1
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
2
|
Friedman P, Mamonova T. The molecular sociology of NHERF1 PDZ proteins controlling renal hormone-regulated phosphate transport. Biosci Rep 2024; 44:BSR20231380. [PMID: 38465463 PMCID: PMC10987488 DOI: 10.1042/bsr20231380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024] Open
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) control extracellular phosphate levels by regulating renal NPT2A-mediated phosphate transport by a process requiring the PDZ scaffold protein NHERF1. NHERF1 possesses two PDZ domains, PDZ1 and PDZ2, with identical core-binding GYGF motifs explicitly recognizing distinct binding partners that play different and specific roles in hormone-regulated phosphate transport. The interaction of PDZ1 and the carboxy-terminal PDZ-binding motif of NPT2A (C-TRL) is required for basal phosphate transport. PDZ2 is a regulatory domain that scaffolds multiple biological targets, including kinases and phosphatases involved in FGF23 and PTH signaling. FGF23 and PTH trigger disassembly of the NHERF1-NPT2A complex through reversible hormone-stimulated phosphorylation with ensuing NPT2A sequestration, down-regulation, and cessation of phosphate absorption. In the absence of NHERF1-NPT2A interaction, inhibition of FGF23 or PTH signaling results in disordered phosphate homeostasis and phosphate wasting. Additional studies are crucial to elucidate how NHERF1 spatiotemporally coordinates cellular partners to regulate extracellular phosphate levels.
Collapse
Affiliation(s)
- Peter A. Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Tatyana Mamonova
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| |
Collapse
|
3
|
Sneddon WB, Friedman PA, Mamonova T. Mutations in an unrecognized internal NPT2A PDZ motif disrupt phosphate transport and cause congenital hypophosphatemia. Biochem J 2023; 480:685-699. [PMID: 37132631 PMCID: PMC10442799 DOI: 10.1042/bcj20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/04/2023]
Abstract
The Na+-dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na+/H+ Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein, establishes NPT2A membrane localization and is required for hormone-inhibitable phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg495His or Arg495Cys variants within the internal PDZ motif. The wild-type internal 494TRL496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494AAA496 substitution blocked hormone-inhibitable phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg495His or Arg495Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast with WT NPT2A, NPT2A Arg495His, or Arg495Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg495 changes the electrostatics, preventing phosphorylation of the upstream Thr494, interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxy-terminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.
Collapse
Affiliation(s)
- W. Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Peter A. Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
4
|
Sneddon WB, Friedman PA, Mamonova T. Mutations in an unrecognized internal NPT2A PDZ motif disrupt phosphate transport causing congenital hypophosphatemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531332. [PMID: 36945373 PMCID: PMC10028803 DOI: 10.1101/2023.03.06.531332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Na + -dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na + /H + Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein,establishes NPT2A membrane localization and is required for hormone-sensitive phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg 495 His or Arg 495 Cys variants within the internal PDZ motif. The wild-type internal 494 TRL 496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494 AAA 496 substitution blocked hormone-sensitive phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg 495 His or Arg 495 Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast to WT NPT2A, NPT2A Arg 495 His or Arg 495 Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg 495 changes the electrostatics, preventing phosphorylation of the upstream Thr 494 , interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxyterminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.
Collapse
|
5
|
The human pathogenic 91del7 mutation in SLC34A1 has no effect in mineral homeostasis in mice. Sci Rep 2022; 12:6102. [PMID: 35414099 PMCID: PMC9005600 DOI: 10.1038/s41598-022-10046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Kidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.
Collapse
|
6
|
Abstract
Vitamin D metabolism represents a well-integrated, hormonally regulated endocrine unit interlinking calcium and phosphate metabolism. Pathophysiologic processes disturbing vitamin D metabolism comprise classic defects of vitamin D activation and action presenting as different forms of vitamin D-dependent rickets as well as disorders with increased vitamin D activity. The latter may result in hypercalcemia, hypercalciuria, and renal calcifications. Acquired and hereditary disorders causing hypervitaminosis D are discussed, including vitamin D intoxication, granulomatous disease, and idiopathic infantile hypercalcemia that may be caused by either a defective vitamin D degradation or by a primary defect in phosphate conservation.
