1
|
Nowotny HF, Tschaidse L, Auer MK, Reisch N. Prenatal and Pregnancy Management of Congenital Adrenal Hyperplasia. Clin Endocrinol (Oxf) 2024; 101:359-370. [PMID: 39387451 DOI: 10.1111/cen.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024]
Abstract
Management of patients with congenital adrenal hyperplasia (CAH) poses challenges during pregnancy and prenatal stages, impacting fertility differently in men and women. Women with CAH experience menstrual irregularities due to androgen and glucocorticoid precursor interference with endometrial development and ovulation. Genital surgeries for virilization and urogenital anomalies further impact fertility and sexual function, leading to reduced heterosexual relationships among affected women. Fertility rates vary, with a lower prevalence of motherhood, primarily among those with classic CAH, necessitating optimized hormonal therapy for conception. Monitoring optimal disease control during pregnancy poses challenges due to hormonal fluctuations. Men with CAH often experience hypogonadotrophic hypogonadism and complications like testicular adrenal rest tissue, impacting fertility. Regular monitoring and intensified glucocorticoid therapy may restore spermatogenesis. Genetic counselling is vital to comprehend transmission risks and prenatal implications. Prenatal dexamethasone treatment in affected female fetuses prevents virilization but raises ethical and safety concerns, necessitating careful consideration and further research. The international "PREDICT" study aims to establish safer and more effective prenatal therapy in CAH, evaluating dosage, safety, and long-term effects.
Collapse
Affiliation(s)
| | - Lea Tschaidse
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias K Auer
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nicole Reisch
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Verebi C, Gravrand V, Pacault M, Audrezet MP, Couque N, Vincent MC, Leturcq F, Tsatsaris V, Bienvenu T, Nectoux J. [Towards a generalization of non-invasive prenatal diagnosis of single-gene disorders? Assesment and outlook]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2023; 51:463-470. [PMID: 37517661 DOI: 10.1016/j.gofs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES The screening of fetal aneuploidies and non-invasive prenatal diagnosis of monogenic diseases (NIPD-MD) both rely on the study of free fetal DNA in maternal circulation, but their respective rise was unequal. Development of NIPD-MD has taken longer as it represents a less attractive commercial dynamic for industry, but also because it usually involves the development of tailored tests specific to each pathogenic variant. METHODS We have carried out a review of the literature on the various indications and technologies involved in the use of NIPD-MM. We present its current implementation and its development in France. RESULTS To date, NIPD-MD has been routinely offered in France for several years by the laboratories of the French NIPD-MD network but remains mostly limited to the exclusion of paternal or de novo variants, the exclusion DPNI-MD. Indeed, it is still difficult to study the transmission of maternal variants from circulating free DNA analysis, due to its biological complexity: coexistence and predominance of similar DNA sequences of maternal origin. Different strategies, either direct or indirect, are being evaluated to establish fetal status regardless of the parental origin of the disease or its transmission mode. The emergence of commercial screening solutions for monogenic diseases complements the arsenal of prenatal exploration tools for these diseases. CONCLUSION The multitude of existing technologies and protocols may complicate the information provided during antenatal consultations, but mastery of know-how and knowledge of ethical issues of NIPD-MD will ensure optimal service and better management of pregnancies at risk of transmitting monogenic disease.
Collapse
Affiliation(s)
- Camille Verebi
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France; Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR1266, « Genetic vulnerability to addictive and psychiatric disorders » team, Paris, France
| | - Victor Gravrand
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Mathilde Pacault
- Laboratoire de génétique moléculaire et d'histocompatibilité, centre hospitalier régional universitaire, Brest, France
| | - Marie-Pierre Audrezet
- Laboratoire de génétique moléculaire et d'histocompatibilité, centre hospitalier régional universitaire, Brest, France
| | - Nathalie Couque
- Service de génétique, AP-HP, hôpital Robert-Debré, 75019 Paris, France
| | - Marie-Claire Vincent
- Génétique moléculaire et cytogénomique, centre hospitalier universitaire de Montpellier, 34000 Montpellier, France
| | - France Leturcq
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Vassilis Tsatsaris
- Gynécologie-obstétrique, Maternité Port-Royal, AP-HP centre, université Paris Cité, hôpital Cochin, 75014 Paris, France
| | - Thierry Bienvenu
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France; Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR1266, « Genetic vulnerability to addictive and psychiatric disorders » team, Paris, France
| | - Juliette Nectoux
- Service de médecine génomique des maladies de système et d'organe, Fédération de génétique et de médecine génomique, AP-HP centre, université Paris Cité, hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France.
| |
Collapse
|
3
|
Auer MK, Nordenström A, Lajic S, Reisch N. Congenital adrenal hyperplasia. Lancet 2023; 401:227-244. [PMID: 36502822 DOI: 10.1016/s0140-6736(22)01330-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Congenital adrenal hyperplasia is a group of autosomal recessive disorders leading to multiple complex hormonal imbalances caused by various enzyme deficiencies in the adrenal steroidogenic pathway. The most common type of congenital adrenal hyperplasia is due to steroid 21-hydroxylase (21-OHase, henceforth 21OH) deficiency. The rare, classic (severe) form caused by 21OH deficiency is characterised by life-threatening adrenal crises and is the most common cause of atypical genitalia in neonates with 46,XX karyotype. After the introduction of life-saving hormone replacement therapy in the 1950s and neonatal screening programmes in many countries, nowadays neonatal survival rates in patients with congenital adrenal hyperplasia are high. However, disease-related mortality is increased and therapeutic management remains challenging, with multiple long-term complications related to treatment and disease affecting growth and development, metabolic and cardiovascular health, and fertility. Non-classic (mild) forms of congenital adrenal hyperplasia caused by 21OH deficiency are more common than the classic ones; they are detected clinically and primarily identified in female patients with hirsutism or impaired fertility. Novel treatment approaches are emerging with the aim of mimicking physiological circadian cortisol rhythm or to reduce adrenal hyperandrogenism independent of the suppressive effect of glucocorticoids.
Collapse
Affiliation(s)
- Matthias K Auer
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Paediatrics, Unit for Paediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Division of Paediatrics, Unit for Paediatric Endocrinology and Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
4
|
Hanson B, Scotchman E, Chitty LS, Chandler NJ. Non-invasive prenatal diagnosis (NIPD): how analysis of cell-free DNA in maternal plasma has changed prenatal diagnosis for monogenic disorders. Clin Sci (Lond) 2022; 136:1615-1629. [PMID: 36383187 PMCID: PMC9670272 DOI: 10.1042/cs20210380] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023]
Abstract
Cell-free fetal DNA (cffDNA) is released into the maternal circulation from trophoblastic cells during pregnancy, is detectable from 4 weeks and is representative of the entire fetal genome. The presence of this cffDNA in the maternal bloodstream has enabled clinical implementation of non-invasive prenatal diagnosis (NIPD) for monogenic disorders. Detection of paternally inherited and de novo mutations is relatively straightforward, and several methods have been developed for clinical use, including quantitative polymerase chain reaction (qPCR), and PCR followed by restriction enzyme digest (PCR-RED) or next-generation sequencing (NGS). A greater challenge has been in the detection of maternally inherited variants owing to the high background of maternal cell-free DNA (cfDNA). Molecular counting techniques have been developed to measure subtle changes in allele frequency. For instance, relative haplotype dosage analysis (RHDO), which uses single nucleotide polymorphisms (SNPs) for phasing of high- and low-risk alleles, is clinically available for several monogenic disorders. A major drawback is that RHDO requires samples from both parents and an affected or unaffected proband, therefore alternative methods, such as proband-free RHDO and relative mutation dosage (RMD), are being investigated. cffDNA was thought to exist only as short fragments (<500 bp); however, long-read sequencing technologies have recently revealed a range of sizes up to ∼23 kb. cffDNA also carries a specific placental epigenetic mark, and so fragmentomics and epigenetics are of interest for targeted enrichment of cffDNA. Cell-based NIPD approaches are also currently under investigation as a means to obtain a pure source of intact fetal genomic DNA.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| | - Lyn S. Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, U.K
| | - Natalie J. Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, U.K
| |
Collapse
|
5
|
Cera G, Locantore P, Novizio R, Maggio E, Ramunno V, Corsello A, Policola C, Concolino P, Paragliola RM, Pontecorvi A. Pregnancy and Prenatal Management of Congenital Adrenal Hyperplasia. J Clin Med 2022; 11:jcm11206156. [PMID: 36294476 PMCID: PMC9605322 DOI: 10.3390/jcm11206156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive diseases that may cause cortisol insufficiency together with other hormonal alterations. The most common form is 21-hydroxylase deficiency, in which the lack of pituitary negative feedback causes an increase in ACTH and adrenal androgens. Classical forms of CAHs can lead to severe adrenal failure and female virilization. To date, the appropriate management of pregnant CAH patients is still debated regarding appropriate maternal therapy modifications during pregnancy and the risks and benefits of prenatal treatment of the fetus. We conducted a literature search of relevant papers to collect current evidence and experiences on the topic. The most recent and significant articles were selected, and current international guidelines were consulted to update current recommendations and guide clinical practice. Given the lack of randomized clinical trials and other high-quality scientific evidence, the issue is still debated, and great heterogeneity exists in current practice in terms of risk/benefit evaluation and pharmacological choices for pregnancy and prenatal treatment. Glucocorticoid therapy is advised not only in classical CAH patients but also in non-classical, milder forms. The choice of which glucocorticoid to use, and the safety and benefits of dexamethasone therapy aimed at preventing genital virilization are still debated issues. Several advances, however, have been made, especially in terms of fertility and reproduction. This review aims to present the most recent scientific and real-world updates on pregnancy and prenatal management of CAH, with the presentation of various clinical scenarios and specific case-by-case recommendations.
