1
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
2
|
Chai S, Zhang R, Carr RD, Deacon CF, Zheng Y, Rajpathak S, Chen J, Yu M. Impact of dipeptidyl peptidase-4 inhibitors on glucose-dependent insulinotropic polypeptide in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1203187. [PMID: 37635974 PMCID: PMC10450336 DOI: 10.3389/fendo.2023.1203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Aims Glucose-dependent insulinotropic polypeptide (GIP) confers a variety of metabolic benefits in type 2 diabetes mellitus (T2DM). This meta-analysis was conducted to investigate the impact of dipeptidyl peptidase 4 (DPP4) inhibitors on GIP levels in T2DM patients. Methods Medline (PubMed), CENTER (Cochrane Library), and Embase (Ovid) were searched and randomized controlled trials (RCTs) evaluating the impact of DPP4 inhibitors on fasting and postprandial GIP levels were obtained. For postprandial GIP, only studies with the data of GIP changes reported as the total area under the curve (AUCGIP) using a meal or oral glucose tolerance test were included. A random-effects model was used for data pooling after incorporating heterogeneity. Results Overall, 14 RCTs with 541 T2DM patients were included. Compared to placebo/no treatment, the use of DPP4 inhibitors significantly increased the fasting GIP level (standard mean difference [SMD]: 0.77, 95% confidence interval [CI]: 0.48-1.05, P<0.001; I2 = 52%) and postprandial AUCGIP (SMD: 1.33, 95% CI: 1.02-1.64, P<0.001; I2 = 65%). Influence analysis by excluding one dataset at a time showed consistent results. Sensitivity analyses only including studies with radioimmunoassay showed also consistent results (fasting GIP: SMD: 0.75, 95% CI: 0.51-1.00, P<0.001; I2 = 0%; and postprandial AUCGIP: SMD: 1.48, 95% CI: 1.18-1.78, P<0.001; I2 = 54%). Further subgroup analyses demonstrated that the influence of DPP4 inhibitors on fasting and postprandial GIP levels in T2DM patients was not significantly changed by study characteristics such as study design, patient mean age, baseline glycated hemoglobin (HbA1c) concentration, body mass index (BMI), background treatment, treatment duration, or method for postprandial GIP measurement (all P for subgroup effects <0.05). Conclusion The use of DPP4 inhibitors effectively increases the fasting and postprandial GIP concentrations in T2DM patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022356716.
Collapse
Affiliation(s)
- Shangyu Chai
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Ruya Zhang
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Richard David Carr
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Carolyn F. Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yiman Zheng
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Swapnil Rajpathak
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, United States
| | - Jingya Chen
- Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Mathur V, Alam O, Siddiqui N, Jha M, Manaithiya A, Bawa S, Sharma N, Alshehri S, Alam P, Shakeel F. Insight into Structure Activity Relationship of DPP-4 Inhibitors for Development of Antidiabetic Agents. Molecules 2023; 28:5860. [PMID: 37570832 PMCID: PMC10420935 DOI: 10.3390/molecules28155860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, β-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.
Collapse
Affiliation(s)
- Vishal Mathur
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Sandhya Bawa
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Naveen Sharma
- Division of Bioinformatics, Indian Council of Medical Research, New Delhi 110029, India;
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Chen L, Zhang J, Sun Y, Zhao Y, Liu X, Fang Z, Feng L, He B, Zou Q, Tracey GJ. A phase I open-label clinical trial to study drug-drug interactions of Dorzagliatin and Sitagliptin in patients with type 2 diabetes and obesity. Nat Commun 2023; 14:1405. [PMID: 36918550 PMCID: PMC10014962 DOI: 10.1038/s41467-023-36946-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
This is a phase 1, open-label, single-sequence, multiple-dose, single-center trial conducted in the US (NCT03790839), to evaluate the clinical pharmacokinetics, safety and pharmacodynamics of dorzagliatin co-administered with sitagliptin in patients with T2D and obesity. The trial has completed. 15 patients with T2D and obesity were recruited and treated with sitagliptin 100 mg QD on Day 1-5, followed by a combination of sitagliptin 100 mg QD with dorzagliatin 75 mg BID at second stage on Day 6-10 and the third stage of dorzagliatin 75 mg BID alone on Day 11-15. Primary outcomes include pharmacokinetic geometric mean ratio (GMR), safety and tolerability. Secondary outcomes include the incremental area under the curve for 4 hours post oral glucose tolerance test (iAUC) of pharmacodynamic biomarkers and glucose sensitivity. GMR for AUC0-24h and Cmax were 92.63 (90% CI, 85.61, 100.22) and 98.14 (90% CI, 83.73, 115.03) in combination/sitagliptin, and 100.34 (90% CI, 96.08, 104.79) and 102.34 (90% CI, 86.92, 120.50) in combination/dorzagliatin, respectively. Combination treatment did not increase the adverse events and well-tolerated in T2D patients. Lack of clinically meaningful pharmacokinetic interactions between dorzagliatin and sitagliptin, and an improvement of glycemic control under combination potentially support their co-administration for diabetes management.
Collapse
Affiliation(s)
- Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, China.
| | - Jiayi Zhang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Sun
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Xiang Liu
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Zhiyin Fang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Lingge Feng
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Bin He
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Quanfei Zou
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | | |
Collapse
|
5
|
Grespan E, Mari A. Does glucose lowering restore GIP effects on insulin secretion? Nutr Metab Cardiovasc Dis 2023; 33:494-499. [PMID: 36710118 DOI: 10.1016/j.numecd.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
AIMS Some studies have shown that in type 2 diabetic patients the potentiation of insulin secretion by glucose-dependent insulinotropic polypeptide (GIP) is compromised but can be partially restored if glucose is lowered. Renewed interest for this phenomenon has been expressed in the context of the new dual GIP-GLP-1 (glucagon-like peptide-1) receptor agonists, which have shown greater efficacy of this drug class compared with single GLP-1 receptor agonists, including on insulin secretion. However, contrasting evidence has been reported on the recovery of GIP action with glucose lowering. In our study, we reconsider all publications relevant for the problem and analyze the results using a uniform methodology. DATA SYNTHESIS We show that, while some contradictions might be explained by heterogeneous analysis methods, it is possible to interpret all the available data coherently and conclude that the effect of glucose lowering is relevant only when glucose concentration is virtually normalized. CONCLUSIONS While a significant restoration of GIP action may not occur with some traditional diabetes treatments, GIP action improvement might become relevant when glucose is virtually normalized and could explain part of the success of the double GIP-GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua, Italy.
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy.
| |
Collapse
|
6
|
Grespan E, Guolo A, Muscelli E, Ferrannini E, Mari A. Loss of the Incretin Effect in Type 2 Diabetes: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2022; 107:2092-2100. [PMID: 35397169 DOI: 10.1210/clinem/dgac213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Loss of the incretin effect (IE) in type 2 diabetes (T2D) contributes to hyperglycemia and the mechanisms underlying this impairment are unclear. OBJECTIVE To quantify the IE impairment in T2D and to investigate the factors associated with it using a meta-analytic approach. METHODS PubMed, Scopus, and Web-of-Science were searched. Studies measuring IE by the gold-standard protocol employing an oral glucose tolerance test (OGTT) and an intravenous glucose infusion at matched glucose levels were selected. We extracted IE, sex, age, body mass index (BMI), and hemoglobin A1c, fasting values, and area under curve (AUC) of glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 1 (GLP-1). In subjects with T2D, we also recorded T2D duration, age at diagnosis, and the percentage of subjects taking antidiabetic medications. RESULTS The IE weighted mean difference between subjects with T2D and those with normal glucose tolerance (NGT) was -27.3% (CI -36.5% to -18.1%; P < .001; I2 = 86.6%) and was affected by age (P < .005). By meta-regression of combined NGT and T2D data, IE was inversely associated with glucose tolerance (lower IE in T2D), BMI, and fasting GIP (P < .05). By meta-regression of T2D studies only, IE was associated with the OGTT glucose dose (P < .0001). IE from insulin was larger than IE from C-peptide (weighted mean difference 11.2%, CI 9.2-13.2%; P < .0001; I2 = 28.1%); the IE difference was inversely associated with glucose tolerance and fasting glucose. CONCLUSION The IE impairment in T2D vs NGT is consistent though considerably variable, age being a possible factor affecting the IE difference. Glucose tolerance, BMI, and fasting GIP are independently associated with IE; in subjects with T2D only, the OGTT dose is a significant covariate.
