1
|
Petkovic G, Park J, Collingwood C, Senniappan S, Didi M. Biomarkers and Diagnostic Thresholds for Congenital Hyperinsulinism. Clin Endocrinol (Oxf) 2024. [PMID: 39360602 DOI: 10.1111/cen.15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
CONTEXT Congenital Hyperinsulinism (CHI) is associated with inappropriately high levels of C-peptide in the context of hypoglycemia. OBJECTIVE We aimed to better clarify a diagnostic threshold value of C-peptide for children presenting with CHI. DESIGN This was a retrospective case-control analysis, examining all hypoglycemia screens, undertaken between 2009 and 2019 at a quaternary paediatrics unit. Plasma C-peptide, insulin, free fatty acid (FFA) and B-hydroxybutyrate (BHOB) concentrations in children diagnosed with CHI were compared with concentrations in children diagnosed with other conditions. PATIENTS All patients requiring hypoglycaemic screens at the quaternary children's hospital were analysed. RESULTS Median [C-peptide] were statistically significantly different between CHI (147) and non-CHI (72) patients, p < 0.05. The Youden Index indicated that a [C-peptide] value of 291.5 pmol/L would give the greatest optimization of sensitivity (82%) and specificity (99%) for detecting CHI. Median [insulin] differed significantly between the cohorts with a level of 64 pmol/L for CHI patients compared with 0 pmol/L with non-CHI patients (p < 0.01). Median [BOHB] was 0 μmol/L in CHI patients as compared with 2378 μmol/L for non-CHI patients (p < 0.01). Median [FFA] levels were 1910 μmol/L in the non-CHI cohort, compared with 0 in the CHI cohort (p < 0.01). CONCLUSIONS This study suggests that a C-peptide concentration greater than 291.5 pmol/L is diagnostic of CHI in children. C-peptide appears to offer the greatest utility as a biochemical diagnostic test for CHI and could be prioritised for laboratory analysis.
Collapse
Affiliation(s)
- Grace Petkovic
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - Julie Park
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
- Department of Paediatrics, Lancashire Teaching Hospitals, Preston, UK
| | | | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| |
Collapse
|
2
|
Kattamanchi D, Maralusiddappa PGC, Manne Veerabhadraiah K, Mangalgi S. Novel ABCC8 mutation in the genetic diagnosis of familial hyperinsulinaemic hypoglycaemia. BMJ Case Rep 2024; 17:e261701. [PMID: 39266029 DOI: 10.1136/bcr-2024-261701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Familial hyperinsulinaemic hypoglycaemia-1 arises from mutations within the genes of pancreatic beta cells, resulting in unregulated insulin secretion from pancreatic beta cells. A 4.06 kg female neonate, born to a second-degree consanguineously married couple, presented with repeated asymptomatic hypoglycaemia. There was a significant history of a previous sibling's death from nesidioblastosis. Despite treatment with intravenous glucose, diazoxide, hydrochlorothiazide and octreotide, she continued to experience hypoglycaemic episodes. Despite efforts to manage sepsis, including antibiotics, antifungals and intravenous immunoglobulin/granulocyte-macrophage colony-stimulated factor, her condition worsened. She succumbed on day 34. This case underscores the complexities of managing congenital hyperinsulinaemic hypoglycaemia, especially in the context of concurrent infections and the need for multidisciplinary care. Early genetic diagnosis proved invaluable in facilitating timely and effective treatment. Furthermore, the genetic results enabled us to counsel the parents regarding the recurrence risk in subsequent pregnancies and the necessity for antenatal diagnosis.
Collapse
Affiliation(s)
- Deepthi Kattamanchi
- Neonatology, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
3
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Butnariu LI, Bizim DA, Păduraru G, Păduraru L, Moisă ȘM, Popa S, Gimiga N, Ghiga G, Bădescu MC, Lupu A, Vasiliu I, Trandafir LM. Congenital Hyperinsulinism Caused by Mutations in ABCC8 Gene Associated with Early-Onset Neonatal Hypoglycemia: Genetic Heterogeneity Correlated with Phenotypic Variability. Int J Mol Sci 2024; 25:5533. [PMID: 38791571 PMCID: PMC11122115 DOI: 10.3390/ijms25105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Delia Andreia Bizim
- Departament of Diabetes, Saint Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| | - Gabriela Păduraru
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Luminița Păduraru
- Department of Mother and Child, Division Neonatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ștefana Maria Moisă
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Nicoleta Gimiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Gabriela Ghiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Ancuta Lupu
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| | - Ioana Vasiliu
- Department of Morphofunctional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.P.); (Ș.M.M.); (N.G.); (G.G.); (A.L.); (L.M.T.)
| |
Collapse
|
5
|
Clemente M, Cobo P, Antolín M, Campos A, Yeste D, Tomasini R, Caimari M, Masas M, García-Arumí E, Fernández-Cancio M, Baz-Redón N, Camats-Tarruella N. Genetics and Natural History of Non-pancreatectomized Patients With Congenital Hyperinsulinism Due to Variants in ABCC8. J Clin Endocrinol Metab 2023; 108:e1316-e1328. [PMID: 37216904 DOI: 10.1210/clinem/dgad280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
CONTEXT Patients with congenital hyperinsulinism due to ABCC8 variants generally present severe hypoglycemia and those who do not respond to medical treatment typically undergo pancreatectomy. Few data exist on the natural history of non-pancreatectomized patients. OBJECTIVE This work aims to describe the genetic characteristics and natural history in a cohort of non-pancreatectomized patients with congenital hyperinsulinism due to variants in the ABCC8 gene. METHODS Ambispective study of patients with congenital hyperinsulinism with pathogenic or likely pathogenic variants in ABCC8 treated in the last 48 years and who were not pancreatectomized. Continuous glucose monitoring (CGM) has been periodically performed in all patients since 2003. An oral glucose tolerance test was performed if hyperglycemia was detected in the CGM. RESULTS Eighteen non-pancreatectomized patients with ABCC8 variants were included. Seven (38.9%) patients were heterozygous, 8 (44.4%) compound heterozygous, 2 (11.1%) homozygous, and 1 patient carried 2 variants with incomplete familial segregation studies. Seventeen patients were followed up and 12 (70.6%) of them evolved to spontaneous resolution (median age 6.0 ± 4 years; range, 1-14). Five of these 12 patients (41.7%) subsequently progressed to diabetes with insufficient insulin secretion. Evolution to diabetes was more frequent in patients with biallelic variants in the ABCC8 gene. CONCLUSION The high remission rate observed in our cohort makes conservative medical treatment a reliable strategy for the management of patients with congenital hyperinsulinism due to ABCC8 variants. In addition, a periodic follow-up of glucose metabolism after remission is recommended, as a significant proportion of patients evolved to impaired glucose tolerance or diabetes (biphasic phenotype).
Collapse
Affiliation(s)
- María Clemente
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Patricia Cobo
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ariadna Campos
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Diego Yeste
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Rosangela Tomasini
- Paediatric Endocrinology Unit, Hospital Universitari Mútua Terrassa, 08021 Terrassa, Spain
| | - María Caimari
- Paediatric Endocrinology, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Miriam Masas
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Noelia Baz-Redón
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| |
Collapse
|
6
|
Dieterle MP, Husari A, Prozmann SN, Wiethoff H, Stenzinger A, Röhrich M, Pfeiffer U, Kießling WR, Engel H, Sourij H, Steinberg T, Tomakidi P, Kopf S, Szendroedi J. An Uncommon Cause of Recurrent Presyncope, Dizziness, and Tachycardia: A Case Report of Diffuse, Adult-Onset Nesidioblastosis/Non-Insulinoma Pancreatogenous Hypoglycemia Syndrome (NIPHS). Biomedicines 2023; 11:1741. [PMID: 37371836 DOI: 10.3390/biomedicines11061741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Neurovegetative and autonomic symptoms are common presentations of various diseases, ranging from psychosomatic to severe organic disorders. A 23-year-old man presented with a history of recurrent presyncope, dizziness, and tachycardia. Repeated diagnostic work-up in various clinical settings could not identify any definite cause for approximately eight years. However, the incidental detection of postprandial and exercise-induced hypoglycemia was suggestive of an insulin-related disorder. A 72 h plasma glucose fasting test revealed endogenous hyperinsulinism. Upon imaging studies, no tumor mass potentially indicating insulinoma could be detected. 68Ga-DOTA-Exendin-4 PET/CT showed diffuse tracer enrichment throughout the whole pancreas. A subtotal pancreatectomy was performed, and the diagnosis of diffuse, adult-onset nesidioblastosis was established histopathologically. This corresponds to the clinical findings of a functional β-cell disorder, also known as non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). After nine months, the symptoms recurred, making complete pancreatectomy necessary. Postoperative laboratory evaluation exhibited no residual endogenous C-peptide production. This case illustrates the diagnostic challenges in patients presenting with unspecific, neurovegetative and autonomic symptoms with a severe and rare underlying cause.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Sophie Nicole Prozmann
- Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Hendrik Wiethoff
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uwe Pfeiffer
- Pfalzklinikum for Psychiatry and Neurology AdÖR, Weinstr. 100, 76889 Klingenmünster, Germany
| | | | - Helena Engel
- Cancer Immune Regulation Group, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8036 Graz, Austria
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Dieterle MP, Husari A, Prozmann SN, Wiethoff H, Stenzinger A, Röhrich M, Pfeiffer U, Kießling WR, Engel H, Sourij H, Steinberg T, Tomakidi P, Kopf S, Szendroedi J. Diffuse, Adult-Onset Nesidioblastosis/Non-Insulinoma Pancreatogenous Hypoglycemia Syndrome (NIPHS): Review of the Literature of a Rare Cause of Hyperinsulinemic Hypoglycemia. Biomedicines 2023; 11:1732. [PMID: 37371827 PMCID: PMC10296556 DOI: 10.3390/biomedicines11061732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Differential diagnosis of hypoglycemia in the non-diabetic adult patient is complex and comprises various diseases, including endogenous hyperinsulinism caused by functional β-cell disorders. The latter is also designated as nesidioblastosis or non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). Clinically, this rare disease presents with unspecific adrenergic and neuroglycopenic symptoms and is, therefore, often overlooked. A combination of careful clinical assessment, oral glucose tolerance testing, 72 h fasting, sectional and functional imaging, and invasive insulin measurements can lead to the correct diagnosis. Due to a lack of a pathophysiological understanding of the condition, conservative treatment options are limited and mostly ineffective. Therefore, nearly all patients currently undergo surgical resection of parts or the entire pancreas. Consequently, apart from faster diagnosis, more elaborate and less invasive treatment options are needed to relieve the patients from the dangerous and devastating symptoms. Based on a case of a 23-year-old man presenting with this disease in our department, we performed an extensive review of the medical literature dealing with this condition and herein presented a comprehensive discussion of this interesting disease, including all aspects from epidemiology to therapy.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Ayman Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Sophie Nicole Prozmann
- Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Hendrik Wiethoff
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uwe Pfeiffer
- Pfalzklinikum for Psychiatry and Neurology AdÖR, Weinstr. 100, 76889 Klingenmünster, Germany
| | | | - Helena Engel
- Cancer Immune Regulation Group, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8010 Graz, Austria
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Al-Ameer A, Alsomali A, Habib Z. Incidence, predictors and outcomes of redo pancreatectomy in infants with congenital hyperinsulinism: a 16-year tertiary center experience. Pediatr Surg Int 2023; 39:183. [PMID: 37079145 DOI: 10.1007/s00383-023-05470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Recurrent severe hypoglycemic attacks often persist even after performing pancreatectomy for medically unresponsive congenital hyperinsulinism (CHI). In this study, we present our experience with redo pancreatectomy for CHI. METHODS We reviewed all children who underwent pancreatectomy for CHI between January 2005 and April 2021 in our center. A comparison was made between patients whose hypoglycemia was controlled after primary pancreatectomy and patients who required reoperation. RESULTS A total of 58 patients underwent pancreatectomy for CHI. Refractory hypoglycemia after pancreatectomy occurred in 10 patients (17%), who subsequently underwent redo pancreatectomy. All patients who required redo pancreatectomy had positive family history of CHI (p = 0.0031). Median extent of initial pancreatectomy was lesser in the redo group with borderline level of statistical significance (95% vs. 98%, p = 0.0561). Aggressive pancreatectomy at the initial surgery significantly (p = 0.0279) decreased the risk for the need to redo pancreatectomy; OR 0.793 (95% CI 0.645-0.975). Incidence of diabetes was significantly higher in the redo group (40% vs. 9%, p = 0.033). CONCLUSION Pancreatectomy with 98% extent of resection for diffuse CHI, especially with positive family history of CHI, is warranted to decrease the chance of reoperation for persistent severe hypoglycemia.
