1
|
Zhang C, Liang Y, Luo XP. Long-term safety of childhood growth hormone treatment: evidences from real-world study and future directions. World J Pediatr 2025; 21:3-7. [PMID: 39663277 PMCID: PMC11813817 DOI: 10.1007/s12519-024-00862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan, China.
| |
Collapse
|
2
|
Shu K, Wang K, Zhang R, Wang C, Cai Z, Liu K, Lin H, Zeng Y, Cao Z, Lai C, Yan Z, Lu Y. Pituitary MRI Radiomics Improves Diagnostic Performance of Growth Hormone Deficiency in Children Short Stature: A Multicenter Radiomics Study. Acad Radiol 2024; 31:3783-3792. [PMID: 38796401 DOI: 10.1016/j.acra.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
RATIONALE AND OBJECTIVES To develop an efficient machine-learning model using pituitary MRI radiomics and clinical data to differentiate growth hormone deficiency (GHD) from idiopathic short stature (ISS), making the diagnostic process more acceptable to patients and their families. MATERIALS AND METHODS A retrospective cohort of 297 GHD and 300 ISS children (4-12 years) were enrolled as training and validation cohorts (8:2 ratio). An external cohort from another institution (49 GHD and 51 ISS) was employed as the testing cohort. Radiomics features extracted from the anterior pituitary gland on sagittal T1-weighted image (1.5 T or 3.0 T) were used to develop a radiomics model after feature selection. Hematological biomarkers were selected to create a clinical model and combine with the optimal radiomics features to create a clinical-radiomics model. The area under the receive operating characteristic curve (AUC) and Delong test compared the diagnostic performance of the previously mentioned three models across different validation and testing cohorts. RESULTS 17 radiomics features were selected for the radiomics model, and total protein, total cholesterol, free triiodothyronine, and triglyceride were utilized for the clinical model. In the training and validation cohorts, the diagnostic performance of the clinical-radiomics model (AUC=0.820 and 0.801) was comparable to the radiomics model (AUC=0.812 and 0.779, both P >0.05), both outperforming the clinical model (AUC=0.575 and 0.593, P <0.001). In the testing cohort, the clinical-radiomics model exhibited the highest AUC of 0.762 than the clinical and radiomics model (AUC=0.604 and 0.741, respectively, P <0.05). In addition, the clinical and radiomics models demonstrated similar diagnostic performance in the testing cohort (P >0.05). CONCLUSION Integrating radiomics features from conventional pituitary MRI with clinical indicators offers a minimally invasive approach for identifying GHD and shows robustness in a multicenter setting.
Collapse
Affiliation(s)
- Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Keren Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ruifang Zhang
- Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chenyan Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zheng Cai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hu Lin
- Department of Endocrinology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Zeng
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd, China
| | - Zirui Cao
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd, China
| | - Can Lai
- Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang Province, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang Province, China; Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Tidblad A, Sävendahl L. Childhood growth hormone treatment: challenges, opportunities, and considerations. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:600-610. [PMID: 38945136 DOI: 10.1016/s2352-4642(24)00127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
With long standing demand and popularity, growth hormone treatments continue to be a topic of interest for paediatric endocrinologists and general paediatricians due to ongoing issues regarding their long-term effects, the safety of childhood treatment, and the introduction of long-acting growth hormone preparations in the past decade. Moreover, uncertainty regarding how to approach individual patients and their treatment indications remains, particularly concerning tailored treatment goals and objectives; this uncertainty is further complicated by the multitude of approved indications that surpass substitution therapy. The paediatric endocrinologist thus grapples with pertinent questions, such as what defines reasonable treatment goals for each individual given their indications, and when (and how) to initiate the necessary discussions about risks and benefits with patients and their families. The aim of this Review is to offer advanced physiological concepts of growth hormone function, map out approved paediatric indications for treatment along with evidence on their effects and safety, highlight controversies and complexities surrounding childhood growth hormone treatment, and discuss the potential of long-acting growth hormone and future directions in the realm of childhood growth hormone treatment.
Collapse
Affiliation(s)
- Anders Tidblad
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Paediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Paediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Garmes HM. Special features on insulin resistance, metabolic syndrome and vascular complications in hypopituitary patients. Rev Endocr Metab Disord 2024; 25:489-504. [PMID: 38270844 DOI: 10.1007/s11154-023-09872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
Pituitary hormone deficiency, hypopituitarism, is a dysfunction resulting from numerous etiologies, which can be complete or partial, and is therefore heterogeneous. This heterogeneity makes it difficult to interpret the results of scientific studies with these patients.Adequate treatment of etiologies and up-to-date hormone replacement have improved morbidity and mortality rates in patients with hypopituitarism. As GH replacement is not performed in a reasonable proportion of patients, especially in some countries, it is essential to understand the known consequences of GH replacement in each subgroup of patients with this heterogeneous dysfunction.In this review on hypopituitarism, we will address some particularities regarding insulin resistance, which is no longer common in these patients with hormone replacement therapy based on current guidelines, metabolic syndrome and its relationship with changes in BMI and body composition, and to vascular complications that need to be prevented taking into account the individual characteristics of each case to reduce mortality rates in these patients.
Collapse
Affiliation(s)
- Heraldo M Garmes
- Endocrinology Division, Department of Clinical Medicine, Faculdade de Ciências Médicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Universidade Estadual de Campinas. Rua Tessália Vieira de Camargo, 126, Barão Geraldo, CEP 13083-887, Campinas, São Paulo, Brasil.
| |
Collapse
|
5
|
Yuan J, Wang Y, Huang Y, Li S, Zhang X, Wu Z, Zhao W, Zhu J, Zhang J, Huang G, Yu P, Cheng X, Wang X, Liu X, Jia J. Investigating Novel Therapeutic Approaches for Idiopathic Short Stature: Targeting siRNA and Growth Hormone Delivery to the Growth Plate Using Exosome Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309559. [PMID: 38639394 PMCID: PMC11200009 DOI: 10.1002/advs.202309559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Idiopathic short stature (ISS) is a common childhood condition with largely unknown underlying causes. Recent research highlights the role of circulating exosomes in the pathogenesis of various disorders, but their connection to ISS remains unexplored. In the experiments, human chondrocytes are cocultured with plasma exosomes from ISS patients, leading to impaired chondrocyte growth and bone formation. Elevated levels of a specific long non-coding RNA (lncRNA), ISSRL, are identified as a distinguishing factor in ISS, boasting high specificity and sensitivity. Silencing ISSRL in ISS plasma exosomes reverses the inhibition of chondrocyte proliferation and bone formation. Conversely, overexpression of ISSRL in chondrocytes impedes their growth and bone formation, revealing its mechanism of action through the miR-877-3p/GZMB axis. Subsequently, exosomes (CT-Exo-siISSRL-oeGH) with precise cartilage-targeting abilities are engineered, loaded with customized siRNA for ISSRL and growth hormone. This innovative approach offers a therapeutic strategy to address ISS by rectifying abnormal non-coding RNA expression in growth plate cartilage and delivering growth hormone with precision to promote bone growth. This research provides valuable insights into ISS diagnosis and treatment, highlighting the potential of engineered exosomes.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Yameng Wang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Yanzhe Huang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Shengqin Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Xiaowen Zhang
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Zhiwen Wu
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Wenrui Zhao
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Junchao Zhu
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Junqiu Zhang
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Guowen Huang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Peng Yu
- Department of Endocrinology and MetabolismThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Xigao Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Xijuan Liu
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Jingyu Jia
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| |
Collapse
|
6
|
Tidblad A, Bottai M, Smedby KE, Albertsson-Wikland K, Sävendahl L. Long-term risk of neoplastic events after childhood growth hormone treatment: a population-based cohort study in Sweden. Front Endocrinol (Lausanne) 2024; 15:1360139. [PMID: 38505755 PMCID: PMC10948557 DOI: 10.3389/fendo.2024.1360139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Background Increased risk of neoplastic events after recombinant human growth hormone (rhGH) treatment in childhood has been an ongoing concern but long-term safety data are limited. Methods A nationwide population-based cohort study in Sweden of patients treated with rhGH during childhood between 1985-2010, due to isolated growth hormone deficiency (GHD), small for gestational age (SGA) and idiopathic short stature (ISS). The comparison group consisted of 15 age-, sex-, and region-matched controls per patient, randomly selected from the general population. Data on neoplastic events and covariates, such as gestational age, birth weight, birth length, socioeconomic status, and height at study start, were collected through linkage with population-based registers. The cohort was followed for neoplastic events until the end of 2020. Results 53,444 individuals (3,408 patients; 50,036 controls) were followed for up to 35 years, with a median follow-up of 19.8 years and a total of 1,050,977 person-years. Patients showed a moderately increased hazard ratio (HR) for neoplastic events overall compared to controls (HR 1.28, 95% CI: 1.12-1.46), but only significant for males (HR 1.39, 95% CI: 1.17-1.66) and not females (HR 1.15, 95% CI: 0.94-1.41). Longer treatment duration was associated with an increased HR, but no association was found between neoplastic events and mean or cumulative dose. No increased risk of malignant neoplasms was observed for the patients compared to matched controls (HR 0.91 95% CI: 0.66-1.26). Conclusion No association was found between rhGH treatment during childhood for GHD, SGA, or ISS and malignant neoplastic events in early to mid-adulthood. A moderate increase in overall neoplastic events was observed due to an increased number of events in male patients.
Collapse
Affiliation(s)
- Anders Tidblad
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatric Endocrinology, Karolinska University Hospital, Solna, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin E. Smedby
- Division of Clinical Epidemiology (KEP), Department of Medicine Solna, Karolinska Institutet, and Department of Hematology, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Albertsson-Wikland
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Division of Pediatric Endocrinology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
7
|
Dorrepaal DJ, Goedegebuure WJ, Smagge L, van der Steen M, van der Lugt A, Hokken-Koelega ACS. Cerebrovascular Abnormalities in Adults Born SGA at 12 Years After Growth Hormone Cessation Compared to Controls. J Clin Endocrinol Metab 2024; 109:e1185-e1193. [PMID: 37855389 PMCID: PMC10876403 DOI: 10.1210/clinem/dgad622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
CONTEXT Increased cerebrovascular morbidity was reported in adults born small for gestational age (SGA) who were treated with growth hormone (GH) during childhood compared to the general population. However, previous studies did not have an appropriate control group, which is a major limitation. OBJECTIVE To study cerebrovascular abnormalities (aneurysms, previous intracerebral hemorrhages and microbleeds) using magnetic resonance imaging (MRI) in adults born SGA at 12 years after cessation of childhood GH treatment (SGA-GH) compared to appropriate controls. METHODS In this single-center, prospective study, brain MRIs were performed between May 2016 and December 2020 on a 3T MRI system. MRI images were scored by 2 neuroradiologists who were blinded to patient groupings. Participants included adults born SGA previously treated with GH and 3 untreated control groups: adults born SGA with persistent short stature (SGA-S), adults born SGA with spontaneous catch-up growth to a normal height (SGA-CU) and adults born appropriate for gestational age with a normal height (AGA). The intervention was long-term GH treatment during childhood and the main outcome measure was cerebrovascular abnormalities. RESULTS A total of 301 adults were investigated. Aneurysms were found in 6 adults: 3 (3.6%) SGA-GH, 1 (2.9%) SGA-S and 2 (2.2%) AGA adults, without differences between SGA-GH adults and the controls. Previous intracerebral hemorrhages were only found in 2 SGA-S adults (4.8%). Microbleeds were found in 17 adults: 4 (4.3%) SGA-GH, 4 (9.5%) SGA-S, 3 (4.3%) SGA-CU and 6 (6.3%) AGA adults, without differences between SGA-GH adults and the controls. CONCLUSION Our findings suggest that SGA-GH adults at 12 years after GH cessation have no increased prevalence of cerebrovascular abnormalities compared to appropriate controls. Further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Demi Justine Dorrepaal
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
| | - Wesley Jim Goedegebuure
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
| | - Lucas Smagge
- Department of Radiology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, 3015 CN Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | | |
Collapse
|
8
|
Brettell E, Högler W, Woolley R, Cummins C, Mathers J, Oppong R, Roy L, Khan A, Hunt C, Dattani M. The Growth Hormone Deficiency (GHD) Reversal Trial: effect on final height of discontinuation versus continuation of growth hormone treatment in pubertal children with isolated GHD-a non-inferiority Randomised Controlled Trial (RCT). Trials 2023; 24:548. [PMID: 37605233 PMCID: PMC10440873 DOI: 10.1186/s13063-023-07562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Growth hormone deficiency (GHD) is the commonest endocrine cause of short stature and may occur in isolation (I-GHD) or combined with other pituitary hormone deficiencies. Around 500 children are diagnosed with GHD every year in the UK, of whom 75% have I-GHD. Growth hormone (GH) therapy improves growth in children with GHD, with the goal of achieving a normal final height (FH). GH therapy is given as daily injections until adult FH is reached. However, in many children with I-GHD their condition reverses, with a normal peak GH detected in 64-82% when re-tested at FH. Therefore, at some point between diagnosis and FH, I-GHD must have reversed, possibly due to increase in sex hormones during puberty. Despite increasing evidence for frequent I-GHD reversal, daily GH injections are traditionally continued until FH is achieved. METHODS/DESIGN Evidence suggests that I-GHD children who re-test normal in early puberty reach a FH comparable to that of children without GHD. The GHD Reversal study will include 138 children from routine endocrine clinics in twelve UK and five Austrian centres with I-GHD (original peak GH < 6.7 mcg/L) whose deficiency has reversed on early re-testing. Children will be randomised to either continue or discontinue GH therapy. This phase III, international, multicentre, open-label, randomised controlled, non-inferiority trial (including an internal pilot study) will assess whether children with early I-GHD reversal who stop GH therapy achieve non-inferior near FH SDS (primary outcome; inferiority margin 0.55 SD), target height (TH) minus near FH, HRQoL, bone health index and lipid profiles (secondary outcomes) than those continuing GH. In addition, the study will assess cost-effectiveness of GH discontinuation in the early retesting scenario. DISCUSSION If this study shows that a significant proportion of children with presumed I-GHD reversal generate enough GH naturally in puberty to achieve a near FH within the target range, then this new care pathway would rapidly improve national/international practice. An assumed 50% reversal rate would provide potential UK health service cost savings of £1.8-4.6 million (€2.05-5.24 million)/year in drug costs alone. This new care pathway would also prevent children from having unnecessary daily GH injections and consequent exposure to potential adverse effects. TRIAL REGISTRATION EudraCT number: 2020-001006-39.