Collapse
Affiliation(s)
| | - Annamaria Guolo
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Andrea Mari
- C.N.R. Institute of Neuroscience, Padua, Italy
| |
Collapse
|
7
|
Tura A, Göbl C, Vardarli I, Pacini G, Nauck M. Insulin clearance and incretin hormones following oral and "isoglycemic" intravenous glucose in type 2 diabetes patients under different antidiabetic treatments. Sci Rep 2022; 12:2510. [PMID: 35169165 PMCID: PMC8847358 DOI: 10.1038/s41598-022-06402-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
It has not been elucidated whether incretins affect insulin clearance in type 2 diabetes (T2D). We aimed exploring possible associations between insulin clearance and endogenously secreted or exogenously administered incretins in T2D patients. Twenty T2D patients were studied (16 males/4 females, 59 ± 2 years (mean ± standard error), BMI = 31 ± 1 kg/m2, HbA1c = 7.0 ± 0.1%). Patients were treated with metformin, sitagliptin, metformin/sitagliptin combination, and placebo (randomized order). On each treatment period, oral and isoglycemic intravenous glucose infusion tests were performed (OGTT, IIGI, respectively). We also studied twelve T2D patients (9 males/3 females, 61 ± 3 years, BMI = 30 ± 1 kg/m2, HbA1c = 7.3 ± 0.4%) that underwent infusion of GLP-1(7-36)-amide, GIP, GLP-1/GIP combination, and placebo. Plasma glucose, insulin, C-peptide, and incretins were measured. Insulin clearance was assessed as insulin secretion to insulin concentration ratio. In the first study, we found OGTT/IIGI insulin clearance ratio weakly inversely related to OGTT/IIGI total GIP and intact GLP-1 (R2 = 0.13, p < 0.02). However, insulin clearance showed some differences between sitagliptin and metformin treatment (p < 0.02). In the second study we found no difference in insulin clearance following GLP-1 and/or GIP infusion (p > 0.5). Thus, our data suggest that in T2D there are no relevant incretin effects on insulin clearance. Conversely, different antidiabetic treatments may determine insulin clearance variations.
Collapse
Affiliation(s)
- Andrea Tura
- CNR Institute of Neuroscience, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Irfan Vardarli
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital (Ruhr University Bochum), Bochum, Germany
| | | | - Michael Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital (Ruhr University Bochum), Bochum, Germany
| |
Collapse
|
8
|
Ahrén B. Glucose-lowering action through targeting islet dysfunction in type 2 diabetes: Focus on dipeptidyl peptidase-4 inhibition. J Diabetes Investig 2021; 12:1128-1135. [PMID: 33949781 PMCID: PMC8264410 DOI: 10.1111/jdi.13564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibition is a glucose-lowering medication for type 2 diabetes. It works through stimulation of insulin secretion and inhibition of glucagon secretion in a glucose-dependent manner, resulting in lowered fasting and postprandial glycemia with low risk of hypoglycemia. As impaired insulin secretion and augmented glucagon secretion are key factors underlying hyperglycemia in type 2 diabetes, DPP-4 inhibition represents a therapy that targets the underlying mechanisms of the disease. If insufficient in monotherapy, it can preferably be used in combination with metformin, which targets insulin resistance, and also in combination with sodium-glucose cotransporter 2 inhibition, thiazolidinediones and insulin, which target other mechanisms. In individuals of East Asian origin, islet dysfunction is of particular importance for the development of type 2 diabetes. Consequently, it has been shown in several studies that DPP-4 is efficient in these populations. This mini-review highlights the islet mechanisms of DPP-4 inhibition, islet dysfunction as a key factor for hyperglycemia in type 2 diabetes and that, consequently, DPP-4 is of particular value in populations where islet dysfunction is central, such as in individuals of East Asian origin.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Grespan E, Giorgino T, Natali A, Ferrannini E, Mari A. Different mechanisms of GIP and GLP-1 action explain their different therapeutic efficacy in type 2 diabetes. Metabolism 2021; 114:154415. [PMID: 33137379 DOI: 10.1016/j.metabol.2020.154415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The reduced action of incretin hormones in type 2 diabetes (T2D) is mainly attributed to GIP insensitivity, but efficacy estimates of GIP and GLP-1 differ among studies, and the negligible effects of pharmacological GIP doses remain unexplained. We aimed to characterize incretin action in vivo in subjects with normal glucose tolerance (NGT) or T2D and provide an explanation for the different insulinotropic activity of GIP and GLP-1 in T2D subjects. METHODS We used in vivo data from ten studies employing hormone infusion or an oral glucose test (OGTT). To homogeneously interpret and compare the results of the studies we performed the analysis using a mathematical model of the β-cell incorporating the effects of incretins on the triggering and amplifying pathways. The effect on the amplifying pathway was quantified by a time-dependent factor that is greater than one when insulin secretion (ISR) is amplified by incretins. To validate the model results for GIP in NGT subjects, we performed an extensive literature search of the available data. RESULTS a) the stimulatory effects of GIP and GLP-1 differ markedly: ISR potentiation increases linearly with GLP-1 over the whole dose range, while with GIP infusion it reaches a plateau at ~100 pmol/L GIP, with ISR potentiation of ~2 fold; b) ISR potentiation in T2D is reduced by ~50% for GIP and by ~40% for GLP-1; c) the literature search of GIP in NGT subjects confirmed the saturative effect on insulin secretion. CONCLUSION We show that incretin potentiation of ISR is reduced in T2D, but not abolished, and that the lack of effects of pharmacological GIP doses is due to saturation of the GIP effect more than insensitivity to GIP in T2D.
Collapse
Affiliation(s)
- Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua 35127, Italy
| | - Toni Giorgino
- Biophysics Institute, National Research Council, Milan 20133, Italy; Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua 35127, Italy.
| |
Collapse
|
10
|
Gasbjerg LS, Bergmann NC, Stensen S, Christensen MB, Rosenkilde MM, Holst JJ, Nauck M, Knop FK. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 2020; 125:170183. [PMID: 31693916 DOI: 10.1016/j.peptides.2019.170183] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) potentiate glucose-induced insulin secretion and are therefore thought to be responsible for the incretin effect. The magnitude of the incretin effect, defined as the fraction of postprandial insulin secretion stimulated by intestinal factors, has been reported to be up to ∼60% in healthy individuals. In several pathological conditions but especially in patients with type 2 diabetes, the incretin effect is severely reduced or even absent. In line with this, the insulinotropic effects of GIP and GLP-1 are impaired in patients with type 2 diabetes, even when administered in supraphysiological doses. In healthy individuals, GIP has been proposed to be the most important incretin hormone of the two, but the individual contribution of the two is difficult to determine. However, using incretin hormone receptor antagonists: the novel GIP receptor antagonist GIP(3-30)NH2 and the widely used GLP-1 receptor antagonist exendin(9-39)NH2, we can now distinguish between the effects of the two hormones. In this review, we present and discuss studies in which the individual contribution of GIP and GLP-1 to the incretin effect in healthy individuals have been estimated and discuss the limitations of using incretin hormone receptor antagonists.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nauck
- Diabetes Division, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
11
|
Yoo S, Yang EJ, Koh G. Factors Related to Blood Intact Incretin Levels in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2019; 43:495-503. [PMID: 30877705 PMCID: PMC6712231 DOI: 10.4093/dmj.2018.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We performed this study to identify factors related to intact incretin levels in patients with type 2 diabetes mellitus (T2DM). METHODS We cross-sectionally analyzed 336 patients with T2DM. Intact glucagon-like peptide 1 (iGLP-1) and intact glucose-dependent insulinotropic polypeptide (iGIP) levels were measured in a fasted state and 30 minutes after ingestion of a standard mixed meal. The differences between 30 and 0 minute iGLP-1 and iGIP levels were indicated as ΔiGLP-1 and ΔiGIP. RESULTS In simple correlation analyses, fasting iGLP-1 was positively correlated with glucose, C-peptide, creatinine, and triglyceride levels, and negatively correlated with estimated glomerular filtration rate. ΔiGLP-1 was positively correlated only with ΔC-peptide levels. Fasting iGIP showed positive correlations with glycosylated hemoglobin (HbA1c) and fasting glucose levels, and negative correlations with ΔC-peptide levels. ΔiGIP was negatively correlated with diabetes duration and HbA1c levels, and positively correlated with Δglucose and ΔC-peptide levels. In multivariate analyses adjusting for age, sex, and covariates, fasting iGLP-1 levels were significantly related to fasting glucose levels, ΔiGLP-1 levels were positively related to ΔC-peptide levels, fasting iGIP levels were related to fasting C-peptide levels, and ΔiGIP levels were positively related to ΔC-peptide and Δglucose levels. CONCLUSION Taken together, intact incretin levels are primarily related to C-peptide and glucose levels. This result suggests that glycemia and insulin secretion are the main factors associated with intact incretin levels in T2DM patients.