Collapse
Affiliation(s)
- Gianluca Cera
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Pietro Locantore
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
- Correspondence:
| | - Roberto Novizio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Ettore Maggio
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Vittoria Ramunno
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Andrea Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Caterina Policola
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Paola Concolino
- Unit of Clinical Chemistry, Biochemistry and Molecular Biology, Department of Laboratory and Infectiology Sciences, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| | - Rosa Maria Paragliola
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
- Unicamillus, Saint Camillus International University of Medical Sciences, Via di S. Alessandro 10, 00131 Rome, Italy
| | - Alfredo Pontecorvi
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore—Fondazione Policlinico “A. Gemelli” IRCCS, Largo Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
6
|
Karlsson L, Wallensteen L, Nordenström A, Krmar RT, Lajic S. Ambulatory Blood Pressure Monitoring in Children and Adults Prenatally Exposed to Dexamethasone Treatment. J Clin Endocrinol Metab 2022; 107:e2481-e2487. [PMID: 35148399 PMCID: PMC9113802 DOI: 10.1210/clinem/dgac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The clinical use of dexamethasone (DEX) prenatally to reduce virilization of external genitalia in female fetuses with congenital adrenal hyperplasia (CAH) is efficient but still controversial. It remains challenging to prevent the excessive exposure of DEX in unborn healthy babies during the first trimester of pregnancy. OBJECTIVE Since endogenous glucocorticoids contribute to the maintenance of blood pressure (BP) and since events during fetal life may program the fetus and affect future metabolic health, the aim of this study was to analyze ambulatory BP measurements in CAH-unaffected children and adults that were prenatally exposed to DEX treatment. METHODS Ambulatory BP measurements were analyzed in 33 (16 female) DEX-treated participants aged 5.1 to 26.3 years (19 participants aged ≤ 18 years) and in 54 (28 female) age- and sex-matched apparently healthy controls aged 5.5 to 25.3 years (27 participants aged ≤ 18 years) with ambulatory normotension. RESULTS Participants' age, height, weight, and body mass index were similar between the DEX-treated group and the control group. Heart rate, 24-hour BP, pulse pressure, and nighttime dipping did not statistically significantly differ between DEX-treated participants and controls. CONCLUSION Our study suggests that prenatal DEX treatment in CAH-unaffected children and adults does not appear to adversely affect ambulatory BP later in life. Our observations need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Leif Karlsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Wallensteen
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Rafael T Krmar
- Department of Physiology and Pharmacology, Biomedicum 5B, Karolinska Institutet, Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Carrière C, Sarfati C, Téjédor I, Dulon J, Chakhtoura Z, Courtillot C, Bachelot A. Classical and non-classical congenital adrenal hyperplasia: what is the difference in subsequent fertility? ANNALES D'ENDOCRINOLOGIE 2022; 83:181-185. [PMID: 35489415 DOI: 10.1016/j.ando.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
21-Hydroxylase deficiency (21OHD) is the most common cause of congenital adrenal hyperplasia. Increased production of adrenal-derived androgens and progesterone in 21OHD women interfere with their reproductive function and their fertility in many different ways, depending on the severity of the disease. Sexuality and fertility in women with classic 21OHD is impaired, due to several issues such as disrupted gonadotropic axis due to androgen and progesterone overproduction, and mechanical, psychological factors related to genital surgery. Fertility and fecundity in these women get better over the years. Subfertility seems contrariwise to be relative in non-classic 21OHD women. Before pregnancy, genotyping the partner and genetic counselling is mandatory.
Collapse
Affiliation(s)
- Camille Carrière
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Cynthia Sarfati
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France; UPMC Université Pierre et Marie Curie, Univ Paris 06, Paris, France
| | - Isabelle Téjédor
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Jérôme Dulon
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Zeina Chakhtoura
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Carine Courtillot
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Anne Bachelot
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France; UPMC Université Pierre et Marie Curie, Univ Paris 06, Paris, France.
| |
Collapse
|
8
|
Nowotny H, Neumann U, Tardy-Guidollet V, Ahmed SF, Baronio F, Battelino T, Bertherat J, Blankenstein O, Bonomi M, Bouvattier C, Brac de la Perrière A, Brucker S, Cappa M, Chanson P, Claahsen-van der Grinten HL, Colao A, Cools M, Davies JH, Dörr HG, Fenske WK, Ghigo E, Giordano R, Gravholt CH, Huebner A, Husebye ES, Igbokwe R, Juul A, Kiefer FW, Léger J, Menassa R, Meyer G, Neocleous V, Phylactou LA, Rohayem J, Russo G, Scaroni C, Touraine P, Unger N, Vojtková J, Yeste D, Lajic S, Reisch N. Prenatal dexamethasone treatment for classic 21-hydroxylase deficiency in Europe. Eur J Endocrinol 2022; 186:K17-K24. [PMID: 35235536 PMCID: PMC9010809 DOI: 10.1530/eje-21-0554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the current medical practice in Europe regarding prenatal dexamethasone (Pdex) treatment of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency. DESIGN AND METHODS A questionnaire was designed and distributed, including 17 questions collecting quantitative and qualitative data. Thirty-six medical centres from 14 European countries responded and 30 out of 36 centres were reference centres of the European Reference Network on Rare Endocrine Conditions, EndoERN. RESULTS Pdex treatment is currently provided by 36% of the surveyed centres. The treatment is initiated by different specialties, that is paediatricians, endocrinologists, gynaecologists or geneticists. Regarding the starting point of Pdex, 23% stated to initiate therapy at 4-5 weeks postconception (wpc), 31% at 6 wpc and 46 % as early as pregnancy is confirmed and before 7 wpc at the latest. A dose of 20 µg/kg/day is used. Dose distribution among the centres varies from once to thrice daily. Prenatal diagnostics for treated cases are conducted in 72% of the responding centres. Cases treated per country and year vary between 0.5 and 8.25. Registries for long-term follow-up are only available at 46% of the centres that are using Pdex treatment. National registries are only available in Sweden and France. CONCLUSIONS This study reveals a high international variability and discrepancy in the use of Pdex treatment across Europe. It highlights the importance of a European cooperation initiative for a joint international prospective trial to establish evidence-based guidelines on prenatal diagnostics, treatment and follow-up of pregnancies at risk for CAH.
Collapse
Affiliation(s)
- Hanna Nowotny
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Uta Neumann
- Centre for Chronic Sick Children, Department of Paediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Véronique Tardy-Guidollet
- Laboratoire de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Centre National de Référence ‘Développement Génital: du fœtus à l’adulte DEV-GEN’ Université Lyon I, Lyon, France
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - Federico Baronio
- Paediatric Endocrinology Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Jérôme Bertherat
- Service d’Endocinologie et Maladies Métaboliques, Hôpitaux Universitaires Paris-Centre, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Oliver Blankenstein
- Centre for Chronic Sick Children, Department of Paediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCSS Istituto Auxologico Italiano, Milan, Italy
| | - Claire Bouvattier
- Service d’Endocrinologie de l’Enfant, GHU Paris-Sud, Hôpital de Bicêtre, Paris, France
- Centre National de Référence ‘Développement Génital: du fœtus à l’adulte DEV-GEN’, Paris, France
| | - Aude Brac de la Perrière
- Fédération d’Endocrinologie, de Diabétologie et des Maladies Métaboliques, Hospices Civils des Lyon, Centre National de Référence ‘Développement Génital: du fœtus à l’adulte DEV-GEN’, Lyon, France
| | - Sara Brucker
- Department of Women’s Health, University Women’s Hospital, University of Tübingen, Tübingen, Germany
| | - Marco Cappa
- Endocrinology Unit, Paediatric University Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de Hypophyse, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hedi L Claahsen-van der Grinten
- Department of Paediatric Endocrinology, Amalia Children’s Hospital, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Annamaria Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Universita’ Federico II di Napoli, Naples, Italy
| | - Martine Cools
- Department of Paediatric Endocrinology, Ghent University Hospital, University of Ghent, Ghent, Belgium
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Helmut-Günther Dörr
- Paediatric Endocrinology, Department of Paediatrics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wiebke K Fenske
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ezio Ghigo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Roberta Giordano
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Angela Huebner
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Eystein Sverre Husebye
- Department of Clinical Science and KG Jebsen Centre for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Igbokwe
- West Midlands Regional Genetics Laboratory, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Juliane Léger
- Department of Paediatric Endocrinology and Diabetology and Reference Centre for Rare Diseases of Growth and Development, AP-HP Paris Nord Université de Paris, CHU Robert-Debre, Paris, France
| | - Rita Menassa
- Laboratoire de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Centre National de Référence ‘Développement Génital: du fœtus à l’adulte DEV-GEN’ Université Lyon I, Lyon, France
| | - Gesine Meyer
- Division of Endocrinology, Department of Internal Medicine 1, Goethe University Frankfurt Faculty 16 Medicine, Frankfurt am Main, Germany
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Julia Rohayem
- Centre of Reproductive Medicine and Andrology, Clinical and Operative Andrology, University of Münster, Münster, Germany
| | - Gianni Russo
- Department of Paediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan, Italy
| | - Carla Scaroni
- Dipartimento di Medicina, U.O.C. Endocrinologia, Università di Padova, Padova, Italy
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Centre for Rare Endocrine and Gynaecological Disorders, Sorbonne Université, Assistance Publique Hopitaux de Paris, Paris, France
| | - Nicole Unger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, Essen, Germany
| | - Jarmila Vojtková
- Department of Paediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Hospital in Martin, Martin, Slovakia
| | - Diego Yeste
- Paediatric Endocrinology Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Autonomous University of Barcelona, Bellaterra, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Svetlana Lajic
- Department of Women’s and Children’s Health, Karolinska Institutet/Karolinska University Hospital, Paediatric Endocrinology Unit (QB83), Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Correspondence should be addressed to N Reisch;
| |
Collapse
|
9
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
10
|