Collapse
Affiliation(s)
- Karl Peter Schlingmann
- Department of General Pediatrics, University Children's Hospital, Albert-Schweitzer-Campus 1, Münster 48149, Germany.
| |
Collapse
|
7
|
Janiec A, Halat-Wolska P, Obrycki Ł, Ciara E, Wójcik M, Płudowski P, Wierzbicka A, Kowalska E, Książyk JB, Kułaga Z, Pronicka E, Litwin M. Long-term outcome of the survivors of infantile hypercalcaemia with CYP24A1 and SLC34A1 mutations. Nephrol Dial Transplant 2021; 36:1484-1492. [PMID: 33099630 PMCID: PMC8311581 DOI: 10.1093/ndt/gfaa178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/25/2020] [Indexed: 11/12/2022] Open
Abstract
Background Infantile hypercalcaemia (IH) is a vitamin D3 metabolism disorder. The molecular basis for IH is biallelic mutations in the CYP24A1 or SLC34A1 gene. These changes lead to catabolism disorders (CYP24A1 mutations) or excessive generation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (SLC34A1 mutations). The incidence rate of IH in children and the risk level for developing end-stage renal disease (ESRD) are still unknown. The aim of this study was to analyse the long-term outcome of adolescents and young adults who suffered from IH in infancy. Design Forty-two children (23 girls; average age 10.7 ± 6.3 years) and 26 adults (14 women; average age 24.2 ± 4.4 years) with a personal history of hypercalcaemia with elevated 1,25(OH)2D3 levels were included in the analysis. In all patients, a genetic analysis of possible IH mutations was conducted, as well as laboratory tests and renal ultrasonography. Results IH was confirmed in 20 studied patients (10 females). CYP24A1 mutations were found in 16 patients (8 females) and SLC34A1 in 4 patients (2 females). The long-term outcome was assessed in 18 patients with an average age of 23.8 years (age range 2–34). The average glomerular filtration rate (GFR) was 72 mL/min/1.73 m2 (range 15–105). Two patients with a CYP24A1 mutation developed ESRD and underwent renal transplantation. A GFR <90 mL/min/1.73 m2 was found in 14 patients (77%), whereas a GFR <60 mL/min/1.73 m2 was seen in 5 patients (28%), including 2 adults after renal transplantation. Three of 18 patients still had serum calcium levels >2.6 mmol/L. A renal ultrasound revealed nephrocalcinosis in 16 of 18 (88%) patients, however, mild hypercalciuria was detected in only one subject. Conclusions Subjects who suffered from IH have a greater risk of progressive chronic kidney disease and nephrocalcinosis. This indicates that all survivors of IH should be closely monitored, with early implementation of preventive measures, e.g. inhibition of active metabolites of vitamin D3 synthesis.
Collapse
Affiliation(s)
- Agnieszka Janiec
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Paulina Halat-Wolska
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Łukasz Obrycki
- Department of Nephrology, Kidney Transplantation and Arterial Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Marek Wójcik
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Paweł Płudowski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Aldona Wierzbicka
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Ewa Kowalska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Janusz B Książyk
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Zbigniew Kułaga
- Department of Public Health, Children's Memorial Health Institute, Warsaw, Poland
| | - Ewa Pronicka
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland.,Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczysław Litwin
- Department of Nephrology, Kidney Transplantation and Arterial Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
8
|
Mamonova T, Friedman PA. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box. Int J Mol Sci 2021; 22:1087. [PMID: 33499384 PMCID: PMC7866199 DOI: 10.3390/ijms22031087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | | |
Collapse
|
9
|
De Paolis E, Scaglione GL, De Bonis M, Minucci A, Capoluongo E. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype. Clin Chem Lab Med 2020; 57:1650-1667. [PMID: 31188746 DOI: 10.1515/cclm-2018-1208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Loss of function mutations in the CYP24A1 gene, involved in vitamin D catabolism and in calcium homeostasis, are known to be the genetic drivers of both idiopathic infantile hypercalcemia (IIH) and adult renal stone disease. Recently, also defects in the SLC34A1 gene, encoding for the renal sodium-phosphate transporter NaPi-IIa, were associated with the disease. IIH typically affects infants and pediatric patients with a syndrome characterized by severe hypercalcemia, hypercalciuria, suppressed parathyroid hormone level and nephrolithiasis. In SLC34A1 mutated carriers, hypophosphatemia is also a typical biochemical tract. IIH may also persist undiagnosed into adulthood, causing an increased risk of nephrocalcinosis and renal complication. To note, a clinical heterogeneity characterizes IIH manifestation, principally due to the controversial gene-dose effect and, to the strong influence of environmental factors. The present review is aimed to provide an overview of the current molecular findings on the IIH disorder, giving a comprehensive description of the association between genotype and biochemical and clinical phenotype of the affected patients. We also underline that patients may benefit from genetic testing into a targeted diagnostic and therapeutic workflow.
Collapse
Affiliation(s)
- Elisa De Paolis
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Luca Scaglione
- Laboratory of Molecular Oncology, "Fondazione Giovanni Paolo II", Catholic University of Sacred Heart, Campobasso, Italy
| | - Maria De Bonis
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Angelo Minucci
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Ettore Capoluongo
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
10
|
Motta SE, Imenez Silva PH, Daryadel A, Haykir B, Pastor-Arroyo EM, Bettoni C, Hernando N, Wagner CA. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch 2020; 472:449-460. [PMID: 32219532 DOI: 10.1007/s00424-020-02370-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.