Collapse
Affiliation(s)
- Soyeon Yoo
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea
| | - Eun Jin Yang
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Gwanpyo Koh
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Korea.
| |
Collapse
|
12
|
Li Z, Zhao L, Yu L, Yang J. Head-to-Head Comparison of the Hypoglycemic Efficacy and Safety Between Dipeptidyl Peptidase-4 Inhibitors and α-Glucosidase Inhibitors in Patients With Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2019; 10:777. [PMID: 31354492 PMCID: PMC6635585 DOI: 10.3389/fphar.2019.00777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The α-glucosidase inhibitors (AGIs) are commonly prescribed in Asian patients with type 2 diabetes mellitus (T2DM), but with a high incidence of gastrointestinal side effects. This study was aimed to compare the efficacy and safety of dipeptidyl peptidase-4 (DPP4) inhibitors and AGIs in T2DM patients in a meta-analysis. Methods: Randomized controlled trials were identified via systematic search of PubMed, Embase, and Cochrane’s Library databases from inception to February, 2019. Meta-analyses were performed via a random or a fixed effect model according to the heterogeneity. Results: Eighteen studies with a total of 4,051 patients with T2DM were included. The DPP4 inhibitors were associated with lower reduction of glycosylated hemoglobin (HbA1c) as compared with AGIs [weighed mean difference (WMD): −0.37%, p < 0.001]. Subgroup analyses indicated that the benefit of DPP4 inhibitors as compared with AGIs on HbA1c were independent of study design, scale, baseline HbA1c, with or without concurrent medications, or follow-up durations. Moreover, compared to AGIs, DPP4 inhibitors was associated with lower reductions of fasting blood glucose (WMD: −0.53 mmol/L, P < 0.001) and postprandial glucose at 2h (WMD: −0.60 mmol/L, P = 0.04), moderately increased body weight (WMD: 0.34 kg, P = 0.02), and decreased risk of gastrointestinal adverse events [risk ratio (RR): 0.48, P < 0.001], but unaffected risk of symptomatic hypoglycemia (RR: 0.96, P = 0.90). Conclusions: The DPP4 inhibitors are superior to AGIs in T2DM patients for better glycemic control and lower risks of gastrointestinal side effects.
Collapse
Affiliation(s)
- Zhaoliang Li
- Department of Endocrinology, the Central Hospital of Tai'an City, Tai'an, China
| | - Liang Zhao
- Department of Endocrinology, the Central Hospital of Tai'an City, Tai'an, China
| | - Leilei Yu
- Department of Endocrinology, the Central Hospital of Tai'an City, Tai'an, China
| | - Jie Yang
- Department of Endocrinology, the Central Hospital of Tai'an City, Tai'an, China
| |
Collapse
|
13
|
Foley JE. Insights Into GLP-1 and GIP Actions Emerging From Vildagliptin Mechanism Studies in Man. Front Endocrinol (Lausanne) 2019; 10:780. [PMID: 31781045 PMCID: PMC6856791 DOI: 10.3389/fendo.2019.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 01/16/2023] Open
Abstract
Vildagliptin blocks glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) inactivation of the meal induced increases in GLP-1 and GIP so that elevated GLP-1 and GIP levels are maintained over 24 h. The primary insulin secretion effect of vildagliptin is to improve the impaired sensitivity of the β-cells to glucose in subjects with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) and in patients with type 2 diabetes mellitus (T2DM); this effect was seen acutely and maintained over at least 2 years in patients with T2DM. Vildagliptin was also associated with improved β-cell function that is likely secondary to the improved metabolic state. Although there was no evidence of restoration of β-cell mass, the preponderance of the vildagliptin data does indicate that for at least 2 years β-cell function was maintained in vildagliptin treated patients but not in the untreated patients. Vildagliptin suppressed an inappropriate glucagon response to an oral glucose challenge in patients with T2DM, to a mixed meal challenge in patients with T2DM and type 1 diabetes mellitus, and to a mixed meal challenge in subjects with IGT and IFG. The improved glucagon response was maintained for at least 2 years in patients with T2DM and there was no change in the glucagon response in normoglycemic individuals. Vildagliptin lowered glucose levels into the normal range without increasing hypoglycemia. These hypoglycemic benefits appear to be secondary in large part to the improved sensitivity of both the β and α-cell to glucose. In the case of the α-cell, if glucose levels are high, GLP-1 attenuates the glucagon levels and if glucose levels are low, GIP increases glucagon levels. Vildagliptin reduces fatty acid flux from the adipocyte leading to reduced liver fat which in turn leads to increased glucose utilization. The reduced glycosuria and reduced lipo-toxicity associated with vildagliptin therapy does not lead to weight gain presumably due to increased fat mobilization and oxidation during meals and to reduced fat extraction from the gut.
Collapse
|
14
|
Zhao D, Zhao S, Wang X, Su M, Liu W, Ma Q, Hong J, Gu W, Li J, Liu R, Ning G, Wang J, Zhang Y. Clinical and Physiological Characterization of Elevated Plasma Glucagon-Like Peptide-1 Levels (Hyperglipemia) in a Dipeptidyl Peptidase IV Mutation Carrier. Front Endocrinol (Lausanne) 2018; 9:62. [PMID: 29556215 PMCID: PMC5845420 DOI: 10.3389/fendo.2018.00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/12/2018] [Indexed: 12/03/2022] Open
Abstract
The clinical application of dipeptidyl peptidase IV inhibitors (DPP4i) increasing active glucagon-like peptide-1 (AGLP-1) levels has been linked to pancreatitis, pancreatic tumors, and cardiovascular events. However, DPP4 mutations in humans or the long-term outcomes of high glucagon-like peptide-1 (GLP-1) level exposure have not been reported. A trio family with a proband showing an extremely high AGLP-1 level [defined here as hyperglipemia (hyper-glucagon-like peptide-1-emia)] were conducted whole-exome sequencing for potential pathogenic genetic defects. One novel DPP4 mutation, p.V486M (c.1456 G>A), was identified in the proband and showed damaged enzymatic activity of DPP4. Ex vivo functional study further showed that the serum from the proband markedly enhanced insulin production of primary rat islet cells. Furthermore, V486M variant and another eight DPP4 variants were identified in our in-home database and seven showed decreased enzymatic activities than wild-type DPP4, consistent with their alterations in their protein expression levels. Of note, the levels of glucose, lipids, and tumor markers (especially for CA15-3 and CA125), increased gradually in the proband during a 4-year follow-up period, although no abnormal physical symptoms or imaging results were observed at present. The other two old carriers in the pedigree both had type 2 diabetes, and one of them also had hyperlipidemia and myocarditis. We first identified hyperglipemia in a female subject harboring a loss-of-function DPP4 mutation with decreased DPP4 activity. Other sporadic DPP4 mutations verified the low-frequent occurrence of genetic inhibition of DPP4 activity, at least in the Chinese population studied. These results may provide new evidence for evaluation of the potential long-term effects of DPP4i and GLP-1 analogs.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shaoqian Zhao
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiao Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Mingbo Su
- National Center for Drug Screening, Shanghai Institute of Material Medical (SIMM), Chinese Academy of Science (CAS), Shanghai, China
| | - Wen Liu
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Qinyun Ma
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jie Hong
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Weiqiong Gu
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jingya Li
- National Center for Drug Screening, Shanghai Institute of Material Medical (SIMM), Chinese Academy of Science (CAS), Shanghai, China
| | - Ruixin Liu
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- *Correspondence: Jiqiu Wang, ; Yifei Zhang,
| | - Yifei Zhang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, National Key Laboratory for Medical Genomes, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- *Correspondence: Jiqiu Wang, ; Yifei Zhang,
| |
Collapse
|
15
|
Andersen ES, Deacon CF, Holst JJ. Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes Obes Metab 2018; 20:34-41. [PMID: 28544214 DOI: 10.1111/dom.13018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of type 2 diabetes is increasing, which is alarming because of its serious complications. Anti-diabetic treatment aims to control glucose homeostasis as tightly as possible in order to reduce these complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a recent addition to the anti-diabetic treatment modalities, and have become widely accepted because of their good efficacy, their benign side-effect profile and their low hypoglycaemia risk. The actions of DPP-4 inhibitors are not direct, but rather are mediated indirectly through preservation of the substrates they protect from degradation. The two incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, are known substrates, but other incretin-independent mechanisms may also be involved. It seems likely therefore that the mechanisms of action of DPP-4 inhibitors are more complex than originally thought, and may involve several substrates and encompass local paracrine, systemic endocrine and neural pathways, which are discussed here.