Collapse
Affiliation(s)
- Ali Al-Ameer
- Department of Pediatric Surgery, King Fahad Medical City, PO Box 59046, Riyadh, 11525, Kingdom of Saudi Arabia.
| | - Afrah Alsomali
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Zakaria Habib
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Liu MT, Yang HX. Neonatal hyperinsulinism with an ABCC8 mutation: A case report. World J Clin Cases 2023; 11:2254-2259. [PMID: 37122528 PMCID: PMC10131030 DOI: 10.12998/wjcc.v11.i10.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Neonatal hyperinsulinism can result from perinatal stress, genetic disorders, or syndromes, which can lead to persistent or intractable hypoglycemia in newborns. Mutations in the ABCC8 gene result in abnormal functioning of potassium channel proteins in pancreatic β-cells, leading to an overproduction of insulin and congenital hyperinsulinemia.
CASE SUMMARY We report a case of a high-birth-weight infant with postnatal hypoglycemia and hyperinsulinemia, whose mother had pregestational diabetes mellitus with poor glycemic control and whose sister had a similar history at birth. Whole-exome sequencing revealed a new mutation in the ABCC8 gene in exon 8 (c.1257T>G), which also occurred in his sister and mother; thus, the patient was diagnosed with neonatal hyperinsulinism with an ABCC8 mutation. With oral diazoxide treatment, the child’s blood glucose returned to normal, and the pediatrician gradually discontinued treatment because of the child’s good growth and development.
CONCLUSION We report a new mutation locus in the ABCC8 gene. This mutation locus warrants attention for genetic disorders and long-term prognoses of hypoglycemic children.
Collapse
Affiliation(s)
- Meng-Tong Liu
- Department of Gynecology and Obstetrics, Peking University First Hospital, Beijing 100034, China
| | - Hui-Xia Yang
- Department of Gynecology and Obstetrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
10
|
ElSheikh A, Shyng SL. K ATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Front Endocrinol (Lausanne) 2023; 14:1161117. [PMID: 37056678 PMCID: PMC10086357 DOI: 10.3389/fendo.2023.1161117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infancy/childhood and is a serious condition associated with severe recurrent attacks of hypoglycemia due to dysregulated insulin secretion. Timely diagnosis and effective treatment are crucial to prevent severe hypoglycemia that may lead to life-long neurological complications. In pancreatic β-cells, adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are a central regulator of insulin secretion vital for glucose homeostasis. Genetic defects that lead to loss of expression or function of KATP channels are the most common cause of HI (KATP-HI). Much progress has been made in our understanding of the molecular genetics and pathophysiology of KATP-HI in the past decades; however, treatment remains challenging, in particular for patients with diffuse disease who do not respond to the KATP channel activator diazoxide. In this review, we discuss current approaches and limitations on the diagnosis and treatment of KATP-HI, and offer perspectives on alternative therapeutic strategies.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
11
|
De Los Santos-La Torre MA, Del Águila-Villar CM, Lu-de Lama LR, Nuñez-Almache O, Chávez-Tejada EM, Espinoza-Robles OA, Pinto-Ibárcena PM, Calagua-Quispe MR, Azabache-Tafur PM, Tucto-Manchego RM. Hyperinsulinism-hyperammonemia syndrome in two Peruvian children with refractory epilepsy. J Pediatr Endocrinol Metab 2023; 36:207-211. [PMID: 36476334 DOI: 10.1515/jpem-2022-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Congenital hyperinsulinism (HI) is a heterogeneous clinical disorder with great variability in its clinical phenotype, and to date, pathogenic variants in 23 genes have been recognized. Hyperinsulinism-hyperammonemia syndrome (HI/HA) is the second most frequent cause of this disease that shows an autosomal dominant pattern and is caused by an activating mutation of the GLUD1 gene, which responds favorably to the use of diazoxide. HI/HA syndrome presents with fasting hypoglycemia; postprandial hypoglycemia, especially in those with a high protein content (leucine); and persistent mild hyperammonemia. Neurological abnormalities, in the form of epilepsy or neurodevelopmental delay, are observed in a high percentage of patients; therefore, timely diagnosis is crucial for proper management. CASE PRESENTATION We report the clinical presentation of two Peruvian children that presented with epilepsy whose genetic analysis revealed a missense mutation in the GLUD1 gene, one within exon 11, at 22% mosaicism; and another within exon 7, as well as their response to diazoxide therapy. To the best of our knowledge, these are the first two cases of HI/HA syndrome reported in Peru. CONCLUSIONS HI/HA syndrome went unnoticed, because hypoglycemia was missed and were considered partially controlled epilepsies. A failure to recognize hypoglycemic seizures will delay diagnosis and adequate treatment, so a proper investigation could avoid irreversible neurological damage.
Collapse
Affiliation(s)
| | - Carlos Manuel Del Águila-Villar
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Faculty Member of the Medical School, Universidad Nacional Federico Villareal, Lima, Peru
| | - Luis Rómulo Lu-de Lama
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Oswaldo Nuñez-Almache
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Faculty Member of the Medical School, Universidad Nacional Federico Villareal, Lima, Peru
| | - Eliana Manuela Chávez-Tejada
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Oscar Antonio Espinoza-Robles
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Paola Marianella Pinto-Ibárcena
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Martha Rosario Calagua-Quispe
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Pamela Miluska Azabache-Tafur
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Pediatric endocrinology fellow, Universidad Nacional Federico Villareal, Lima, Peru
| | - Rosa María Tucto-Manchego
- Department of Endocrinology and Metabolism of The Child's Health National Institute, Instituto Nacional de Salud del Niño, Lima, Peru.,Pediatric endocrinology fellow, Universidad Nacional Federico Villareal, Lima, Peru
| |
Collapse
|
12
|
Zeng Q, Sang YM. Glutamate dehydrogenase hyperinsulinism: mechanisms, diagnosis, and treatment. Orphanet J Rare Dis 2023; 18:21. [PMID: 36721237 PMCID: PMC9887739 DOI: 10.1186/s13023-023-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a genetically heterogeneous disease, in which intractable, persistent hypoglycemia is induced by excessive insulin secretion and increased serum insulin concentration. To date,15 genes have been found to be associated with the pathogenesis of CHI. Glutamate dehydrogenase hyperinsulinism (GDH-HI) is the second most common type of CHI and is caused by mutations in the glutamate dehydrogenase 1 gene. The objective of this review is to summarize the genetic mechanisms, diagnosis and treatment progress of GDH-HI. Early diagnosis and treatment are extremely important to prevent long-term neurological complications in children with GDH-HI.
Collapse
Affiliation(s)
- Qiao Zeng
- grid.411360.1Department of Anesthesiology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310052 China
| | - Yan-Mei Sang
- Department of Endocrinology, Genetics and Metabolism Centre, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, 100045, China.
| |
Collapse
|
13
|
Tu K, Zhao LJ, Gu J. Adult focal β-cell nesidioblastosis: A case report. World J Clin Cases 2023; 11:150-156. [PMID: 36687197 PMCID: PMC9846974 DOI: 10.12998/wjcc.v11.i1.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nesidioblastosis usually refers to a series of clinical manifestations caused by the proliferation of β-cells in pancreatic islets, and these clinical manifestations are hyperinsulinemia and persistent hypoglycemia. According to the size of the lesion, nesidioblastosis is divided into focal nesidioblastosis, diffuse nesidioblastosis and atypical nesidioblastosis, and its pathogenesis is still unclear. Nesidioblastosis is mainly seen in infants and rarely reported in adults, especially focal nesidioblastosis, which is difficult to distinguish from insulinoma.
CASE SUMMARY We report a case of adult focal β-cell nesidioblastosis in which the preoperative diagnosis was insulinoma. The patient was a 48-year-old male who suffered from repeated morning and fasting palpitations, sweating, and severe disturbance of consciousness for 5 years. His blood glucose was found to be as low as 1.79 mmol/L during an attack. However, abdominal computed tomography showed no abnormalities. Magnetic resonance imaging and endoscopic ultrasonography demonstrated a nodular mass in the head of the pancreas, combined with hyperinsulinemia and high serum C-peptide. The patient was diagnosed with insulinoma and underwent Beger surgery; however, the postoperative pathological results showed nesidioblastosis.