Collapse
Affiliation(s)
- Elizabeth Brettell
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Krankenhausstrasse 26-30, Linz, 4020, Austria.
| | - Rebecca Woolley
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Carole Cummins
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan Mathers
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Raymond Oppong
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Laura Roy
- Child Growth Foundation, Aston House, Redburn Road, Newcastle Upon Tyne, UK
| | - Adam Khan
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Charmaine Hunt
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
9
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Liu X, Yuan J, Wu Z, Zhang J, Shen Y, Jia J. Plasma exosome miRNA-26b-3p derived from idiopathic short stature impairs longitudinal bone growth via the AKAP2/ERK1/2 axis. J Nanobiotechnology 2023; 21:94. [PMID: 36927779 PMCID: PMC10022307 DOI: 10.1186/s12951-023-01849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Currently, the etiology of idiopathic short stature (ISS) is still unclear. The poor understanding of the molecular mechanisms of ISS has largely restricted this strategy towards safe and effective clinical therapies. METHODS The plasma exosomes of ISS children were co-cultured with normal human chondrocytes. The differential expression of exosome miRNA between ISS and normal children was identified via high-throughput microRNA sequencing and bioinformatics analysis. Immunohistochemistry, In situ hybridization, RT-qPCR, western blotting, luciferase expression, and gene overexpression and knockdown were performed to reveal the key signaling pathways that exosome miRNA of aberrant expression in ISS children impairs longitudinal bone growth. RESULTS Chondrocytes proliferation and endochondral ossification were suppressed after coculture of ISS plasma exosomes with human normal chondrocytes. High-throughput microRNA sequencing and RT-qPCR confirmed that plasma exosome miR-26b-3p was upregulated in ISS children. Meanwhile, exosome miRNA-26b-3p showed a high specificity and sensitivity in discriminating ISS from normal children. The rescue experiment showed that downregulation of miR-26b-3p obviously improved the repression of chondrocyte proliferation and endochondral ossification caused by ISS exosomes. Subsequently, miR-26b-3p overexpression inhibited chondrocyte proliferation and endochondral ossification once again. In situ hybridization confirmed the colocalization of miR-26b-3p with AKAP2 in chondrocytes. In vitro and in vivo assay revealed exosome miRNA-26b-3p impairs longitudinal bone growth via the AKAP2 /ERK1/2 axis. CONCLUSIONS This study is the first to confirm that miR-26b-3p overexpression in ISS plasma exosomes leads to disorders in proliferation and endochondral ossification of growth plate cartilage via inhibition of AKAP2/ERK1/2 axis, thereby inducing ISS. This study provides a new research direction for the etiology and pathology of ISS and a new idea for the biological treatment of ISS.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Zhiwen Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Junqiu Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yunfeng Shen
- Endocrine Department, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
11
|
Kjaer ASL, Jensen RB, Petersen JH, Linneberg A, Kårhus LL, Henriksen LS, Johannsen TH, Main KM, Hoffman AR, Juul A. Tracking and Cumulative Lifetime Exposure to IGF-I in 6459 Healthy Individuals and in SGA Children Treated With GH. J Clin Endocrinol Metab 2023; 108:642-652. [PMID: 36250350 DOI: 10.1210/clinem/dgac605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Supraphysiological serum insulin-like growth factor-I (IGF-I) concentrations have been a matter of concern in children treated with GH because high IGF-I levels were associated with risk of later disease in former epidemiological studies. OBJECTIVE To determine whether a single IGF-I measurement reliably reflects lifetime IGF-I exposure we evaluated intraindividual longitudinal tracking of IGF-I and IGF-binding protein-3 (IGFBP-3) levels and we estimated cumulative lifetime exposure to IGF-I in healthy and GH-treated individuals. METHODS We included 6459 healthy participants (cross-sectional = 5326; longitudinal = 1133) aged 0-76 years (9963 serum samples) and 9 patients born small-for-gestational-age (SGA) with 238 serum samples during GH treatment. Intraindividual tracking of IGF-I and IGFBP-3 (SD score [SDS]) was determined by intraclass correlation coefficients (ICCs). Cumulative lifetime IGF-I exposure was estimated by area under the curve of the predicted SDS trajectory from 0 to 76 years. RESULTS For IGF-I (SDS), ICCs were 0.50 (95% CI, 0.47-0.53) for male and 0.53 (0.50-0.56) for female participants. Lifetime IGF-I exposure was significantly higher in female (mean 12 723 ± 3691 SD) than in male participants (12 563 ± 3393); P = 0.02. In SGA children, treatment with GH increased the lifetime exposure to IGF-I from 9512 ± 1889 to 11 271 ± 1689, corresponding to an increase in lifetime IGF-I trajectory from -0.89 SD ± 0.57 to -0.35 SD ± 0.49. CONCLUSION Because IGF-I and IGFBP-3 levels track throughout life, a single measurement reliably reflects lifetime exposure. GH therapy increased the lifetime exposure to IGF-I only slightly and it remained below the average lifetime exposure in the reference population.
Collapse
Affiliation(s)
- Anna Sophie L Kjaer
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Medicine, VA Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto CA-94304, USA
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Jørgen H Petersen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Section of Biostatistics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Frederiksberg DK-2000, Denmark
| | - Line Lund Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Frederiksberg DK-2000, Denmark
| | - Louise Scheutz Henriksen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Trine Holm Johannsen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Andrew R Hoffman
- Department of Medicine, VA Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto CA-94304, USA
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
12
|
Gao Y, Yang LL, Dai YL, Shen Z, Zhou Q, Zou CC. Effects of early recombinant human growth hormone treatment in young Chinese children with Prader-Willi syndrome. Orphanet J Rare Dis 2023; 18:25. [PMID: 36750945 PMCID: PMC9906936 DOI: 10.1186/s13023-023-02615-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/15/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a rare and multisystemic genetic disorder that is characterized by severe hypotonia, hyperphagia, short stature, and global developmental delay. Although early recombinant human growth hormone (rhGH) treatment has been proven to rescue some symptoms and bring additional benefits to PWS patients, studies in patients under 2 years old are scarce. Thus, this study aims to investigate the effectiveness and safety of rhGH treatment for young children. METHODS A total of 96 genetically confirmed Chinese PWS infants or toddlers (47 males) followed between 2013 and 2022 were retrospectively analyzed. Sixty-five infants (early treatment group) started rhGH treatment during their first year, and 31 toddlers (later treatment group) started at the age of 1-2 years. Auxological parameters, carbohydrate metabolism parameters, thyroid function, liver function, insulin-like growth factor-1 (IGF-1), and radiographs were acquired before the initiation of the treatment and every 3-6 months thereafter. Height/length, weight, and weight for height were expressed as standard deviation scores (SDSs) according to WHO child growth standards. RESULTS The mean SDS of length/height in the early treatment group was significantly higher than that in the later treatment group throughout the observation period (all P < 0.001). The change in the length SDS between the two groups at 1 year old and 4 years old was 1.50 (95% CI, 0.88-2.13) and 0.63 (95% CI, 0.16-1.10), respectively. Compared to the later treatment group, the weight SDS in the early treatment group increased by 0.94 (95% CI, 0.37-1.52) at 1 year old and 0.84 (95% CI, 0.28-1.39) at 2 years old. No statistical significance was found after 2.5 years of age. No significant differences were observed in IGF-1, incidence of liver dysfunction, hypothyroidism or spinal deformity between the two groups. CONCLUSIONS rhGH treatment improved growth and body composition in infants and toddlers. Furthermore, an early start of rhGH treatment is expected to have more efficacy than the later treatment group without an increase in adverse effects.
Collapse
Affiliation(s)
- Ying Gao
- grid.411360.1The Children’s Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310051 China
| | - Li-Li Yang
- grid.411360.1The Children’s Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310051 China
| | - Yang-Li Dai
- grid.411360.1The Children’s Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310051 China
| | - Zheng Shen
- grid.411360.1The Children’s Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310051 China
| | - Qiong Zhou
- The Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310051, China. .,Hangzhou children's Hospital, No. 195 Wenhui Road, Hangzhou, 310000, China.
| | - Chao-Chun Zou
- The Children's Hospital of Zhejiang University School of Medicine, No. 3333 Binsheng Road, Hangzhou, 310051, China.
| |
Collapse
|
13
|
Palui R, Sridharan K, Kamalanathan S, Sahoo J, Naik D. Growth hormone and gastrointestinal malignancy: An intriguing link. World J Gastrointest Pathophysiol 2023; 14:1-11. [PMID: 36743656 PMCID: PMC9896462 DOI: 10.4291/wjgp.v14.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Growth hormone (GH) excess is associated with several systemic complications, one of which is the increased risk of neoplastic processes particularly of the gastrointestinal (GI) tract. Among the GI neoplasms, the most reported association is with benign and malignant neoplasms of the colon. In the majority of published literature, an increased incidence of GI neoplasms, both colonic adenomas as well as colorectal carcinoma is reported. However, the studies on colon cancer-specific mortality rate are conflicting with recent studies reporting similar cancer-specific mortality rates in comparison to controls. Many studies have reported an association of colorectal neoplasms with GH levels. Pathogenic mechanisms put forward to explain this association of GH excess and GI neoplasms primarily involve the increased GH-insulin-like growth factor 1 (IGF-1) signaling. Both GH and IGF-1 have proliferative, anti-apoptotic, and angiogenic effects on the systemic tissues leading to cellular proliferation. Other contributing factors to the increased risk of GI neoplasms include slow intestinal transit with a redundant large bowel, altered bile acids, deranged local immune response, shared genetic susceptibility factors and hyperinsulinemia. In view of the increased risk association, most guidelines for the care of acromegaly patients recommend an initial screening colonoscopy. Recommendations for further follow-up colonoscopy differ but broadly, the guidelines agree that it depends on the findings at first colonoscopy and state of remission of GH excess. Regarding the concern about the risk of colorectal cancers in patients receiving recombinant GH therapy, most cohort studies do not show an increased risk.
Collapse
Affiliation(s)
- Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur 713212, West Bengal, India
| | - Kalyani Sridharan
- Department of Endocrinology, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
14
|
Hokken-Koelega ACS, van der Steen M, Boguszewski MCS, Cianfarani S, Dahlgren J, Horikawa R, Mericq V, Rapaport R, Alherbish A, Braslavsky D, Charmandari E, Chernausek SD, Cutfield WS, Dauber A, Deeb A, Goedegebuure WJ, Hofman PL, Isganatis E, Jorge AA, Kanaka-Gantenbein C, Kashimada K, Khadilkar V, Luo XP, Mathai S, Nakano Y, Yau M. International Consensus Guideline on Small for Gestational Age (SGA): Etiology and Management from Infancy to Early Adulthood. Endocr Rev 2023; 44:539-565. [PMID: 36635911 PMCID: PMC10166266 DOI: 10.1210/endrev/bnad002] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033-0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle.