Collapse
Affiliation(s)
- Emilie S Andersen
- Department of Internal Medicine F, Hospital Gentofte, Copenhagen University, Copenhagen, Denmark
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, NNF Center of Basic Metabolic Research, The Panum Institute, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
16
|
Nauck MA, Kahle M, Baranov O, Deacon CF, Holst JJ. Addition of a dipeptidyl peptidase-4 inhibitor, sitagliptin, to ongoing therapy with the glucagon-like peptide-1 receptor agonist liraglutide: A randomized controlled trial in patients with type 2 diabetes. Diabetes Obes Metab 2017; 19:200-207. [PMID: 27709794 DOI: 10.1111/dom.12802] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
AIM To determine whether the addition of sitagliptin to pre-existing therapy with liraglutide changes glycaemic excursions after a mixed meal. METHODS A total of 16 patients with type 2 diabetes treated with metformin and liraglutide (1.2 mg/d for ≥2 weeks) were randomized (sealed envelopes), within a cross-over design, to be studied on two occasions, after an overnight fast, with (1) sitagliptin (100 mg orally) and (2) placebo (patients and care givers blinded) administered 60 minutes before a mixed meal, or vice versa. Glucose excursions (incremental area under the curve [AUC]; primary endpoint) and insulin, C-peptide, glucagon and incretin concentrations were measured. The study setting was a metabolic study unit at a specialized diabetes hospital. RESULTS All 16 patients completed the study and were analysed. Glucose (AUCglucose 319 ± 30 [placebo] vs 315 ± 18 mmol.L-1 .min-1 [sitagliptin], Δ 7 [95% confidence interval -50 to 63] mmol.L-1 .min-1 ), insulin, C-peptide and glucagon concentrations were not affected significantly by sitagliptin treatment ( P = .60-1.00). Intact glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) concentrations were augmented by sitagliptin, by 78.4% and 90.2%, respectively (both P < .0001). The influence of sitagliptin treatment on incretin plasma concentrations was similar to previously published results obtained in patients with type 2 diabetes on metformin treatment only. CONCLUSIONS Sitagliptin, in patients already treated with a GLP-1 receptor agonist (liraglutide), increased intact GLP-1 and GIP concentrations, but with marginal, non-significant effects on glycaemic control. GLP-1 receptors have probably been maximally stimulated by liraglutide. Our findings do not support combination treatment with GLP-1 receptor agonists and DPP-4 inhibitors, but longer-term trials are needed to support clinical recommendations.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - Melanie Kahle
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - Oleg Baranov
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Panum Institute, NovoNordisk Foundation Center for Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Panum Institute, NovoNordisk Foundation Center for Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Nishimura A, Usui S, Kumashiro N, Uchino H, Yamato A, Yasuda D, Nagasawa K, Okubo M, Mori Y, Hirose T. Efficacy and safety of repaglinide added to sitagliptin in Japanese patients with type 2 diabetes: A randomized 24-week open-label clinical trial. Endocr J 2016; 63:1087-1098. [PMID: 27647480 DOI: 10.1507/endocrj.ej16-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although sitagliptin and repaglinide monotherapies improve postprandial hyperglycemia, the long-term effects and safety of their combination has not been examined. In this randomized 24-week trial of Japanese patients with poor control (HbA1c 7.0-8.5%) by sitagliptin, we divided 40 patients randomly into two equal groups of the repaglinide add-on to sitagliptin (ADD-ON, n=20), or sitagliptin switched to repaglinide (SWITCH, n=20). The meal tolerance test was carried out at weeks 0 and 24. The primary outcomes were changes in HbA1c and area under the curves (AUC) of glucose from the baseline to week 24. The mean change in HbA1c from baseline to week 24 was larger in the ADD-ON (-0.87±0.63%, mean±SD), compared with the SWITCH (0.03±0.65%, p=0.000). Significant improvements were noted in the mean changes in fasting glucose and AUCs of glucose in the ADD-ON vs. SWITCH (p=0.007 and p=0.000). Insulin secretion relative to glucose elevation (ISG; defined as AUC insulin/AUC glucose) increased significantly in the ADD-ON, although the mean change in fasting insulin level was significantly decreased in the ADD-ON (p=0.015 and p=0.026). The AUC of glucagon was significantly lower at 24-week relative to baseline in the ADD-ON, but was not significant in the two groups (p=0.047 and p=0.056, respectively). The combination therapy produced significant reductions in HbA1c, AUC of glucose and fasting glucose compared with switching to repaglinide without weight gain or severe hypoglycemia. The improved glycemic control with this combination therapy may be at least in part due to augmentation of repaglinide-induced insulin secretion by sitagliptin.
Collapse
Affiliation(s)
- Akihiro Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baranov O, Kahle M, Deacon CF, Holst JJ, Nauck MA. Feedback suppression of meal-induced glucagon-like peptide-1 (GLP-1) secretion mediated through elevations in intact GLP-1 caused by dipeptidyl peptidase-4 inhibition: a randomized, prospective comparison of sitagliptin and vildagliptin treatment. Diabetes Obes Metab 2016; 18:1100-1109. [PMID: 27300579 DOI: 10.1111/dom.12706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
AIM To compare directly the clinical effects of vildagliptin and sitagliptin in patients with type 2 diabetes, with a special emphasis on incretin hormones and L-cell feedback inhibition induced by dipeptidyl peptidase (DPP-4) inhibition. METHODS A total of 24 patients (12 on a diet/exercise regimen, 12 on metformin) were treated, in randomized order, for 7-9 days, with either vildagliptin (50 mg twice daily = 100 mg/d), sitagliptin (100 mg once daily in those on diet, 50 mg twice daily in those on metformin treatment = 100 mg/d) or placebo (twice daily). A mixed-meal test was performed. RESULTS Intact glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide concentrations were doubled by both DPP-4 inhibitors. Meal-related total GLP-1 responses were reduced by vildagliptin and sitagliptin treatment alike in the majority of patients (vildagliptin: p = 0.0005; sitagliptin: p = 0.019), but with substantial inter-individual variation. L-cell feedback appeared to be more pronounced in those whose intact GLP-1 relative to total GLP-1 increased more, and who had greater reductions in fasting plasma glucose after DPP-4 inhibition. K-cell feedback inhibition overall was not significant. There were no differences in any of the clinical variables (glycaemia, insulin and glucagon secretory responses) between vildagliptin and sitagliptin treatment. CONCLUSIONS Vildagliptin and sitagliptin affected incretin hormones, glucose concentrations, insulin and glucagon secretion in a similar manner. Inter-individual variations in L-cell feedback inhibition may indicate heterogeneity in the clinical response to DPP-4 inhibition.
Collapse
Affiliation(s)
- Oleg Baranov
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | - Melanie Kahle
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
- Division of Diabetology, Medical Department I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Nauck
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany.