Collapse
Affiliation(s)
- Sarah E Motta
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pedro Henrique Imenez Silva
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Betül Haykir
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Eva Maria Pastor-Arroyo
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Abstract
Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a-2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease - a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.
Collapse
|
12
|
Kurnaz E, Savaş Erdeve Ş, Çetinkaya S, Aycan Z. Rare Cause of Infantile Hypercalcemia: A Novel Mutation in the SLC34A1 Gene. Horm Res Paediatr 2020; 91:278-284. [PMID: 30227399 DOI: 10.1159/000492899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/13/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Under physiological conditions, proximal tubular phosphate reabsorption via NaPi-IIa (and NaPi-IIc) ensures the maintenance of phosphate homeostasis. Impairment of NaPi-IIa, encoded by SLC34A1, is associated with various overlapping clinical syndromes, including hypophosphatemic nephrolithiasis with osteoporosis, renal Fanconi's syndrome with chronic kidney disease, and idiopathic infantile hypercalcemia and nephrocalcinosis. METHODS A patient was referred to our hospital due to hyponatremia, hyperkalemia, and hypophosphatemia, as well as persistent hypercalcemia after fluid therapy and sodium replacement. At admission to our hospital, potassium and sodium values were normal. After initiation of phosphorus therapy, hypokalemia and metabolic alkalosis were observed. Renal sonography showed bilateral medullary nephrocalcinosis. Analyses of the SLC34A1 gene were performed due to hypercalcemia and hypophosphatemia. RESULTS Gene analyses identified a novel homozygous c.682T>C (p.W228R) (p.Trp228Arg) mutation. There are no previous reports of patients with SLC34A1 gene mutations presenting with hypokalemia and metabolic alkalosis. CONCLUSION Herein, we present a case of infantile hypercalcemia 2 with a very different phenotype from that of previously described patients. Our findings provide further evidence for the wide range of phenotypic heterogeneity associated with NaPi-IIa impairment.
Collapse
Affiliation(s)
- Erdal Kurnaz
- Clinic of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology and Pediatrics Training and Research Hospital, Ankara, Turkey,
| | - Şenay Savaş Erdeve
- Clinic of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology and Pediatrics Training and Research Hospital, Ankara, Turkey
| | - Semra Çetinkaya
- Clinic of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology and Pediatrics Training and Research Hospital, Ankara, Turkey
| | - Zehra Aycan
- Clinic of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology and Pediatrics Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Developmental Changes in Phosphate Homeostasis. Rev Physiol Biochem Pharmacol 2020; 179:117-138. [PMID: 33398502 DOI: 10.1007/112_2020_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphate is a multivalent ion critical for a variety of physiological functions including bone formation, which occurs rapidly in the developing infant. In order to ensure maximal bone mineralization, young animals must maintain a positive phosphate balance. To accomplish this, intestinal absorption and renal phosphate reabsorption are greater in suckling and young animals relative to adults. This review discusses the known intestinal and renal adaptations that occur in young animals in order to achieve a positive phosphate balance. Additionally, we discuss the ontogenic changes in phosphotropic endocrine signalling as it pertains to intestinal and renal phosphate handling, including several endocrine factors not always considered in the traditional dogma of phosphotropic endocrine signalling, such as growth hormone, triiodothyronine, and glucocorticoids. Finally, a proposed model of how these factors may contribute to achieving a positive phosphate balance during development is proposed.
Collapse
|
14
|
Thomas L, Xue J, Murali SK, Fenton RA, Dominguez Rieg JA, Rieg T. Pharmacological Npt2a Inhibition Causes Phosphaturia and Reduces Plasma Phosphate in Mice with Normal and Reduced Kidney Function. J Am Soc Nephrol 2019; 30:2128-2139. [PMID: 31409727 DOI: 10.1681/asn.2018121250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The kidneys play an important role in phosphate homeostasis. Patients with CKD develop hyperphosphatemia in the later stages of the disease. Currently, treatment options are limited to dietary phosphate restriction and oral phosphate binders. The sodium-phosphate cotransporter Npt2a, which mediates a large proportion of phosphate reabsorption in the kidney, might be a good therapeutic target for new medications for hyperphosphatemia. METHODS The authors assessed the effects of the first orally bioavailable Npt2a inhibitor (Npt2a-I) PF-06869206 in normal mice and mice that had undergone subtotal nephrectomy (5/6 Nx), a mouse model of CKD. Dose-response relationships of sodium, chloride, potassium, phosphate, and calcium excretion were assessed in response to the Npt2a inhibitor in both groups of mice. Expression and localization of Npt2a/c and levels of plasma phosphate, calcium, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) were studied up to 24-hours after Npt2a-I treatment. RESULTS In normal mice, Npt2a inhibition caused a dose-dependent increase in urinary phosphate (ED50 approximately 21 mg/kg), calcium, sodium and chloride excretion. In contrast, urinary potassium excretion, flow rate and urinary pH were not affected dose dependently. Plasma phosphate and PTH significantly decreased after 3 hours, with both returning to near baseline levels after 24 hours. Similar effects were observed in the mouse model of CKD but were reduced in magnitude. CONCLUSIONS Npt2a inhibition causes a dose-dependent increase in phosphate, sodium and chloride excretion associated with reductions in plasma phosphate and PTH levels in normal mice and in a CKD mouse model.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| | | | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida; and