Collapse
Affiliation(s)
- Anita C S Hokken-Koelega
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome 'Tor Vergata', Children's Hospital, Rome, Italy.,Diabetology and Growth Disorders Unit, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Jovanna Dahlgren
- Department of Pediatrics, the Sahlgrenska Academy, the University of Gothenburg and Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Veronica Mericq
- Institute of Maternal and Child Research, faculty of Medicine, University of Chile
| | - Robert Rapaport
- Icahn School of Medicine, Division of Pediatric Endocrinology, Mount Sinai Kravis Children's Hospital, New York, NY, USA
| | | | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergadá" (CEDIE), División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Steven D Chernausek
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC 20012, USA
| | - Asma Deeb
- Paediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Wesley J Goedegebuure
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul L Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Alexander A Jorge
- Unidade de Endocrinologia Genética (LIM25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527, Athens, Greece
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarah Mathai
- Department of Pediatrics, Christian Medical College, Vellore, India
| | - Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Mabel Yau
- Icahn School of Medicine, Division of Pediatric Endocrinology, Mount Sinai Kravis Children's Hospital, New York, NY, USA
| |
Collapse
|
15
|
Maa van Roessel I, Bakker B, van Santen HM, Chemaitilly W. Hormone replacement in survivors of childhood cancer and brain tumors: safety and controversies. Endocr Connect 2023; 12:e220382. [PMID: 36347051 PMCID: PMC9782441 DOI: 10.1530/ec-22-0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Childhood cancer survivors are at risk for developing endocrine disorders, including deficits in growth hormone, thyroid hormone and sex hormones. The influence these hormones have on cell growth and metabolism has raised concerns regarding the safety of their use as treatments in survivors of childhood cancer and brain tumors. This article offers a summary of current knowledge, controversies and areas for future research pertaining to this area.
Collapse
Affiliation(s)
- Ichelle Maa van Roessel
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, AB Utrecht, The Netherlands
| | - Boudewijn Bakker
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, AB Utrecht, The Netherlands
| | - Hanneke M van Santen
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, AB Utrecht, The Netherlands
| | - Wassim Chemaitilly
- Division of Pediatric Endocrinology, UPMC Children’s Hospitalof Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Laron Z. Increase of serum lipoprotein (a), an adverse effect of growth hormone treatment. Growth Horm IGF Res 2022; 67:101503. [PMID: 36115257 DOI: 10.1016/j.ghir.2022.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
Abstract
A number of reports show that high endogenous, or therapeutic administration of human growth hormone (hGH) cause an increase of serum lipoprotein a, Lp(a). Being thrombogenic Lp(a) is an independent risk factor of atherosclerotic cardiovascular disease (ASCVD). Hence, it is hypothesized that the recently reported association between childhood hGH treatment and cardiovascular morbidity is probably due to the GH effect on Lp(a) synthesis. It is therefore suggested to determine serum Lp(a) levels before and during hGH treatment in children and adults.
Collapse
Affiliation(s)
- Zvi Laron
- Endocrinology & Diabetes Research Unit, Schneider Children's Medical Center, Tel Aviv University. Israel.
| |
Collapse
|
17
|
Maghnie M, Ranke MB, Geffner ME, Vlachopapadopoulou E, Ibáñez L, Carlsson M, Cutfield W, Rooman R, Gomez R, Wajnrajch MP, Linglart A, Stawerska R, Clayton PE, Darendeliler F, Hokken-Koelega ACS, Horikawa R, Tanaka T, Dörr HG, Albertsson-Wikland K, Polak M, Grimberg A. Safety and Efficacy of Pediatric Growth Hormone Therapy: Results From the Full KIGS Cohort. J Clin Endocrinol Metab 2022; 107:3287-3301. [PMID: 36102184 PMCID: PMC9693805 DOI: 10.1210/clinem/dgac517] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT The Kabi/Pfizer International Growth Database (KIGS) is a large, international database (1987-2012) of children treated with recombinant human growth hormone (rhGH) in real-world settings. OBJECTIVE This work aimed to evaluate the safety and efficacy of rhGH from the full KIGS cohort. METHODS Data were collected by investigators from children with growth disorders treated with rhGH (Genotropin [somatropin]; Pfizer). Safety was evaluated in all treated patients, and efficacy in those treated for 1 year or more. A subgroup included patients treated for 5 years or more (≥ 2 years prepubertal) who had reached near-adult height (NAH). Main outcomes included adverse events (AEs), serious AEs (SAEs), and height growth. RESULTS The full KIGS cohort (N = 83 803 [58% male]) was treated for idiopathic GH deficiency (IGHD; 46.9%), organic GHD (10.0%), small for gestational age (SGA; 9.5%), Turner syndrome (TS; 9.2%), idiopathic short stature (ISS; 8.2%), and others (16.2%). Median rhGH treatment duration was 2.7 years and observation 3.1 years. SAEs occurred in 3.7% of patients and death in 0.4%. The most common SAEs were recurrence of craniopharyngioma (n = 151), neoplasm (n = 99), and cancer (n = 91); and scoliosis (n = 91). Median first-year delta height-SD score (SDS) (Prader) in prepubertal patients was 0.66 (IGHD), 0.55 (ISS), 0.58 (TS), and 0.71 (SGA). Median gains in NAH-SDS were 1.79 (IGHD), 1.37 (ISS), and 1.34 (SGA) for boys, and 2.07 (IGHD), 1.62 (ISS), 1.07 (TS), and 1.57 (SGA) for girls. CONCLUSION Data from KIGS, the largest and longest running international database of rhGH-treated children, show that rhGH is safe and increases short-term height gain and adult height across GHD and non-GHD conditions.
Collapse
Affiliation(s)
- Mohamad Maghnie
- Department of Pediatrics, IRCCS Giannina Gaslini, Genova 16124, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova 16124, Italy
| | - Michael B Ranke
- Department of Pediatric Endocrinology, University Children´s Hospital, Tübingen 72076, Germany
| | - Mitchell E Geffner
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | - Elpis Vlachopapadopoulou
- Department of Endocrinology, Growth and Development, Aglaia Kyriakou Children's Hospital, Athens 11527, Greece
| | - Lourdes Ibáñez
- Endocrinology, Pediatric Research Institute Sant Joan de Déu, Barcelona 08950, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Martin Carlsson
- Rare Disease, Biopharmaceuticals, Pfizer, New York, NY 10017, USA
| | - Wayne Cutfield
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | | | - Roy Gomez
- European Medical Affairs, Pfizer, Brussels 1070, Belgium
| | - Michael P Wajnrajch
- Rare Disease, Biopharmaceuticals, Pfizer, New York, NY 10017, USA
- Department of Pediatrics, New York University Langone Medical Center, New York, NY 10016, USA
| | - Agnès Linglart
- Department of Pediatric Endocrinology and Diabetology for Children, AP-HP, Bicêtre Paris Saclay, Le Kremlin Bicêtre 94270, France
- APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre 94270, France
| | - Renata Stawerska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, Lodz 93-338, Poland
- Department of Pediatric Endocrinology, Medical University of Lodz, Lodz 93-338, Poland
| | - Peter E Clayton
- Developmental Biology and Medicine, Faculty of Biology Medicine and Health, Manchester NIHR Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Feyza Darendeliler
- İstanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, İstanbul 34452, Turkey
| | - Anita C S Hokken-Koelega
- Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | | | - Helmuth-Günther Dörr
- Division of Pediatric Endocrinology, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Kerstin Albertsson-Wikland
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Michel Polak
- Université de Paris Cité; Hôpital Universitaire Necker Enfants Malades, Paris 75015, France
| | - Adda Grimberg
- Correspondence: Adda Grimberg, MD, Division of Pediatric Endocrinology and Diabetes, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104.
| |
Collapse
|
18
|
Goedegebuure WJ, van der Steen M, Smeets CCJ, Hokken-Koelega ACS. Childhood growth hormone treatment and metabolic and cardiovascular risk in adults born small for gestational age after growth hormone cessation in the Netherlands: a 12-year follow-up study. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:777-787. [PMID: 36122581 DOI: 10.1016/s2352-4642(22)00240-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Childhood growth hormone treatment has been associated with increased cardiovascular mortality and morbidity in adults born small for gestational age (SGA) compared with the general population, but these risks have not been compared with untreated control groups. We aimed to investigate longitundinal metabolic and cardiovascular health in adults born SGA after cessation of growth hormone treatment. METHODS We longitudinally investigated the metabolic and cardiovascular health profile of 167 adults born SGA and previously treated with growth hormone during the 12 years after growth hormone cessation. Metabolic and cardiovascular parameters were assessed with the frequently sampled intravenous glucose tolerance test, serum lipids and blood pressure were measured, body composition was determined by dual-energy x-ray absorptiometry, and visceral fat was measured by MRI. At approximately age 30 years, we compared the metabolic and cardiovascular health profile of adults born SGA and previously treated with growth hormone (SGA-GH) with 219 untreated adults: 127 born SGA with either persistent short stature (SGA-S) or spontaneous catch-up to typical adult stature (SGA-CU), and 92 born appropriate for gestational age. FINDINGS During 12 years of follow-up, SGA-GH adults maintained normal β-cell function (p=0·157 for the difference from growth hormone cessation to 12-year follow-up) and showed an increase in insulin sensitivity (p=0·002), fat mass (p<0·001), total cholesterol (p<0·001), and blood pressure (p<0·001). By around age 30 years, these parameters reached similar levels to those in SGA-S adults (insulin sensitivity p=0·242; fat mass p=0·449; total cholesterol p=0·616; systolic blood pressure p=0·523; diastolic blood pressure p=0·538). By around age 30 years, SGA-GH adults also had similar metabolic and cardiovascular health parameters to adults born appropriate for gestational age, with the exception of lower lean body mass (estimated marginal mean 44·67 kg [95% CI 43·54-45·80] in SGA-GH adults vs 47·65 kg [46·39-48·92] in adults born appropriate for gestational age) and higher concentrations of adverse serum lipids, such as cholesterol (4·75 mmol/L [4·55-4·95] vs 4·33 mmol/L [4·13-4·5]), which were present in all groups born SGA. Abdominal adiposity (visceral adipose tissue p=0·107; subcutaneous adipose tissue: p=0·244), liver fat fraction (p=0·104), and blood pressure (systolic blood pressure 0·927; diastolic blood pressure: 0·737) were similar between SGA-GH adults and all control groups. INTERPRETATION At approximately age 30 years, SGA-GH adults had a similar metabolic and cardiovascular health profile to untreated adults born SGA or appropriate for gestational age, indicating long-term metabolic and cardiovascular safety of growth hormone treatment for children born SGA with short stature. FUNDING Novo Nordisk.
Collapse
Affiliation(s)
- Wesley J Goedegebuure
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, Netherlands; Dutch Growth Research Foundation, Rotterdam, Netherlands.
| | | | | | - Anita C S Hokken-Koelega
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, Netherlands; Dutch Growth Research Foundation, Rotterdam, Netherlands
| |
Collapse
|
19
|
Eslami P, Sayarifard F, Safdari R, Shahmoradi L, Karbasi Z. Global perspective on pediatric growth hormone registries: a systematic review. J Pediatr Endocrinol Metab 2022; 35:709-726. [PMID: 35567286 DOI: 10.1515/jpem-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Registries are considered valuable data sources for identification of pediatric conditions treated with growth hormone (GH), and their follow-up. Currently, there is no systematic literature review on the scope and characteristics of pediatric GH registries. Therefore, the purpose of this systematic review is to identify worldwide registries reported on pediatric GH treatment and to provide a summary of their main characteristics. CONTENT Pediatric GH registries were identified through a systematic literature review. The search was performed on all related literature published up to January 30th, 2021. Basic information on pediatric GH registries, their type and scope, purpose, sources of data, target conditions, reported outcomes, and important variables were analyzed and presented. SUMMARY Twenty two articles, reporting on 20 pediatric GH registries, were included in this review. Industrial funding was the most common funding source. The main target conditions included in the pediatric GH registries were: growth hormone deficiency, Turner syndrome, Prader Willi syndrome, small for gestational age, idiopathic short stature, and chronic renal insufficiency. The main objectives in establishing and running pediatric GH registries were assessing the safety and effectiveness of the treatment, describing the epidemiological aspects of target growth conditions and populations, serving public health surveillance, predicting and measuring treatment outcomes, exploring new and useful aspects of GH treatment, and improving the quality of patient care. OUTLOOK This systematic review provides a global perspective on pediatric GH registries which can be used as a basis for the design and development of new GH registry systems at both national and international levels.