Ishii T, Kashimada K, Amano N, Takasawa K, Nakamura-Utsunomiya A, Yatsuga S, Mukai T, Ida S, Isobe M, Fukushi M, Satoh H, Yoshino K, Otsuki M, Katabami T, Tajima T. Clinical guidelines for the diagnosis and treatment of 21-hydroxylase deficiency (2021 revision). Clin Pediatr Endocrinol 2022; 31:116-143. [PMID: 35928387 PMCID: PMC9297175 DOI: 10.1297/cpe.2022-0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Congenital adrenal hyperplasia is a category of disorders characterized by impaired
adrenocortical steroidogenesis. The most frequent disorder of congenital adrenal
hyperplasia is 21-hydroxylase deficiency, which is caused by pathogenic variants of
CAY21A2 and is prevalent between 1 in 18,000 and 20,000 in Japan. The
clinical guidelines for 21-hydroxylase deficiency in Japan have been revised twice since a
diagnostic handbook in Japan was published in 1989. On behalf of the Japanese Society for
Pediatric Endocrinology, the Japanese Society for Mass Screening, the Japanese Society for
Urology, and the Japan Endocrine Society, the working committee updated the guidelines for
the diagnosis and treatment of 21-hydroxylase deficiency published in 2014, based on
recent evidence and knowledge related to this disorder. The recommendations in the updated
guidelines can be applied in clinical practice considering the risks and benefits to each
patient.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Differences of Sex Development (DSD) and Adrenal Disorders Committee, Japanese Society for Pediatric Endocrinology
| | - Kenichi Kashimada
- Differences of Sex Development (DSD) and Adrenal Disorders Committee, Japanese Society for Pediatric Endocrinology
| | - Naoko Amano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Shuichi Yatsuga
- Committee on Mass Screening, Japanese Society for Pediatric Endocrinology
| | - Tokuo Mukai
- Differences of Sex Development (DSD) and Adrenal Disorders Committee, Japanese Society for Pediatric Endocrinology
| | - Shinobu Ida
- Differences of Sex Development (DSD) and Adrenal Disorders Committee, Japanese Society for Pediatric Endocrinology
| | | | | | | | | | | | | | - Toshihiro Tajima
- Committee on Mass Screening, Japanese Society for Pediatric Endocrinology
| |
Collapse
|
11
|
Smet ME, Scott FP, McLennan AC. Discordant fetal sex on NIPT and ultrasound. Prenat Diagn 2020; 40:1353-1365. [PMID: 32125721 DOI: 10.1002/pd.5676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Prenatal diagnosis of sex discordance is a relatively new phenomenon. Prior to cell-free DNA testing, the diagnosis of a disorder of sexual differentiation was serendipitous, either through identification of ambiguous genitalia at the midtrimester morphology ultrasound or discovery of genotype-phenotype discordance in cases where preimplantation genetic diagnosis or invasive prenatal testing had occurred. The widespread integration of cfDNA testing into modern antenatal screening has made sex chromosome assessment possible from 10 weeks of gestation, and discordant fetal sex is now more commonly diagnosed prenatally, with a prevalence of approximately 1 in 1500-2000 pregnancies. Early detection of phenotype-genotype sex discordance is important as it may indicate an underlying genetic, chromosomal or biochemical condition and it also allows for time-critical postnatal treatment. The aim of this article is to review cfDNA and ultrasound diagnosis of fetal sex, identify possible causes of phenotype-genotype discordance and provide a systematic approach for clinicians when counseling and managing couples in this circumstance.
Collapse
Affiliation(s)
- Maria-Elisabeth Smet
- Sydney Ultrasound for Women, Chatswood, New South Wales, Australia.,Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Fergus P Scott
- Sydney Ultrasound for Women, Chatswood, New South Wales, Australia.,Department of Obstetrics and Gynaecology, Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Andrew C McLennan
- Sydney Ultrasound for Women, Chatswood, New South Wales, Australia.,Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Discipline of Obstetrics, Gynaecology and Neonatology, The University of Sydney Camperdown, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Non-invasive prenatal diagnosis and screening for monogenic disorders. Eur J Obstet Gynecol Reprod Biol 2020; 253:320-327. [PMID: 32907778 DOI: 10.1016/j.ejogrb.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Cell-free fetal DNA (cffDNA) can be detected in the maternal circulation from 4 weeks gestation, and is present with cell-free maternal DNA at a level of between 5 % and 20 %. Cell-free DNA (cfDNA) can be extracted from a maternal blood sample and, although it is not possible to separate the fetal from the maternal cfDNA, it has enabled non-invasive prenatal diagnosis (NIPD) without the associated miscarriage risk that accompanies invasive testing. NIPD for monogenic diseases was first reported in 2000 and since then there have been many proof of principle studies showing how analysis of cfDNA can provide a definitive diagnosis early in pregnancy for a wide range of single gene diseases. Testing for a number of these diseases has been available in the UK National Health Service (NHS) since 2012. This review highlights the main techniques that are being used for NIPD and discusses the technical limitations of the methods, as well as the advances that are being made to overcome some of the issues. NIPD is technologically challenging for a number of reasons. Firstly, because it requires the detection of low level fetal variants in a high maternal background. For de novo and paternally-inherited variants this has been achieved through the use of techniques such as next-generation sequencing (NGS) and digital PCR to detect variants in the cffDNA that are not present in the maternal cfDNA. However, for maternally-inherited variants this is much more challenging and relies on dosage-based techniques to detect small differences in the levels of mutant and wild-type alleles. Alongside the technical advances that are making NIPD more widely available in both the public healthcare and commercial settings, it is crucial that we continue to monitor the social and ethical impact to ensure that patients are being offered safe and accurate testing.
Collapse
|
13
|
Scotchman E, Chandler NJ, Mellis R, Chitty LS. Noninvasive Prenatal Diagnosis of Single-Gene Diseases: The Next Frontier. Clin Chem 2020; 66:53-60. [PMID: 31843868 DOI: 10.1373/clinchem.2019.304238] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cell-free fetal DNA (cffDNA) is present in the maternal blood from around 4 weeks gestation and makes up 5%-20% of the total circulating cell-free DNA (cfDNA) in maternal plasma. Presence of cffDNA has allowed development of noninvasive prenatal diagnosis (NIPD) for single-gene disorders. This can be performed from 9 weeks gestation and offers a definitive diagnosis without the miscarriage risk associated with invasive procedures. One of the major challenges is distinguishing fetal mutations in the high background of maternal cfDNA, and research is currently focusing on the technological advances required to solve this problem. CONTENT Here, we review the literature to describe the current status of NIPD for monogenic disorders and discuss how the evolving methodologies and technologies are expected to impact this field in both the commercial and public healthcare setting. SUMMARY NIPD for single-gene diseases was first reported in 2000 and took 12 years to be approved for use in a public health service. Implementation has remained slow but is expected to increase as this testing becomes cheaper, faster, and more accurate. There are still many technical and analytical challenges ahead, and it is vital that discussions surrounding the ethical and social impact of NIPD take account of the considerations required to implement these services safely into the healthcare setting, while keeping up with the technological advances.
Collapse
Affiliation(s)
- Elizabeth Scotchman
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Natalie J Chandler
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Rhiannon Mellis
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK.,Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lyn S Chitty
- London North Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK.,Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
14
|
EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency. Eur J Hum Genet 2020; 28:1341-1367. [PMID: 32616876 PMCID: PMC7609334 DOI: 10.1038/s41431-020-0653-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Molecular genetic testing for congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is offered worldwide and is of importance for differential diagnosis, carrier detection and adequate genetic counseling, particularly for family planning. In 2008 the European Molecular Genetics Quality Network (EMQN) for the first time offered a European-wide external quality assessment scheme for CAH (due to 21-OH deficiency). The interest was great and over the last years at about 60 laboratories from Europe, USA and Australia regularly participated in that scheme. These best practice guidelines were drafted on the basis of the extensive knowledge and experience got from those annually organized CAH-schemes. In order to obtain the widest possible consultation with practicing laboratories the draft was therefore circulated twice by EMQN to all laboratories participating in the EQA-scheme for CAH genotyping and was updated by that input. The present guidelines address quality requirements for diagnostic molecular genetic laboratories, as well as criteria for CYP21A2 genotyping (including carrier-testing and prenatal diagnosis). A key aspect of that article is the use of appropriate methodologies (e.g., sequencing methods, MLPA (multiplex ligation dependent probe amplification), mutation specific assays) and respective limitations and analytical accuracy. Moreover, these guidelines focus on classification of variants, and the interpretation and standardization of the reporting of CYP21A2 genotyping results. In addition, the article provides a comprehensive list of common as well as so far unreported CYP21A2-variants.
Collapse
|
15
|
Wallensteen L, Karlsson L, Messina V, Nordenström A, Lajic S. Perturbed Beta-Cell Function and Lipid Profile After Early Prenatal Dexamethasone Exposure in Individuals Without CAH. J Clin Endocrinol Metab 2020; 105:5841246. [PMID: 32433752 PMCID: PMC7343997 DOI: 10.1210/clinem/dgaa280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prenatal treatment with dexamethasone (DEX) reduces virilization in girls with congenital adrenal hyperplasia (CAH). The treatment is effective but may result in long-lasting adverse effects. In this study we explore the effects of DEX on metabolism in individuals not having CAH but treated with DEX during the first trimester of fetal life. METHOD All DEX-treated participants (n = 40, age range 5.1-26.4 years) and controls (n = 75, age range 4.5-26.6 years) were assessed with fasting blood samples to measure blood count, renal function, glucose homeostasis, and serum lipid profiles. RESULTS There were no significant differences between DEX and control participants for birth parameters, weight and height, or body mass index at the time of testing. Analyzing the entire cohort, we found no significant effects of DEX on blood count, renal function, or serum lipid profiles. However, a lower HOMA-β index in the DEX-treated individuals (U = 893.0; P = 0.049) was observed. Post hoc analyses revealed an effect in girls (U = 152.5; P = 0.024) but not in boys (U = 299.5; P = 0.550). The effect on HOMA-β persisted (U = 117.5; P = 0.048) after analyzing data separately in the participants < 16 years of age. In addition, we observed higher plasma glucose levels (F = 14.6; P = 0.001) in the DEX-treated group. The participants ≥ 16 years of age in the DEX-treated group had significantly higher total plasma cholesterol (F = 9.8; P = 0.003) and higher low-density lipoprotein cholesterol levels (F = 7.4; P = 0,009). CONCLUSION Prenatal DEX exposure in early pregnancy has negative effects on beta-cell function and lipid profile in individuals without CAH already at a young age.