| |
Collapse
|
15
|
Chen X, Xie Y, Wan S, Xu J, Cai B, Zhang Y, Yu X. A novel heterozygous mutation c.680A>G (p. N227S) in SLC34A1 gene leading to autosomal dominant hypophosphatemia: A case report. Medicine (Baltimore) 2019; 98:e15617. [PMID: 31096470 PMCID: PMC6531229 DOI: 10.1097/md.0000000000015617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Currently, the relationship between heterozygous mutations in SLC34A1 and hypophosphatemia is controversial. Here we report an autosomal dominant hypophosphatemia pedigree carrying a novel heterozygous mutation in SLC34A1. PATIENT CONCERNS The proband is a 32-year old young man, presented with progressive pain and weakness in his lower extremities for more than 5 years. The proband showed persistent hypophosphatemia and low TmPO4/GFR values, indicating renal phosphate leak. His grandfather, father, and one of his uncles showed the similar symptoms. DIAGNOSES Autosomal dominant hypophosphatemia. INTERVENTIONS AND OUTCOMES Phosphorus supplement was prescribed to the proband and his affected uncle. Both their serum phosphorus levels recovered to normal and their symptoms such as back pain and lower extremity weakness were completely relieved. Whole exome sequencing was performed to identify disease-causing mutations in proband. LESSONS A novel heterozygous missense mutation c.680A>G (p. N227S) in exon 7 of SLC34A1 was found in proband by whole exome sequencing, which was also found in other 4 family members of this pedigree. Our report of an autosomal dominant hypophosphatemia pedigree with 5 mutant carriers enriches the clinical phenotype caused by the SLC34A1 mutations and further affirms the heterozygous mutations are causative for hypophosphatemia.
Collapse
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University
| | - Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University
| | - Jin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University
| | - Yi Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University
| |
Collapse
|
16
|
Wagner CA, Rubio-Aliaga I, Hernando N. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 2019; 34:549-559. [PMID: 29275531 DOI: 10.1007/s00467-017-3873-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023]
Abstract
Renal phosphate handling critically determines plasma phosphate and whole body phosphate levels. Filtered phosphate is mostly reabsorbed by Na+-dependent phosphate transporters located in the brush border membrane of the proximal tubule: NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Here we review new evidence for the role and relevance of these transporters in inherited disorders of renal phosphate handling. The importance of NaPi-IIa and NaPi-IIc for renal phosphate reabsorption and mineral homeostasis has been highlighted by the identification of mutations in these transporters in a subset of patients with infantile idiopathic hypercalcemia and patients with hereditary hypophosphatemic rickets with hypercalciuria. Both diseases are characterized by disturbed calcium homeostasis secondary to elevated 1,25-(OH)2 vitamin D3 as a consequence of hypophosphatemia. In vitro analysis of mutated NaPi-IIa or NaPi-IIc transporters suggests defective trafficking underlying disease in most cases. Monoallelic pathogenic mutations in both SLC34A1 and SLC34A3 appear to be very frequent in the general population and have been associated with kidney stones. Consistent with these findings, results from genome-wide association studies indicate that variants in SLC34A1 are associated with a higher risk to develop kidney stones and chronic kidney disease, but underlying mechanisms have not been addressed to date.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland.
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
17
|
Kang SJ, Lee R, Kim HS. Infantile hypercalcemia with novel compound heterozygous mutation in SLC34A1 encoding renal sodium-phosphate cotransporter 2a: a case report. Ann Pediatr Endocrinol Metab 2019; 24:64-67. [PMID: 30943683 PMCID: PMC6449619 DOI: 10.6065/apem.2019.24.1.64] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Idiopathic infantile hypercalcemia is characterized by hypercalcemia, dehydration, vomiting, and failure to thrive, and it is due to mutations in 24-hydroxylase (CYP24A1). Recently, mutations in sodium-phosphate cotransporter (SLC34A1) expressed in the kidney were discovered as an additional cause of idiopathic infantile hypercalcemia. This report describes a female infant admitted for evaluation of nephrocalcinosis. She presented with hypercalcemia, hypercalciuria, low intact parathyroid hormone level, and high 1,25-dihydroxyvitamin D3 level. Exome sequencing identified novel compound heterozygous mutations in SLC34A1 (c.1337G>A, c.1483C>T). The patient was treated with fluids for hydration, furosemide, a corticosteroid, and restriction of calcium/vitamin D intake. At the age of 7 months, the patient's calcium level was within the normal range, and hypercalciuria waxed and waned. Renal echogenicity improved on the follow-up ultrasonogram, and developmental delay was not noted. In cases of hypercalcemia with subsequent hypercalciuria, DNA analysis for SLC34A1 gene mutations and CYP24A1 gene mutations should be performed. Further studies are required to obtain long-term data on hypercalciuria and nephrocalcinosis.