Collapse
Affiliation(s)
- Parisa Eslami
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayarifard
- Division of Endocrinology and Metabolism, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Safdari
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shahmoradi
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karbasi
- Department of Health Information Sciences, Faculty of Management and Medical Information Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Liu X, Zhang J, Yuan J, Ding R, Liu T, Jia J. LCN2 is a new diagnostic biomarker and potential therapeutic target in idiopathic short stature. J Cell Mol Med 2022; 26:3568-3581. [PMID: 35610759 PMCID: PMC9189333 DOI: 10.1111/jcmm.17408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/05/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Idiopathic short stature (ISS) is the most common paediatric endocrine disease. However, the underlying pathology of ISS remains unclear. Currently, there are no effective diagnostic markers or therapeutic strategies available for ISS. In this study, we aimed to identify differential plasma protein expression and novel biomarkers in patients with ISS, and elucidate the biological functions of candidate proteins in ISS pathogenesis. Four specimen pairs from four ISS children and age‐/sex‐matched control individuals were subjected to proteomics analysis, and 340 samples of children with a mean age 9.73 ± 0.24 years were utilized to further verify the differentially expressed proteins by enzyme‐linked immunosorbent assay (ELISA). The receiver‐operating characteristic (ROC) curve and the area under the ROC curve (AUC) were plotted. A total of 2040 proteins were identified, of which 84 were differentially expressed. In vitro and in vivo experiments confirmed the biological functions of these candidate proteins. LCN2 overexpression in ISS was verified using ELISA. Meanwhile, LCN2 showed high sensitivity and specificity in discriminating children with ISS from those with growth hormone deficiency, precocious puberty and normal control individuals. The upregulated expression of LCN2 not only suppressed food intake but also impaired chondrocyte proliferation and bone growth in chondrocytes and rats. As a result, the rats presented a short‐stature phenotype. Subsequently, we found that bone growth inhibition recovered after LCN2 overexpression was stopped in immature rats. To our knowledge, this is the first study to report that LCN2 may be a significant target for ISS diagnosis and treatment.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Bamba V, Kanakatti Shankar R. Approach to the Patient: Safety of Growth Hormone Replacement in Children and Adolescents. J Clin Endocrinol Metab 2022; 107:847-861. [PMID: 34636896 DOI: 10.1210/clinem/dgab746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 02/07/2023]
Abstract
The use of recombinant human growth hormone (rhGH) in children and adolescents has expanded since its initial approval to treat patients with severe GH deficiency (GHD) in 1985. rhGH is now approved to treat several conditions associated with poor growth and short stature. Recent studies have raised concerns that treatment during childhood may affect morbidity and mortality in adulthood, with specific controversies over cancer risk and cerebrovascular events. We will review 3 common referrals to a pediatric endocrinology clinic, followed by a summary of short- and long-term effects of rhGH beyond height outcomes. Methods to mitigate risk will be reviewed. Finally, this information will be applied to each clinical case, highlighting differences in counseling and clinical outcomes. rhGH therapy has been used for more than 3 decades. Data are largely reassuring, yet we still have much to learn about pharmaceutical approaches to growth in children and the lifelong effect of treatment.
Collapse
Affiliation(s)
- Vaneeta Bamba
- The Perelman School of Medicine, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Roopa Kanakatti Shankar
- The George Washington University School of Medicine, Children's National Hospital, Washington, DC 20010, USA
| |
Collapse
|
22
|
Bouvattier C, Martinerie L, Vautier V. The Year in Growth and Short Stature. Arch Pediatr 2022; 28:8S21-8S26. [PMID: 37870529 DOI: 10.1016/s0929-693x(22)00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The papers and communications selected here, published in 2020-2021, report major advances in pathophysiology, diagnostics, treatment and patient care in the fields of growth hormones and disorders. © 2022 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- C Bouvattier
- Department of Pediatric Endocrinology and Diabetology, Hôpital Bicêtre, Kremlin Bicêtre, France
| | - L Martinerie
- Department of Pediatric Endocrinology and Diabetology, CHU Robert Debré, Center for Rare Diseases CMERC, & Université de Paris, France
| | - V Vautier
- Department of Pediatric Endocrinology and Diabetology, Hôpital des Enfants, CHU de Bordeaux, France.
| |
Collapse
|
23
|
Tidblad A. The history, physiology and treatment safety of growth hormone. Acta Paediatr 2022; 111:215-224. [PMID: 34028879 DOI: 10.1111/apa.15948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Growth hormone treatment was introduced in the 1950s to address growth disturbances and metabolic abnormalities. Hundreds of thousands of children have been treated, with gradual expansion of treatment indications. From initially being offered only to patients with severe growth hormone deficiency, today many children are treated for conditions in which the associated short stature is not primarily thought to be due to deficient endogenous growth hormone secretion. This review discusses the history, physiology and safety of growth hormone treatment, with focus on the long-term risks of mortality, cardiovascular morbidity and cancer. Conclusion: Continuous follow-up is needed to increase our knowledge of the long-term treatment safety.
Collapse
Affiliation(s)
- Anders Tidblad
- Division of Pediatric Endocrinology Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
24
|
Romano A, Kaski JP, Dahlgren J, Kelepouris N, Pietropoli A, Rohrer TR, Polak M. Cardiovascular safety of growth hormone treatment in Noonan syndrome: real-world evidence. Endocr Connect 2022; 11:e210549. [PMID: 34939937 PMCID: PMC8859970 DOI: 10.1530/ec-21-0549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
Objective The study aims to assess the cardiovascular safety of growth hormone (GH) treatment in patients with Noonan syndrome (NS) in clinical practice. Design The study design involves two observational, multicentre studies (NordiNet® IOS and the ANSWER Program) evaluating the long-term effectiveness and safety of GH in >38,000 paediatric patients, of which 421 had NS. Methods Serious adverse events, serious adverse reactions (SARs) and non-serious adverse reactions (NSARs) were reported by the treating physicians. Cardiovascular comorbidities at baseline and throughout the studies were also recorded. Results The safety analysis set comprised 412 children with NS (29.1% females), with a mean (s.d.) baseline age of 9.29 (3.88) years, treated with an average GH dose of 0.047 (0.014) mg/kg/day during childhood. Cardiovascular comorbidities at baseline were reported in 48 (11.7%), most commonly pulmonary valve stenosis (PVS) and atrial septal defects. Overall, 22 (5.3%) patients experienced 34 safety events. The most common were the NSARs: headache (eight events in seven patients) and arthralgia (five events in three patients). Two SARs occurred in one patient (brain neoplasm and metastases to spine). No cardiovascular safety events were recorded in patients with NS. Five cardiovascular comorbidities in five patients were reported after initiation of GH treatment: three cases of unspecified cardiovascular disease, one ruptured abdominal aortic aneurysm and one PVS. Conclusions GH treatment had a favourable safety profile in patients with NS, including those with cardiovascular comorbidities. Prospective studies are warranted to systematically assess the safety of GH treatment in patients with NS and cardiovascular disease.
Collapse
Affiliation(s)
- Alicia Romano
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital & UCL Institute of Cardiovascular Science, London, UK
| | - Jovanna Dahlgren
- Department of Paediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nicky Kelepouris
- US Medical Affairs, Novo Nordisk Inc., Plainsboro, New Jersey, USA
| | - Alberto Pietropoli
- Global Medical Affairs, Novo Nordisk Health Care AG, Zurich, Switzerland
| | - Tilman R Rohrer
- Department of Pediatric Endocrinology, University Children’s Hospital, Saarland University Medical Center, Homburg, Germany
| | - Michel Polak
- Paediatric Endocrinology, Diabetology and Gynaecology Department, Hôpital Universitaire Necker Enfants-Malades, AP-HP, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
25
|
He M, Deng X, Wang X, Wan Y, Huang J, Zhang Z, Niu W. Association Between Recombinant Growth Hormone Therapy and All-Cause Mortality and Cancer Risk in Childhood: Systematic Review and Meta-Analysis. Front Pediatr 2022; 10:866295. [PMID: 35529328 PMCID: PMC9073080 DOI: 10.3389/fped.2022.866295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The safety of recombinant human growth hormone (rhGH) treatment in childhood and the role of rhGH therapy in promoting tumorigenesis and progression have been the subject of debate for decades. We aimed to systematically assess the relationship between rhGH therapy in children and adolescents and clinical outcomes, including all-cause mortality, cancer mortality, cancer incidence, and risk of the second neoplasm. METHODS Literature retrieval, study selection, and data extraction were completed independently and in duplicate. Effect-size estimates are expressed as standardized mortality ratios (SMRs), standardized incidence ratio (SIR), and relative risk (RR) with a 95% CI. RESULTS Data from 24 articles, involving 254,776 persons, were meta-analyzed. Overall analyses revealed the association of rhGH therapy was not statistically significant with all-cause mortality (SMR = 1.28; 95% CI: 0.58-2.84; P = 0.547; I 2 = 99.2%; Tau2 = 2.154) and cancer mortality (SMR = 2.59; 95% CI: 0.55-12.09; P = 0.228; I 2 = 96.7%; Tau2 = 2.361) and also cancer incidence (SIR = 1.54; 95% CI: 0.68-3.47; P = 0.229; I 2 = 97.5%; Tau2 = 2.287), yet statistical significance was observed for second neoplasm (RR = 1.77; 95% CI: 1.33-2.35; P = 0.001; I 2 = 26.7%; Tau2 = 0.055). Differences in the geographic region, gender, treatment duration, mean rhGH dose, overall rhGH exposure dose, and initial disease accounted for heterogeneity in the subgroup analyses. CONCLUSION Our findings indicate that the rhGH therapy is not related to all-cause mortality and cancer mortality and cancer incidence, yet it seems to trigger a second tumor risk. Future prospective studies are needed to confirm our findings and answer the more challenging question regarding the optimal dose of rhGH therapy in children and adolescents.
Collapse
Affiliation(s)
- Mengyang He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangling Deng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yuxiang Wan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchang Huang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Zhixin Zhang
- Department of International Medical, China-Japan Friendship Hospital, Beijing, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
26
|
Li T, Xie R, Zhao J, Xu H, Cui Y, Sun C, Wang C, Liu Y. Effectiveness of Recombinant Human Growth Hormone Therapy for Children With Phelan-McDermid Syndrome: An Open-Label, Cross-Over, Preliminary Study. Front Psychiatry 2022; 13:763565. [PMID: 35250656 PMCID: PMC8888442 DOI: 10.3389/fpsyt.2022.763565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS), also known as the 22q13. 3 deletion syndrome, is a rare neurodevelopmental syndrome with approximately 2,800 patients reported worldwide. Previous pilot study demonstrated that IGF-1 could significantly improve in both social impairment and restrictive behaviors of the patients. However, most of the patients in the developing countries like China cannot afford the high cost of using IGF-1. Our research team speculated that rhGH might serve as a low-cost and more accessible treatment for PMS. Therefore, the purpose of this open-label, cross-over, pilot study was to further investigate the safety and efficiency of rhGH in patients with PMS. METHODS A total of six children with PMS were enrolled in in this open-label, cross-over, pilot study. The children were randomly divided into two different groups. Group A received placebo followed by rhGH, while group B was treated with rhGH first. Neuropsychological and behavior assessments of the patients were performed before the stage I of study and 3 months after the intervention of stage I. After a 4-week period of washout, these assessments were conducted again before the stage II of study and 3 months after the intervention of stage II. Serum insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding-protein (IGFBP)-3 were also evaluated monthly during the intervention phases of the pilot study. RESULTS Compared with the placebo, rhGH treatment significantly decreased subscale scores of GDS (P < 0.0085) and trended to improve the total scores of GDS (P < 0.05), while the total scores and subscale scores of SC-ABC significantly decreased (P < 0.0085) following 3-months rhGH treatment. The similar results were also observed in comparison with baseline. Compared with the baseline, the level of serum IGF-1 and IGFBP-3 increased significantly (P < 0.05) following 3-months rhGH treatment, while the placebo group had no significant impact on serum IGF-1 and IGFBP-3 (P > 0.05). One child developed skin allergy the day after the first rhGH treatment, which were resolved later. CONCLUSIONS In summary, this pilot study involving six PMS children patients reveals that rhGH has a positive treatment effect on PMS. These results encourage the undertaking of a large, randomized placebo-controlled trial to conclusively prove rhGH efficacy and tolerability in PMS, thereby promoting it as a low-cost, more accessible treatment for PMS, as compared to IGF-1.