- Division of Diabetology, Medical Department I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
19
|
Kawamoto S, Koda R, Imanishi Y, Yoshino A, Takeda T. The dipeptidyl peptidase-4 inhibitor may improve the insulin secretion in type 2 diabetes patients just after starting hemodialysis treatment: preliminary study. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0050-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016; 4:525-36. [PMID: 26876794 DOI: 10.1016/s2213-8587(15)00482-9] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022]
Abstract
The incretin effect describes the phenomenon whereby oral glucose elicits higher insulin secretory responses than does intravenous glucose, despite inducing similar levels of glycaemia, in healthy individuals. This effect, which is uniformly defective in patients with type 2 diabetes, is mediated by the gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). The importance of the incretin effect for the maintenance of glucose homoeostasis is clearly established, and incretin-based therapies are among the most promising new therapies for type 2 diabetes. However, despite the effectiveness of these therapies in many patients, the idea that they restore the incretin effect is a common misconception. In type 2 diabetes, the endocrine pancreas remains responsive to GLP-1 but is no longer responsive to GIP, which is the most likely reason for a reduced or absent incretin effect. Incretin-based drugs, including GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, stimulate GLP-1 receptors and thus augment insulin secretion in response to both oral and intravenous glucose stimulation, thereby abolishing any potential difference in the responses to these stimuli. These drugs therefore do not restore the defective incretin effect in patients. By contrast, some bariatric surgical procedures enhance GLP-1 responses and also restore the incretin effect in obese individuals with type 2 diabetes. Thus, not all biological actions elicited by the stimulation of GLP-1 receptors lead to quantitative changes to the incretin effect.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Department of Medicine I, St Josef Hospital (Ruhr-University Bochum), Bochum, Germany.
| | - Juris J Meier
- Diabetes Division, Department of Medicine I, St Josef Hospital (Ruhr-University Bochum), Bochum, Germany
| |
Collapse
|
21
|
Ahrén B, Foley JE. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. Diabetologia 2016; 59:907-17. [PMID: 26894277 DOI: 10.1007/s00125-016-3899-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP-4) is an established glucose-lowering strategy for the management of type 2 diabetes mellitus. DPP-4 inhibitors reduce both fasting and postprandial plasma glucose levels, resulting in reduced HbA1c with low risk for hypoglycaemia and weight gain. They act primarily by preventing inactivation of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, thereby prolonging the enhanced endogenous levels of these hormones after meal ingestion. This in turn causes islet and extrapancreatic effects, including increased glucose sensing in islet alpha and beta cells. These effects result in increased insulin secretion and decreased glucagon secretion being more effective in hyperglycaemic states and reduced insulin secretion and increased glucagon secretion being more effective during hypoglycaemia. Other secondary pharmacological actions of DPP-4 inhibitors include mobilisation and burning of fat during meals, decrease in fat extraction from the gut, reduction of fasting lipolysis and liver fat and increase in LDL particle size. These actions contribute to the clinical effects of DPP-4 inhibition, and the reduced demand for insulin could also lead to a durability benefit. This review summarises the current knowledge of the secondary pharmacological actions of DPP-4 inhibitors that lead to improved glucose regulation in patients with type 2 diabetes, focusing on alpha and beta cell function and lipid metabolism.
Collapse
Affiliation(s)
- Bo Ahrén
- Faculty of Medicine, Department of Clinical Sciences Lund, Lund University, B11 BMC, Sölvegatan 19, 22184, Lund, Sweden.
| | - James E Foley
- World Wide Medical Affairs, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
22
|
Oh TJ. In Vivo Models for Incretin Research: From the Intestine to the Whole Body. Endocrinol Metab (Seoul) 2016; 31:45-51. [PMID: 26996422 PMCID: PMC4803560 DOI: 10.3803/enm.2016.31.1.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
Incretin hormones are produced by enteroendocrine cells (EECs) in the intestine in response to ingested nutrient stimuli. The incretin effect is defined as the difference in the insulin secretory response between the oral glucose tolerance test and an isoglycemic intravenous glucose infusion study. The pathophysiology of the decreased incretin effect has been studied as decreased incretin sensitivity and/or β-cell dysfunction per se. Interestingly, robust increases in endogenous incretin secretion have been observed in many types of metabolic/bariatric surgery. Therefore, metabolic/bariatric surgery has been extensively studied for incretin physiology, not only the hormones themselves but also alterations in EECs distribution and genetic expression levels of gut hormones. These efforts have given us an enormous understanding of incretin biology from synthesis to in vivo behavior. Further innovative studies are needed to determine the mechanisms and targets of incretin hormones.
Collapse
Affiliation(s)
- Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
23
|
Sakthimanigandan K, Ganesh M, Kanthikiran V, Sivakumar T, Jang H. Liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of Vildagliptin in rat plasma. ACTA CHROMATOGR 2015. [DOI: 10.1556/achrom.27.2015.2.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
|
25
|
Ruan Y, Thabit H, Wilinska ME, Hovorka R. Modelling endogenous insulin concentration in type 2 diabetes during closed-loop insulin delivery. Biomed Eng Online 2015; 14:19. [PMID: 25889091 PMCID: PMC4359432 DOI: 10.1186/s12938-015-0009-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/05/2015] [Indexed: 11/20/2022] Open
Abstract
Background Closed-loop insulin delivery is an emerging treatment for type 1 diabetes (T1D) evaluated clinically and using computer simulations during pre-clinical testing. Efforts to make closed-loop systems available to people with type 2 diabetes (T2D) calls for the development of a new type of simulators to accommodate differences between T1D and T2D. Presented here is the development of a model of posthepatic endogenous insulin concentration, a component omitted in T1D simulators but key for simulating T2D physiology. Methods We evaluated six competing models to describe the time course of endogenous insulin concentration as a function of the plasma glucose concentration and time. The models were fitted to data collected in insulin-naive subjects with T2D who underwent two 24-h visits and were treated, in a random order, by either closed-loop insulin delivery or glucose-lowering oral agents. The model parameters were estimated using a Bayesian approach, as implemented in the WinBUGS software. Model selection criteria were used to identify the best model describing our clinical data. Results The selected model successfully described endogenous insulin concentration over 24 h in both study periods and provided plausible parameter estimates. Model-derived results were in concordance with a clinical finding which revealed increased posthepatic endogenous insulin concentration during the control study period (P < 0.05). The modelling results indicated that the excess amount of insulin can be attributed to the glucose-independent effect as the glucose-dependent effect was similar between visits (P > 0.05). Conclusions A model to describe endogenous insulin concentration in T2D including components of posthepatic glucose-dependent and glucose-independent insulin secretion was identified and validated. The model is suitable to be incorporated in a simulation environment for evaluating closed-loop insulin delivery in T2D. Electronic supplementary material The online version of this article (doi:10.1186/s12938-015-0009-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Paediatrics, University of Cambridge, Cambridge, UK. .,Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Hood Thabit
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Malgorzata E Wilinska
- Department of Paediatrics, University of Cambridge, Cambridge, UK. .,Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Roman Hovorka
- Department of Paediatrics, University of Cambridge, Cambridge, UK. .,Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Michaliszyn SF, Mari A, Lee S, Bacha F, Tfayli H, Farchoukh L, Ferrannini E, Arslanian S. β-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes 2014; 63:3846-55. [PMID: 24947360 PMCID: PMC4207396 DOI: 10.2337/db13-1951] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Using the hyperglycemic and euglycemic clamp, we demonstrated impaired β-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled β-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. β-Cell function parameters were derived from established mathematical models yielding β-cell glucose sensitivity (βCGS), rate sensitivity, and insulin sensitivity in 255 obese adolescents (173 with normal glucose tolerance [NGT], 48 with impaired glucose tolerance [IGT], and 34 with type 2 diabetes [T2D]). The incretin effect was calculated as the ratio of the OGTT-βCGS to the 2-h hyperglycemic clamp-βCGS. Incretin and glucagon concentrations were measured during the OGTT. Compared with NGT, βCGS was 30 and 65% lower in youth with IGT and T2D, respectively; rate sensitivity was 40% lower in T2D. Youth with IGT or T2D had 32 and 38% reduced incretin effect compared with NGT in the face of similar changes in GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in response to oral glucose. We conclude that glucose sensitivity deteriorates progressively in obese youth across the spectrum of glucose tolerance in association with impairment in incretin effect without reduction in GLP-1 or GIP, similar to that seen in adult dysglycemia.