Collapse
Affiliation(s)
- Lena Wallensteen
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Leif Karlsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Valeria Messina
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women’s and Children’s Health, Karolinska Institutet, Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
- Correspondence and Reprint Requests: Dr. Svetlana Lajic, Department of Women’s and Children’s Health, Pediatric Endocrinology Unit (QB83), Karolinska University Hospital, SE-171 76 Stockholm, Sweden,
| |
Collapse
|
16
|
Riveline JP, Baz B, Nguewa JL, Vidal-Trecan T, Ibrahim F, Boudou P, Vicaut E, Brac de la Perrière A, Fetita S, Bréant B, Blondeau B, Tardy-Guidollet V, Morel Y, Gautier JF. Exposure to Glucocorticoids in the First Part of Fetal Life is Associated with Insulin Secretory Defect in Adult Humans. J Clin Endocrinol Metab 2020; 105:5609147. [PMID: 31665349 DOI: 10.1210/clinem/dgz145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE High glucocorticoid levels in rodents inhibit development of beta cells during fetal life and lead to insulin deficiency in adulthood. To test whether similar phenomena occur in humans, we compared beta-cell function in adults who were exposed to glucocorticoids during the first part of fetal life with that of nonexposed subjects. RESEARCH DESIGN AND METHODS The study was conducted in 16 adult participants exposed to glucocorticoids during the first part of fetal life and in 16 nonexposed healthy participants with normal glucose tolerance who were matched for age, sex, and body mass index (BMI). Exposed participants had been born to mothers who were treated with dexamethasone 1 to 1.5 mg/day from the sixth gestational week (GW) to prevent genital virilization in children at risk of 21-hydroxylase deficiency. We selected offspring of mothers who stopped dexamethasone before the 18th GW following negative genotyping of the fetus. Insulin and glucagon secretion were measured during an oral glucose tolerance test (OGTT) and graded intravenous (IV) glucose and arginine tests. Insulin sensitivity was measured by hyperinsulinemic-euglycemic-clamp. RESULTS Age, BMI, and anthropometric characteristics were similar in the 2 groups. Insulinogenic index during OGTT and insulin sensitivity during the clamp were similar in the 2 groups. In exposed subjects, insulin secretion during graded IV glucose infusion and after arginine administration decreased by 17% (P = 0.02) and 22% (P = 0.002), respectively, while glucagon secretion after arginine increased. CONCLUSION Overexposure to glucocorticoids during the first part of fetal life is associated with lower insulin secretion at adult age, which may lead to abnormal glucose tolerance later in life.
Collapse
Affiliation(s)
- Jean-Pierre Riveline
- Department of Diabetes and Endocrinology, Lariboisière Hospital, APHP, Paris, France
- Paris Diderot- Paris VII University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Université Paris Diderot-Paris VII, Sorbonne Paris Cité, Paris, France
| | - Baz Baz
- Department of Diabetes and Endocrinology, Lariboisière Hospital, APHP, Paris, France
| | - Jean-Louis Nguewa
- Department of Diabetes and Endocrinology, Lariboisière Hospital, APHP, Paris, France
| | - Tiphaine Vidal-Trecan
- Department of Diabetes and Endocrinology, Lariboisière Hospital, APHP, Paris, France
| | - Fidaa Ibrahim
- Unit of Hormonal Biology, Department of Biochemistry, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Philippe Boudou
- Unit of Hormonal Biology, Department of Biochemistry, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Eric Vicaut
- Assistance Publique-Hôpitaux de Paris, Clinical Research Unit, Fernand Widal Hospital, Sorbonne Paris Cité, Paris Diderot University, Paris, France
| | - Aude Brac de la Perrière
- Fédération d'endocrinologie Hopital Louis Pradel Groupement Hospitalier Est 28 av Doyen Lepine BRON
| | - Sabrina Fetita
- Department of Diabetes and Endocrinology, Lariboisière Hospital, APHP, Paris, France
| | - Bernadette Bréant
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Université Paris Diderot-Paris VII, Sorbonne Paris Cité, Paris, France
| | - Bertrand Blondeau
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Université Paris Diderot-Paris VII, Sorbonne Paris Cité, Paris, France
| | - Véronique Tardy-Guidollet
- Department of Biochemistry and Molecular Biology, Groupement Hospitalier Est 59 Boulevard Pinel Bron, France
| | - Yves Morel
- Department of Biochemistry and Molecular Biology, Groupement Hospitalier Est 59 Boulevard Pinel Bron, France
| | - Jean-François Gautier
- Department of Diabetes and Endocrinology, Lariboisière Hospital, APHP, Paris, France
- Paris Diderot- Paris VII University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Université Paris Diderot-Paris VII, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Xu L, Lin W, Cai L, Huang H, Liang J, Li L, Zong L, Wang N, Wen J, Chen G. Efficacy and safety of prenatal dexamethasone treatment in offspring at risk for congenital adrenal hyperplasia due to 21-hydroxylase deficiency: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 2020; 92:109-123. [PMID: 31715010 DOI: 10.1111/cen.14126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To assess the efficacy and safety of prenatal dexamethasone treatment in offspring at risk for congenital adrenal hyperplasia. METHODS MEDLINE, EMBASE, the Cochrane Library, the clinicaltrials.gov website databases were systematically searched from inception through March 2019. WMD and SMD with 95%CIs were calculated using random or fixed effects models. RESULTS There was a significant reduction in virilization in the DEX-treated group (WMD: -2.39, 95%CI: -3.31,-1.47). No significant differences were found in newborn physical outcomes for birth weight (WMD: 0.09, 95%CI: -0.09, 0.27) and birth length (WMD = 0.27, 95%CI: -0.68, 1.21). Concerning cognitive functions, no significant differences in the domains of psychometric intelligence (SMD: 0.05, 95%CI: -0.74, 0.83), verbal memory (SMD: -0.17, 95%CI: -0.58, 0.23), visual memory (SMD: 0.10, 95%CI: -0.14, 0.34), learning (SMD: -0.02, 95%CI: -0.27, 0.22) and verbal processing (SMD: -0.38, 95%CI: -0.93, 0.17). Regarding behavioural problems, no significant differences in the domains of internalizing problems (SMD: 0.16, 95%CI: -0.49, 0.81), externalizing problems (SMD: 0.07, 95%CI: -0.30, 0.43) and total problems (SMD: 0.14, 95%CI: -0.23, 0.51). With respect to temperament, no significant differences in the domains of emotionality (SMD: 0.13, 95%CI: -0.79, 1.05), activity (SMD: 0.04, 95%CI: -0.32, 0.39), shyness (SMD: 0.25, 95%CI: -0.70, 1.20) and sociability (SMD: -0.23, 95%CI: -0.90, 0.44). CONCLUSIONS Prenatal DEX treatment reduced virilization with no significant differences in newborn physical outcomes, cognitive functions, behavioural problems and temperament. The results need to be interpreted cautiously due to the existence of limitations.
Collapse
Affiliation(s)
- Lizhen Xu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liangchun Cai
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Huibin Huang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liantao Li
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liyao Zong
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Nengying Wang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Junping Wen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Gang Chen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Department of Scientific research, Fujian Academy of Medical Sciences, Fuzhou, China
| |
Collapse
|
18
|
McCann-Crosby B, Placencia FX, Adeyemi-Fowode O, Dietrich J, Franciskovich R, Gunn S, Axelrad M, Tu D, Mann D, Karaviti L, Sutton VR. Challenges in Prenatal Treatment with Dexamethasone. PEDIATRIC ENDOCRINOLOGY REVIEWS : PER 2019; 16:186-193. [PMID: 30371037 DOI: 10.17458/per.vol16.2018.mcpa.dexamethasone] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency causes elevated androgen levels, which can lead to virilization of female external genitalia. Prenatal dexamethasone treatment has been shown to be effective in preventing virilization of external genitalia when started prior to 7-9 weeks of gestation in females with classic CAH. However, CAH cannot be diagnosed prenatally until the end of the first trimester. Treating pregnant women with a fetus at risk of developing classic CAH exposes a significant proportion of fetuses unnecessarily, because only 1 in 8 would benefit from treatment. Consequently, prenatal dexamethasone treatment has been met with much controversy due to the potential adverse outcomes when exposed to high-dose steroids in utero. Here, we review the short- and long-term outcomes for fetuses and pregnant women exposed to dexamethasone treatment, the ethical considerations that must be taken into account, and current practice recommendations.