Collapse
Affiliation(s)
- TianXiao Li
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Ruijin Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinling Zhao
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Hua Xu
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Ying Cui
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Chunhong Wang
- Affiliated Hospital of JiangNan University, Wuxi, China
| | - Yueying Liu
- Affiliated Hospital of JiangNan University, Wuxi, China
| |
Collapse
|
27
|
Obanife HO, Kingsley A, Ashindointiang J, Asuquo J, Ogunleye O, Joshua IE. Unusual location of osteochondroma in the temporal region in a patient with functional pituitary adenoma. J Int Med Res 2021; 49:3000605211058860. [PMID: 34861124 PMCID: PMC8649454 DOI: 10.1177/03000605211058860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Osteochondromas are common in the long bones and relatively rare in the head and
neck regions. We herein report a case of a solitary temporal bone osteochondroma
associated with a functional pituitary adenoma hypersecreting prolactin. The
patient was a 48-year-old man with progressive, painless temporal swelling
associated with gradual visual loss, gynaecomastia, erectile dysfunction, and
loss of libido. A brain computed tomography scan with bone windows showed right
temporal sessile bony expansion and a pituitary tumour. A pituitary function
test revealed hyperprolactinaemia. His symptoms resolved with medical
management, and excisional biopsy of the temporal tumour confirmed an
osteochondroma. To the best of our knowledge, this is the first reported case of
a solitary temporal bone osteochondroma with a functional pituitary adenoma
hypersecreting prolactin.
Collapse
Affiliation(s)
| | - Akaba Kingsley
- Department of Haematology, 108337University of Calabar Teaching Hospital, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - John Ashindointiang
- Department of Surgery, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Joseph Asuquo
- Department of Orthopaedic Surgery, 108337University of Calabar Teaching Hospital, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Olabisi Ogunleye
- Department of Surgery, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria
| | - Iwasam E Joshua
- Department of Orthopaedic Surgery, 108337University of Calabar Teaching Hospital, University of Calabar Teaching Hospital, Calabar, Nigeria
| |
Collapse
|
28
|
Management of Short Stature: Use of Growth Hormone in GH-Deficient and non-GH-Deficient Conditions. Indian J Pediatr 2021; 88:1203-1208. [PMID: 34609657 DOI: 10.1007/s12098-021-03892-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 10/20/2022]
Abstract
Growth hormone (GH) is an important driver for somatic growth and increase in height in children. The development of recombinant human GH has greatly increased its availability, and hence the potential for its use and abuse. GH therapy should only be offered to patients with established and approved indications. Common pediatric indications for treatment include growth hormone deficiency, Turner syndrome, Prader-Willi syndrome, small for gestational age, chronic renal insufficiency, and idiopathic short stature. Before initiating treatment, the family should be counseled about the treatment goals, costs, and possible adverse effects from the treatment. It is important for patients to have realistic expectations from the treatment. The dose of GH should be individualized for the indication and will require titration in each patient based on response to the treatment and the adverse effects. Overall, GH has a good safety record. However, GH treatment has many potential and real adverse effects that need to be considered and monitored during treatment. Recently, safety concerns regarding the long-term effect of GH therapy on cardiovascular morbidity have come under scrutiny.
Collapse
|
29
|
Pollock NI, Cohen LE. Growth Hormone Deficiency and Treatment in Childhood Cancer Survivors. Front Endocrinol (Lausanne) 2021; 12:745932. [PMID: 34745010 PMCID: PMC8569790 DOI: 10.3389/fendo.2021.745932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 01/21/2023] Open
Abstract
Growth hormone (GH) deficiency is a common pituitary hormone deficiency in childhood cancer survivors (CCS). The identification, diagnosis, and treatment of those individuals at risk are important in order to minimize associated morbidities that can be ameliorated by treatment with recombinant human GH therapy. However, GH and insulin-like growth factor-I have been implicated in tumorigenesis, so there has been concern over the use of GH therapy in patients with a history of malignancy. Reassuringly, GH therapy has not been shown to increase risk of tumor recurrence. These patients have an increased risk for development of meningiomas, but this may be related to their history of cranial irradiation rather than to GH therapy. In this review, we detail the CCS who are at risk for GHD and the existing evidence on the safety profile of GH therapy in this patient population.
Collapse
Affiliation(s)
- Netanya I. Pollock
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Laurie E. Cohen
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, United States
| |
Collapse
|
30
|
Hage C, Gan HW, Ibba A, Patti G, Dattani M, Loche S, Maghnie M, Salvatori R. Advances in differential diagnosis and management of growth hormone deficiency in children. Nat Rev Endocrinol 2021; 17:608-624. [PMID: 34417587 DOI: 10.1038/s41574-021-00539-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Growth hormone (GH) deficiency (GHD) in children is defined as impaired production of GH by the pituitary gland that results in growth failure. This disease might be congenital or acquired, and occurs in isolation or in the setting of multiple pituitary hormone deficiency. Isolated GHD has an estimated prevalence of 1 patient per 4000-10,000 live births and can be due to multiple causes, some of which are yet to be determined. Establishing the correct diagnosis remains key in children with short stature, as initiating treatment with recombinant human GH can help them attain their genetically determined adult height. During the past two decades, our understanding of the benefits of continuing GH therapy throughout the transition period from childhood to adulthood has increased. Improvements in transitional care will help alleviate the consequent physical and psychological problems that can arise from adult GHD, although the consequences of a lack of hormone replacement are less severe in adults than in children. In this Review, we discuss the differential diagnosis in children with GHD, including details of clinical presentation, neuroimaging and genetic testing. Furthermore, we highlight advances and issues in the management of GHD, including details of transitional care.
Collapse
Affiliation(s)
- Camille Hage
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hoong-Wei Gan
- Genetics & Genomic Medicine Research and Teaching Department, University College London Great Ormond Street Hospital Institute of Child Health, London, UK
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anastasia Ibba
- Paediatric Endocrine Unit, Paediatric Hospital Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Giuseppa Patti
- Department of Paediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Mehul Dattani
- Genetics & Genomic Medicine Research and Teaching Department, University College London Great Ormond Street Hospital Institute of Child Health, London, UK
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sandro Loche
- Paediatric Endocrine Unit, Paediatric Hospital Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Mohamad Maghnie
- Department of Paediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Ranke MB. Short and Long-Term Effects of Growth Hormone in Children and Adolescents With GH Deficiency. Front Endocrinol (Lausanne) 2021; 12:720419. [PMID: 34539573 PMCID: PMC8440916 DOI: 10.3389/fendo.2021.720419] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
The syndrome of impaired GH secretion (GH deficiency) in childhood and adolescence had been identified at the end of the 19th century. Its non-acquired variant (naGHD) is, at childhood onset, a rare syndrome of multiple etiologies, predominantly characterized by severe and permanent growth failure culminating in short stature. It is still difficult to diagnose GHD and, in particular, to ascertain impaired GH secretion in comparison to levels in normally-growing children. The debate on what constitutes an optimal diagnostic process continues. Treatment of the GH deficit via replacement with cadaveric pituitary human GH (pit-hGH) had first been demonstrated in 1958, and opened an era of therapeutic possibilities, albeit for a limited number of patients. In 1985, the era of recombinant hGH (r-hGH) began: unlimited supply meant that substantial long-term experience could be gained, with greater focus on efficacy, safety and costs. However, even today, the results of current treatment regimes indicate that there is still a substantial fraction of children who do not achieve adult height within the normal range. Renewed evaluation of height outcomes in childhood-onset naGHD is required for a better understanding of the underlying causes, whereby the role of various factors - diagnostics, treatment modalities, mode of treatment evaluation - during the important phases of child growth - infancy, childhood and puberty - are further explored.
Collapse
Affiliation(s)
- Michael B. Ranke
- Children’s Hospital, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
32
|
Pfäffle R, Bidlingmaier M, Kreitschmann-Andermahr I, Land C, Partsch CJ, Schwab KO, Sommer H, Backeljauw P, Kanumakala S, Loche S, Zouater H, Strasburger CJ. Safety and Effectiveness of Omnitrope®, a Biosimilar Recombinant Human Growth Hormone: More Than 10 Years' Experience from the PATRO Children Study. Horm Res Paediatr 2021; 93:154-163. [PMID: 32814319 DOI: 10.1159/000508190] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Omnitrope® was approved as a biosimilar recombinant human growth hormone (rhGH) in 2006. OBJECTIVE The purpose of this work was to evaluate the long-term safety and effectiveness of Omnitrope® in PATRO Children - an ongoing, international, longitudinal, non-interventional study in children who require rhGH treatment. METHODS The study population includes infants, children, and adolescents receiving Omnitrope®. Adverse events (AEs) are monitored for safety and rhGH effectiveness is evaluated by calculation of the height standard deviation score (HSDS), height velocity (HV), and HVSDS using height measurements and country-specific references. RESULTS As of November 2017, 6,009 patients from 298 centers across 14 countries were enrolled in PATRO Children. Overall, 57.7% of patients had growth hormone deficiency (GHD), 25.8% were born small for gestational age (SGA), and 4.8% had Turner syndrome (TS). In total, 84.1% were rhGH treatment naïve at study entry. The mean duration of Omnitrope® treatment in the study was 36.1 months (range 0-133.7). Overall, 10,360 AEs were reported in 2,750 patients (45.8%). Treatment-related AEs were reported in 396 patients (6.6%; 550 events), and serious AEs (SAE) in 636 patients (10.6%; 1,191 events); 50 SAEs in 37 patients (0.6%) were considered treatment related. Following 5 years of therapy in patients who were rhGH treatment naïve at study entry, improvement from baseline in mean HSDS was +1.85 in GHD, +1.76 in SGA, and +1.0 in TS patients. In total, 912 (17.9%) patients reached adult height (n = 577 GHD, n = 236 SGA, n = 62 TS). CONCLUSIONS This analysis of PATRO Children indicates that biosimilar rhGH is well tolerated and effective in real-world clinical practice.
Collapse
Affiliation(s)
- Roland Pfäffle
- Department of Pediatrics, Leipzig University, Leipzig, Germany,
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | | | - Christof Land
- Praxis für Kinder-Endokrinologie und Diabetologie, Gauting, Germany
| | - Carl Joachim Partsch
- Department of Paediatric Endocrinology, Endokrinologikum Hamburg, Hamburg, Germany
| | | | - Heide Sommer
- Sandoz Germany c/o HEXAL AG, Holzkirchen, Germany
| | - Philippe Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shankar Kanumakala
- Royal Alexandra Children's Hospital, Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Sandro Loche
- SSD Endocrinologia Pediatrica e Centro Screening Neonatali Ospedale Pediatrico Microcitemico "A. Cao," AO Brotzu, Cagliari, Italy
| | - Hichem Zouater
- Sandoz Biopharmaceutical c/o HEXAL AG, Holzkirchen, Germany
| | - Christian J Strasburger
- Department of Medicine for Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Tresguerres FGF, Tresguerres IF, Leco I, Clemente C, Rodríguez-Torres R, Torres J, Carballido J, Tresguerres JAF. Growth Hormone As Antiaging Factor in Old Bones. Rejuvenation Res 2021; 24:354-365. [PMID: 33906424 DOI: 10.1089/rej.2020.2369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aging induces changes in bone. Growth hormone (GH) is reduced by aging, and age-related changes observed in old bones might be due to a decrease in the GH/insulin-like growth factor-I (IGF-I) axis. GH administration on aged individuals is controversial. This study aimed to assess the effect of systemic GH treatment on bone properties, bone metabolism, and bone mineral density (BMD) in long bone of old rats. Aged Wistar rats were treated with GH at a dose of 2 mg/kg/day during 10 weeks. Plasma osteocalcin, IGF-I, and carboxy-terminal telopeptide of type I collagen levels were measured. Cross-sectional bone areas and BMD were measured by morphometric and densitometric analysis, respectively. Femora were analyzed by three point-bending testing. t-Test was used for statistical evaluation. p < 0.05 was considered to be significant. Significantly enhanced bone area, at the expense of the cortical area, was found in treated rats. The densitometric analysis showed 11% higher BMD in the experimental group. Significantly higher bone flexural modulus, stiffness, and ultimate load were observed in the treated rats. Plasma osteocalcin and IGF-I levels were significantly increased in the treated group, while the resorption marker concentration remained unchanged. Within the limitations of this experimental study, systemic GH administration has shown to enhance biomechanical properties, BMD, cortical mass, and plasma IGF-I and osteocalcin in old treated rats, compared to the control group; consequently, GH could be considered as an alternative therapy against age-related changes in the bone.