Collapse
Affiliation(s)
| | | | - Heung Sik Kim
- Address for correspondence: Heung Sik Kim, MD, PhD Department of Pediatrics, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, 56 Dalseong-ro, Jung-gu, Daegu 41931, Korea Tel: +82-53-250-7516 Fax: +82-53-250-7833 E-mail:
| |
Collapse
|
18
|
Amar A, Majmundar AJ, Ullah I, Afzal A, Braun DA, Shril S, Daga A, Jobst-Schwan T, Ahmad M, Sayer JA, Gee HY, Halbritter J, Knöpfel T, Hernando N, Werner A, Wagner C, Khaliq S, Hildebrandt F. Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis. Hum Genet 2019; 138:211-219. [PMID: 30778725 PMCID: PMC6426152 DOI: 10.1007/s00439-019-01978-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant patient morbidity. We previously demonstrated a genetic cause of NL can be identified in 11-29% of pre-dominantly American and European stone formers. Pakistan, which resides within the Afro-Asian stone belt, has a high prevalence of nephrolithiasis (12%) as well as high rate of consanguinity (> 50%). We recruited 235 Pakistani subjects hospitalized for nephrolithiasis from five tertiary hospitals in the Punjab province of Pakistan. Subjects were surveyed for age of onset, NL recurrence, and family history. We conducted high-throughput exon sequencing of 30 NL disease genes and variant analysis to identify monogenic causative mutations in each subject. We detected likely causative mutations in 4 of 30 disease genes, yielding a likely molecular diagnosis in 7% (17 of 235) of NL families. Only 1 of 17 causative mutations was identified in an autosomal recessive disease gene. 10 of the 12 detected mutations were novel mutations (83%). SLC34A1 was most frequently mutated (12 of 17 solved families). We observed a higher frequency of causative mutations in subjects with a positive NL family history (13/109, 12%) versus those with a negative family history (4/120, 3%). Five missense SLC34A1 variants identified through genetic analysis demonstrated defective phosphate transport. We examined the monogenic causes of NL in a novel geographic cohort and most frequently identified dominant mutations in the sodium-phosphate transporter SLC34A1 with functional validation.
Collapse
Affiliation(s)
- Ali Amar
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Amar J Majmundar
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Ihsan Ullah
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Ayesha Afzal
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Daniela A Braun
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Ankana Daga
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tilman Jobst-Schwan
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Mumtaz Ahmad
- Ganga Ram Hospital and Fatima Jinnah Medical University, Lahore, Pakistan
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle, NE4 5PL, UK
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andreas Werner
- Institute for Cell and Molecular Biosciences Newcastle University, Newcastle upon Tyne, UK
| | - Carsten Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Shagufta Khaliq
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Sun Y, Shen J, Hu X, Qiao Y, Yang J, Shen Y, Li G. CYP24A1 Variants in Two Chinese Patients with Idiopathic Infantile Hypercalcemia. Fetal Pediatr Pathol 2019; 38:44-56. [PMID: 30633617 DOI: 10.1080/15513815.2018.1492052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Biallelic pathogenic variants in CYP24A1 can cause idiopathic infantile hypercalcemia (HCINF). METHODS We report 2 additional molecular abnormalities in 2 Chinese children with CHINF1. RESULTS Biallelic variants in CYP24A1 were found in two patients. Patient One was compound heterozygous for c.449 + 1G > T and c.1426_1427delCT. Patient Two was compound heterozygous for c.1310C > A and c.1426_1427delCT. The c.1310C > A and c.449 + 1G > T were two different novel CYP24A1 variants. Multiple computational tools predicted that both impact protein function. A total of 36 variants have been previously reported in patients with HCINF1, of which 27 were classified as pathogenic or likely pathogenic and nine as uncertain clinical significance. CONCLUSION Genetic tests are helpful in order to counsel the susceptible individuals to avoid vitamin D and take preventive measures in order to avoid complications.