Collapse
Affiliation(s)
- Bonnie McCann-Crosby
- Division of Pediatric Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA, E-mail:
| | - Frank Xavier Placencia
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oluyemisi Adeyemi-Fowode
- Division of Pediatric and Adolescent Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jennifer Dietrich
- Division of Pediatric and Adolescent Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sheila Gunn
- Division of Pediatric Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marni Axelrad
- Division of Psychology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Duong Tu
- Division of Pediatric Urology, Department of Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - David Mann
- Department of Anesthesiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|
19
|
Rama Chandran S, Loh LM. The importance and implications of preconception genetic testing for accurate fetal risk estimation in 21-hydroxylase congenital adrenal hyperplasia (CAH). Gynecol Endocrinol 2019; 35:28-31. [PMID: 30044156 DOI: 10.1080/09513590.2018.1490399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Preconception genetic testing should be offered to all patients with 21-hydroxylase congenital adrenal hyperplasia. We report how the preconception genetic testing of a lady and her partner dramatically changed the estimated risk to their offspring and the major implications the results had on pregnancy planning. The risk of conceiving a female fetus with congenital adrenal hyperplasia brings in considerations of prenatal dexamethasone therapy and prenatal diagnosis. We also highlight the differences between genetic testing on a research and clinical basis.
Collapse
Affiliation(s)
- Suresh Rama Chandran
- a Department of Endocrinology , Singapore General Hospital , Academia , Singapore
| | - Lih Ming Loh
- a Department of Endocrinology , Singapore General Hospital , Academia , Singapore
| |
Collapse
|
20
|
Ibáñez L, Barouti K, Markantes GK, Armeni AK, Georgopoulos NA. Pediatric endocrinology: an overview of the last decade. Hormones (Athens) 2018; 17:439-449. [PMID: 30293227 DOI: 10.1007/s42000-018-0067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Over the past decade, considerable progress has been made in the field of pediatric endocrinology. However, there is still a long way to go regarding the exploration of novel avenues, such as epigenetics, the changing views on the pathophysiology and derived therapy of specific disorders, and the prevention of prevalent diseases. The next decade will hopefully bring the consolidation of most of those achievements and the development of new pathways for further progress.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Pediatric Research Institute Sant Joan de Deu, University of Barcelona, Esplugues, Barcelona, Spain & CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain.
| | - Konstantina Barouti
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| | - Georgios K Markantes
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| | - Anastasia K Armeni
- Pediatric Research Institute Sant Joan de Deu, University of Barcelona, Esplugues, Barcelona, Spain & CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| | - Neoklis A Georgopoulos
- Pediatric Research Institute Sant Joan de Deu, University of Barcelona, Esplugues, Barcelona, Spain & CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| |
Collapse
|
21
|
Speiser PW, Arlt W, Auchus RJ, Baskin LS, Conway GS, Merke DP, Meyer-Bahlburg HFL, Miller WL, Murad MH, Oberfield SE, White PC. Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2018; 103:4043-4088. [PMID: 30272171 PMCID: PMC6456929 DOI: 10.1210/jc.2018-01865] [Citation(s) in RCA: 564] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/29/2023]
Abstract
Objective To update the congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency clinical practice guideline published by the Endocrine Society in 2010. Conclusions The writing committee presents updated best practice guidelines for the clinical management of congenital adrenal hyperplasia based on published evidence and expert opinion with added considerations for patient safety, quality of life, cost, and utilization.
Collapse
Affiliation(s)
- Phyllis W Speiser
- Cohen Children’s Medical Center of New York, New York, New York
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Wiebke Arlt
- University of Birmingham, Birmingham, United Kingdom
| | | | | | | | - Deborah P Merke
- National Institutes of Health Clinical Center, Bethesda, Maryland
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Heino F L Meyer-Bahlburg
- New York State Psychiatric Institute, Vagelos College of Physicians & Surgeons of Columbia University, New York, New York
| | - Walter L Miller
- University of California San Francisco, San Francisco, California
| | - M Hassan Murad
- Mayo Clinic’s Evidence-Based Practice Center, Rochester, Minnesota
| | - Sharon E Oberfield
- NewYork–Presbyterian, Columbia University Medical Center, New York, New York
| | - Perrin C White
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
22
|
Lajic S, Karlsson L, Nordenström A. Prenatal Treatment of Congenital Adrenal Hyperplasia: Long-Term Effects of Excess Glucocorticoid Exposure. Horm Res Paediatr 2018; 89:362-371. [PMID: 29742490 DOI: 10.1159/000485100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
Prenatal treatment of congenital adrenal hyperplasia with dexamethasone (DEX) has been in use since the mid-1980s and has proven effective at reducing virilization of external genitalia in affected girls. However, multiple experimental studies on animals and clinical studies on humans show that prenatal administration of glucocorticoids may cause unwanted adverse effects which have raised concerns about the long-term safety of the treatment. The long-term outcome of prenatal DEX treatment on cognition has been investigated, but the results are still conflicting. Overall, most of the evidence points towards a negative effect on executive functions where girls seem to be more susceptible than boys. Some effects on social behavior have been observed, but results are still contradictory and treated children are mostly well adapted. Cardiovascular, renal, and metabolic function are still areas to be investigated. Larger studies are warranted to investigate areas other than cognition and behavior and to be able to draw more definitive conclusions about prenatal DEX treatment.
Collapse
|
23
|
Mellis R, Chandler N, Chitty LS. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev Mol Diagn 2018; 18:689-699. [PMID: 29962246 DOI: 10.1080/14737159.2018.1493924] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The advent of affordable and rapid next-generation sequencing has been transformative for prenatal diagnosis. Sequencing of cell-free DNA in maternal plasma has enabled the development of not only a highly sensitive screening test for fetal aneuploidies, but now definitive noninvasive prenatal diagnosis for monogenic disorders at an early gestation. Sequencing of fetal exomes offers broad diagnostic capability for pregnancies with unexpected fetal anomalies, improving the yield and accuracy of diagnoses and allowing better counseling for parents. The challenge now is to translate these approaches into mainstream use in the clinic. Areas covered: Here, the authors review the current literature to describe the technologies available and how these have evolved. The opportunities and challenges at hand, including considerations for service delivery, counseling, and development of ethical guidelines, are discussed. Expert commentary: As technology continues to advance, future developments may be toward noninvasive fetal whole exome or whole genome sequencing and a universal method for noninvasive prenatal diagnosis without the need to sequence both parents or an affected proband. Expansion of cell-free fetal DNA analysis to include the transcriptome and the methylome is likely to yield clinical benefits for monitoring other pregnancy-related pathologies such as preeclampsia and intrauterine growth restriction.
Collapse
Affiliation(s)
- Rhiannon Mellis
- a Genetics and Genomic Medicine , Great Ormond Street NHS Foundation Trust , London , UK
| | - Natalie Chandler
- b North Thames NHS Regional Genetics Service , Great Ormond Street NHS Foundation Trust , London , UK
| | - Lyn S Chitty
- a Genetics and Genomic Medicine , Great Ormond Street NHS Foundation Trust , London , UK.,c Genetics and Genomic Medicine , UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|
24
|
White PC. Update on diagnosis and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Curr Opin Endocrinol Diabetes Obes 2018; 25:178-184. [PMID: 29718004 DOI: 10.1097/med.0000000000000402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is a relatively common inherited disorder of cortisol biosynthesis that can be fatal if untreated. RECENT FINDINGS The basic biochemistry and genetics of CAH have been known for decades but continue to be refined by the discoveries of an alternative 'backdoor' metabolic pathway for adrenal androgen synthesis and the secretion of 11-hydroxy and 11-keto analogs of known androgens, by the elucidation of hundreds of new mutations, and by the application of high-throughput sequencing techniques to noninvasive prenatal diagnosis. Although hydrocortisone is a mainstay of treatment, overtreatment may have adverse effects on growth, risk of obesity, and cardiovascular disease; conversely, undertreatment may increase risk of testicular adrenal rest tumors in affected men. SUMMARY Refinements to screening techniques may improve the positive predictive value of newborn screening programs. Alternative dosing forms of hydrocortisone and additional therapeutic modalities are under study. Although surgical treatment of virilized female genitalia is widely accepted by families and patients, it is not without complications or controversy, and some families choose to defer it.
Collapse
Affiliation(s)
- Perrin C White
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Jenkins LA, Deans ZC, Lewis C, Allen S. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice. Prenat Diagn 2018; 38:44-51. [PMID: 29266293 DOI: 10.1002/pd.5197] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Lucy A. Jenkins
- North East Thames Regional Genetics Service; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - Zandra C. Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine; Royal Infirmary of Edinburgh; Edinburgh UK
| | - Celine Lewis
- North East Thames Regional Genetics Service; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
- Genetics and Genomic Medicine; UCL Great Ormond Street Institute of Child Health; London UK
| | - Stephanie Allen
- West Midlands Regional Genetics Laboratory; Birmingham Women's NHS Foundation Trust; Birmingham UK
| |
Collapse
|
26
|
Johnston ZC, Bellingham M, Filis P, Soffientini U, Hough D, Bhattacharya S, Simard M, Hammond GL, King P, O'Shaughnessy PJ, Fowler PA. The human fetal adrenal produces cortisol but no detectable aldosterone throughout the second trimester. BMC Med 2018; 16:23. [PMID: 29429410 PMCID: PMC5808459 DOI: 10.1186/s12916-018-1009-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human fetal adrenal glands are highly active and, with the placenta, regulate circulating progesterone, estrogen and corticosteroids in the fetus. At birth the adrenals are essential for neonate salt retention through secretion of aldosterone, while adequate glucocorticoids are required to prevent adrenal insufficiency. The objective of this study was to carry out the first comprehensive analysis of adrenal steroid levels and steroidogenic enzyme expression in normal second trimester human fetuses. METHODS This was an observational study of steroids, messenger RNA transcripts and proteins in adrenals from up to 109 second trimester fetuses (11 weeks to 21 weeks) at the Universities of Aberdeen and Glasgow. The study design was balanced to show effects of maternal smoking. RESULTS Concentrations of 19 intra-adrenal steroids were quantified using liquid chromatography and mass spectrometry. Pregnenolone was the most abundant steroid while levels of 17α-hydroxyprogesterone, dehydroepiandrosterone sulphate (DHEAS) and progesterone were also high. Cortisol was present in all adrenals, but aldosterone was undetected and Δ4 androgens were low/undetected. CYP17A1, CYP21A2 and CYP11A1 were all highly expressed and the proteins localized to the adrenal fetal zone. There was low-level expression of HSD3B and CYP11B2, with HSD3B located mainly in the definitive zone. Maternal smoking altered fetal plasma adrenocorticotropic hormone (ACTH) (P = 0.052) and intra-adrenal progesterone, 17α-hydroxyprogesterone and 16α-hydroxyprogesterone, but not plasma or intra-adrenal cortisol, or intra-adrenal DHEAS. Fetal adrenal GATA6 and NR5A1 were increased by maternal smoking. CONCLUSIONS The human fetal adrenal gland produces cortisol but very low levels of Δ4 androgens and no detectable aldosterone throughout the second trimester. The presence of cortisol in fetal adrenals suggests that adrenal regulation of circulating fetal ACTH remains a factor in development of congenital adrenal hyperplasia during the second trimester, while a relative lack of aldosterone explains the salt-wasting disorders frequently seen in extreme pre-term neonates. Finally, maternal smoking may alter fetal adrenal sensitivity to ACTH, which could have knock-on effects on post-natal health.