Collapse
Affiliation(s)
- Francisco G F Tresguerres
- Department of Dental Clinical Specialities, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Isabel F Tresguerres
- Department of Dental Clinical Specialities, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Isabel Leco
- Department of Dental Clinical Specialities, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Celia Clemente
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Alcala, Madrid, Spain
| | - Rosa Rodríguez-Torres
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Alcala, Madrid, Spain
| | - Jesús Torres
- Department of Dental Clinical Specialities, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Jorge Carballido
- Department of Dental Clinical Specialities, Faculty of Dentistry, Complutense University, Madrid, Spain
| | - Jesús A F Tresguerres
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
34
|
Sävendahl L, Polak M, Backeljauw P, Blair JC, Miller BS, Rohrer TR, Hokken-Koelega A, Pietropoli A, Kelepouris N, Ross J. Long-Term Safety of Growth Hormone Treatment in Childhood: Two Large Observational Studies: NordiNet IOS and ANSWER. J Clin Endocrinol Metab 2021; 106:1728-1741. [PMID: 33571362 PMCID: PMC8118578 DOI: 10.1210/clinem/dgab080] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Growth hormone (GH) treatment has a generally good safety profile; however, concerns about increased mortality risk in adulthood have been raised. OBJECTIVE This work aims to assess the long-term safety of GH treatment in clinical practice. METHODS Data were collected from 676 clinics participating in 2 multicenter longitudinal observational studies: the NordiNet International Outcome Study (2006-2016, Europe) and ANSWER Program (2002-2016, USA). Pediatric patients treated with GH were classified into 3 risk groups based on diagnosis. Intervention consisted of daily GH treatment, and main outcome measures included incidence rates (events/1000 patient-years) of adverse drug reactions (ADRs), serious adverse events (SAEs), and serious ADRs, and their relationship to GH dose. RESULTS The combined studies comprised 37 702 patients (68.4% in low-risk, 27.5% in intermediate-risk, and 4.1% in high-risk groups) and 130 476 patient-years of exposure. The low-risk group included children born small for gestational age (SGA; 20.7%) and non-SGA children (eg, with GH deficiency; 79.3%). Average GH dose up to the first adverse event (AE) decreased with increasing risk category. Patients without AEs received higher average GH doses than patients with more than one AE across all groups. A significant inverse relationship with GH dose was shown for ADR and SAE incidence rates in the low-risk group (P = .003 and P = .001, respectively) and the non-SGA subgroup (both P = .002), and for SAEs in the intermediate- and high-risk groups (P = .002 and P = .05, respectively). CONCLUSIONS We observed no indication of increased mortality risk nor AE incidence related to GH dose in any risk group. A short visual summary of our work is available (1).
Collapse
Affiliation(s)
- Lars Sävendahl
- Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Correspondence: Lars Sävendahl, MD, PhD, Karolinska University Hospital J9:30, Visionsgatan 4, SE-171 64, Solna, Sweden.
| | - Michel Polak
- Université de Paris, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Philippe Backeljauw
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joanne C Blair
- Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Bradley S Miller
- University of Minnesota Masonic Children’s Hospital, Minneapolis, Minnesota, USA
| | - Tilman R Rohrer
- University Children’s Hospital, Saarland University Medical Center, Homburg, Germany
| | - Anita Hokken-Koelega
- Department of Pediatrics, Division of Endocrinology, Erasmus University Medical Center/Sophia Children’s Hospital, Rotterdam, the Netherlands
| | | | | | - Judith Ross
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Nemours/DuPont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
35
|
Backeljauw P, Miller BS, Levy R, McCormick K, Zouater H, Zabransky M, Campbell K. PATRO children, a multi-center, non-interventional study of the safety and effectiveness of Omnitrope ® (somatropin) treatment in children: update on the United States cohort. J Pediatr Endocrinol Metab 2021; 34:431-440. [PMID: 33647196 DOI: 10.1515/jpem-2020-0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Omnitrope® (somatropin, Sandoz Inc.) is one of several recombinant human growth hormones (rhGH) approved in the United States (US) for use in pediatric indications, including growth hormone deficiency (GHD) and idiopathic short stature (ISS). We report data on the effectiveness and safety of Omnitrope® in the US cohort of the PATRO Children (international, longitudinal, non-interventional) study. METHODS All visits and assessments are carried out according to routine clinical practice, and doses of Omnitrope® are given according to country-specific prescribing information. RESULTS By September 2018, 294 US patients were recruited; the two largest groups were GHD (n=193) and ISS (n=62). Across all indications, HSDS improvement (ΔHSDS) from baseline at three years was +1.0 (rhGH-naïve, +1.2; pre-treated, +0.7). In pre-pubertal patients, ΔHSDS from baseline at three years was +0.94 (rhGH-naïve, +1.3; pre-treated, +0.7). Following three years of treatment, ΔHSDS from baseline was +1.3 in rhGH-naïve GHD patients and +1.1 in rhGH-naïve ISS patients. In pre-pubertal rhGH-naïve patients, ΔHSDS from baseline was +1.3 and +1.2 in GHD and ISS patients, respectively. Overall, 194 patients (66.0%) experienced adverse events (AEs; n=886 events); most were of mild-moderate intensity. Five patients (1.7%) had AEs that were suspected to be treatment-related (n=5 events). All reported neoplasms were benign, non-serious, and considered unrelated to rhGH therapy. No AEs of diabetes mellitus or hyperglycemia were reported. CONCLUSIONS Omnitrope® appears to be well tolerated and effective in the majority of patients, without evidence of an increased risk of developing unexpected AEs, diabetes mellitus, or new malignancies during treatment.
Collapse
Affiliation(s)
- Philippe Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bradley S Miller
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota, Minneapolis, MN, USA
| | - Richard Levy
- Rush University Medical Center, Chicago, IL, USA
| | - Kenneth McCormick
- Division of Endocrinology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
36
|
Liu X, Du Z, Yi X, Sheng T, Yuan J, Jia J. Circular RNA circANAPC2 mediates the impairment of endochondral ossification by miR-874-3p/SMAD3 signalling pathway in idiopathic short stature. J Cell Mol Med 2021; 25:3408-3426. [PMID: 33713570 PMCID: PMC8034469 DOI: 10.1111/jcmm.16419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic short stature (ISS) is a main reason for low height among children. Its exact aetiology remains unclear. Recent findings have suggested that the aberrant expression of circRNAs in peripheral blood samples is associated with many diseases. However, to date, the role of aberrant circRNA expression in mediating ISS pathogenesis remains largely unknown. The up-regulated circANAPC2 was identified by circRNA microarray analysis and RT-qPCR. Overexpression of circANAPC2 inhibited the proliferation of human chondrocytes, and cell cycle was arrested in G1 phase. The expressions of collagen type X, RUNX2, OCN and OPN were significantly down-regulated following circANAPC2 overexpression. Moreover, Von Kossa staining intensity and alkaline phosphatase activity were also decreased. Luciferase reporter assay results showed that circANAPC2 could be targeted by miR-874-3p. CircANAPC2 overexpression in human chondrocytes inhibits the expression of miR-874-3p. The co-localization of circANAPC2 and miR-874-3p was confirmed in both human chondrocytes and murine femoral growth plates via in situ hybridization. The rescue experiment demonstrated that the high expression of miR-874-3p overexpression antagonized the suppression of endochondral ossification, hypertrophy and chondrocyte growth caused by circANAPC2 overexpression. A high-throughput screening of mRNA expression and RT-qPCR verified SMAD3 demonstrated the highest different expressions following overcircANAPC2. Luciferase reporter assay results indicated that miR-874-3p could be targeted by Smad3, thus down-regulating the expression of Smad3. Subsequent rescue experiments of SMAD3 further confirmed that circANAPC2 suppresses endochondral ossification, hypertrophy and chondrocyte growth through miR-874-3p/Smad3 axis. The present study provides evidence that circANAPC2 can serve as a promising target for ISS treatment.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Zhi Du
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Xuan Yi
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Tianle Sheng
- Department of Molecular laboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Jinghong Yuan
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Jingyu Jia
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| |
Collapse
|
37
|
Tidblad A, Bottai M, Kieler H, Albertsson-Wikland K, Sävendahl L. Association of Childhood Growth Hormone Treatment With Long-term Cardiovascular Morbidity. JAMA Pediatr 2021; 175:e205199. [PMID: 33346824 PMCID: PMC7754074 DOI: 10.1001/jamapediatrics.2020.5199] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Concerns about the cardiovascular safety of recombinant human growth hormone (rhGH) treatment in childhood have recently been raised; however, long-term studies are limited. OBJECTIVE To investigate the long-term risk of overall and severe cardiovascular events in patients previously treated with rhGH in childhood and whether there is an association with treatment duration or dose. DESIGN, SETTING, AND PARTICIPANTS This nationwide population-based cohort study included patients treated with rhGH during childhood from January 1, 1985, to December 31, 2010, in Sweden, with follow-up through December 31, 2014. Included patients were treated with rhGH owing to isolated growth hormone deficiency (GHD), small for gestational age (SGA), and idiopathic short stature (ISS). For each patient, 15 age-, sex-, and region-based matched control individuals were randomly selected from the general population as a comparison group. Data on cardiovascular outcomes and covariates including gestational age, birth weight, birth length, socioeconomic status, and height were obtained through linkage with several health care and population-based registers. Data were analyzed from January 1, 1985, to December 31, 2014. EXPOSURES Treatment with rhGH during childhood and adolescence (aged 0-18 years). MAIN OUTCOMES AND MEASURES The primary outcome was the first cardiovascular event recorded after the start of follow-up, and the secondary outcome was the first severe cardiovascular event. RESULTS A total of 53 444 individuals (3408 patients and 50 036 controls; 67.7% men; mean [SD] age at study end, 25.1 [8.2] years) were followed up for as long as 25 years (median follow-up, 14.9 [range, 0-25] years; total, 795 125 person-years). Among 1809 recorded cardiovascular events, the crude incidence rates were 25.6 events per 10 000 person-years for patients and 22.6 events per 10 000 person-years for controls. The adjusted hazard ratio (HR) for all cardiovascular events was higher in patients compared with controls (HR, 1.69; 95% CI, 1.30-2.19), especially for women (HR, 2.05; 95% CI, 1.31-3.20) compared with men (HR, 1.55; 95% CI, 1.12-2.13). All subgroups had increased HRs (SGA, 1.97 [95% CI, 1.28-3.04]; GHD, 1.66 [95% CI, 1.21-2.26]; and ISS, 1.55 [95% CI, 1.01-2.37]). Longer duration of rhGH treatment (HR, 2.08; 95% CI, 1.35-3.20) and total cumulative dose (HR, 2.05; 95% CI, 1.18-3.55) were associated with higher risk for overall cardiovascular disease. The adjusted HR for severe cardiovascular disease was 2.27 (95% CI, 1.01-5.12). CONCLUSIONS AND RELEVANCE In this cohort study, treatment with rhGH during childhood due to GHD, SGA, or ISS was associated with increased risks of cardiovascular events in early adulthood, particularly in women; however, conclusions of causality are still limited and the absolute risk remains low.