CONCLUSION Although surgical resection is the preferred option for nesidioblastosis, some cases can be treated non-surgically. In order to increase clinicians' understanding of nesidioblastosis, it is necessary to review the pathogenesis, diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Kui Tu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Li-Jin Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Jin Gu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
14
|
Hermann FM, Kjærgaard MF, Tian C, Tiemann U, Jackson A, Olsen LR, Kraft M, Carlsson PO, Elfving IM, Kettunen JLT, Tuomi T, Novak I, Semb H. An insulin hypersecretion phenotype precedes pancreatic β cell failure in MODY3 patient-specific cells. Cell Stem Cell 2023; 30:38-51.e8. [PMID: 36563694 DOI: 10.1016/j.stem.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C β cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 β cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 β cells. Our findings identify a pathogenic mechanism leading to β cell failure in MODY3.
Collapse
Affiliation(s)
- Florian M Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Maya Friis Kjærgaard
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Chenglei Tian
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Ulf Tiemann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Abigail Jackson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Kraft
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jarno L T Kettunen
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Tiinamaija Tuomi
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany.
| |
Collapse
|
15
|
Ikle JM, Tryon RC, Singareddy SS, York NW, Remedi MS, Nichols CG. Genome-edited zebrafish model of ABCC8 loss-of-function disease. Islets 2022; 14:200-209. [PMID: 36458573 PMCID: PMC9721409 DOI: 10.1080/19382014.2022.2149206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
ATP-sensitive potassium channel (KATP)gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete KATP LOF do reiterate mild hyperinsulinism, KATP knockout animals do not exhibit persistent hyperinsulinism. We have shown that islet excitability and glucose homeostasis are regulated by identical KATP channels in zebrafish. SUR1 truncation mutation (K499X) was introduced into the abcc8 gene to explore the possibility of using zebrafish for modeling human HI. Patch-clamp analysis confirmed the complete absence of channel activity in β-cells from K499X (SUR1-/-) fish. No difference in random blood glucose was detected in heterozygous SUR1+/- fish nor in homozygous SUR1-/- fish, mimicking findings in SUR1 knockout mice. Mutant fish did, however, demonstrate impaired glucose tolerance, similar to partial LOF mouse models. In paralleling features of mammalian diabetes and hyperinsulinism resulting from equivalent LOF mutations, these gene-edited animals provide valid zebrafish models of KATP -dependent pancreatic diseases.
Collapse
Affiliation(s)
- Jennifer M. Ikle
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Robert C. Tryon
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Soma S. Singareddy
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nathaniel W. York
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Oza CM, Khadilkar V, Kadam S, Khadilkar A. Response to sirolimus in a case of diffuse congenital hyperinsulinaemic hypoglycaemia due to homozygous KCNJ11 mutation. BMJ Case Rep 2022; 15:e252708. [PMID: 36410788 PMCID: PMC9680149 DOI: 10.1136/bcr-2022-252708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We present a case of a male neonate with refractory and persistent neonatal hypoglycaemia not responding to octreotide. On evaluation for hypoglycaemia, his cortisol was within the reference range while the serum insulin concentrations were high. Gallium-68 dotatate scan (GA-68 DOTA) showed diffuse pancreatic involvement. Genetic diagnosis of congenital hyperinsulinaemic hypoglycaemia due to KCNJ11 mutation was made. He was started on tablet sirolimus, after which the child was off all other medication and was euglycaemic. However, he developed bilateral pneumonia leading to acute respiratory distress syndrome with refractory shock. Our case highlights the response to sirolimus in a case of congenital hyperinsulinaemia (CHI) due to KCNJ11 mutation and severe adverse event thereafter.
Collapse
Affiliation(s)
- Chirantap Markand Oza
- Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Pune, Maharashtra, India
| | - Vaman Khadilkar
- Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Pune, Maharashtra, India
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sandeep Kadam
- Department of pediatrics and neonatology, King Edward Memorial Hospital, Pune, Maharashtra, India
| | - Anuradha Khadilkar
- Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Pune, Maharashtra, India
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
17
|
Disrupted β-cell-specific gene silencing causes congenital hyperinsulinism. Nat Genet 2022; 54:1597-1598. [DOI: 10.1038/s41588-022-01206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Kummer S, Rinné S, Seemann G, Bachmann N, Timothy K, Thornton PS, Pillekamp F, Mayatepek E, Bergmann C, Meissner T, Decher N. Hyperinsulinemic Hypoglycemia Associated with a CaV1.2 Variant with Mixed Gain- and Loss-of-Function Effects. Int J Mol Sci 2022; 23:ijms23158097. [PMID: 35897673 PMCID: PMC9332183 DOI: 10.3390/ijms23158097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent L-type calcium channel isoform CaV1.2 is critically involved in many physiological processes, e.g., in cardiac action potential formation, electromechanical coupling and regulation of insulin secretion by beta cells. Gain-of-function mutations in the calcium voltage-gated channel subunit alpha 1 C (CACNA1C) gene, encoding the CaV1.2 α1-subunit, cause Timothy syndrome (TS), a multisystemic disorder that includes autism spectrum disorders and long QT (LQT) syndrome. Strikingly, TS patients frequently suffer from hypoglycemia of yet unproven origin. Using next-generation sequencing, we identified a novel heterozygous CACNA1C mutation in a patient with congenital hyperinsulinism (CHI) and associated hypoglycemic episodes. We characterized the electrophysiological phenotype of the mutated channel using voltage-clamp recordings and in silico action potential modeling experiments. The identified CaV1.2L566P mutation causes a mixed electrophysiological phenotype of gain- and loss-of-function effects. In silico action potential modeling supports that this mixed electrophysiological phenotype leads to a tissue-specific impact on beta cells compared to cardiomyocytes. Thus, CACNA1C variants may be associated with non-syndromic hyperinsulinemic hypoglycemia without long-QT syndrome, explained by very specific electrophysiological properties of the mutated channel. We discuss different biochemical characteristics and clinical impacts of hypoglycemia in the context of CACNA1C variants and show that these may be associated with significant morbidity for Timothy Syndrome patients. Our findings underline that the potential of hypoglycemia warrants careful attention in patients with CACNA1C variants, and such variants should be included in the differential diagnosis of non-syndromic congenital hyperinsulinism.
Collapse
Affiliation(s)
- Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, 40225 Duesseldorf, Germany; (F.P.); (E.M.); (T.M.)
- Correspondence: (S.K.); (N.D.); Tel.: +49-211-81-17001 (S.K.); +49-6421-2862148 (N.D.)
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany;
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg—Bad Krozingen, Medical Center—University of Freiburg, 79085 Freiburg im Breisgau, Germany;
| | - Nadine Bachmann
- Medizinische Genetik Mainz, Limbach Genetics, 55128 Mainz, Germany; (N.B.); (C.B.)
| | - Katherine Timothy
- Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA;
| | - Paul S. Thornton
- Division of Endocrinology and Diabetes, Cook Children’s Medical Center, Fort Worth, TX 76104, USA;
| | - Frank Pillekamp
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, 40225 Duesseldorf, Germany; (F.P.); (E.M.); (T.M.)
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, 40225 Duesseldorf, Germany; (F.P.); (E.M.); (T.M.)
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, 55128 Mainz, Germany; (N.B.); (C.B.)
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, 40225 Duesseldorf, Germany; (F.P.); (E.M.); (T.M.)
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany;
- Correspondence: (S.K.); (N.D.); Tel.: +49-211-81-17001 (S.K.); +49-6421-2862148 (N.D.)
| |
Collapse
|
19
|
Kornya M, Abrams-Ogg A, Comeau D, Caswell J. Juvenile hyperinsulinism in a Maine Coon kitten. JFMS Open Rep 2022; 8:20551169221136473. [DOI: 10.1177/20551169221136473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Case summary A 5.5 month-old intact male Maine Coon cat was presented to a referral hospital for a history of muscle fasciculations, lethargy and seizures associated with refractory hypoglycemia. Diagnostic testing for hypothyroidism, hyposomatotropism or hypoadrenocorticism, inborn errors of metabolism (ie, storage diseases and urea cycle disorders), infection or iatrogenic hypoglycemia were negative. An inappropriately high serum insulin level was noted in the face of marked hypoglycemia. The insulin:glucose ratio was 0.44 (<0.3) and the amended insulin:glucose ratio was 1268 (<30). Thoracic radiography and abdominal ultrasonography did not identify a cause for this elevated insulin level. Stabilization with a low, but adequate, blood glucose occurred with corticosteroid therapy, with further significant improvement with the addition of diazoxide. Peripheral neuropathy developed several months later, and concerns for quality of life led to humane euthanasia approximately 1 year after the initial diagnosis. Insulin levels remained high at the time of euthanasia. Necropsy found no gross lesions, though microscopic degeneration of the sciatic nerve and subjectively mildly increased size and number of pancreatic islets was noted. These findings were consistent with a diagnosis of congenital hyperinsulinism. Relevance and novel information This is the first reported case of congenital hyperinsulinism in a cat and may parallel the diffuse form of hypoglycemic hyperinsulinism reported in humans and a single dog. It should be considered a differential diagnosis in kittens presenting for refractory hypoglycemia.
Collapse
Affiliation(s)
- Matthew Kornya
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Dominique Comeau
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jeff Caswell
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Stefanovski D, Vajravelu ME, Givler S, De León DD. Exendin-(9-39) Effects on Glucose and Insulin in Children With Congenital Hyperinsulinism During Fasting and During a Meal and a Protein Challenge. Diabetes Care 2022; 45:1381-1390. [PMID: 35416981 PMCID: PMC9210867 DOI: 10.2337/dc21-2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether exendin-(9-39) will increase fasting and postprandial plasma glucose and decrease the incidence of hypoglycemia in children with hyperinsulinism (HI). RESEARCH DESIGN AND METHODS This was an open-label, four-period crossover study. In periods 1 and 2, the effect of three different dosing regimens of exendin-(9-39) (group 1, 0.28 mg/kg; group 2, 0.44 mg/kg; group 3, 0.6 mg/kg) versus vehicle on fasting glucose was assessed in 16 children with HI. In periods 3 and 4, a subset of eight subjects received either vehicle or exendin-(9-39) (0.6 mg/kg) during a mixed-meal tolerance test (MMTT) and an oral protein tolerance test (OPTT). RESULTS Treatment group 2 showed 20% (P = 0.037) increase in the area under the curve (AUC) of fasting glucose. A significant increase in AUC of glucose was also observed during the MMTT and OPTT; treatment with exendin-(9-39) resulted in 28% (P ≤ 0.001) and 30% (P = 0.01) increase in AUC of glucose, respectively. Fasting AUC of insulin decreased by 57% (P = 0.009) in group 3. In contrast, AUC of insulin was unchanged during the MMTT and almost twofold higher (P = 0.004) during the OPTT with exendin-(9-39) treatment. In comparison with vehicle, infusion of exendin-(9-39) resulted in significant reduction in likelihood of hypoglycemia in group 2, by 76% (P = 0.009), and in group 3, by 84% (P = 0.014). Administration of exendin-(9-39) during the OPTT resulted in 82% (P = 0.007) reduction in the likelihood of hypoglycemia. CONCLUSIONS These results support a therapeutic potential of exendin-(9-39) to prevent fasting and protein-induced hypoglycemia in children with HI.