Collapse
Affiliation(s)
- Yan Sun
- a Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Jun Shen
- b Department of Pathology, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Xuyun Hu
- c Shanghai Children's Medical Center , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,d Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Genetics and Birth Defects Control Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in Children; Beijing Children's Hospital , Capital Medical University, Beijing , China
| | - Yu Qiao
- a Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Jianmei Yang
- a Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Yiping Shen
- c Shanghai Children's Medical Center , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,e Division of Genetics and Genomics , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,f The Maternity and Child Health Hospital of Guangxi , Nanning , China
| | - Guimei Li
- a Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
21
|
Abstract
Hypophosphatemic rickets, mostly of the X-linked dominant form caused by pathogenic variants of the PHEX gene, poses therapeutic challenges with consequences for growth and bone development and portends a high risk of fractions and poor bone healing, dental problems and nephrolithiasis/nephrocalcinosis. Conventional treatment consists of PO4 supplements and calcitriol requiring monitoring for treatment-emergent adverse effects. FGF23 measurement, where available, has implications for the differential diagnosis of hypophosphatemia syndromes and, potentially, treatment monitoring. Newer therapeutic modalities include calcium sensing receptor modulation (cinacalcet) and biological molecules targeting FGF23 or its receptors. Their long-term effects must be compared with those of conventional treatments.
Collapse
Affiliation(s)
- Martin Bitzan
- Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Room B RC.6164, Montreal, Quebec H4A 3J1, Canada.
| | - Paul R Goodyer
- The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Room EM1.2232, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
22
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
23
|
Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Hanazaki A, Noguchi M, Kirino R, Sasaki S, Tanifuji K, Koike M, Yokoyama M, Arima Y, Kaneko I, Tatsumi S, Ito M, Miyamoto KI. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Clin Exp Nephrol 2018; 23:313-324. [PMID: 30317447 DOI: 10.1007/s10157-018-1653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. METHODS We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. RESULTS We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells. CONCLUSION These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.
Collapse
Affiliation(s)
- Toru Fujii
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shiori Nishiguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miwa Noguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ruri Kirino
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumire Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kazuya Tanifuji
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Megumi Koike
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mizuki Yokoyama
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuki Arima
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mikiko Ito
- Human Science and Environment, University of Hyogo Graduate School, Hyogo, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
24
|
Long J, Chen Y, Lin H, Liao M, Li T, Tong L, Wei S, Xian X, Zhu J, Chen J, Tian J, Wang Q, Mo Z. Significant association between RGS14 rs12654812 and nephrolithiasis risk among Guangxi population in China. J Clin Lab Anal 2018; 32:e22435. [PMID: 29577426 DOI: 10.1002/jcla.22435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/27/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Nephrolithiasis is a worldwide health problem that affects almost all populations. This study aimed to evaluate the association between rs12654812 of regulator of G protein signaling 14 (RGS14) gene and nephrolithiasis in the Chinese population. METHODS A total of 1541 participators including 830 cases and 711 controls were included from Guangxi area in China. Age, sex, BMI, smoking status, drinking status, creatinine, uric acid, and urea nitrogen were analyzed between the case group and control group. RESULTS We found that the G/A+A/A genotypes of rs12654812 had a significantly increased nephrolithiasis risk after adjusting age, sex, BMI, smoking, drinking, and hypertension, compared with G/G genotype (OR = 1.361, 95% CI = 1.033-1.794, P = .029). This hazardous effect was more pronounced in subgroup of age < 50, ever smoking, ever drinking, creatinine normal, and high uric acid. The G/A genotype of rs12654812 also had a significantly increased nephrolithiasis risk compared with G/G genotype. The A allele of rs12654812 significantly increased the risk of nephrolithiasis compared with the G allele after adjusting for age, sex, BMI, smoking, drinking and hypertension (OR = 1.277, 95% CI = 1.013-1.609, P = .038). CONCLUSIONS Our results suggest that the RGS14 polymorphism is involved in the etiology of nephrolithiasis and thus may be a genetic marker for nephrolithiasis.
Collapse
Affiliation(s)
- Jun Long
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haisong Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Tong
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Suchun Wei
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoying Xian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianxin Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiarong Tian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Demir K, Yildiz M, Bahat H, Goldman M, Hassan N, Tzur S, Ofir A, Magen D. Clinical Heterogeneity and Phenotypic Expansion of NaPi-IIa-Associated Disease. J Clin Endocrinol Metab 2017; 102:4604-4614. [PMID: 29029121 DOI: 10.1210/jc.2017-01592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT NaPi-IIa, encoded by SLC34A1, is a key phosphate transporter in the mammalian proximal tubule and plays a cardinal role in renal phosphate handling. NaPi-IIa impairment has been linked to various overlapping clinical syndromes, including hypophosphatemic nephrolithiasis with osteoporosis, renal Fanconi syndrome with chronic kidney disease, and, most recently, idiopathic infantile hypercalcemia and nephrocalcinosis. OBJECTIVES We studied the molecular basis of idiopathic infantile hypercalcemia with partial proximal tubulopathy in two apparently unrelated patients of Israeli and Turkish descent. DESIGN Genetic analysis in two affected children and their close relatives was performed using whole-exome sequencing, followed by in vitro localization and trafficking analysis of mutant NaPi-IIa. RESULTS Mutation and haplotype analyses in both patients revealed a previously described homozygous loss-of-function inserted duplication (p.I154_V160dup) in NaPi-IIa, which is inherited identical-by-descent from a common ancestor. The shared mutation was originally reported by our team in two adult siblings with renal Fanconi syndrome, hypophosphatemic bone disease, and progressive renal failure who are family members of one of the infants reported herein. In vitro localization assays and biochemical analysis of p.I154_V160dup and of additional NaPi-IIa mutants harboring a trafficking defect indicate aberrant retention at the endoplasmic reticulum in an immature and underglycosylated state, leading to premature proteasomal degradation. CONCLUSIONS Our findings expand the phenotypic spectrum of NaPi-IIa disruption, reinforce its link with proximal tubular impairment, enable longitudinal study of the natural history of the disease, and shed light on cellular pathways associated with loss of function and impaired trafficking of NaPi-IIa mutants.