Collapse
Affiliation(s)
- Zoe C Johnston
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Ugo Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Denise Hough
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Siladitya Bhattacharya
- Institute of Applied Health Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Marc Simard
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, British Columbia, V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, British Columbia, V6T 1Z3, Canada
| | - Peter King
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Peter J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
27
|
Nouveautés dans l’hyperplasie congénitale des surrénales. ANNALES D'ENDOCRINOLOGIE 2017; 78 Suppl 1:S21-S30. [PMID: 29157486 DOI: 10.1016/s0003-4266(17)30922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Congenital adrenal hyperplasia is an autosomal recessive disease due to functional abnormalities of adrenal steroid enzymes. The most common form of the disease is due to a 21-hydroxylase deficiency. The classical forms (most severe) are characterized by a deficiency in cortisol and sometimes in aldosterone, which may compromise the vital prognosis of neonates, and by an increase in androgen synthesis, leading to the virilization of girls' external genitalia at birth, followed by clinical signs of hyperandrogenism during childhood and adolescence. Neonatal screening has improved management and reduced morbidity and mortality in the neonatal period, but its performance could be broadly optimised by adjusting the assay techniques or the biomarkers used. The genetic diagnosis is difficult owing to the large genetic heterogeneity of the 6p21.3 region, which contains the CYP21A2 gene, especially with respect to the use of new-generation techniques of sequencing. Prenatal diagnosis is now possible as early as 6 weeks of gestation, but prenatal treatment remains controversial, awaiting results from prospective cohorts evaluating its long-term impact. Since conventional therapies have limitations, new therapies are currently being developed to allow better control of androgen synthesis and a substitutive treatment that respects the physiological rhythm of cortisol secretion, which would limit the development of long-term complications.
Collapse
|
28
|
El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet 2017; 390:2194-2210. [PMID: 28576284 DOI: 10.1016/s0140-6736(17)31431-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
Congenital adrenal hyperplasia is a group of autosomal recessive disorders encompassing enzyme deficiencies in the adrenal steroidogenesis pathway that lead to impaired cortisol biosynthesis. Depending on the type and severity of steroid block, patients can have various alterations in glucocorticoid, mineralocorticoid, and sex steroid production that require hormone replacement therapy. Presentations vary from neonatal salt wasting and atypical genitalia, to adult presentation of hirsutism and irregular menses. Screening of neonates with elevated 17-hydroxyprogesterone concentrations for classic (severe) 21-hydroxylase deficiency, the most common type of congenital adrenal hyperplasia, is in place in many countries, however cosyntropin stimulation testing might be needed to confirm the diagnosis or establish non-classic (milder) subtypes. Challenges in the treatment of congenital adrenal hyperplasia include avoidance of glucocorticoid overtreatment and control of sex hormone imbalances. Long-term complications include abnormal growth and development, adverse effects on bone and the cardiovascular system, and infertility. Novel treatments aim to reduce glucocorticoid exposure, improve excess hormone control, and mimic physiological hormone patterns.
Collapse
Affiliation(s)
- Diala El-Maouche
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham & Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Deborah P Merke
- National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|
29
|
Bachelot A, Grouthier V, Courtillot C, Dulon J, Touraine P. MANAGEMENT OF ENDOCRINE DISEASE: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: update on the management of adult patients and prenatal treatment. Eur J Endocrinol 2017; 176:R167-R181. [PMID: 28115464 DOI: 10.1530/eje-16-0888] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 12/28/2022]
Abstract
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is characterized by cortisol and in some cases aldosterone deficiency associated with androgen excess. Goals of treatment are to replace deficient hormones and control androgen excess, while avoiding the adverse effects of exogenous glucocorticoid. Over the last 5 years, cohorts of adults with CAH due to 21-hydroxylase deficiency from Europe and the United States have been described, allowing us to have a better knowledge of long-term complications of the disease and its treatment. Patients with CAH have increased mortality, morbidity and risk for infertility and metabolic disorders. These comorbidities are due in part to the drawbacks of the currently available glucocorticoid therapy. Consequently, novel therapies are being developed and studied in an attempt to improve patient outcomes. New management strategies in the care of pregnancies at risk for congenital adrenal hyperplasia using fetal sex determination and dexamethasone have also been described, but remain a subject of debate. We focused the present overview on the data published in the last 5 years, concentrating on studies dealing with cardiovascular risk, fertility, treatment and prenatal management in adults with classic CAH to provide the reader with an updated review on this rapidly evolving field of knowledge.
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HPIE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
- UPMC Université Pierre et Marie CurieUniv Paris 06, Paris, France
| | - Virginie Grouthier
- AP-HPIE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
- UPMC Université Pierre et Marie CurieUniv Paris 06, Paris, France
| | - Carine Courtillot
- AP-HPIE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Jérôme Dulon
- AP-HPIE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
| | - Philippe Touraine
- AP-HPIE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Centre de Référence des Pathologies Gynécologiques Rares, ICAN, Paris, France
- UPMC Université Pierre et Marie CurieUniv Paris 06, Paris, France
| |
Collapse
|
30
|
|
31
|
Kazmi D, Bailey J, Yau M, Abu-Amer W, Kumar A, Low M, Yuen T. New developments in prenatal diagnosis of congenital adrenal hyperplasia. J Steroid Biochem Mol Biol 2017; 165:121-123. [PMID: 27378492 DOI: 10.1016/j.jsbmb.2016.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is an autosomal recessive disorder caused by mutations in the CYP21A2 gene. Females affected with classical CAH are at risk for genital ambiguity, but can be treated in utero with dexamethasone before 9 gestational weeks to prevent virilization. Early genetic diagnosis is unavailable through current invasive methods of chorionic villus sampling and amniocentesis. New developments in prenatal genetic testing utilize fetal DNA extracted from maternal blood through noninvasive methods, which allow the determination of fetal gender and the diagnosis of CAH at an early gestational age (<9 weeks). Noninvasive prenatal diagnosis allows for the establishment of early and effective management plans in fetuses at risk for CAH and avoids unnecessary prenatal dexamethasone treatment.
Collapse
Affiliation(s)
- Diya Kazmi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA
| | - Jack Bailey
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA
| | - Maggie Yau
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA
| | - Wahid Abu-Amer
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA
| | - Ameet Kumar
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA
| | - Merly Low
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA
| | - Tony Yuen
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1055, New York, NY 10029, USA.
| |
Collapse
|
32
|
Wallensteen L, Zimmermann M, Thomsen Sandberg M, Gezelius A, Nordenström A, Hirvikoski T, Lajic S. Sex-Dimorphic Effects of Prenatal Treatment With Dexamethasone. J Clin Endocrinol Metab 2016; 101:3838-3846. [PMID: 27482827 DOI: 10.1210/jc.2016-1543] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Dexamethasone (DEX) is used to prevent virilization in female fetuses at risk of congenital adrenal hyperplasia (CAH). Given that treatment has to be started before the genotype is known, 7 out of 8 fetuses will be exposed to DEX without benefit. OBJECTIVE To evaluate long-term cognitive effects of prenatal DEX therapy in healthy (non-CAH) DEX-treated children. DESIGN AND SETTING Observational study with patient and control groups from a single research institute. PARTICIPANTS Healthy (non-CAH) DEX-treated subjects (n = 34) and untreated population controls (n = 66) from Sweden, aged 7-17 years. INTERVENTION DEX-treatment used in unborn children at risk of CAH, during first trimester of fetal life. MAIN OUTCOME MEASURES Standardized neuropsychological tests and questionnaires were used. RESULTS DEX treatment has widespread negative effects in girls. In Wechsler Intelligence Scales for Children-III scale subtests, we observed significant interactions between DEX and GENDER (coding, P = .044; block design, P = .013; vocabulary, P = .025) and a trend for the subtest digit span (P = .074). All interactions were driven by DEX effects in girls, but not boys, with DEX-treated females showing lower scores than female untreated controls (coding, P = .068, d = 0.66; block design, P = .021, d = 0.81; vocabulary, P = .014, d = 0.84; digit span, P = .001, d = 1.0). Likewise, DEX-treated girls tend to have poorer visual spatial working memory performance than controls (span board test forward: P = .065, d = .80). We observed no effects on long-term memory, handedness, speed of processing, nor self-perceived or parentally reported scholastic performance. CONCLUSIONS Early prenatal DEX exposure affects cognitive functions in healthy girls, ie, children who do not benefit from the treatment. It can therefore not be considered safe to use this therapy in the context of CAH.