Collapse
Affiliation(s)
- Darko Stefanovski
- School of Veterinarian Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary E Vajravelu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie Givler
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diva D De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Amaratunga SA, Tayeb TH, Dusatkova P, Pruhova S, Lebl J. Invaluable Role of Consanguinity in Providing Insight into Paediatric Endocrine Conditions: Lessons Learnt from Congenital Hyperinsulinism, Monogenic Diabetes, and Short Stature. Horm Res Paediatr 2022; 95:1-11. [PMID: 34847552 DOI: 10.1159/000521210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Consanguineous families have often played a role in the discovery of novel genes, especially in paediatric endocrinology. At this time, it has been estimated that over 8.5% of all children worldwide have consanguineous parents. Consanguinity is linked to demographic, cultural, and religious practises and is more common in some areas around the world than others. In children with endocrine conditions from consanguineous families, there is a greater probability that a single-gene condition with autosomal recessive inheritance is causative. From 1966 and the first description of Laron syndrome, through the discovery of the first KATP channel genes ABCC8 and KCNJ11 causing congenital hyperinsulinism (CHI) in the 1990s, to recent discoveries of mutations in YIPF5 as the first cause of monogenic diabetes due to the disruption of the endoplasmic reticulum (ER)-to-Golgi trafficking in the β-cell and increased ER stress; positive genetic findings in children from consanguinity have been important in elucidating novel genes and mechanisms of disease, thereby expanding knowledge into disease pathophysiology. The aim of this narrative review was to shed light on the lessons learned from consanguineous pedigrees with the help of 3 fundamental endocrine conditions that represent an evolving spectrum of pathophysiological complexity - from CHI, a typically single-cell condition, to monogenic diabetes which presents with uniform biochemical parameters (hyperglycaemia and glycosuria), despite varying aetiologies, up to the genetic regulation of human growth - the most complex developmental phenomenon.
Collapse
Affiliation(s)
- Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Tara Hussein Tayeb
- Department of Paediatrics, Sulaymani University, College of Medicine, Sulaymani, Iraq
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
22
|
Seetharaman SS, Topor LS. 50 Years Ago in TheJournalofPediatrics: Differentiating Focal Versus Diffuse Hyperinsulinism. J Pediatr 2022; 244:85. [PMID: 35534165 DOI: 10.1016/j.jpeds.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Lisa Swartz Topor
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Melikyan M, Gubaeva D, Nikitina I, Ryzhkova D, Mitrofanova L, Yukhacheva D, Pershin D, Shcherbina A, Vasilyev E, Proshchina A, Krivova Y, Tiulpakov A. The coincidence of two rare diseases with opposite metabolic phenotype: a child with congenital hyperinsulinism and Bloom syndrome. J Pediatr Endocrinol Metab 2022; 35:405-409. [PMID: 34700371 DOI: 10.1515/jpem-2021-0464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Congenital hyperinsulinism (CHI) is a group of rare genetic disorders characterized by insulin overproduction. CHI causes life-threatening hypoglycemia in neonates and infants. Bloom syndrome is a rare autosomal recessive disorder caused by mutations in the BLM gene resulting in genetic instability and an elevated rate of spontaneous sister chromatid exchanges. It leads to insulin resistance, early-onset diabetes, dyslipidemia, growth delay, immune deficiency and cancer predisposition. Recent studies demonstrate that the BLM gene is highly expressed in pancreatic islet cells and its mutations can alter the expression of other genes which are associated with apoptosis control and cell proliferation. CASE PRESENTATION A 5-month-old female patient from consanguineous parents presented with drug-resistant CHI and dysmorphic features. Genetic testing revealed a homozygous mutation in the KCNJ11 gene and an additional homozygous mutation in the BLM gene. While 18F-DOPA PET scan images were consistent with a focal CHI form and intraoperative frozen-section histopathology was consistent with diffuse CHI form, postoperative histopathological examination revealed features of an atypical form. CONCLUSIONS In our case, the patient carries two distinct diseases with opposite metabolic phenotypes.
Collapse
Affiliation(s)
| | | | - Irina Nikitina
- Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Daria Ryzhkova
- Almazov National Medical Research Center, Saint-Petersburg, Russia
| | | | - Daria Yukhacheva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | | | - Anatoly Tiulpakov
- Endocrinology Research Center, Moscow, Russia.,Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
24
|
Mazloom K, Sanchez-Lara PA, Langston S, Grand K, Schweiger B. Congenital hyperinsulinism in a newborn presenting with poor feeding. SAGE Open Med Case Rep 2022; 10:2050313X221083174. [PMID: 35371490 PMCID: PMC8966065 DOI: 10.1177/2050313x221083174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperinsulinemic hypoglycemia is a condition linked to several genetic, metabolic, and growth disorders in which there is dysregulated insulin secretion. In infants, an inappropriately persistent hypoglycemic and hypoketotic state can cause severe brain injury leading to epilepsy, cerebral palsy, and neurodevelopmental disabilities due to the lack of glucose and ketone substrate to serve as fuel for the developing brain. The most common cause of persistent hypoglycemia in neonates and children has been found to be congenital hyperinsulinism. Here, we report a child with a unique presentation, found to have a novel genetic variant as the underlying cause of hyperinsulinism. This case study highlights the importance of maintaining a broad differential and considering a diagnosis of congenital hyperinsulinism in a baby with poor feeding in the newborn period. Recognizing and treating congenital hyperinsulinism is essential to prevent potential neurological sequelae from recurrent, severe hypoglycemia.
Collapse
Affiliation(s)
- Kiran Mazloom
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Pedro A Sanchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Beverly Hills, CA, USA
| | - Seth Langston
- Division of Neonatology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katheryn Grand
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Beverly Hills, CA, USA
| | - Bahareh Schweiger
- Department of Pediatric Endocrinology, Cedars-Sinai Medical Center, Beverly Hills, CA, USA
| |
Collapse
|
25
|
Castillo-López MG, Fernandez MF, Sforza N, Barbás NC, Pattin F, Mendez G, Ogresta F, Gondolesi I, Barros Schelotto P, Musso C, Gondolesi GE. Hyperinsulinemic hypoglycemia in adolescents: case report and systematic review. Clin Diabetes Endocrinol 2022; 8:3. [PMID: 35296370 PMCID: PMC8925193 DOI: 10.1186/s40842-022-00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hyperinsulinemic hypoglycemia is the most common cause of severe and persistent hypoglycemia in neonates and children. It is a heterogeneous condition with dysregulated insulin secretion, which persists in the presence of low blood glucose levels. CASE PRESENTATION We report a case of a 15 year-old male with hyperinsulinemic hypoglycemia, who underwent a subtotal pancreatectomy after inadequate response to medical therapy. Pathological examination was positive for nesidioblastosis (diffuse β-cell hyperplasia by H-E and immunohistochemical techniques). The patient's blood glucose levels normalized after surgery and he remains asymptomatic after 1 year of follow-up. The systematic review allowed us to identify 41 adolescents from a total of 205 cases reported in 22 manuscripts, from a total of 454 found in the original search done in PubMed and Lilacs. CONCLUSIONS Although very well reported in children, hyperinsulinemic hypoglycemia can occur in adolescents or young adults, as it happens in our reported case. These patients can be seen, treated and reported by pediatricians or adult teams either way due to the wide age range used to define adolescence. Most of them do not respond to medical treatment, and subtotal distal pancreatectomy has become the elected procedure with excellent long-term response in the vast majority.
Collapse
Affiliation(s)
- M G Castillo-López
- Diabetes Metabolic department, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - M F Fernandez
- General Surgery, Liver, Intestinal and Pancreas Transplant Services, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - N Sforza
- Diabetes Metabolic department, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - N C Barbás
- Anatomo pathology department, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - F Pattin
- General Surgery, Liver, Intestinal and Pancreas Transplant Services, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - G Mendez
- Oncology department Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - F Ogresta
- Imaxe Radiology Institute, Buenos Aires, Argentina
| | - I Gondolesi
- Medical Student, Facultad de Medicina, Universidad Favaloro, Buenos Aires, Argentina
| | - P Barros Schelotto
- General Surgery, Liver, Intestinal and Pancreas Transplant Services, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - C Musso
- Diabetes Metabolic department, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - G E Gondolesi
- General Surgery, Liver, Intestinal and Pancreas Transplant Services, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina.
- General Surgery Department, and Liver, Pancreas and Intestinal Transplant Units., University Hospital, Favaloro Foundation, Avenida Belgrano 1782, 7mo piso (1093), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Dastamani A, Yau D, Gilbert C, Morgan K, De Coppi P, Craigie RJ, Bomanji J, Biassoni L, Sajjan R, Flanagan SE, Houghton JAL, Senniappan S, Didi M, Dunne MJ, Banerjee I, Shah P. Variation in Glycaemic Outcomes in Focal Forms of Congenital Hyperinsulinism - The UK Perspective. J Endocr Soc 2022; 6:bvac033. [PMID: 35592516 PMCID: PMC9113085 DOI: 10.1210/jendso/bvac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
Context In focal congenital hyperinsulinism (CHI), localized clonal expansion of pancreatic β-cells causes excess insulin secretion and severe hypoglycemia. Surgery is curative, but not all lesions are amenable to surgery. Objective We describe surgical and nonsurgical outcomes of focal CHI in a national cohort. Methods Patients with focal CHI were retrospectively reviewed at 2 specialist centers, 2003-2018. Results Of 59 patients with focal CHI, 57 had heterozygous mutations in ABCC8/KCNJ11 (51 paternally inherited, 6 de novo). Fluorine-18 L-3,4 dihydroxyphenylalanine positron emission tomography computed tomography scan identified focal lesions in 51 patients. In 5 patients, imaging was inconclusive; the diagnosis was established by frozen section histopathology in 3 patients, a lesion was not identified in 1 patient, and 1 declined surgery. Most patients (n = 56) were unresponsive to diazoxide, of whom 33 were unresponsive or partially responsive to somatostatin receptor analog (SSRA) therapy. Fifty-five patients underwent surgery: 40 had immediate resolution of CHI, 10 had persistent hypoglycemia and a focus was not identified on biopsy in 5. In the 10 patients with persistent hypoglycemia, 7 underwent further surgery with resolution in 4 and ongoing hypoglycemia requiring SSRA in 3. Nine (15% of cohort) patients (1 complex surgical access; 4 biopsy negative; 4 declined surgery) were managed conservatively; medication was discontinued in 8 children at a median (range) age 2.4 (1.5-7.7) years and 1 remains on SSRA at 16 years with improved fasting tolerance and reduction in SSRA dose. Conclusion Despite a unifying genetic basis of disease, we report inherent heterogeneity in focal CHI patients impacting outcomes of both surgical and medical management.