Collapse
Affiliation(s)
- Sara F Michaliszyn
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Andrea Mari
- CNR Institute of Biomedical Engineering, Padova, Italy
| | - SoJung Lee
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Fida Bacha
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Hala Tfayli
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lama Farchoukh
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Silva Arslanian
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA Division of Pediatric Endocrinology, Diabetes and Metabolism, Children's Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
27
|
Rhee NA, Østoft SH, Holst JJ, Deacon CF, Vilsbøll T, Knop FK. The impact of dipeptidyl peptidase 4 inhibition on incretin effect, glucose tolerance, and gastrointestinal-mediated glucose disposal in healthy subjects. Eur J Endocrinol 2014; 171:353-62. [PMID: 24935932 DOI: 10.1530/eje-14-0314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Inhibition of dipeptidyl peptidase 4 (DPP4) is thought to intensify the physiological effects of the incretin hormones. We investigated the effects of DPP4 inhibition on plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1), incretin effect, glucose tolerance, gastrointestinal-mediated glucose disposal (GIGD) and gastric emptying in healthy subjects. DESIGN A randomised, controlled and open-labelled study. METHODS Ten healthy subjects (six women; age, 40±5 years (mean±s.e.m.); BMI, 24±3 kg/m(2); fasting plasma glucose, 5.1±0.2 mmol/l and HbA1c, 34±1 mmol/mol (5.3±0.1%)) were randomised to two-paired study days comprising a 4-h 50 g oral glucose tolerance test (OGTT) with paracetamol (A) and an isoglycaemic intravenous (i.v.) glucose infusion (B), with (A1+B1) and without (A2+B2) preceding administration of the DPP4 inhibitor sitagliptin. RESULTS Isoglycaemia was obtained in all subjects on the paired study days. Significant increases in fasting levels and OGTT-induced responses of active GLP1 and GIP were seen after DPP4 inhibition. No significant impact of DPP4 inhibition on fasting plasma glucose (5.1±0.1 vs 4.9±0.1 mmol/l, P=0.3), glucose tolerance (area under the curve (AUC) for plasma glucose, 151±35 vs 137±26 mmol/l×min, P=0.7) or peak plasma glucose during OGTT (8.5±0.4 vs 8.1±0.3 mmol/l, P=0.3) was observed. Neither incretin effect (40±9% (without DPP4 inhibitor) vs 40±7% (with DPP4 inhibitor), P=1.0), glucagon responses (1395±165 vs 1223±195 pmol/l×min, P=0.41), GIGD (52±4 vs 56±5%, P=0.40) nor gastric emptying (Tmax for plasma paracetamol: 86±9 vs 80±12 min, P=0.60) changed following DPP4 inhibition. CONCLUSIONS These results suggest that acute increases in active incretin hormone levels do not affect glucose tolerance, GIGD, incretin effect, glucagon responses or gastric emptying in healthy subjects.
Collapse
Affiliation(s)
- N A Rhee
- Center for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkCenter for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - S H Østoft
- Center for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J J Holst
- Center for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - C F Deacon
- Center for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - T Vilsbøll
- Center for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - F K Knop
- Center for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DenmarkCenter for Diabetes ResearchGentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkDepartment of Biomedical SciencesFaculty of Health and Medical Sciences, The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Abstract
Dipeptidyl peptidase (DPP)-4 inhibition is a glucose-lowering treatment for type 2 diabetes. The classical mechanism for DPP-4 inhibitors is that they inhibit DPP-4 activity in peripheral plasma, which prevents the inactivation of the incretin hormone glucagon-like peptide (GLP)-1 in the peripheral circulation. This in turn increases circulating intact GLP-1, which results in stimulated insulin secretion and inhibited glucagon secretion, in turn increasing glucose utilization and diminishing hepatic glucose production, which, through reduction in postprandial and fasting glucose, reduces HbA1c. However, recent experimental studies in mainly rodents but also to a limited degree in humans have found additional mechanisms for DPP-4 inhibitors that may contribute to their glucose-lowering action. These nonclassical mechanisms include 1) inhibition of gut DPP-4 activity, which prevents inactivation of newly released GLP-1, which in turn augments GLP-1-induced activations of autonomic nerves and results in high portal GLP-1 levels, resulting in inhibited glucose production through portal GLP-1 receptors; 2) inhibition of islet DPP-4 activity, which prevents inactivation of locally produced intact GLP-1 in the islets, thereby augmenting insulin secretion and inhibiting glucagon secretion and possibly preventing islet inflammation; and 3) prevention of the inactivation of other bioactive peptides apart from GLP-1, such as glucose-dependent insulinotropic polypeptide, stromal-derived factor-1α, and pituitary adenylate cyclase-activating polypeptide, which may improve islet function. These pleiotropic effects may contribute to the effects of DPP-4 inhibition. This Perspectives in Diabetes outlines and discusses these nonclassical mechanisms of DPP-4 inhibition.
Collapse
Affiliation(s)
- Bilal Omar
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
29
|
|
30
|
Aulinger BA, Bedorf A, Kutscherauer G, de Heer J, Holst JJ, Göke B, Schirra J. Defining the role of GLP-1 in the enteroinsulinar axis in type 2 diabetes using DPP-4 inhibition and GLP-1 receptor blockade. Diabetes 2014; 63:1079-92. [PMID: 24296715 DOI: 10.2337/db13-1455] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding the incretin pathway has led to significant advancements in the treatment of type 2 diabetes (T2D). Still, the exact mechanisms are not fully understood. In a randomized, placebo-controlled, four-period, crossover study in 24 patients with T2D, dipeptidyl peptidase-4 (DPP-4) inhibition and its glucose-lowering actions were tested after an oral glucose tolerance test (OGTT). The contribution of GLP-1 was examined by infusion of the GLP-1 receptor (GLP-1r) antagonist exendin-9. DPP-4 inhibition reduced glycemia and enhanced insulin levels and the incretin effect (IE). Glucagon was suppressed, and gastric emptying (GE) was decelerated. Exendin-9 increased glucose levels and glucagon secretion, attenuated insulinemia and the IE, and accelerated GE. With the GLP-1r antagonist, the glucose-lowering effects of DPP-4 inhibition were reduced by ∼ 50%. However, a significant effect on insulin secretion remained during GLP-1r blockade, whereas the inhibitory effects of DPP-4 inhibition on glucagon and GE were abolished. Thus, in this cohort of T2D patients with a substantial IE, GLP-1 contributed ∼ 50% to the insulin excursion after an OGTT with and without DPP-4 inhibition. Thus, a significant DPP-4-sensitive glucose-lowering mechanism contributes to glycemic control in T2D patients that may be not mediated by circulating GLP-1.
Collapse
Affiliation(s)
- Benedikt A Aulinger
- Department of Internal Medicine II, Clinical Research Unit, Clinical Center of the Ludwig-Maximilians University, Campus Grosshadern, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim M, Oh TJ, Lee JC, Choi K, Kim MY, Kim HC, Cho YM, Kim S. Simulation of oral glucose tolerance tests and the corresponding isoglycemic intravenous glucose infusion studies for calculation of the incretin effect. J Korean Med Sci 2014; 29:378-85. [PMID: 24616587 PMCID: PMC3945133 DOI: 10.3346/jkms.2014.29.3.378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
The incretin effect, which is a unique stimulus of insulin secretion in response to oral ingestion of nutrients, is calculated by the difference in insulin secretory responses from an oral glucose tolerance test (OGTT) and a corresponding isoglycemic intravenous glucose infusion (IIGI) study. The OGTT model of this study, which is individualized by fitting the glucose profiles during an OGTT, was developed to predict the glucose profile during an IIGI study in the same subject. Also, the model predicts the insulin and incretin profiles during both studies. The incretin effect, estimated by simulation, was compared with that measured by physiologic studies from eight human subjects with normal glucose tolerance, and the result exhibited a good correlation (r > 0.8); the incretin effect from the simulation was 56.5% ± 10.6% while the one from the measured data was 52.5% ± 19.6%. In conclusion, the parameters of the OGTT model have been successfully estimated to predict the profiles of both OGTTs and IIGI studies. Therefore, with glucose data from the OGTT alone, this model could control and predict the physiologic responses, including insulin secretion during OGTTs and IIGI studies, which could eventually eliminate the need for complex and cumbersome IIGI studies in incretin research.
Collapse
Affiliation(s)
- Myeungseon Kim
- Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Chan Lee
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Engineering, Seoul National University Hospital, Seoul, Korea
| | - Karam Choi
- Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Min Young Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hee Chan Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Engineering, Seoul National University Hospital, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sungwan Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Engineering, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
32
|
Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and "isoglycemic" intravenous glucose. Diabetes 2014; 63:663-74. [PMID: 24186866 DOI: 10.2337/db13-0805] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors prevent degradation of incretin hormones (glucagon-like peptide 1 [GLP-1] and glucose-dependent insulinotropic polypeptide [GIP]), whereas metformin may increase GLP-1 levels. We examined, in a four-period crossover trial, the influence of metformin (2,000 mg/day), sitagliptin (100 mg/day), or their combination, on GLP-1 responses and on the incretin effect in 20 patients with type 2 diabetes, comparing an oral glucose challenge (75 g, day 5) and an "isoglycemic" intravenous glucose infusion (day 6). Fasting total GLP-1 was significantly increased by metformin and not changed by sitagliptin. After oral glucose, metformin increased and sitagliptin significantly decreased (by 53%) total GLP-1. Fasting and postload intact GLP-1 increased with sitagliptin but not with metformin. After oral glucose, only sitagliptin, but not metformin, significantly augmented insulin secretion, in monotherapy and as an add-on to metformin. The incretin effect was not changed numerically with any of the treatments. In conclusion, sitagliptin increased intact GLP-1 and GIP through DPP-4 inhibition but reduced total GLP-1 and GIP (feedback inhibition) without affecting the numerical contribution of the incretin effect. Insulin secretion with sitagliptin treatment was similarly stimulated with oral and "isoglycemic" intravenous glucose. This points to an important contribution of small changes in incretin concentrations within the basal range or to additional insulinotropic agents besides GLP mediating the antidiabetic effects of DPP-4 inhibition.
