced eGFR (PU-GFR+), and proteinuric DKD with reduced eGFR (PU+GFR+). RESULTS The cumulative incidence of hip fractures was highest in the PU+GFR+ group, followed by the PU-GFR+ group and the PU+GFR- group. After adjustment for confounding factors, the hazard ratio (HR) for hip fracture was still highest in the PU+GFR+ group. However, the PU+GFR- group had a higher HR for hip fracture than the PU-GFR+ group (PU+GFR+ : HR, 1.69; 95% confidence interval [CI], 1.57 to 1.81; PU+GFR- : HR, 1.37; 95% CI, 1.30 to 1.46; PU-GFR+ : HR, 1.20; 95% CI, 1.16 to 1.24 using the PU-GFR- group as the reference category). CONCLUSION The present study demonstrated that DKD was significantly associated with a higher risk of hip fracture, with proteinuria as a major determinant.
Collapse
Affiliation(s)
- Seung Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Juhwan Yoo
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul,
Korea
| | - Kyoung-Ah Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul,
Korea
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| |
Collapse
|
50
|
Abstract
The foundation of bone health is established in utero. Bone accrual starts from the developing fetus and continues throughout childhood and adolescence. This process is crucial to achieve peak bone mass. Understanding factors that influence bone accrual before attainment of peak bone mass is thus critical to improve bone health and prevent osteoporosis, thereby reducing the burden of osteoporotic fractures in older women. In this review, we broadly outline factors influencing peak bone mass from pregnancy to infancy, childhood and adolescence with potential diseases and medications that may affect the optimum trajectory to maximizing bone health. It is estimated that a 10% increase in peak bone mass will delay the onset of osteoporosis by 13 years in a woman.
Collapse
Affiliation(s)
- R F Vasanwala
- KK Women's and Children's Hospital, Singapore, Singapore
| | - L Gani
- Changi General Hospital, Singapore, Singapore
| | - S B Ang
- KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| |
Collapse
|