Collapse
Affiliation(s)
- Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Clare Gilbert
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Kate Morgan
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Paolo De Coppi
- Department of Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Ross J Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Manchester, UK
| | - Jamshed Bomanji
- Nuclear Medicine Department, UCL Hospitals NHS Foundation Trust, London, UK
| | - Lorenzo Biassoni
- Nuclear Medicine Department, Great Ormond Street Hospital for Children, London, UK
| | - Rakesh Sajjan
- Nuclear Medicine Department, Royal Manchester Children's Hospital, Manchester, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Mark J Dunne
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Pratik Shah
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
27
|
Stanescu DL, Stanley CA. Advances in Understanding the Mechanism of Transitional Neonatal Hypoglycemia and Implications for Management. Clin Perinatol 2022; 49:55-72. [PMID: 35210009 DOI: 10.1016/j.clp.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our lack of basic knowledge about the basic mechanisms of transitional hypoglycemia and other forms of hypoglycemia in newborns underlies the ongoing controversies over standards for managing these conditions. To address this deficiency, the authors evaluated regulation of insulin secretion in fetal, newborn, and adult rats. The results demonstrate that transitional hypoglycemia in normal neonates and persistent hypoglycemia in high-risk infants both reflect altered beta-cell insulin regulation. These findings provide a new foundation for improving detection and management and preventing hypoglycemic brain injury in normal neonates and, especially, in infants with persistent hypoglycemia and genetic forms of congenital hyperinsulinism.
Collapse
Affiliation(s)
- Diana L Stanescu
- Division of Endocrinology, Department of Pediatrics, The Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Charles A Stanley
- Division of Endocrinology, Department of Pediatrics, The Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Razzaghy-Azar M, Saeedi S, Dayani SB, Enayati S, Abbasi F, Hashemian S, Eshraghi P, Karimdadi S, Tajdini P, Vakili R, Amoli MM, Yaghootkar H. Investigating Genetic Mutations in a Large Cohort of Iranian Patients with Congenital Hyperinsulinism. J Clin Res Pediatr Endocrinol 2022; 14:87-95. [PMID: 34927408 PMCID: PMC8900073 DOI: 10.4274/jcrpe.galenos.2021.2021.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) is the most frequent cause of severe and persistent hypoglycaemia from birth. Understanding the pathophysiology and genetic defects behind hyperinsulinism and its complications provides clues to timely diagnosis and management. The aim of this study was to evaluate the underlying genetic aetiology of a specific Iranian pediatric cohort with CHI. METHODS A total of 44 unrelated children, 20 girls and 24 boys, with an initial diagnosis or history of CHI from all regions of Iran were recruited between 2016 and 2019. Targeted next generation sequencing (tNGS) was performed for the genes found in about half of CHI patients. RESULTS Mutations were identified in 24 cases (55%). Patients with a confirmed genetic cause were mainly diagnosed below age of one year old (p=0.01), had fewer other syndromic features, excluding seizure, (p=0.03), were less diazoxide responsive (p=0.04) and were more diazoxide unresponsive leading to pancreatectomy (p=0.007) compared to those with no identified mutations. Among 24 patients with identified genetic mutations, 17 (71%) had a mutation in ABCC8, 3 (12%) in KCNJ11, 3 (12%) in HADH, and 1 patient had a mutation in KMT2D. These included five novel mutations in ABCC8, KCNJ11, and KMT2D. CONCLUSION This is the biggest genetic study of CHI in Iran. A high frequency of recessive forms of CHI, especially HADH mutations, in our study could be due to a high rate of consanguineous marriage. We recommend tNGS to screen for all the CHI genes.
Collapse
Affiliation(s)
- Maryam Razzaghy-Azar
- Tehran University of Medical Sciences, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Metabolic Disorders Research Centre, Tehran, Iran,Iran University of Medical Sciences, H. Aliasghar Hospital, Tehran, Iran
| | - Saeedeh Saeedi
- Tehran University of Medical Sciences, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Metabolic Disorders Research Centre, Tehran, Iran,Tehran University of Medical Sciences, Endocrinology and Metabolism Clinical Sciences Institute, Endocrinology and Metabolism Research Center, Tehran, Iran
| | - Sepideh Borhan Dayani
- Tehran University of Medical Sciences, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Metabolic Disorders Research Centre, Tehran, Iran
| | - Samaneh Enayati
- Tehran University of Medical Sciences, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Metabolic Disorders Research Centre, Tehran, Iran
| | - Farzaneh Abbasi
- Tehran University of Medical Sciences, Children’s Medical Center Hospital, Growth and Development Research Center, Tehran, Iran
| | - Somayyeh Hashemian
- Mashhad University of Medical Sciences, Faculty of Medicine, Akbar Hospital, Department of Pediatric Diseases, Mashhad, Iran
| | - Peyman Eshraghi
- Mashhad University of Medical Sciences, Faculty of Medicine, Akbar Hospital, Department of Pediatric Diseases, Mashhad, Iran
| | - Siroos Karimdadi
- Mashhad University of Medical Sciences, Faculty of Medicine, Akbar Hospital, Department of Pediatric Diseases, Mashhad, Iran
| | - Parisa Tajdini
- Tehran University of Medical Sciences, Children’s Medical Center Hospital, Growth and Development Research Center, Tehran, Iran
| | - Rahim Vakili
- Mashhad University of Medical Sciences, Faculty of Medicine, Akbar Hospital, Department of Pediatric Diseases, Mashhad, Iran
| | - Mahsa M. Amoli
- Tehran University of Medical Sciences, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Metabolic Disorders Research Centre, Tehran, Iran
| | - Hanieh Yaghootkar
- University of Exeter, College of Medicine and Health, Genetics of Complex Traits, London; University of Westminster, School of Life Sciences, Research Centre for Optimal Health, London, England; Luleå University of Technology, Department of Health Sciences, Division of Medical Sciences, Luleå, Sweden,* Address for Correspondence: University of Exeter, College of Medicine and Health, Genetics of Complex Traits, London, England E-mail:
| |
Collapse
|
29
|
Salguero MV, Chan K, Greeley SAW, Dyamenahalli U, Waggoner D, del Gaudio D, Rajiyah T, Lemelman M. Novel KDM6A Kabuki Syndrome Mutation with Hyperinsulinemic Hypoglycemia and Pulmonary Hypertension requiring ECMO. J Endocr Soc 2022; 6:bvac015. [PMID: 35237736 PMCID: PMC8884118 DOI: 10.1210/jendso/bvac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Kabuki syndrome (KS) is a multisystem disorder estimated to occur in 1:32 000 newborns. Pathogenic mutations cause the majority but not all cases of KS in either KMT2D or KDM6A. KS can be suspected by phenotypic features, including infantile hypotonia, developmental delay, dysmorphic features, congenital heart defects, and others. Still, many of these features are not readily apparent in a newborn. Although neonatal hypoglycemia has been reported in 8% to 10% of patients with KS, the incidence and severity of hyperinsulinemic hypoglycemia (HH) is not well-studied. We present a full-term female infant with HH who was responsive to low-dose diazoxide. At 3 months of age, she was admitted for septic shock, worsening respiratory status, and severe pulmonary hypertension, requiring extracorporeal membrane oxygenation support. Her neonatal history was notable for hypotonia, dysphagia with aspiration requiring gastrostomy tube placement, and a cardiac defect—hypoplastic aortic arch requiring aortic arch repair. She has characteristic facial features, including prominent eyelashes, long palpebral fissures, and a short nasal columella. Next-generation sequencing for HH revealed a de novo likely pathogenic missense variant in KDM6A gene: c.3479G > T, p.Gly1160Val that was absent from population databases. Genetic testing for causes of HH should include testing of the KS genes KMT2D and KDM6A. Early detection of the underlying genetic defect will help guide management as all reported HH cases associated with KS have been responsive to diazoxide. Affected infants with underlying cardiac conditions may be at higher risk of serious respiratory complications such as pulmonary hypertension.
Collapse
Affiliation(s)
- Maria V Salguero
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| | - Karen Chan
- Department of Pediatrics, University of Chicago
| | - Siri Atma W Greeley
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| | - Umesh Dyamenahalli
- Department of Pediatrics, Section of Pediatric Cardiology, University of Chicago
| | | | | | - Tara Rajiyah
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| | - Michelle Lemelman
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| |
Collapse
|
30
|
Sharma R, Roy K, Satapathy AK, Kumar A, Nanda PM, Damle N, Houghton JAL, Flanagan SE, Radha V, Mohan V, Jain V. Molecular Characterization and Management of Congenital Hyperinsulinism: A Tertiary Centre Experience. Indian Pediatr 2022. [PMID: 34992182 PMCID: PMC8913199 DOI: 10.1007/s13312-022-2438-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Objective Study design Participants Outcomes Results Conclusions Electronic Supplementary Material
Collapse
Affiliation(s)
- Rajni Sharma
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kakali Roy
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Satapathy
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Anil Kumar
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Pamali Mahasweta Nanda
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Nishikant Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jayne A L Houghton
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Vandana Jain
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India. Correspondence to: Prof Vandana Jain, Division of Pediatric Endocrinology, Room no.3058, Teaching Block, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110 029.
| |
Collapse
|
31
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
32
|
Zhang J, Wang J, Chen H. Case report: Congenital hyperinsulinemia with ABCC8 gene mutations. Front Pediatr 2022; 10:914267. [PMID: 36034573 PMCID: PMC9403267 DOI: 10.3389/fped.2022.914267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Congenital hyperinsulinemia (CHI) is an inherited disease of abnormal insulin secretion and is the main cause of persistent and intractable hypoglycemia in infants. The aim of this case report was to investigate the genetic mechanisms and treatment of CHI in an affected patient. CASE SUMMARY We collected clinical data from, and performed gene capture, high-throughput gene sequencing analysis, and Sanger sequencing validation, in a child with CHI and his family to identify the causative gene mutations. Two heterozygous pathogenic mutations in the ATP-binding cassette subfamily C member 8 (ABCC8) gene were detected in the child: c.863G>A (p.Trp288Ter) in exon 6 and c.2506C>T (p.Arg836Ter) in exon 21. Sanger sequencing showed that c.863G>A was inherited from heterozygous mutations in the paternal line and c.2506C>T from heterozygous mutations in the maternal line. CONCLUSION The child was a CHI with a biallelic recessive heterozygous mutations in ABCC8 resulting in impairment of its encoded ATP-sensitive potassium (KATP) channel, poor response to diazoxide treatment, and developed diabetes after subtotal pancreatectomy.