Collapse
Affiliation(s)
- Irfan Vardarli
- Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany
| | | | | | | | | |
Collapse
|
33
|
Incretin dysfunction in type 2 diabetes: Clinical impact and future perspectives. DIABETES & METABOLISM 2013; 39:195-201. [DOI: 10.1016/j.diabet.2013.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023]
|
34
|
Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell Signal 2013; 25:570-9. [DOI: 10.1016/j.cellsig.2012.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 01/09/2023]
|
35
|
|
36
|
Seino Y, Miyata Y, Hiroi S, Hirayama M, Kaku K. Efficacy and safety of alogliptin added to metformin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label, long-term extension study. Diabetes Obes Metab 2012; 14:927-36. [PMID: 22583697 DOI: 10.1111/j.1463-1326.2012.01620.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 03/23/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022]
Abstract
AIMS To evaluate the efficacy and safety of alogliptin added to metformin versus metformin monotherapy in Japanese patients with type 2 diabetes who achieved inadequate glycaemic control on metformin (500 or 750 mg/day) + diet/exercise. METHODS In a randomized, double-blind trial, 288 patients with type 2 diabetes mellitus T2DM received either 12.5 or 25 mg alogliptin once daily + metformin or placebo + metformin for 12 weeks. Thereafter, 276 patients continued on one of the two alogliptin dosages + metformin in an open-label extension for 40 weeks. The primary efficacy endpoint in the randomized, double-blind phase was the change in HbA1c from baseline (week 0) to the end of treatment (week 12). The primary endpoint during the long-term extension phase was adverse events. RESULTS After 12 weeks both dosages of alogliptin + metformin produced significantly greater changes from baseline in HbA1c than placebo (metformin monotherapy: with changes in LS means - 0.55 and - 0.64% vs. 0.22%, respectively; p < 0.0001). Incidences of adverse effects were comparable between groups, with no increases in hypoglycaemia. Over 52 weeks, there were no safety or tolerability concerns with alogliptin when added to metformin. CONCLUSIONS Alogliptin 12.5 and 25 mg once daily was safe and effective when added to metformin (500 or 750 mg/day) in Japanese patients with inadequately controlled type 2 diabetes on metformin alone.
Collapse
Affiliation(s)
- Y Seino
- Kansai Electric Power Hospital, Osaka, Japan.
| | | | | | | | | |
Collapse
|
37
|
Stevens JE, Horowitz M, Deacon CF, Nauck M, Rayner CK, Jones KL. The effects of sitagliptin on gastric emptying in healthy humans - a randomised, controlled study. Aliment Pharmacol Ther 2012; 36:379-90. [PMID: 22738299 DOI: 10.1111/j.1365-2036.2012.05198.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/03/2012] [Accepted: 06/06/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND The rate of gastric emptying (GE) and subsequent release of the incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are critical determinants of postprandial glycaemia in health and type 2 diabetes. Slowing of GE may be the dominant mechanism by which exogenous GLP-1, and some GLP-1 analogues, improve postprandial glycaemia. AIM To determine the effect of sitagliptin on GE in healthy subjects, and the relationships between GE with glycaemia and incretin hormone secretion. METHODS Fifteen volunteers (22.8 ± 0.7 years) were studied on two occasions following 2 days dosing with sitagliptin (100 mg/day) or placebo. GE (scintigraphy), glycaemia and plasma GLP-1 and GIP (total and intact), insulin and glucagon were measured for 240 min following a mashed potato meal (1808 kJ). RESULTS There was no difference in GE between sitgaliptin and placebo [50% emptying time (T50): P = 0.4]. Mean blood glucose was slightly less (P = 0.02) on sitagliptin. Sitagliptin reduced plasma glucagon between 75 and 120 min (P < 0.05), and increased intact GLP-1 (P = 0.0002) and intact GIP (P = 0.0001) by approximately twofold, but reduced total GIP (P = 0.0003) and had no effect on total GLP-1 (P = 0.16) or insulin (P = 0.75). On sitagliptin the initial rise in blood glucose (r = -0.66, P = 0.008) and the intact GIP response (r = -0.66, P = 0.007) were inversely related, whereas the intact GLP-1 response was related directly (r = 0.52, P = 0.05) to the T50. CONCLUSIONS While the effects of sitagliptin on glycaemic control are unlikely to relate to slowing of GE in healthy humans, the rate of GE is a significant determinant of postprandial glycaemia on sitagliptin.
Collapse
Affiliation(s)
- J E Stevens
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Muscelli E, Casolaro A, Gastaldelli A, Mari A, Seghieri G, Astiarraga B, Chen Y, Alba M, Holst J, Ferrannini E. Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab 2012; 97:2818-26. [PMID: 22685234 DOI: 10.1210/jc.2012-1205] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Dipeptidyl peptidase IV (DPP-4) inhibitors improve glycemic control in patients with type 2 diabetes. The underlying mechanisms (incretin effect, β-cell function, endogenous glucose production) are not well known. OBJECTIVE The aim of the study was to examine mechanisms of the antihyperglycemic effect of DPP-4 inhibitors. DESIGN, SETTING, AND PATIENTS We administered a mixed meal with glucose tracers ([6,6-(2)H(2)]-glucose infused, [1-(2)H]-glucose ingested), and on a separate day, a glucose infusion matched the glucose responses to the meal (isoglycemic test) in 50 type 2 diabetes patients (hemoglobin A(1c) = 7.4 ± 0.8%) and seven controls; 47 diabetic completers were restudied after 6 wk. Glucose fluxes were calculated, and β-cell function was assessed by mathematical modeling. The incretin effect was calculated as the ratio of oral to iv insulin secretion. INTERVENTION We conducted a 6-wk, double-blind, randomized treatment with sitagliptin (100 mg/d; n = 25) or placebo (n = 22). RESULTS Relative to placebo, meal-induced changes in fasting glucose and glucose area under the curve (AUC) were greater with sitagliptin, in parallel with a lower appearance of oral glucose [difference (post-pre) AUC = -353 ± 915 vs. +146 ± 601 μmol · kg(-1) · 5 h] and greater suppression of endogenous glucose production. Insulin sensitivity improved 10%, whereas total insulin secretion was unchanged. During the meal, β-cell glucose sensitivity improved (+19[29] vs. 5[21] pmol · min(-1) · m(-2) · mm(-1); median [interquartile range]) and glucagon AUC decreased (19.6 ± 7.5 to 17.3 ± 7.1 ng · ml(-1) · 5 h), whereas intact glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 AUC increased with sitagliptin vs. placebo. The incretin effect was unchanged because sitagliptin increased β-cell glucose sensitivity also during the isoglycemic test. CONCLUSIONS Chronic sitagliptin treatment improves glycemic control by lowering the appearance of oral glucose, postprandial endogenous glucose release, and glucagon response, and by improving insulin sensitivity and β-cell glucose sensing in response to both oral and iv glucose.
Collapse
Affiliation(s)
- Elza Muscelli
- Department of Internal Medicine, University of Pisa School of Medicine, 56100 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
INTRODUCTION Dipeptidylpeptidase-4 (DPP-4) inhibitors offer new options for the management of type 2 diabetes (T2DM). AREAS COVERED This paper is an updated review, providing an analysis of both the similarities and the differences between the various compounds known as gliptins, currently used in the clinic (sitagliptin, vildagliptin, saxagliptin, alogliptin and linagliptin). This paper discusses the pharmacokinetic and pharmacodynamic characteristics of gliptins; both the efficacy and safety profiles of gliptins in clinical trials (compared with classical glucose-lowering agents), given as monotherapy or in combination, including in special populations; the positioning of DPP-4 inhibitors in the management of T2DM in recent guidelines; and various unanswered questions and perspectives. EXPERT OPINION The role of DPP-4 inhibitors in the therapeutic armamentarium of T2DM is evolving, as their potential strengths and weaknesses become better defined. Future critical issues may include the durability of glucose control, resulting from better β-cell protection, positive effects on cardiovascular outcomes and long-term safety issues.