Collapse
Affiliation(s)
- Anders Tidblad
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helle Kieler
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Albertsson-Wikland
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Catellani C, Ravegnini G, Sartori C, Angelini S, Street ME. GH and IGF System: The Regulatory Role of miRNAs and lncRNAs in Cancer. Front Endocrinol (Lausanne) 2021; 12:701246. [PMID: 34484116 PMCID: PMC8415755 DOI: 10.3389/fendo.2021.701246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Growth hormone (GH) and the insulin-like growth factor (IGF) system are involved in many biological processes and have growth-promoting actions regulating cell proliferation, differentiation, apoptosis and angiogenesis. A recent chapter in epigenetics is represented by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) which regulate gene expression. Dysregulated miRNAs and lncRNAs have been associated with several diseases including cancer. Herein we report the most recent findings concerning miRNAs and lncRNAs regulating GH and the IGF system in the context of pituitary adenomas, osteosarcoma and colorectal cancer, shedding light on new possible therapeutic targets. Pituitary adenomas are increasingly common intracranial tumors and somatotroph adenomas determine supra-physiological GH secretion and cause acromegaly. Osteosarcoma is the most frequent bone tumor in children and adolescents and was reported in adults who were treated with GH in childhood. Colorectal cancer is the third cancer in the world and has a higher prevalence in acromegalic patients.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Ravegnini
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sabrina Angelini
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, Italy
| | - Maria E. Street
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Maria E. Street,
| |
Collapse
|
39
|
Walczak M, Szalecki M, Horneff G, Lebl J, Kalina-Faska B, Giemza T, Moldovanu F, Nanu M, Zouater H. Long-term follow up of carbohydrate metabolism and adverse events after termination of Omnitrope® treatment in children born small for gestational age. Ther Adv Endocrinol Metab 2021; 12:20420188211013121. [PMID: 34104396 PMCID: PMC8111548 DOI: 10.1177/20420188211013121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Recombinant human growth hormone (rhGH) therapy can affect carbohydrate metabolism and lead to impaired glucose tolerance during treatment. In addition, short children born small for gestational age (SGA) are predisposed to metabolic abnormalities. This study assessed the long-term safety of rhGH (Omnitrope®) use in short children born SGA. METHODS This was a follow-up observational study of patients from a phase IV study. The baseline visit was the final visit of the phase IV study. Further visits were planned after 6 months (F1), 1 year (F2), 5 years (F3), and 10 years (F4). The primary objective was to evaluate the long-term effect of rhGH treatment on the development of diabetes mellitus; secondary objectives included incidence/severity of adverse events (AEs). RESULTS In total, 130 subjects were enrolled in the follow-up study; 99 completed F1, 88 completed F2, and 13 completed F3 (no subject reached F4). The full analysis set for evaluation comprised 118 patients (64 female). Mean (standard deviation) duration of follow up was 39.6 (24.4) months. No subject was newly diagnosed with diabetes. The results for carbohydrate metabolism parameters were consistent with this finding. A total of 144 AEs were reported in 54 subjects; these were mostly of mild-to-moderate intensity (96.5%) and not suspected to be related to previous rhGH treatment (94.4%). Serious AEs (n = 18) were reported in eight patients; three (in one patient) were suspected as possibly related to previous rhGH treatment (anemia, menorrhagia, oligomenorrhoea). One fatal event occurred (sepsis), which was judged as not related to previous rhGH treatment. CONCLUSIONS None of the participating subjects, who had all been previously treated with Omnitrope® in a phase IV study, developed diabetes during this follow-up study. In addition, no other unexpected or concerning safety signals were observed.
Collapse
Affiliation(s)
- Mieczyslaw Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Zachodniopomorskie, Poland
| | - Mieczyslaw Szalecki
- Collegium Medicum UJK, Kielce, Children’s Memorial Health Institute, Warsaw, Poland
| | - Gerd Horneff
- Department of Pediatrics, Center for Pediatric Rheumatology, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
- Department of Pediatric and Adolescents Medicine, University Hospital of Cologne, Cologne, Germany
| | - Jan Lebl
- Department of Pediatrics, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Barbara Kalina-Faska
- Department of Pediatrics and Pediatric Endocrinology, Medical University of Silesia, Faculty of Medical Science, Katowice, Slaskie, Poland
| | | | - Florentina Moldovanu
- National Institute for Mother and Child Health, ‘Alessandrescu Rusescu’, Bucharest, Romania
| | - Michaela Nanu
- National Institute for Mother and Child Health, ‘Alessandrescu Rusescu’, Bucharest, Romania
| | | |
Collapse
|
40
|
Cianfarani S. Safety of Pediatric rhGH Therapy: An Overview and the Need for Long-Term Surveillance. Front Endocrinol (Lausanne) 2021; 12:811846. [PMID: 35002983 PMCID: PMC8740026 DOI: 10.3389/fendo.2021.811846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Growth hormone (GH) therapy dates back to 1958 and, though has shown an excellent safety profile in the short-term, has never ceased to raise concern about potential long-term side effects. In the last decade, a number of observational studies in different cohorts of young adult patients treated with GH during childhood have yielded conflicting results. The attention has mainly focused on three major potential risks associated with GH therapy: cancer, cardio and cerebrovascular diseases and diabetes. This review intends to provide a detailed overview of the main studies reporting long-term safety in subjects treated with rhGH therapy during childhood, highlighting the evidence for or against the risk of cancer, cardio and cerebrovascular diseases and diabetes.
Collapse
Affiliation(s)
- Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
- *Correspondence: Stefano Cianfarani,
| |
Collapse
|
41
|
Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol 2020; 518:111003. [PMID: 32919021 DOI: 10.1016/j.mce.2020.111003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidence links the growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis to cancer development. While this putative correlation is of major translational relevance, most clinical and epidemiological reports to date found no causal linkage between GH therapy and enhanced cancer risk. Thus, it is generally agreed that GH therapy constitutes a safe pharmacological intervention. The present review focuses on a number of issues in the area of GH-IGF1 action in cancer development. Emphasis is given to the idea that GH and IGF1 do not conform to the definition of oncogenic factors. Specifically, these hormones, even at high pharmacological doses, are unable to induce malignant transformation. However, the GH-IGF1 axis is capable of 'pushing' already transformed cells through the various phases of the cell cycle. Viral and cellular oncogenes require an intact IGF1 signaling pathway in order to elicit transformation; in other words, oncogenic agents adopt the IGF1 pathway. This universal mechanism of action of oncogenes has broad implications in oncology. Our review provides an in-depth analysis of the interplay between the GH-IGF1 axis and cancer genes, including tumor suppressors p53 and BRCA1. Finally, the safety of GH therapy in both children and adults needs further long-term follow-up studies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel.
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| |
Collapse
|
42
|
Sävendahl L, Cooke R, Tidblad A, Beckers D, Butler G, Cianfarani S, Clayton P, Coste J, Hokken-Koelega ACS, Kiess W, Kuehni CE, Albertsson-Wikland K, Deodati A, Ecosse E, Gausche R, Giacomozzi C, Konrad D, Landier F, Pfaeffle R, Sommer G, Thomas M, Tollerfield S, Zandwijken GRJ, Carel JC, Swerdlow AJ. Long-term mortality after childhood growth hormone treatment: the SAGhE cohort study. Lancet Diabetes Endocrinol 2020; 8:683-692. [PMID: 32707116 DOI: 10.1016/s2213-8587(20)30163-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recombinant human growth hormone has been used for more than 30 years and its indications have increased worldwide. There is concern that this treatment might increase mortality, but published data are scarce. We present data from the entire dataset of all eight countries of the Safety and Appropriateness of Growth hormone treatments in Europe (SAGhE) consortium, with the aim of studying long-term overall and cause-specific mortality in young adult patients treated with recombinant human growth hormone during childhood and relating this to the underlying diagnosis. METHODS This cohort study was done in eight European countries (Belgium, France, Germany, Italy, The Netherlands, Sweden, Switzerland, and the UK). Patients were classified a priori based on pre-treatment perceived mortality risk from their underlying disease and followed up for cause-specific mortality. Person-years at risk of mortality and expected rates from general population data were used to calculate standardised mortality ratios (SMRs). FINDINGS The cohort comprised 24 232 patients treated with recombinant human growth hormone during childhood, with more than 400 000 patient-years of follow-up. In low-risk patients with isolated growth hormone deficiency or idiopathic short stature, all-cause mortality was not significantly increased (SMR 1·1, 95% CI 0·9-1·3). In children born small for gestational age, all-cause mortality was significantly increased when analysed for all countries (SMR 1·5, CI 1·1-1·9), but this result was driven by the French subcohort. In patients at moderate or high risk, mortality was increased (SMR 3·8, 3·3-4·4; and 17·1, 15·6-18·7, respectively). Mortality was not associated with mean daily or cumulative doses of recombinant human growth hormone for any of the risk groups. Cause-specific mortality from diseases of the circulatory and haematological systems was increased in all risk groups. INTERPRETATION In this cohort, the largest, to our knowledge, with long-term follow-up of patients treated with recombinant human growth hormone during childhood, all-cause mortality was associated with underlying diagnosis. In patients with isolated growth hormone deficiency or idiopathic short stature, recombinant human growth hormone treatment was not associated with increased all-cause mortality. However, mortality from certain causes was increased, emphasising the need for further long-term surveillance. FUNDING European Union.
Collapse
Affiliation(s)
- Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden.
| | | | - Anders Tidblad
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Dominique Beckers
- Université Catholique de Louvain, Yvoir, Belgium; Belgian Society for Pediatric Endocrinology and Diabetology, Brussels, Belgium
| | | | - Stefano Cianfarani
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; University of Rome Tor Vergata-Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Joël Coste
- Paris Descartes University, Paris, France
| | | | | | - Claudia E Kuehni
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Annalisa Deodati
- UCL Institute of Child Health, London, UK; University of Rome Tor Vergata-Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Claudio Giacomozzi
- Centre for Pediatric Endocrinology, Pediatric Unit, Carlo Poma Hospital, Mantua, Italy
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | | | | | - Grit Sommer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Muriel Thomas
- Belgian Society for Pediatric Endocrinology and Diabetology, Brussels, Belgium
| | | | - Gladys R J Zandwijken
- Erasmus University Medical Center and Dutch Growth Research Foundation, Rotterdam, Netherlands
| | | | | |
Collapse
|
43
|
Miller BS, Velazquez E, Yuen KCJ. Long-Acting Growth Hormone Preparations - Current Status and Future Considerations. J Clin Endocrinol Metab 2020; 105:5611083. [PMID: 31676901 PMCID: PMC7755139 DOI: 10.1210/clinem/dgz149] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Long-acting GH (LAGH) preparations are currently being developed in an attempt to improve adherence. The profile of GH action following administration of LAGH raises practical questions about clinical monitoring and long-term safety and efficacy of these new therapeutic agents. METHODS Recent literature and meeting proceedings regarding LAGH preparations are reviewed. RESULTS Multiple LAGH preparations are currently at various stages of development, allowing for decreased GH injection frequency from daily to weekly, biweekly, or monthly. Following administration of LAGH, the serum peak and trough GH and IGF-I levels vary depending upon the mechanism used to prolong GH action. Randomized, controlled clinical trials of some LAGH preparations have reported non-inferiority compared with daily recombinant human GH (rhGH) for improved growth velocity and body composition in children and adults with GH deficiency (GHD), respectively. No significant LAGH-related adverse events have been reported during short-term therapy. CONCLUSION Multiple LAGH preparations are proceeding through clinical development with some showing promising evidence of short-term clinical efficacy and safety in children and adults with GHD. The relationship of transient elevations of GH and IGF-I following administration of LAGH to efficacy and safety remain to be elucidated. For LAGH to replace daily rhGH in the treatment of individuals with GHD, a number of practical questions need to be addressed including methods of dose adjustment, timing of monitoring of IGF-I, safety, efficacy, and cost-effectiveness. Long-term surveillance of efficacy and safety of LAGH preparations will be needed to answer these clinically relevant questions.
Collapse
Affiliation(s)
- Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Correspondence and Reprint Requests: Bradley S. Miller, MD, PhD, 8952D, MB671 East Bldg, Division of Endocrinology, Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454. E-mail:
| | - Eric Velazquez
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kevin C J Yuen
- Departments of Neuroendocrinology and Neurosurgery, Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
44
|
Ngim CF, Lai NM, Hong JY, Tan SL, Ramadas A, Muthukumarasamy P, Thong MK. Growth hormone therapy for people with thalassaemia. Cochrane Database Syst Rev 2020; 5:CD012284. [PMID: 32463488 PMCID: PMC7387677 DOI: 10.1002/14651858.cd012284.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency. This review on the role of growth hormone was originally published in September 2017 and updated in April 2020. OBJECTIVES To assess the benefits and safety of growth hormone therapy in people with thalassaemia. SEARCH METHODS We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of latest search: 14 November 2019. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Date of latest search: 06 January 2020. SELECTION CRITERIA Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity. DATA COLLECTION AND ANALYSIS Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The certainty of the evidence was assessed using GRADE criteria. MAIN RESULTS We included one parallel trial conducted in Turkey. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The certainty of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate-certainty evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate-certainty evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period. AUTHORS' CONCLUSIONS A small single trial contributed evidence of moderate certainty that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.