Collapse
Affiliation(s)
- Jin Zhang
- Gansu Women's and Children's Hospital, Lanzhou, China
| | - Jiyang Wang
- Institute of Systems Engineering, Macao University of Science and Technology, Macao, China
| | - Hui Chen
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Pasquini TLS, Mesfin M, Schmitt J, Raskin J. Global Registries in Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2022; 13:876903. [PMID: 35721728 PMCID: PMC9201947 DOI: 10.3389/fendo.2022.876903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital hyperinsulinism (HI) is the most frequent cause of severe, persistent hypoglycemia in newborn babies and children. There are many areas of need for HI research. Some of the most critical needs include describing the natural history of the disease, research leading to new and better treatments, and identifying and managing hypoglycemia before it is prolonged and causes brain damage or death. Patient-reported data provides a basis for understanding the day-to-day experience of living with HI. Commonly identified goals of registries include performing natural history studies, establishing a network for future product and treatment studies, and supporting patients and families to offer more successful and coordinated care. Congenital Hyperinsulinism International (CHI) created the HI Global Registry (HIGR) in October 2018 as the first global patient-powered hyperinsulinism registry. The registry consists of thirteen surveys made up of questions about the patient's experience with HI over their lifetime. An international team of HI experts, including family members of children with HI, advocates, clinicians, and researchers, developed the survey questions. HIGR is managed by CHI and advised by internationally recognized HI patient advocates and experts. This paper aims to characterize HI through the experience of individuals who live with it. This paper includes descriptive statistics on the birthing experience, hospitalizations, medication management, feeding challenges, experiences with glucose monitoring devices, and the overall disease burden to provide insights into the current data in HIGR and demonstrate the potential areas of future research. As of January 2022, 344 respondents from 37 countries consented to participate in HIGR. Parents or guardians of individuals living with HI represented 83.9% of the respondents, 15.3% were individuals living with HI. Data from HIGR has already provided insight into access challenges, patients' and caregivers' quality of life, and to inform clinical trial research programs. Data is also available to researchers seeking to study the pathophysiology of HI retrospectively or to design prospective trials related to improving HI patient outcomes. Understanding the natural history of the disease can also guide standards of care. The data generated through HIGR provides an opportunity to improve the lives of all those affected by HI.
Collapse
|
34
|
Raskin J, Pasquini TLS, Bose S, Tallis D, Schmitt J. Congenital Hyperinsulinism International: A Community Focused on Improving the Lives of People Living With Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2022; 13:886552. [PMID: 35573986 PMCID: PMC9097272 DOI: 10.3389/fendo.2022.886552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Congenital hyperinsulinism (HI) is a rare disease affecting newborns. HI causes severe hypoglycemia due to the overproduction of insulin. The signs and symptoms of hypoglycemia in HI babies is often not discovered until brain damage has already occurred. Prolonged hypoglycemia from HI can even lead to death. Disease management is often complex with a high burden on caregivers. Treatment options are extremely limited and often require long hospital stays to devise. Cascading from suboptimal treatments and diagnostic practices are a host of other problems and challenges that many with HI and their families experience including continued fear of hypoglycemia and feeding problems. The aim of this paper is (1) to describe the current challenges of living with HI including diagnosis and disease management told from the perspective of people who live with the condition (2), to provide family stories of life with HI, and (3) to share how a rare disease patient organization, Congenital Hyperinsulinism International (CHI) is working to improve the lives of HI patients and their families. CHI is a United States based nonprofit organization with a global focus. The paper communicates the programs the patient advocacy organization has put into place to support HI families through its virtual and in-person gatherings. The organization also helps individuals access diagnostics, medical experts, and treatments. CHI also raises awareness of HI to improve patient outcomes with information about HI and prolonged hypoglycemia in twenty-three languages. CHI drives innovation for new and better treatments by funding research pilot grants, conducting research through the HI Global Registry, and providing patient experience expertise to researchers developing new treatments. The organization is also the sponsor of the CHI Collaborative Research Network which brings medical and scientific experts together for the development of a patient-focused prioritized research agenda.
Collapse
|
35
|
Zhang W, Sang YM. Genetic pathogenesis, diagnosis, and treatment of short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism. Orphanet J Rare Dis 2021; 16:467. [PMID: 34736508 PMCID: PMC8567654 DOI: 10.1186/s13023-021-02088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022] Open
Abstract
Congenital hyperinsulinism (CHI), a major cause of persistent and recurrent hypoglycemia in infancy and childhood. Numerous pathogenic genes have been associated with 14 known genetic subtypes of CHI. Adenosine triphosphate-sensitive potassium channel hyperinsulinism (KATP-HI) is the most common and most severe subtype, accounting for 40–50% of CHI cases. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism (SCHAD-HI) is a rare subtype that accounts for less than 1% of all CHI cases that are caused by homozygous mutations in the hydroxyacyl-coenzyme A dehydrogenase (HADH) gene. This review provided a systematic description of the genetic pathogenesis and current progress in the diagnosis and treatment of SCHAD-HI to improve our understanding of this disease.
Collapse
Affiliation(s)
- Wei Zhang
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Yan-Mei Sang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
36
|
Worth C, Harper S, Salomon-Estebanez M, O'Shea E, Nutter PW, Dunne MJ, Banerjee I. Clustering of Hypoglycemia Events in Patients With Hyperinsulinism: Extension of the Digital Phenotype Through Retrospective Data Analysis. J Med Internet Res 2021; 23:e26957. [PMID: 34435596 PMCID: PMC8590184 DOI: 10.2196/26957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hyperinsulinism (HI) due to excess and dysregulated insulin secretion is the most common cause of severe and recurrent hypoglycemia in childhood. High cerebral glucose use in the early hours results in a high risk of hypoglycemia in people with diabetes and carries a significant risk of brain injury. Prevention of hypoglycemia is the cornerstone of the management of HI, but the risk of hypoglycemia at night or the timing of hypoglycemia in children with HI has not been studied; thus, the digital phenotype remains incomplete and management suboptimal. Objective This study aims to quantify the timing of hypoglycemia in patients with HI to describe glycemic variability and to extend the digital phenotype. This will facilitate future work using computational modeling to enable behavior change and reduce exposure of patients with HI to injurious hypoglycemic events. Methods Patients underwent continuous glucose monitoring (CGM) with a Dexcom G4 or G6 CGM device as part of their clinical assessment for either HI (N=23) or idiopathic ketotic hypoglycemia (IKH; N=24). The CGM data were analyzed for temporal trends. Hypoglycemia was defined as glucose levels <3.5 mmol/L. Results A total of 449 hypoglycemic events totaling 15,610 minutes were captured over 237 days from 47 patients (29 males; mean age 70 months, SD 53). The mean length of hypoglycemic events was 35 minutes. There was a clear tendency for hypoglycemia in the early hours (3-7 AM), particularly for patients with HI older than 10 months who experienced hypoglycemia 7.6% (1480/19,370 minutes) of time in this period compared with 2.6% (2405/92,840 minutes) of time outside this period (P<.001). This tendency was less pronounced in patients with HI who were younger than 10 months, patients with a negative genetic test result, and patients with IKH. Despite real-time CGM, there were 42 hypoglycemic events from 13 separate patients with HI lasting >30 minutes. Conclusions This is the first study to have taken the first step in extending the digital phenotype of HI by describing the glycemic trends and identifying the timing of hypoglycemia measured by CGM. We have identified the early hours as a time of high hypoglycemia risk for patients with HI and demonstrated that simple provision of CGM data to patients is not sufficient to eliminate hypoglycemia. Future work in HI should concentrate on the early hours as a period of high risk for hypoglycemia and must target personalized hypoglycemia predictions. Focus must move to the human-computer interaction as an aspect of the digital phenotype that is susceptible to change rather than simple mathematical modeling to produce small improvements in hypoglycemia prediction accuracy.
Collapse
Affiliation(s)
- Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom.,Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Simon Harper
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Maria Salomon-Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Elaine O'Shea
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Paul W Nutter
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Mark J Dunne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Chen Y, Zhou Y, Wei X, Yang Y, Li X, Xu Y, Liu C, Chen Z. Analysis of miRNA and mRNA expression in the dysregulation of insulin secretion in MIN6 cells exposed to microcystin-leucine-arginine. Toxicon 2021; 201:169-176. [PMID: 34450178 DOI: 10.1016/j.toxicon.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
Microcystin -leucine-arginine (MC-LR), produced by freshwater cyanobacteria, is a potential pancreatic β-cell toxin. In this study, the function of the mouse pancreatic β-cell line, MIN6, was evaluated after MC-LR exposure, and the underlying molecular mechanisms were explored. Exposure to MC-LR for 24 h was found to inhibit cell viability and impair insulin secretion. Such findings indicate that β-cell function would be impaired following MC-LR treatment. The microarray results revealed altered miRNA and mRNA expression profiles that might be responsible for the abnormal function of MIN6 cells. Further, miRNA-gene network analysis demonstrated that miR-29b-3p, miR-6967-5p, miR-3473, miR-7061-5p, Xkr4, Tmem178b, Scp2, Ypel2, and Kcnj11 are key miRNAs and genes in the MC-LR-induced MIN6-cell toxicity. The altered expression levels of several miRNAs (e.g., miR-320-5p, miR-770-5p, miR-99a-3p, and miR-375-5p) and genes (e.g., Pklr and Gpd2) involved in insulin secretion or the onset of diabetes were also identified in MIN6 cells after treatment with MC-LR. Collectively, these findings provide evidence of the toxic effects of MC-LR on β-cells and the underlying molecular mechanisms of its glycometabolism toxicity. MCs may thus possibly play an important role in the development of diabetes mellitus in humans.
Collapse
Affiliation(s)
- Yu Chen
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xiao Wei
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yu Yang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Xingjia Li
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yijiao Xu
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Zhaoyao Chen
- Department of Neurology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
38
|
Yang J, Hammoud B, Li C, Ridler A, Yau D, Kim J, Won KJ, Stanley CA, Hoshi T, Stanescu DE. Decreased KATP Channel Activity Contributes to the Low Glucose Threshold for Insulin Secretion of Rat Neonatal Islets. Endocrinology 2021; 162:6301135. [PMID: 34134142 PMCID: PMC8276892 DOI: 10.1210/endocr/bqab121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of β-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 β cells. The investigation of electrophysiological characteristics of dispersed β cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.