Collapse
Affiliation(s)
- André J Scheen
- University of Liège, Division of Diabetes, Nutrition and Metabolic Disorders, and Division of Clinical Pharmacology, Department of Medicine, CHU Sart Tilman (B35), B-4000 LIEGE 1, Belgium.
| |
Collapse
|
41
|
Abstract
The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are gut peptides which are secreted by endocrine cells in the intestinal mucosa. Their plasma concentrations increase quickly following food ingestion, and carbohydrate, fat, and protein have all been shown to stimulate GLP-1 and GIP secretion. Although neural and hormonal mechanisms have also been proposed to regulate incretin hormone secretion, direct stimulation of the enteroendocrine cells by the presence of nutrients in the intestinal lumen is probably the most important factor in humans. The actions of the incretin hormones are crucial for maintaining normal islet function and glucose homeostasis. Furthermore, it is also now being recognized that incretin hormones may have other actions in addition to their glucoregulatory effects. Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, but interpretation of the precise relationship between disease and incretins is difficult. The balance of evidence seems to suggest that alterations in secretion and/or action of incretin hormones arise secondarily to the development of insulin resistance, glucose intolerance, and/or increases in body weight rather than being causative factors. However, these impairments may contribute to the deterioration of glycemic control in diabetic patients.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
42
|
|
43
|
Henry RR, Smith SR, Schwartz SL, Mudaliar SR, Deacon CF, Holst JJ, Duan RY, Chen RS, List JF. Effects of saxagliptin on β-cell stimulation and insulin secretion in patients with type 2 diabetes. Diabetes Obes Metab 2011; 13:850-8. [PMID: 21554520 DOI: 10.1111/j.1463-1326.2011.01417.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To study the effect of dipeptidyl peptidase-4 (DPP-4) inhibition with saxagliptin on β-cell function as reflected by the stimulated insulin secretion rate after an enteral glucose load in patients with type 2 diabetes. METHODS Patients in this randomized, parallel-group, double-blind, placebo-controlled study were drug-naïve, aged 43-69 years, with baseline haemoglobin A1c (HbA1c) 5.9-8.1%. Twenty patients received saxagliptin 5 mg once daily; 16 received placebo. Patients were assessed at baseline and week 12 by intravenous hyperglycaemic clamp (0-180 min, fasting state), and intravenous-oral hyperglycaemic clamp (180-480 min, postprandial state) following oral ingestion of 75 g glucose. Primary and secondary endpoints were percent changes from baseline in insulin secretion during postprandial and fasting states, respectively. Insulin secretion was calculated by C-peptide deconvolution. RESULTS After 12 weeks, saxagliptin significantly increased insulin secretion percent change from baseline during the postprandial state by an 18.5% adjusted difference versus placebo (p = 0.04), an improvement associated with increased peak plasma concentrations of intact glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. In the fasting state, saxagliptin significantly increased insulin secretion by a 27.9% adjusted difference versus placebo (p = 0.02). Saxagliptin also improved glucagon area under the curve in the postprandial state (adjusted difference -21.8% vs. placebo, p = 0.03). CONCLUSIONS DPP-4 inhibition with saxagliptin improves pancreatic β-cell function in postprandial and fasting states, and decreases postprandial glucagon concentration. Given the magnitude of enhancement of the insulin response in the fasting state, further study into the effect of DPP-4 inhibition on the β-cell is warranted.
Collapse
Affiliation(s)
- R R Henry
- VA San Diego Healthcare System Research Service and University of California San Diego School of Medicine, San Diego, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ahrén B, Schweizer A, Dejager S, Villhauer EB, Dunning BE, Foley JE. Mechanisms of action of the dipeptidyl peptidase-4 inhibitor vildagliptin in humans. Diabetes Obes Metab 2011; 13:775-83. [PMID: 21507182 DOI: 10.1111/j.1463-1326.2011.01414.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibition of dipeptidyl peptidase-4 (DPP-4) by vildagliptin prevents degradation of glucagon-like peptide-1 (GLP-1) and reduces glycaemia in patients with type 2 diabetes mellitus, with low risk for hypoglycaemia and no weight gain. Vildagliptin binds covalently to the catalytic site of DPP-4, eliciting prolonged enzyme inhibition. This raises intact GLP-1 levels, both after meal ingestion and in the fasting state. Vildagliptin has been shown to stimulate insulin secretion and inhibit glucagon secretion in a glucose-dependent manner. At hypoglycaemic levels, the counterregulatory glucagon response is enhanced relative to baseline by vildagliptin. Vildagliptin also inhibits hepatic glucose production, mainly through changes in islet hormone secretion, and improves insulin sensitivity, as determined with a variety of methods. These effects underlie the improved glycaemia with low risk for hypoglycaemia. Vildagliptin also suppresses postprandial triglyceride (TG)-rich lipoprotein levels after ingestion of a fat-rich meal and reduces fasting lipolysis, suggesting inhibition of fat absorption and reduced TG stores in non-fat tissues. The large body of knowledge on vildagliptin regarding enzyme binding, incretin and islet hormone secretion and glucose and lipid metabolism is summarized, with discussion of the integrated mechanisms and comparison with other DPP-4 inhibitors and GLP-1 receptor activators, where appropriate.
Collapse
Affiliation(s)
- B Ahrén
- Department of Clinical Sciences, Lund University, Lund, Sweden Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Foley JE, Bunck MC, Möller-Goede DL, Poelma M, Nijpels G, Eekhoff EM, Schweizer A, Heine RJ, Diamant M. Beta cell function following 1 year vildagliptin or placebo treatment and after 12 week washout in drug-naive patients with type 2 diabetes and mild hyperglycaemia: a randomised controlled trial. Diabetologia 2011; 54:1985-91. [PMID: 21547496 PMCID: PMC3131517 DOI: 10.1007/s00125-011-2167-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Traditional blood glucose lowering agents do not prevent the progressive loss of beta cell function in patients with type 2 diabetes. The dipeptidylpeptidase (DPP)-4 inhibitor vildagliptin improves beta cell function both acutely and chronically (up to 2 years). Whether this effect persists after cessation of treatment remains unknown. Here, we assessed the insulin secretory capacity in drug-naive patients with type 2 diabetes after a 52 week treatment period with vildagliptin or placebo, and again after a 12 week washout period. METHODS This study was conducted at a single university medical centre, and was a double-blind, randomised clinical trial in 59 drug-naive patients with type 2 diabetes and mild hyperglycaemia to either vildagliptin 100 mg (n = 29) or placebo (n = 30). Randomisation was performed by a validated 1:1 system. Neither patient, nor caregiver, was informed about the assigned treatment. Inclusion criteria were drug-naive patients ≥30 years, with HbA(1c) ≤7.5% and BMI of 22-45 kg/m(2). The mildly hyperglycaemic patient population was chosen to minimise glucose toxicity as a confounding variable. Beta-cell function was measured during an arginine-stimulated hyperglycaemic clamp at week 0, week 52 and after a 12 week washout period. All patients with at least one post-randomisation measure were analysed (intent-to-treat). RESULTS Fifty-two week vildagliptin 100 mg (n = 26) treatment increased the primary efficacy variable, combined hyperglycaemia and arginine-stimulated C-peptide secretion (AIR(arg)), by 5.0 ± 1.8 nmol/l × min, while it decreased by 0.8 ± 1.8 nmol/l × min with placebo (n = 25) (between-group difference p = 0.030). No significant between-group difference in AIR(arg) was seen after the 12 week washout period. The between-group difference adjusted mean 52 week changes from baseline was -0.19 ± 0.11, p = 0.098 and -0.22 ± 0.23%, p = 0.343 for HbA(1c) and fasting plasma glucose, respectively. There were no suspected drug treatment-related serious adverse events. CONCLUSIONS/INTERPRETATION One year treatment with vildagliptin significantly increased beta cell secretory capacity. This effect was not maintained after the washout, indicating that this increased capacity was not a disease modifying effect on beta cell mass and/or function. TRIAL REGISTRATION ClinicalTrials.gov NCT00260156.
Collapse
Affiliation(s)
- J E Foley
- Novartis Pharmaceutical Cooperation, Clinical Research and Development, One Health Plaza, East Hanover, NJ 07936, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes 2010; 59:1117-25. [PMID: 20427697 PMCID: PMC2857890 DOI: 10.2337/db09-1899] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Juris J Meier
- Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| | | |
Collapse
|