Collapse
Affiliation(s)
- Chin Fang Ngim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor's University, Subang Jaya, Malaysia
| | - Janet Yh Hong
- Department of Paediatrics, Putrajaya Hospital, Putrajaya, Malaysia
| | - Shir Ley Tan
- HPS Pharmacies, Calvary North Adelaide Hospital, Adelaide, Australia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru, Malaysia
| | | | - Meow-Keong Thong
- Department of Paediatrics, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Inzaghi E, Reiter E, Cianfarani S. The Challenge of Defining and Investigating the Causes of Idiopathic Short Stature and Finding an Effective Therapy. Horm Res Paediatr 2020; 92:71-83. [PMID: 31578025 DOI: 10.1159/000502901] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/26/2019] [Indexed: 11/19/2022] Open
Abstract
Idiopathic short stature (ISS) comprises a wide range of conditions associated with short stature that elude the conventional diagnostic work-up and are often caused by still largely unknown genetic variants. In the last decade, the improvement of diagnostic techniques has led to the discovery of causal mutations in genes involved in the function of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis as well as in growth plate physiology. However, many cases of ISS remain idiopathic. In the future, the more frequent identification of the underlying causes will allow a better stratification of subjects and offer a tailored management. GH therapy has been proposed and approved in some countries for the treatment of children with ISS. To improve the efficacy of GH therapy, trials with GH combined with GnRH agonists, aromatase inhibitors, and even IGF-I have been conducted. This review aims to revise the current definition of ISS and discuss the management of children with ISS on the basis of the most recent evidence.
Collapse
Affiliation(s)
- Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital - Tor Vergata University, Rome, Italy
| | - Edward Reiter
- Baystate Children's Hosptal, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital - Tor Vergata University, Rome, Italy, .,Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden,
| |
Collapse
|
46
|
Alves C, Franco RR. Prader-Willi syndrome: endocrine manifestations and management. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:223-234. [PMID: 32555988 PMCID: PMC10522225 DOI: 10.20945/2359-3997000000248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/28/2020] [Indexed: 11/23/2022]
Abstract
Prader-Willi syndrome (PWS) is a genetic disorder caused by the absence of gene expression in the 15q11.2-q13 paternal chromosome. Patients with PWS develop hypothalamic dysfunction that can lead to various endocrine changes such as: obesity, growth hormone deficiency, hypogonadism, hypothyroidism, adrenal insufficiency and low bone mineral density. In addition, individuals with PWS have increased risk of developing type 2 diabetes mellitus. This review summarizes and updates the current knowledge about the prevention, diagnosis and treatment of endocrine manifestations associated with Prader Willi syndrome, especially diagnosis of growth hormone deficiency, management and monitoring of adverse effects; diagnosis of central adrenal insufficiency and management in stressful situations; screening for central hypothyroidism; research and treatment of hypogonadism; prevention and treatment of disorders of glucose metabolism. Careful attention to the endocrine aspects of PWS contributes significantly to the health of these individuals. Arch Endocrinol Metab. 2020;64(3):223-34.
Collapse
Affiliation(s)
- Crésio Alves
- Hospital Universitário Prof. Edgard SantosFaculdade de MedicinaUniversidade Federal da BahiaSalvadorBABrasil Unidade de Endocrinologia Pediátrica, Hospital Universitário Prof. Edgard Santos, Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, BA, Brasil
| | - Ruth Rocha Franco
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasil Ambulatório de Prader-Willi, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| |
Collapse
|
47
|
Lundberg E, Kriström B, Zouater H, Deleskog A, Höybye C. Ten years with biosimilar rhGH in clinical practice in Sweden - experience from the prospective PATRO children and adult studies. BMC Endocr Disord 2020; 20:55. [PMID: 32349731 PMCID: PMC7191769 DOI: 10.1186/s12902-020-0535-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/12/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In 2007, Omnitrope® was the first biosimilar recombinant human growth hormone (rhGH) to be approved in Sweden for treatment in adults and children. Over 10 years' safety and effectiveness data for biosimilar rhGH can now be presented. METHODS PATRO Children and PATRO Adults are multicenter, longitudinal, observational, post-marketing surveillance studies. Eligible patients include children 0-18 years and adults receiving biosimilar rhGH treatment. Adverse events (AEs) are monitored for safety evaluation. Growth variables in children and metabolic data in adults are recorded for effectiveness evaluation. RESULTS As of January 2019, data from 136 children (48% male) were reported from Swedish centers. Mean age in rhGH treatment-naïve patients at study entry (n = 114) was 7.5 years, with mean 3.6 years treatment duration. No severe AEs of diabetes, impaired glucose tolerance, or malignancy were reported. The most frequently reported AE was nasopharyngitis (n = 16 patients). No clinically relevant anti-hGH or neutralizing antibodies were observed. The mean change from baseline in height standard deviation score (SDS) in naïve prepubertal GH deficiency patients was + 0.79 at 1 year, + 1.27 at 2 years, and + 1.55 at 3 years. Data from 293 adults (44% rhGH-naïve, 51% male) were included. Fatigue was the most frequently reported AE (n = 26 patients). The incidence of new neoplasms or existing neoplasm progression was 23.8 patients per 1000 patient-years. Type 2 diabetes mellitus was reported in four patients. At baseline in rhGH-naïve adults, mean (SD) body mass index (BMI) was 29.1 (5.6) kg/m2 and mean (SD) insulin-like growth factor (IGF)-I SDS was - 3.0 (1.4). Mean daily dose increased from 0.1 mg at baseline to 0.3 mg after 4 years. IGF-I SDS normalized during the first year of treatment. Mean BMI and glucose were unchanged over 4 years, while low-/high-density lipoprotein cholesterol ratio decreased. CONCLUSIONS For the first time, Swedish data from the PATRO Children and Adults studies are presented. The 10-year data suggest that biosimilar rhGH is well tolerated across pediatric and adult indications. Safety and effectiveness were similar to previous reports for other rhGH preparations. These results need to be confirmed in larger cohorts, highlighting the importance of long-term post-marketing studies.
Collapse
Affiliation(s)
- Elena Lundberg
- Institute of Clinical Science/Pediatrics, Umeå University, SE-90185, Umeå, Sweden.
| | - Berit Kriström
- Institute of Clinical Science/Pediatrics, Umeå University, SE-90185, Umeå, Sweden
| | - Hichem Zouater
- Sandoz Biopharmaceutical, c/o HEXAL AG, Industriestr. 25, D-83607, Holzkirchen, Germany
| | | | - Charlotte Höybye
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
Halas JG, Grimberg A. Dilemmas of growth hormone treatment for GH deficiency and idiopathic short stature: defining, distinguishing, and deciding. Minerva Pediatr 2020; 72:206-225. [PMID: 32274914 DOI: 10.23736/s0026-4946.20.05821-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Worrisome growth can be a sign of underlying pathology but usually reflects healthy variation. It is often recognized through short stature, which is defined by arbitrarily separating height, a physical trait on a continuum, into "normal" and "abnormal." In some cases of worrisome growth, recombinant human growth hormone (rhGH) treatment is indicated to hasten growth/increase height. This review addresses the two most frequently treated indications for rhGH, growth hormone deficiency (GHD) and idiopathic short stature (ISS). A review of worrisome growth itself, of the history of GH treatment, of the blurry line between partial GHD and ISS, of the GH stakeholders, and of the outside pressures involved in these cases demonstrates the ambiguous platform upon which treatment decisions are made. The rhGH treatment decision process can be examined further by considering the three most impactful factors on parental height-related medical decision-making: treatment characteristics, child health, and psychosocial function. While it is important to note that treatment for classical GHD is uncontroversial and supported, treatment decisions for partial GHD and ISS are more complicated and require careful evaluation of both patient needs and the supporting evidence. As the rhGH community grows, physicians, parents, and patients are encouraged to engage in a shared decision-making process to navigate the many challenges facing the GH field. Although this review addresses GHD and ISS specifically, the issues discussed are often applicable to pediatrics as a whole.
Collapse
Affiliation(s)
- Julia G Halas
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Adda Grimberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA -
| |
Collapse
|
49
|
Wegmann MG, Jensen RB, Thankamony A, Frystyk J, Roche E, Hoey H, Kirk J, Shaikh G, Ivarsson SA, Söder O, Dunger DB, Juul A. Increases in Bioactive IGF do not Parallel Increases in Total IGF-I During Growth Hormone Treatment of Children Born SGA. J Clin Endocrinol Metab 2020; 105:5608612. [PMID: 31665326 DOI: 10.1210/clinem/dgz118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Some children born small for gestational age (SGA) experience supra-physiological insulin-like growth factor-I (IGF-I) concentrations during GH treatment. However, measurements of total IGF-I concentrations may not reflect the bioactive fraction of IGF-I which reaches the IGF-I receptor at target organs. We examined endogenous IGF-bioactivity using an IGF-I kinase receptor activation (KIRA) assay that measures the ability of IGF-I to activate the IGF-IR in vitro. AIM To compare responses of bioactive IGF and total IGF-I concentrations in short GH treated SGA children in the North European Small for Gestational Age Study (NESGAS). MATERIAL AND METHOD In NESGAS, short SGA children (n = 101, 61 males) received GH at 67 µg/kg/day for 1 year. IGF-I concentrations were measured by Immulite immunoassay and bioactive IGF by in-house KIRA assay. RESULTS Bioactive IGF increased with age in healthy pre-pubertal children (n = 94). SGA children had low-normal bioactive IGF levels at baseline (-0.12 (1.8 SD), increasing significantly after one year of high-dose GH treatment to 1.1 (1.4) SD, P < 0.01. Following high-dose GH, 68% (n = 65) of SGA children had a total IGF-I concentration >2SD (mean IGF-I 2.8 SDS), whereas only 15% (n = 15) had levels of bioactive IGF slightly above normal reference values. At baseline, bioactive IGF (SDS) was significantly correlated to height (SDS) (r = 0.29, P = 0.005), in contrast to IGF-I (SDS) (r = 0.17, P = 0.10). IGF-I (SDS) was inversely correlated to delta height (SDS) after one year of high-dose GH treatment (r = -0.22, P = 0.02). CONCLUSION In contrast to total IGF-I concentrations, bioactive IGF stayed within the normal reference ranges for most SGA children during the first year of GH treatment.
Collapse
Affiliation(s)
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| | - Ajay Thankamony
- Department of Pediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Edna Roche
- Department of Pediatrics, The National Children's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Hilary Hoey
- Department of Pediatrics, The National Children's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jeremy Kirk
- Department of Endocrinology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Guftar Shaikh
- Department of Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Sten-A Ivarsson
- Department of Clinical Sciences, Endocrine and Diabetes Unit, University of Lund, Lund, Sweden
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - David B Dunger
- Department of Pediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
50
|
Child CJ, Quigley CA, Cutler GB, Moore WV, Wintergerst KA, Ross JL, Rosenfeld RG, Blum WF. Height Gain and Safety Outcomes in Growth Hormone-Treated Children with Idiopathic Short Stature: Experience from a Prospective Observational Study. Horm Res Paediatr 2020; 91:241-251. [PMID: 31185471 DOI: 10.1159/000500087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/OBJECTIVES Growth hormone (GH) treatment of idiopathic short stature (ISS) received US Food and Drug Administration approval in 2003. We assessed height gain and safety in 2,450 children with ISS treated with GH in US clinical practice. METHODS Short-term height gain, near-adult height (NAH), and safety outcomes were investigated using Genetics and Neuroendocrinology of Short Stature International Study data. RESULTS Compared to children with isolated idiopathic GH deficiency (IGHD), those with ISS were shorter at baseline but had similar age and GH dose. Mean ± SD height SD score (SDS) increase was similar for ISS and IGHD, with 0.6 ± 0.3 (first), 0.4 ± 0.3 (second), 0.3 ± 0.3 (third), and 0.1 ± 0.3 (fourth year) for ISS. Girls with ISS (27% of subjects) were younger and shorter than boys but had similar height gain over time. At NAH in the ISS group (n = 467), mean ± SD age, GH duration, and height SDS were 17.3 ± 2.3 years, 4.6 ± 2.7 years, and -1.2 ± 0.9, respectively. Height gain from baseline was 1.1 ± 1.0 SDS and was greater for boys than girls (1.2 ± 1.0 vs. 0.9 ± 0.9), but boys were treated longer (5.1 ± 2.8 vs. 3.6 ± 2.5 years). Adverse events were reported for 24% with ISS versus 20% with IGHD - most were common childhood conditions or previously reported in GH-treated patients. CONCLUSIONS GH-treated children with ISS achieved substantial height gain, similar to patients with IGHD. Fewer GH-treated girls were enrolled than boys, but with similar height SDS gain over time. No ISS-specific safety issues were identified. Thus, GH treatment of ISS appears to have a safety/effectiveness profile similar to that of IGHD.
Collapse
Affiliation(s)
| | | | | | - Wayne V Moore
- Pediatric Endocrinology, Children's Mercy Hospital/University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Kupper A Wintergerst
- University of Louisville, School of Medicine, Norton Children's Hospital, Louisville, Kentucky, USA
| | - Judith L Ross
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|