Collapse
Affiliation(s)
- Juxiang Yang
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batoul Hammoud
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abigail Ridler
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daphne Yau
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Junil Kim
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, South Korea
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: Diana Elena Stanescu, MD, The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, 3615 Civic Center Blvd, #802G, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Herrera Azabache K, Muñoz Bermúdez Z, Ferrández Mengual D, Nso-Roca AP. Hiperinsulinismo congénito en tres pacientes de la misma familia. Ampliando el genotipo de esta enfermedad. An Pediatr (Barc) 2021. [DOI: 10.1016/j.anpedi.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Hoermann H, Roeper M, Salimi Dafsari R, Koestner F, Reinauer C, Mayatepek E, Meissner T, Kummer S. Challenges in management of transient hyperinsulinism - a retrospective analysis of 36 severely affected children. J Pediatr Endocrinol Metab 2021; 34:867-875. [PMID: 33860651 DOI: 10.1515/jpem-2020-0639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Transient hyperinsulinism (THI) is a hypoglycemia disorder which resolves spontaneously within the first weeks or months of life. The pathomechanism of THI is not elucidated yet; however, it is known that perinatal stress predisposes for THI. We aimed to characterize the clinical phenotype and treatment of children with THI, and to identify options for improved management. METHODS A retrospective analysis of 36 children with THI treated at the University Children's Hospital Düsseldorf between 2007 and 2019 was performed. RESULTS All children had risk factors for neonatal hypoglycemia or indicators of perinatal stress. Eighty three percent were diagnosed with hypoglycemia on day of life (DOL)1. None of the six diagnosed later had routine blood glucose screening and showed significantly lower blood glucose levels at the time of first blood glucose measurement compared to the children diagnosed on DOL1. Ninety seven percent of all children received intravenous glucose, 42% received continuous glucagon and 81% were started on diazoxide. Diazoxide withdrawal and subsequent fasting tests lacked standardization and were based on clinical experience. Three patients had a subsequent episode of hypoglycemia, after fasting studies only demonstrated "clinical" remission without proving the ability to ketogenesis. CONCLUSIONS Any kind of perinatal stress might pose a risk to develop THI, and postnatal monitoring for hypoglycemia still needs to be improved. Diazoxide is effective in children with THI; however, further studies are needed to guide the development of criteria and procedures for the initiation and discontinuation of treatment. Furthermore, establishing consensus diagnostic criteria/definitions for THI would improve comparability between studies.
Collapse
Affiliation(s)
- Henrike Hoermann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marcia Roeper
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Roschan Salimi Dafsari
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Koestner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
41
|
Sugawara D, Matsuura M, Sato H, Ohashi H, Ichihashi K. 20p11.23-p11.21 deletion in a child with hyperinsulinemic hypoglycemia and GH deficiency: A case report. Clin Pediatr Endocrinol 2021; 30:133-137. [PMID: 34285455 PMCID: PMC8267556 DOI: 10.1297/cpe.30.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/20/2021] [Indexed: 12/04/2022] Open
Abstract
Some neonatal hypoglycemias have genetic origins. For instance, mutation in forkhead box
protein A2 (FOXA2), located on chromosome 20p11.21, has recently been
reported to cause hyperinsulinemic hypoglycemia and hypopituitarism. Here, we report a
case of hyperinsulinemic hypoglycemia and GH deficiency (GHD) with 20p11.23-p11.21
deletion, which included FOXA2. The boy was diagnosed with
hyperinsulinemic hypoglycemia during the neonatal period and subsequently administered
diazoxide for treatment. His blood glucose levels gradually stabilized, and the diazoxide
dosage was slowly reduced and ultimately fully weaned. The patient was discharged at the
age of 29 d. Unfortunately, the patient experienced recurrent hypoglycemia at 3 mo, and
diazoxide administration was re-initiated. Further examination, including chromosomal
microarray analysis, revealed a 2.48-Mb 20p11.23-p11.21 deletion that encompassed
FOXA2. In addition, severe GHD was detected, and magnetic resonance
imaging of the brain revealed pituitary stalk interruption. Accordingly, GH replacement
therapy was started at 0.175 mg/kg/wk, and blood glucose levels were stabilized. Our
report suggests that there are pathological conditions that can cause both
hyperinsulinemic hypoglycemia and hypopituitarism and reaffirms the importance of
evaluating not only insulin and congenital metabolic disorders but also pituitary function
in patients with hypoglycemia.
Collapse
Affiliation(s)
- Daisuke Sugawara
- Department of Pediatrics, Saitama Medical Center Jichi Medical University, Saitama, Japan
| | - Misa Matsuura
- Department of Pediatrics, Saitama Medical Center Jichi Medical University, Saitama, Japan
| | - Hiroaki Sato
- Department of Pediatrics, Saitama Medical Center Jichi Medical University, Saitama, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Ko Ichihashi
- Department of Pediatrics, Saitama Medical Center Jichi Medical University, Saitama, Japan
| |
Collapse
|
42
|
Hastings LA, Preddy J, McCready M, Neville K, Verge CF. Pericardial Effusion Associated with Diazoxide Treatment for Congenital Hyperinsulinism. Horm Res Paediatr 2021; 93:206-211. [PMID: 32580193 DOI: 10.1159/000507624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Diazoxide is widely used to manage congenital hyperinsulinism and is generally well tolerated. Pericardial effusion is not a recognized side effect of diazoxide, apart from 2 single case reports. CASE DESCRIPTION Three patients with congenital hyperinsulinism developed pericardial effusion at the ages of 7 weeks, 8 months, and 17 years. The duration of diazoxide treatment (10-15 mg/kg/day) was 6.5 weeks, 5 months, and 17 years, respectively. There was no evidence of fluid overload or significant other cardiac anomaly. The 7-week-old patient presented with signs of cardiac failure, was treated with diuretics, and the effusion resolved after cessation of diazoxide. The 8-month-old patient required emergency subxiphoid drainage of the effusion due to hemodynamic compromise. The pericardial fluid had high numbers of polymorphonuclear cells, but did not grow any organisms, and histology showed non-specific chronic reactive changes; the effusion did not recur after cessation of diazoxide. The 17-year-old patient presented with atrial fibrillation, was treated with beta blockade and colchicine, and continues on diazoxide with monitoring of the effusion by ultrasound. CONCLUSION Patients on long-term diazoxide treatment may be at risk of pericardial effusion, the timing and significance of which is unpredictable. The duration of diazoxide treatment before presentation of pericardial effusion varied in our patients from weeks to years. We advise serial echocardiography 1-2 months after commencement of diazoxide and annually thereafter.
Collapse
Affiliation(s)
- Lucy A Hastings
- Department of Endocrinology, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - John Preddy
- Rural Medical School Wagga Wagga Campus, University of New South Wales, Wagga Wagga, New South Wales, Australia
| | - Michael McCready
- Rural Medical School Wagga Wagga Campus, University of New South Wales, Wagga Wagga, New South Wales, Australia
| | - Kristen Neville
- Department of Endocrinology, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Charles F Verge
- Department of Endocrinology, Sydney Children's Hospital, Randwick, New South Wales, Australia, .,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia,
| |
Collapse
|
43
|
Djekidel M. 18F-FDOPA and 68Ga-dotatate PET imaging in congenital hyperinsulinism. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:188-195. [PMID: 34234997 PMCID: PMC8255214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Congenital hyperinsulinism (CHI) occurs most commonly in infants but may also be discovered in older children. It presents with recurrent episodes of hypoglycemia due to high endogenous insulin levels. There is a focal and diffuse form of the disease depending on the extent of pancreatic involvement. Hyperplasia of the islet cells results in hyperfunctioning pancreatic β cells and the ensuing clinical disease. Medical treatment fails in several patients and surgery has been shown to be very effective in improving prognosis and even resolution of disease in the focal form. Several genetic mutations have been uncovered and these may also be predictive of prognosis. Anatomical imaging alone including ultrasound, CT and MRI are rarely able to detect any abnormality in the pancreas. PET plays a major role in the distinction between the focal and diffuse forms of the disease. It also guides surgical intervention by providing information on the location of the focal hyperfunctioning islet cells. Imaging children and infants in this disease is quite challenging. We propose to show the benefit of using two PET tracers in this disease. 18F-FDOPA has been used quite successfully in the evaluation of CHI. 68Ga-DOTATATE has also been described to be helpful although inferior to 18F-FDOPA. We illustrate imaging of CHI patients in 3 different scans and briefly review the literature. 18F-FDOPA as described in the literature is superior but when unavailable 68Ga-DOTATATE may be a reasonable alternative.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Division Lead Nuclear Medicine and Molecular Imaging, Department of Diagnostic Imaging, Sidra Medicine Al-Luqta Street, PO Box Number. 26999, Doha, Qatar
| |
Collapse
|
44
|
Cai X, Genchev GZ, He P, Lu H, Yu G. Demographics, in-hospital analysis, and prevalence of 33 rare diseases with effective treatment in Shanghai. Orphanet J Rare Dis 2021; 16:262. [PMID: 34103049 PMCID: PMC8186176 DOI: 10.1186/s13023-021-01830-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rare diseases are ailments which impose a heavy burden on individual patients and global society as a whole. The rare disease management landscape is not a smooth one-a rare disease is quite often hard to diagnose, treat, and investigate. In China, the country's rapid economic rise and development has brought an increased focus on rare diseases. At present, there is a growing focus placed on the importance and public health priority of rare diseases and on improving awareness, definitions, and treatments. METHODS In this work we utilized clinical data from the Shanghai HIE System to characterize the status of 33 rare diseases with effective treatment in Shanghai for the time period of 2013-2016. RESULTS AND CONCLUSION First, we describe the total number of patients, year-to-year change in new patients with diagnosis in one of the target diseases and the distribution of gender and age for the top six (by patient number) diseases of the set of 33 rare diseases. Second, we describe the hospitalization burden in terms of in-hospital ratio, length of stay, and medical expenses during hospitalization. Finally, rare disease period prevalence is calculated for the rare diseases set.