Collapse
Affiliation(s)
- Lena Wallensteen
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marius Zimmermann
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Malin Thomsen Sandberg
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anton Gezelius
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anna Nordenström
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Tatja Hirvikoski
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health (L.W., M.Z., M.T.S., A.G., A.N., S.L.), Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, and Department of Women's and Children's Health (T.H.), Karolinska Institutet, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
33
|
Böttcher B, Wildt L. Nichtklassisches adrenogenitales Syndrom. GYNAKOLOGISCHE ENDOKRINOLOGIE 2016. [DOI: 10.1007/s10304-016-0088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is a monogenic disorder of adrenal steroidogenesis. To prevent genital ambiguity, in girls, prenatal dexamethasone treatment is administered early in the first trimester. Prenatal genetic diagnosis of CAH and fetal sex determination identify affected female fetuses at risk for genital virilization. Advancements in prenatal diagnosis are owing to improved understanding of the genetic basis of CAH and improved technology. Cloning of the CYP21A2 gene ushered in molecular genetic analysis as the current standard of care. Noninvasive prenatal diagnosis allows for targeted treatment and avoids unnecessary treatment of males and unaffected females.
Collapse
Affiliation(s)
- Mabel Yau
- Department of Pediatric Endocrinology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1198, New York, NY 10029, USA
| | - Ahmed Khattab
- Department of Pediatric Endocrinology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1198, New York, NY 10029, USA
| | - Maria I New
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1198, New York, NY 10029, USA.
| |
Collapse
|
35
|
Mouriquand PDE, Gorduza DB, Gay CL, Meyer-Bahlburg HFL, Baker L, Baskin LS, Bouvattier C, Braga LH, Caldamone AC, Duranteau L, El Ghoneimi A, Hensle TW, Hoebeke P, Kaefer M, Kalfa N, Kolon TF, Manzoni G, Mure PY, Nordenskjöld A, Pippi Salle JL, Poppas DP, Ransley PG, Rink RC, Rodrigo R, Sann L, Schober J, Sibai H, Wisniewski A, Wolffenbuttel KP, Lee P. Surgery in disorders of sex development (DSD) with a gender issue: If (why), when, and how? J Pediatr Urol 2016; 12:139-49. [PMID: 27132944 DOI: 10.1016/j.jpurol.2016.04.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/25/2023]
Abstract
Ten years after the consensus meeting on disorders of sex development (DSD), genital surgery continues to raise questions and criticisms concerning its indications, its technical aspects, timing and evaluation. This standpoint details each distinct situation and its possible management in 5 main groups of DSD patients with atypical genitalia: the 46,XX DSD group (congenital adrenal hyperplasia); the heterogeneous 46,XY DSD group (gonadal dysgenesis, disorders of steroidogenesis, target tissues impairments …); gonosomic mosaicisms (45,X/46,XY patients); ovo-testicular DSD; and "non-hormonal/non chromosomal" DSD. Questions are summarized for each DSD group with the support of literature and the feed-back of several world experts. Given the complexity and heterogeneity of presentation there is no consensus regarding the indications, the timing, the procedure nor the evaluation of outcome of DSD surgery. There are, however, some issues on which most experts would agree: 1) The need for identifying centres of expertise with a multidisciplinary approach; 2) A conservative management of the gonads in complete androgen insensitivity syndrome at least until puberty although some studies expressed concerns about the heightened tumour risk in this group; 3) To avoid vaginal dilatation in children after surgical reconstruction; 4) To keep asymptomatic mullerian remnants during childhood; 5) To remove confirmed streak gonads when Y material is present; 6) It is likely that 46,XY cloacal exstrophy, aphallia and severe micropenis would do best raised as male although this is based on limited outcome data. There is general acknowledgement among experts that timing, the choice of the individual and irreversibility of surgical procedures are sources of concerns. There is, however, little evidence provided regarding the impact of non-treated DSD during childhood for the individual development, the parents, society and the risk of stigmatization. The low level of evidence should lead to design collaborative prospective studies involving all parties and using consensual protocols of evaluation.
Collapse
Affiliation(s)
- Pierre D E Mouriquand
- Department of Paediatric Urology/Paediatric Surgery, Université Claude-Bernard, Hospices Civils de Lyon, Lyon, France; Centre National de Référence Maladies Rares sur les Anomalies Congénitales du Développement Génito-Sexuel, Lyon, France.
| | - Daniela Brindusa Gorduza
- Department of Paediatric Urology/Paediatric Surgery, Université Claude-Bernard, Hospices Civils de Lyon, Lyon, France; Centre National de Référence Maladies Rares sur les Anomalies Congénitales du Développement Génito-Sexuel, Lyon, France
| | - Claire-Lise Gay
- Department of Paediatric Urology/Paediatric Surgery, Université Claude-Bernard, Hospices Civils de Lyon, Lyon, France; Centre National de Référence Maladies Rares sur les Anomalies Congénitales du Développement Génito-Sexuel, Lyon, France
| | - Heino F L Meyer-Bahlburg
- NYS Psychiatric Institute, New York, NY, USA; College of Physicians & Surgeons of Columbia University, New York City, NY, USA
| | - Linda Baker
- Children's Medical Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurence S Baskin
- Pediatric Urology, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Claire Bouvattier
- Service d'Endocrinologie de l'enfant, GHU Paris-Sud, Hôpital de Bicêtre, Paris, France; Centre National de Référence Maladies Rares sur les Anomalies Congénitales du Développement Génito-Sexuel, Paris, France
| | - Luis H Braga
- Division of Urology, Department of Surgery, McMaster University, Toronto, Canada
| | - Anthony C Caldamone
- Pediatric Urology, Hasbro Children's Hospital, Providence, RI, USA; Surgery (Urology) and Pediatrics, Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Lise Duranteau
- Centre National de Référence Maladies Rares sur les Anomalies Congénitales du Développement Génito-Sexuel, Paris, France; Adolescent Gynaecology, Hôpitaux Universitaires Paris Sud (Bicêtre), Paris, France
| | - Alaa El Ghoneimi
- Pediatric Surgery and Urology, University Hospital Robert Debré, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Terry W Hensle
- College of Physicians & Surgeons of Columbia University, New York City, NY, USA
| | - Piet Hoebeke
- Urology, Ghent University Hospital, Gent, Belgium
| | - Martin Kaefer
- Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicolas Kalfa
- Service de Chirurgie Viscérale et Urologique Pédiatrique, Hôpital Lapeyronie, CHU de Montpellier, Université de Montpellier, France
| | - Thomas F Kolon
- Pediatric Urology, Children's Hospital of Philadelphia, PA, USA; Perelman School of Medicine at University of Pennsylvania, PA, USA
| | - Gianantonio Manzoni
- Pediatric Urology, Fondazione IRCCS CaGranda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierre-Yves Mure
- Department of Paediatric Urology/Paediatric Surgery, Université Claude-Bernard, Hospices Civils de Lyon, Lyon, France; Centre National de Référence Maladies Rares sur les Anomalies Congénitales du Développement Génito-Sexuel, Lyon, France
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - J L Pippi Salle
- Department of Surgery, Sidra Medical and Research Center, Doha, Qatar
| | - Dix Phillip Poppas
- Komansky Center for Children's Health, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Philip G Ransley
- Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Richard C Rink
- Service de Chirurgie Viscérale et Urologique Pédiatrique, Hôpital Lapeyronie, CHU de Montpellier, Université de Montpellier, France
| | - Romao Rodrigo
- Department of Surgery, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Urology, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Léon Sann
- Conseil d'éthique pédiatrique, Centre Hospitalo-Universitaire de Lyon, France
| | | | - Hisham Sibai
- Paediatric Surgery, University of Casablanca, Morocco
| | | | - Katja P Wolffenbuttel
- Department of Urology and Pediatric Urology, Erasmus MC Sophia Children's Hospital, Rotterdam
| | - Peter Lee
- Penn State Hershey Pediatric Endocrinology, PA, USA
| |
Collapse
|
36
|
Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: Maternal, placental and fetal synthesis. ANNALES D'ENDOCRINOLOGIE 2016; 77:82-9. [PMID: 27155772 DOI: 10.1016/j.ando.2016.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
Progesterone, estrogens, androgens and glucocorticoids are involved in pregnancy from implantation to parturition. Their biosynthesis and their metabolism result from complex pathways involving the fetus, the placenta and the mother. The absence of expression of some steroïdogenic enzymes as CYP17 in placenta and in adrenal fetal zone and the better determination of the onset and variation of others especially HSD3B2 during the pregnancy explain the production of the steroid hormones. Moreover the consequences of some disorders of steroidogenesis (especially aromatase, POR, CYP11A1 and 21-hydroxylase deficiencies) in fetus and mother during the pregnancy have permit to elucidate these complex pathways. This better knowledge of steroid hormones production associated with their dosages in maternal plasma/urine or amniotic fluid using new specific assays as LC-MS MS could facilitate the follow-up of normal and pathological pregnancies. Moreover, these advances should be a basis to evaluate the impact of multiple pathologies of the pregnancy and pharmacologic and xenobiotic consequences on their metabolism.
Collapse
Affiliation(s)
- Yves Morel
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France.
| | - Florence Roucher
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Ingrid Plotton
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Claire Goursaud
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Véronique Tardy
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Delphine Mallet
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| |
Collapse
|
37
|
Dörr HG, Binder G, Reisch N, Gembruch U, Oppelt PG, Wieacker P, Kratzsch J. Experts' Opinion on the Prenatal Therapy of Congenital Adrenal Hyperplasia (CAH) Due to 21-Hydroxylase Deficiency - Guideline of DGKED in cooperation with DGGG (S1-Level, AWMF Registry No. 174/013, July 2015). Geburtshilfe Frauenheilkd 2015; 75:1232-1238. [PMID: 28435171 DOI: 10.1055/s-0041-109717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Purpose: This guideline of the German Society of Pediatric Endocrinology and Diabetology (DGKED) is designed to be experts' opinion on the current concept of prenatal therapy for congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CAH). Several scientific medical societies have also participated in the guideline. It aims to offer guidance to physicians when they counsel affected families about prenatal therapy. Methods: The experts commissioned by the medical societies developed a consensus in an informal process. The consensus was subsequently confirmed by the steering committees of the respective medical societies. Recommendations: Prenatal CAH therapy is an experimental therapy. We recommend designing and using standardized protocols for the prenatal diagnosis, therapy and long-term follow-up of women and children treated prenatally with dexamethasone. If long-term follow-up is not possible, then prenatal therapy should not be performed.
