1
|
Noroozzadeh M, Rahmati M, Amiri M, Saei Ghare Naz M, Azizi F, Ramezani Tehrani F. Preconceptional maternal hyperandrogenism and metabolic syndrome risk in male offspring: a long-term population-based study. J Endocrinol Invest 2024; 47:2731-2743. [PMID: 38647948 DOI: 10.1007/s40618-024-02374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE There is limited research on the effects of maternal hyperandrogenism (MHA) on cardiometabolic risk factors in male offspring. We aimed to compare the risk of metabolic syndrome (MetS) in sons of women with preconceptional hyperandrogenism (HA) to those of non-HA women in later life. METHODS Using data obtained from the Tehran Lipid and Glucose Cohort Study, with an average of 20 years follow-up, 1913 sons were divided into two groups based on their MHA status, sons with MHA (n = 523) and sons without MHA (controls n = 1390). The study groups were monitored from the baseline until either the incidence of events, censoring, or the end of the study period, depending on which occurred first. Age-scaled unadjusted and adjusted Cox regression models were utilized to evaluate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between MHA and MetS in their sons. RESULTS There was no significant association between MHA and HR of MetS in sons with MHA compared to controls, even after adjustment (unadjusted HR (95% CI) 0.94 (0.80-1.11), P = 0.5) and (adjusted HR (95% CI) 0.98 (0.81-1.18), P = 0.8). Sons with MHA showed a HR of 1.35 for developing high fasting blood sugar compared to controls (unadjusted HR (95% CI) 1.35 (1.01-1.81), P = 0.04), however, after adjustment this association did not remain significant (adjusted HR (95% CI) 1.25 (0.90-1.74), P = 0.1). CONCLUSION The results suggest that preconceptional MHA doesn't increase the risk of developing MetS in sons in later life. According to this suggestion, preconceptional MHA may not have long-term metabolic consequences in male offspring.
Collapse
Affiliation(s)
- M Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, Vestavia Hills, AL, USA
| | - M Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- The Foundation for Research & Education Excellence, Vestavia Hills, AL, USA.
| |
Collapse
|
2
|
Koceva A, Herman R, Janez A, Rakusa M, Jensterle M. Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications. Int J Mol Sci 2024; 25:7342. [PMID: 39000449 PMCID: PMC11242171 DOI: 10.3390/ijms25137342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity, primarily characterized by excessive fat accumulation, is a multifactorial chronic disease with an increasing global prevalence. Despite the well-documented epidemiology and significant advances in understanding its pathophysiology and clinical implications, the impact of sex is typically overlooked in obesity research. Worldwide, women have a higher likelihood to become obese compared to men. Although women are offered weight loss interventions more often and at earlier stages than men, they are more vulnerable to psychopathology. Men, on the other hand, are less likely to pursue weight loss intervention and are more susceptible to the metabolic implications of obesity. In this narrative review, we comprehensively explored sex- and gender-specific differences in the development of obesity, focusing on a variety of biological variables, such as body composition, fat distribution and energy partitioning, the impact of sex steroid hormones and gut microbiota diversity, chromosomal and genetic variables, and behavioural and sociocultural variables influencing obesity development in men and women. Sex differences in obesity-related comorbidities and varying effectiveness of different weight loss interventions are also extensively discussed.
Collapse
Affiliation(s)
- Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Center Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matej Rakusa
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Noroozzadeh M, Rahmati M, Farhadi-Azar M, Saei Ghare Naz M, Azizi F, Ramezani Tehrani F. Maternal androgen excess increases the risk of metabolic syndrome in female offspring in their later life: A long-term population-based follow-up study. Arch Gynecol Obstet 2023; 308:1555-1566. [PMID: 37422863 DOI: 10.1007/s00404-023-07132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Hyperandrogenic intrauterine environment may lead to the development of metabolic disorders in offspring in their later life. In this study, we aimed to determine the impact of maternal hyperandrogenism (MHA) on metabolic syndrome (MetS) risk in female offspring in their later life. METHODS In this cohort study conducted in Tehran, Iran, female offspring with MHA (n = 323) and without MHA (controls) (n = 1125) were selected. Both groups of female offspring were followed from the baseline to the date of the incidence of events, censoring, or end of the study period, whichever came first. We used age-scaled unadjusted and adjusted Cox regression models to assess the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between MHA and MetS in female offspring. The software package STATA was used for statistical analysis, and the significance level was set at P < 0.05. RESULTS We observed a higher risk of MetS (unadjusted HR (95% CI), 1.36 (1.05-1.77)), (P = 0.02) and (adjusted HR (95% CI), 1.34 (1.00-1.80)), (P = 0.05, borderline)), in female offspring with MHA, compared to controls. The results were adjusted for the potential confounders including body mass index (BMI) at baseline, net changes of BMI, physical activity, education status, and birth weight. CONCLUSION Our results suggest that MHA increases the risk of developing MetS in female offspring in their later life. Screening of these female offspring for MetS may be recommended.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Mahbanoo Farhadi-Azar
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Marzieh Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran.