Collapse
Affiliation(s)
- Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Ping He
- Shanghai Hospital Development Center, Shanghai, China
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
45
|
Takasawa K, Miyakawa Y, Saito Y, Adachi E, Shidei T, Sutani A, Gau M, Nakagawa R, Taki A, Kashimada K, Morio T. Marked clinical heterogeneity in congenital hyperinsulinism due to a novel homozygous ABCC8 mutation. Clin Endocrinol (Oxf) 2021; 94:940-948. [PMID: 33595839 DOI: 10.1111/cen.14443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND The most severe forms of congenital hyperinsulinism (CHI) are caused by inactivating mutations of two KATP channel genes, KCNJ11 and ABCC8. Unresponsiveness to diazoxide and need for subtotal pancreatectomy can usually be predicted by genetic form, particularly biallelic mutations in KATP channel genes. A few reports indicated marked clinical heterogeneity in siblings with identical biallelic mutations in ABCC8. The clinical heterogeneity in biallelic KATP CHI was speculated to be caused by epigenetic and environmental factors or related to differences in splicing factor machinery. OBJECTIVE To elucidate the clinical pathophysiology, especially heterogeneity, among three cases with CHI caused by a homogenous novel mutation. PATIENTS AND METHODS We report a case series that includes two siblings and one unrelated individual with CHI caused by a homogenous 1-bp deletion around the splice acceptor site at the exon 35 mutation of ABCC8, which exhibited markedly distinct phenotypes. To assess the effect of the mutation on splicing, we performed digital droplet polymerase chain reaction (ddPCR) on normal pancreas tissue and a patient's lymphocytes. RESULTS ddPCR of ABCC8 cDNA revealed that expression of exon 35 and its upstream and downstream regions did not differ. These data suggested that clinical heterogeneity may not be caused by differences in splicing factor machinery. CONCLUSION The phenotypic variation in homozygotes could not be explained by splicing abnormalities. Though early genetic diagnosis of KATP CHI could contribute to selecting appropriate therapeutic options, more deliberate selection of therapeutic options in diffuse CHI due to biallelic ABCC8 mutations may be required.
Collapse
Affiliation(s)
- Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Miyakawa
- Department of Pediatrics, Kawaguchi Municipal Medical Center, Kawaguchi, Japan
| | - Yoko Saito
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eriko Adachi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsunanori Shidei
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akito Sutani
- Department of Pediatrics, Kawaguchi Municipal Medical Center, Kawaguchi, Japan
| | - Maki Gau
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Nakagawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuko Taki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
46
|
Laimon W, Aboelenin HM, El Tantawi NT. Clinical characteristics, outcome, and predictors of neurological sequelae of persistent congenital hyperinsulinism: A single tertiary center experience. Pediatr Diabetes 2021; 22:388-399. [PMID: 33528087 DOI: 10.1111/pedi.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/09/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
AIM Congenital hyperinsulinism (CHI) is a heterogeneous disease with variable genetic etiology, histopathology, and clinical phenotype. This study aims to describe the clinical characteristics of persistent CHI and evaluate long-term neurological outcome and its risk factors in a cohort of Egyptian children. METHODS Clinical, genetic, and biochemical data of 42 patients with CHI were collected. Patients were invited for neurological assessment, electroencephalogram, and magnetic resonance imaging of the brain. RESULTS ABCC8 mutation was found in (61%) of cases who underwent genetic testing (17/28). Five cases with homozygous biparental ABCC8 mutation responded to combined diazoxide and octreotide without needing surgery. Seven out of twenty-one patients who had pancreatectomy (33%) developed diabetes after a median period of 4.8 (range:1-10) years following surgery. Fifty-five percent of our patients had neurodevelopmental impairment at follow-up. Logistic regression analysis has shown that delayed referral to tertiary centre for more than 8 days, delayed diagnosis of CHI for more than 14 days and hospital admission for more than 30 days, are significant predictors of unfavorable neurological sequelae in CHI; (OR = 12.7 [2.56], p = 0.001), (OR = 12.7 [2.9-56], p = 0.001), and (OR = 3.8 [0.14.5], p = 0.043), respectively. CONCLUSIONS ABCC8 mutation was the commonest genetic mutation underlying CHI in this study group. CHI cases with biparental homozygous ABCC8 mutation may show response to combined octreotide and diazoxide therapy. More than half of our patients had neurodevelopmental impairment at follow-up. Delayed referral to expert centre, delayed diagnosis and longer hospital stay are significant predictors of neurological disability in CHI cases.
Collapse
Affiliation(s)
- Wafaa Laimon
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Hadil Mohamed Aboelenin
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Noha T El Tantawi
- Pediatric Neurology Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, Mansoura, Egypt
| |
Collapse
|
47
|
Sethuram S, Sperling MA, Gujral J, Romero CJ. Neonatal hyperinsulinism in transient and classical forms of tyrosinemia. Orphanet J Rare Dis 2021; 16:190. [PMID: 33910593 PMCID: PMC8082838 DOI: 10.1186/s13023-020-01642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spectrum of disorders associated with hyperinsulinemic hypoglycemia (HHI) has vastly increased over the past 20 years with identification of molecular, metabolic and cellular pathways involved in the regulation of insulin secretion and its actions. Hereditary tyrosinemia (HT1) is a rare metabolic disorder associated with accumulation of toxic metabolites of the tyrosine pathway due to a genetically mediated enzyme defect of fumarylacetoacetate hydrolase. Transient tyrosinemia of the newborn (TTN) is a benign condition with a maturational defect of the enzymes associated with tyrosine metabolism without any genetic abnormalities. RESULTS We describe two rare cases of HHI, one in a patient with HT1 and for the first time, in a patient with TTN. Each of our patients presented in the neonatal period with persistent hypoglycemia that on biochemical evaluation was consistent with HHI. Each patient received diazoxide therapy for 3.5 months and 17 months of life, respectively and HHI resolved thereafter. CONCLUSION Despite the fact that HHI has been described in HT1 for several decades, no specific mechanism has been delineated. Although we considered the common embryonal origin of the liver and pancreas with the hepatotoxic effect in HT1 also impacting the latter, this was not a possible explanation for TTN. The commonality between our two patients is the accumulation of certain amino acids which are known to be insulinotropic. We therefore hypothesize that the excess of amino acids such as leucine, lysine, valine and isoleucine in our patients resulted in HHI, which was transient. Both patients responded to diazoxide. This novel presentation in TTN and the reassuring response in both HT1 and TTN to diazoxide will be useful to inform physicians about managing HHI in these patients. Further studies are required to delineate the mechanism of HHI in these infants.
Collapse
Affiliation(s)
- Swathi Sethuram
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1616, New York, NY, 10029, USA.
| | - Mark A Sperling
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1616, New York, NY, 10029, USA
| | - Jasmine Gujral
- Division of Pediatric Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher J Romero
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1616, New York, NY, 10029, USA
| |
Collapse
|
48
|
Amaratunga SA, Hussein Tayeb T, Rozenkova K, Kucerova P, Pruhova S, Lebl J. Congenital Hyperinsulinism Caused by Novel Homozygous KATP Channel Gene Variants May Be Linked to Unexplained Neonatal Deaths among Kurdish Consanguineous Families. Horm Res Paediatr 2021; 93:58-65. [PMID: 32203961 DOI: 10.1159/000506476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Neonatal hypoglycemia due to congenital hyperinsulinism (CHI) is a potentially life-threatening condition. Biallelic pathogenic variants in KATP channel subunit genes (ABCC8, KCNJ11), causing severe forms of CHI, are more prevalent in regions with a significant rate of consanguinity and may lead to unexplained neonatal deaths. We hypothesized that KATP channel gene variants are the cause of CHI in three unrelated children from consanguineous Kurdish families with histories of four unexplained neonatal deaths with convulsions. CASES (1) A girl presented on the 6th day of life with recurrent hypoglycemic convulsions (blood glucose 2.05 mmol/L, insulin 58 mIU/L, C-peptide 2,242 pmol/L). (2) A girl with severe developmental delay was diagnosed with CHI at 3 years of age (blood glucose 2.78 mmol/L, insulin 8.1 mIU/L, C-peptide 761 pmol/L) despite a history of recurrent hypoglycemia since neonatal age. (3) A girl presented at 3 weeks of age with convulsions and unconsciousness (blood glucose 2.5 mmol/L, insulin 14.6 mIU/L, C-peptide 523 pmol/L). Coding regions of the ABCC8 and KCNJ11 genes were tested by Sanger sequencing. Potential variants were evaluated using the American College of Medical Genetics standards. Three novel causative homozygous variants were found - p.Trp514Ter in the ABCC8 gene (Pt2), and p.Met1Val (Pt1) and p.Tyr26Ter (Pt3) in the KCNJ11 gene. CONCLUSION CHI caused by KATP channel variants was elucidated in three children, providing a highly probable retrospective diagnosis for their deceased siblings. Future lives can be saved by timely diagnosis of CHI when encountering a neonate with unexplained seizures or other signs of recurrent and/or persistent hypoglycemia.
Collapse
Affiliation(s)
- Shenali Anne Amaratunga
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia,
| | - Tara Hussein Tayeb
- Department of Pediatrics, Sulaymani University, College of Medicine, Sulaymani, Iraq
| | - Klara Rozenkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Petra Kucerova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
49
|
Herrera Azabache K, Muñoz Bermúdez Z, Ferrández Mengual D, Nso-Roca AP. Congenital hyperinsulinism in three patients from the same family. Expanding the genotype of this disease. An Pediatr (Barc) 2021; 95:123-124. [PMID: 34373074 DOI: 10.1016/j.anpede.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 10/21/2022] Open
Affiliation(s)
| | | | | | - Ana Pilar Nso-Roca
- Endocrinología Infantil. Hospital Universitario San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
50
|
Sims K. Congenital Hyperinsulinism. Neoreviews 2021; 22:e230-e240. [PMID: 33795398 DOI: 10.1542/neo.22-4-e230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is fairly common in neonates, particularly those born to diabetic mothers and those who are either large or small for gestational age. Immediate management of the disease focuses on achieving normoglycemia through frequent high-calorie feedings and/or intravenous glucose administration. Glucagon may be used for unstable infants in whom intravenous access cannot be obtained and enteral feedings cannot be administered. HH that persists despite these interventions should raise concern for congenital hyperinsulinism (CHI), prompting clinicians to perform a thorough evaluation. CHI consists of a group of genetic disorders in which inappropriate insulin secretion results in persistent hypoglycemia. Defects can occur in the various genes that regulate the pathway for insulin secretion in the pancreatic β-cells. Pharmacologic therapies are used for long-term management of the disease coupled with either curative or therapeutic surgical intervention. Because of the developing brain's high demand for glucose, these infants are at increased risk for hypoglycemic brain injury. This review will describe the pathogenesis of CHI, outlining the more common genetic mutations and associated syndromes. We will also discuss the clinical presentation, diagnosis, and management of CHI while providing insight into the overall prognosis.
Collapse
|