Collapse
Affiliation(s)
- H G Dörr
- Kinder- und Jugendklinik des Universitätsklinikums Erlangen, Erlangen
| | - G Binder
- Univ.-Kinderklinik Tübingen, Sektion Endokrinologie, Tübingen
| | - N Reisch
- Medizinische Klinik und Poliklinik IV. Klinikum der Universität München, München
| | - U Gembruch
- Abteilung für Geburtshilfe und Pränatalmedizin der Universität Bonn, Bonn
| | - P G Oppelt
- Kinder- und Jugendgynäkologie, Frauenklinik des Universitätsklinikums Erlangen, Erlangen
| | - P Wieacker
- Institut für Humangenetik, Universitätsklinikum Münster, Münster
| | - J Kratzsch
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik der Universität Leipzig, Leipzig
| |
Collapse
|
38
|
Heland S, Hewitt JK, McGillivray G, Walker SP. Preventing female virilisation in congenital adrenal hyperplasia: The controversial role of antenatal dexamethasone. Aust N Z J Obstet Gynaecol 2015; 56:225-32. [PMID: 26661642 DOI: 10.1111/ajo.12423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/11/2015] [Indexed: 12/01/2022]
Abstract
Congenital adrenal hyperplasia (CAH) refers to a group of recessively inherited disorders of cortisol production, which in the classical form results in virilisation of female fetuses. Since the 1980s, antenatal treatment with dexamethasone has been recommended in high-risk pregnancies to minimise the risk of virilising the female genitalia of affected fetuses. To be effective, this treatment requires implementation in early pregnancy, prior to the commencement of autonomous fetal adrenal androgen synthesis. Using this approach, seven of eight high-risk pregnancies are treated unnecessarily, prior to establishing the fetal gender or the confirmed diagnosis of a genetically affected pregnancy. In the face of ongoing concerns regarding potential adverse maternal-fetal effects of antenatal dexamethasone exposure, a review of this practice has been advocated by expert advisory groups. In this review, we summarise current controversies, potential improvements and future directions in the management of pregnancies at risk of CAH. In high-risk families, recent genomic advances include early prenatal diagnosis utilising noninvasive genetic techniques to minimise unnecessary dexamethasone exposure to unaffected fetuses. In affected pregnancies when families elect for antenatal treatment, optimal antenatal dosing regimens need to be defined and a standardised treatment and follow-up protocol are recommended. Establishment of a national registry with standardised follow-up will allow future families to be better informed of the risks and benefits of both treated and untreated fetal CAH.
Collapse
Affiliation(s)
- Sarah Heland
- Department of Perinatal Medicine, Mercy Hospital for Women, Melbourne, Vic., Australia
| | - Jacqueline K Hewitt
- Department of Endocrinology, Royal Children's Hospital and Murdoch Childrens Research Institute, Melbourne, Vic., Australia
| | - George McGillivray
- Department of Perinatal Medicine, Mercy Hospital for Women, Melbourne, Vic., Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan P Walker
- Department of Perinatal Medicine, Mercy Hospital for Women, Melbourne, Vic., Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Achermann JC, Domenice S, Bachega TASS, Nishi MY, Mendonca BB. Disorders of sex development: effect of molecular diagnostics. Nat Rev Endocrinol 2015; 11:478-88. [PMID: 25942653 DOI: 10.1038/nrendo.2015.69] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs.
Collapse
Affiliation(s)
- John C Achermann
- Developmental Endocrinology Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Tania A S S Bachega
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| |
Collapse
|
40
|
Abstract
Prenatal treatment of congenital adrenal hyperplasia by administering dexamethasone to a woman presumed to be carrying an at-risk fetus remains a controversial experimental treatment. Review of data from animal experimentation and human trials indicates that dexamethasone cannot be considered safe for the fetus. In animals, prenatal dexamethasone decreases birth weight, affects renal, pancreatic beta cell and brain development, increases anxiety and predisposes to adult hypertension and hyperglycemia. In human studies, prenatal dexamethasone is associated with orofacial clefts, decreased birth weight, poorer verbal working memory, and poorer self-perception of scholastic and social competence. Numerous medical societies have cautioned that prenatal treatment of adrenal hyperplasia with dexamethasone is not appropriate for routine clinical practice and should only be done in Institutional Review Board approved, prospective clinical research settings with written informed consent. The data indicate that this treatment is inconsistent with the classic medical ethical maxim to 'first do no harm'.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics and Center for Reproductive Sciences, University of California, San Francisco, San Francisco CA 94143-0556, USA.
| |
Collapse
|
41
|
Yau M, Pina C, Khattab A, Barhen A, New MI. Prenatal diagnosis of congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1035254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Everett TR, Chitty LS. Cell-free fetal DNA: the new tool in fetal medicine. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 45:499-507. [PMID: 25483938 PMCID: PMC5029578 DOI: 10.1002/uog.14746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/31/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Affiliation(s)
- T R Everett
- Fetal Medicine Unit, University College London Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
43
|
Faas BH, Ghidini A, Van Mieghem T, Chitty LS, Deprest J, Bianchi DW. In case you missed it: thePrenatal Diagnosiseditors bring you the most significant advances of 2014. Prenat Diagn 2015; 35:29-34. [DOI: 10.1002/pd.4551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Brigitte H. Faas
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Alessandro Ghidini
- Obstetrics and Gynecology; Georgetown University Hospital; Washington DC USA
| | - Tim Van Mieghem
- Obstetrics and Gynaecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration; Biomedical Sciences; KU Leuven Leuven Belgium
| | - Lyn S. Chitty
- UCL Institute of Child Health; Great Ormond Street Hospital for Children and UCLH NHS Foundation Trusts; London England UK
| | - Jan Deprest
- Obstetrics and Gynaecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration; Biomedical Sciences; KU Leuven Leuven Belgium
| | - Diana W. Bianchi
- Mother Infant Research Institute; Tufts Medical Center; Boston MA USA
- Floating Hospital for Children; Boston MA USA
| |
Collapse
|
44
|
Late prenatal dexamethasone and phenotype variations in 46,XX CAH: concerns about current protocols and benefits for surgical procedures. J Pediatr Urol 2014; 10:941-7. [PMID: 24679821 DOI: 10.1016/j.jpurol.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To describe the action of prenatal dexamethasone (PreDex) on the anatomy of female congenital adrenal hyperplasia (CAH) genitalia when started at later stages of gestation. MATERIALS AND METHODS Our group follows a large cohort of French CAH patients who underwent PreDex therapy, of whom 258 were recently reported. Four 46,XX patients with a delayed PreDex treatment presented with a virilized genitalia and required surgical reconstruction. This is a retrospective report on genital phenotyping at the time of surgery of these four patients who began PreDex therapy at 8, 12, 20, and 28 weeks of gestation. RESULTS Although this series is limited in number, the anatomical description of the length of the genital tubercle, the height of the urethra-vaginal confluence, and the degree of fusion of the genital folds seems to be dependent upon the starting date of PreDex. Most PreDex treatments prescribed up to now have covered the full duration of gestation. CONCLUSIONS Our findings suggest that PreDex therapy could be limited to the period of the partitioning window. It is hoped that further prospective multicentric clinical studies will obtain ethical approval in order to elucidate the place and protocols of PreDex therapy in the management of CAH.
Collapse
|
45
|
New MI, Tong YK, Yuen T, Jiang P, Pina C, Chan KCA, Khattab A, Liao GJW, Yau M, Kim SM, Chiu RWK, Sun L, Zaidi M, Lo YMD. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab 2014; 99:E1022-30. [PMID: 24606108 PMCID: PMC4037720 DOI: 10.1210/jc.2014-1118] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Congenital adrenal hyperplasia (CAH) is an autosomal recessive condition that arises from mutations in CYP21A2 gene, which encodes for the steroidogenic enzyme 21-hydroxylase. To prevent genital ambiguity in affected female fetuses, prenatal treatment with dexamethasone must begin on or before gestational week 9. Currently used chorionic villus sampling and amniocentesis provide genetic results at approximately 14 weeks of gestation at the earliest. This means that mothers who want to undergo prenatal dexamethasone treatment will be unnecessarily treating seven of eight fetuses (males and three of four unaffected females), emphasizing the desirability of earlier genetic diagnosis in utero. OBJECTIVE The objective of the study was to develop a noninvasive method for early prenatal diagnosis of fetuses at risk for CAH. PATIENTS Fourteen families, each with a proband affected by phenotypically classical CAH, were recruited. DESIGN Cell-free fetal DNA was obtained from 3.6 mL of maternal plasma. Using hybridization probes designed to capture a 6-Mb region flanking CYP21A2, targeted massively parallel sequencing (MPS) was performed to analyze genomic DNA samples from parents and proband to determine parental haplotypes. Plasma DNA from pregnant mothers also underwent targeted MPS to deduce fetal inheritance of parental haplotypes. RESULTS In all 14 families, the fetal CAH status was correctly deduced by targeted MPS of DNA in maternal plasma, as early as 5 weeks 6 days of gestation. CONCLUSIONS MPS on 3.6 mL plasma from pregnant mothers could potentially provide the diagnosis of CAH, noninvasively, before the ninth week of gestation. Only affected female fetuses will thus be treated. Our strategy represents a generic approach for noninvasive prenatal testing for an array of autosomal recessive disorders.
Collapse
|