Collapse
Affiliation(s)
- Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Turkey
| | - Melek Yildiz
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, Turkey
| | - Hilla Bahat
- Department of Pediatrics, Assaf Harofeh Medical Center, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Michael Goldman
- Department of Pediatrics, Assaf Harofeh Medical Center, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nisreen Hassan
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Israel
| | - Shay Tzur
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Israel
- Genomic Research Department, Emedgene Technologies, Israel
| | - Ayala Ofir
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Israel
| | - Daniella Magen
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Israel
- Pediatric Nephrology Institute, Ruth Children's Hospital, Rambam Health Care Campus, Israel
| |
Collapse
|
26
|
The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction. Sci Rep 2017; 7:11018. [PMID: 28887454 PMCID: PMC5591270 DOI: 10.1038/s41598-017-10390-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023] Open
Abstract
NaPi-IIb/Slc34a2 is a Na+-dependent phosphate transporter that accounts for the majority of active phosphate transport into intestinal epithelial cells. Its abundance is regulated by dietary phosphate, being high during dietary phosphate restriction. Intestinal ablation of NaPi-IIb in mice leads to increased fecal excretion of phosphate, which is compensated by enhanced renal reabsorption. Here we compared the adaptation to dietary phosphate of wild type (WT) and NaPi-IIb−/− mice. High phosphate diet (HPD) increased fecal and urinary excretion of phosphate in both groups, though NaPi-IIb−/− mice still showed lower urinary excretion than WT. In both genotypes low dietary phosphate (LDP) resulted in reduced fecal excretion and almost undetectable urinary excretion of phosphate. Consistently, the expression of renal cotransporters after prolonged LDP was similar in both groups. Plasma phosphate declined more rapidly in NaPi-IIb−/− mice upon LDP, though both genotypes had comparable levels of 1,25(OH)2vitamin D3, parathyroid hormone and fibroblast growth factor 23. Instead, NaPi-IIb−/− mice fed LDP had exacerbated hypercalciuria, higher urinary excretion of corticosterone and deoxypyridinoline, lower bone mineral density and higher number of osteoclasts. These data suggest that during dietary phosphate restriction NaPi-IIb-mediated intestinal absorption prevents excessive demineralization of bone as an alternative source of phosphate.
Collapse
|
27
|
Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol 2016; 31:2289-2297. [PMID: 27378183 DOI: 10.1007/s00467-016-3443-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Inherited metabolic disorders associated with nephrocalcinosis are rare conditions. The aim of this study was to identify the genetic cause of an Israeli-Arab boy from a consanguineous family with severe nephrocalcinosis and kidney insufficiency. METHODS Clinical and biochemical data of the proband and family members were obtained from both previous and recent medical charts. Genomic DNA was isolated from peripheral blood cells. The coding sequence and splice sites of candidate genes (CYP24A1, CYP27B1, FGF23, KLOTHO, SLC34A3 and SLC34A1) were sequenced directly. Functional studies were performed in Xenopus laevis oocytes and in transfected opossum kidney (OK) cells. RESULTS Our patient was identified as having nephrocalcinosis in utero, and at the age of 16.5 years, he had kidney insufficiency but no bone disease. Genetic analysis revealed a novel homozygous missense mutation, Arg215Gln, in SLC34A1, which encodes the renal sodium phosphate cotransporter NaPiIIa. Functional studies of the Arg215Gln mutant revealed reduced transport activity in Xenopus laevis oocytes and increased intracellular cytoplasmic accumulation in OK cells. CONCLUSIONS Our findings show that dysfunction of the human NaPiIIa causes severe renal calcification that may eventually lead to reduced kidney function, rather than complications of phosphate loss.
Collapse
|
28
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
29
|
Wasser WG, Gil A, Skorecki KL. The Envy of Scholars: Applying the Lessons of the Framingham Heart Study to the Prevention of Chronic Kidney Disease. Rambam Maimonides Med J 2015; 6:RMMJ.10214. [PMID: 26241225 PMCID: PMC4524402 DOI: 10.5041/rmmj.10214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During the past 50 years, a dramatic reduction in the mortality rate associated with cardiovascular disease has occurred in the US and other countries. Statistical modeling has revealed that approximately half of this reduction is the result of risk factor mitigation. The successful identification of such risk factors was pioneered and has continued with the Framingham Heart Study, which began in 1949 as a project of the US National Heart Institute (now part of the National Heart, Lung, and Blood Institute). Decreases in total cholesterol, blood pressure, smoking, and physical inactivity account for 24%, 20%, 12%, and 5% reductions in the mortality rate, respectively. Nephrology was designated as a recognized medical professional specialty a few years later. Hemodialysis was first performed in 1943. The US Medicare End-Stage Renal Disease (ESRD) Program was established in 1972. The number of patients in the program increased from 5,000 in the first year to more than 500,000 in recent years. Only recently have efforts for risk factor identification, early diagnosis, and prevention of chronic kidney disease (CKD) been undertaken. By applying the approach of the Framingham Heart Study to address CKD risk factors, we hope to mirror the success of cardiology; we aim to prevent progression to ESRD and to avoid the cardiovascular complications associated with CKD. In this paper, we present conceptual examples of risk factor modification for CKD, in the setting of this historical framework.
Collapse
Affiliation(s)
- Walter G. Wasser
- Division of Nephrology, Mayanei HaYeshua Medical Center, Bnei Brak, Israel
- Division of Nephrology, Rambam Health Care Campus, Haifa, Israel
- To whom correspondence should be addressed. E-mail:
| | - Amnon Gil
- Division of Nephrology, Carmel Medical Center, Haifa, Israel
| | - Karl L. Skorecki
- Division of Nephrology, Rambam Health Care Campus, Haifa, Israel
- Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Director of Medical and Research Development, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
30
|
Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EAM, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J Am Soc Nephrol 2015; 27:604-14. [PMID: 26047794 DOI: 10.1681/asn.2014101025] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
Idiopathic infantile hypercalcemia (IIH) is characterized by severe hypercalcemia with failure to thrive, vomiting, dehydration, and nephrocalcinosis. Recently, mutations in the vitamin D catabolizing enzyme 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) were described that lead to increased sensitivity to vitamin D due to accumulation of the active metabolite 1,25-(OH)2D3. In a subgroup of patients who presented in early infancy with renal phosphate wasting and symptomatic hypercalcemia, mutations in CYP24A1 were excluded. Four patients from families with parental consanguinity were subjected to homozygosity mapping that identified a second IIH gene locus on chromosome 5q35 with a maximum logarithm of odds (LOD) score of 6.79. The sequence analysis of the most promising candidate gene, SLC34A1 encoding renal sodium-phosphate cotransporter 2A (NaPi-IIa), revealed autosomal-recessive mutations in the four index cases and in 12 patients with sporadic IIH. Functional studies of mutant NaPi-IIa in Xenopus oocytes and opossum kidney (OK) cells demonstrated disturbed trafficking to the plasma membrane and loss of phosphate transport activity. Analysis of calcium and phosphate metabolism in Slc34a1-knockout mice highlighted the effect of phosphate depletion and fibroblast growth factor-23 suppression on the development of the IIH phenotype. The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. Clinical and laboratory findings persist despite cessation of vitamin D prophylaxis but rapidly respond to phosphate supplementation. Therefore, early differentiation between SLC34A1 (NaPi-IIa) and CYP24A1 (24-hydroxylase) defects appears critical for targeted therapy in patients with IIH.
Collapse
Affiliation(s)
- Karl P Schlingmann
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Justyna Ruminska
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ismail Dursun
- Department of General Pediatrics, University Children's Hospital, Münster, Germany; Department of Pediatrics, Kayseri University, Kayseri, Turkey
| | - Monica Patti
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Birgitta Kranz
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Ewa Pronicka
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Teoman Akcay
- Department of Pediatrics, Division of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| | - Derya Bulus
- Department of Pediatric Endocrinology, Keçiören Research and Educational Hospital, Ankara, Turkey
| | | | - Aneta Gawlik
- Department of Pediatrics, Medical University of Silesia, Katowice, Poland
| | - Przemysław Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Ludwig Patzer
- Children's Hospital St. Elisabeth and St. Barbara, Halle/Saale, Germany
| | - Matthias Galiano
- Department of Pediatrics, Friedrich-Alexander-University, Erlangen, Germany
| | - Veselin Boyadzhiev
- Department of Pediatrics, University Hospital St. Marina, Varna Medical University, Varna, Bulgaria
| | - Miroslav Dumic
- Department of Pediatrics, University Hospital Center, Zagreb, Croatia
| | | | - Robert Kleta
- University College London, London, United Kingdom
| | | | - Elena Levtchenko
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - René J Bindels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Stephan Rust
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Ian C Forster
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Carsten A Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany;
| |
Collapse
|