| |
Collapse
|
4
|
Lasley BL. Early exposure to wildfire smoke can lead to birth defects. FRONTIERS IN TOXICOLOGY 2023; 5:1050555. [PMID: 36911227 PMCID: PMC9998912 DOI: 10.3389/ftox.2023.1050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
The results of two previously published reports of the events and impacts of the Campfire wildfire smoke exposure that occurred in California in 2018 are amplified from the point of view of the potential toxic mechanism involved. The Campfire wildfire led to the exposure of a breeding colony of macaque monkeys (Macaca mulatta) during the peak of their breeding season in 2018-2019. Considering the timing, adverse effects, and endocrine implications reported, the cumulative evidence points to an early toxic sensitive period that can lead to birth defects in higher primates and human pregnancies. This deeper inspection of the published observations provides important caveats and useful guidance for future investigators. The unique higher primate placental-adrenal-brain axis may limit the use of many traditional toxicologic approaches. Retrospective neurological evaluations of human fetuses exposed to air pollutants during organogenesis and subsequent retrospective characterization of air samples using in vitro and animal models may be the best procedures to follow.
Collapse
Affiliation(s)
- Bill L. Lasley
- Center for Health and the Environment, University of California, Davis, CA, United States
| |
Collapse
|
5
|
Ramamoorthi Elangovan V, Saadat N, Ghnenis A, Padmanabhan V, Vyas AK. Developmental programming: adverse sexually dimorphic transcriptional programming of gestational testosterone excess in cardiac left ventricle of fetal sheep. Sci Rep 2023; 13:2682. [PMID: 36792653 PMCID: PMC9932081 DOI: 10.1038/s41598-023-29212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Adverse in-utero insults during fetal life alters offspring's developmental trajectory, including that of the cardiovascular system. Gestational hyperandrogenism is once such adverse in-utero insult. Gestational testosterone (T)-treatment, an environment of gestational hyperandrogenism, manifests as hypertension and pathological left ventricular (LV) remodeling in adult ovine offspring. Furthermore, sexual dimorphism is noted in cardiomyocyte number and morphology in fetal life and at birth. This study investigated transcriptional changes and potential biomarkers of prenatal T excess-induced adverse cardiac programming. Genome-wide coding and non-coding (nc) RNA expression were compared between prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30 to 90 of gestation; Term: 147 days) and control ovine LV at day 90 fetus in both sexes. Prenatal T induced differential expression of mRNAs in the LV of female (2 down, 5 up) and male (3 down, 1 up) (FDR < 0.05, absolute log2 fold change > 0.5); pathways analysis demonstrated 205 pathways unique to the female, 382 unique to the male and 23 common pathways. In the male, analysis of ncRNA showed differential regulation of 15 lncRNAs (14 down, 1 up) and 27 snoRNAs (26 down and 1 up). These findings suggest sexual dimorphic modulation of cardiac coding and ncRNA with gestational T excess.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Arpita K Vyas
- College of Medicine, California Northstate University, Elk Grove, CA, USA.
- Department of Pediatrics, Division of Pediatric Endocrinology, School of Medicine, Washington University, St Louis, MO, USA.
| |
Collapse
|
6
|
Noroozzadeh M, Rahmati M, Behboudi-Gandevani S, Ramezani Tehrani F. Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: a long-term population-based follow-up study. J Endocrinol Invest 2022; 45:963-972. [PMID: 35043365 DOI: 10.1007/s40618-021-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Adverse intrauterine environment may predispose offspring to cardio-metabolic dysfunction in later life. In this study, we aimed to investigate the effects of maternal hyperandrogenism (MH) on cardio-metabolic risk factors in female offspring in later life. METHODS This prospective population-based study included 211 female offspring with MH and 757 female offspring without MH (controls). Both groups were followed from baseline to the date of incidence of events, censoring, or end of the study period, whichever came first. Age scaled unadjusted and adjusted cox regression models were applied to assess the hazard ratios (HR) and 95% confidence intervals (CIs) for the association of MH with pre-diabetes (pre-DM), type 2 diabetes mellitus (T2DM), overweight and obesity in offspring of both groups. Statistical analysis was performed using the software package STATA; significance level was set at P < 0.05. RESULTS This study revealed a higher risk of T2DM (unadjusted HR 2.67, 95% CI 1.33-5.36) and overweight (unadjusted HR 1.41, 95% CI 1.06-1.88) in female offspring with MH, compared to controls. Results remained unchanged after adjustment for potential confounders including body mass index, education, physical activity, mother's age at delivery, birth weight, and childhood obesity. However, no significant difference was observed in the risk of pre-DM and obesity in females with MH, compared to controls in both unadjusted and adjusted models. CONCLUSION This pioneer study with a long-term follow-up demonstrated that MH increases the risk of developing T2DM and being overweight in female offspring in later life. Further long-term population-based studies are needed to confirm these findings.
Collapse
Affiliation(s)
- M Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran
| | - M Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran
| | | | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran.
| |
Collapse
|
7
|
Kim J, Tan LJ, Jung H, Roh Y, Lim K, Shin S. Association between fruit and vegetable consumption and metabolic syndrome in South Korean adults: does multivitamin use matter? Epidemiol Health 2022; 44:e2022039. [DOI: 10.4178/epih.e2022039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
|
8
|
Ghnenis A, Padmanabhan V, Vyas A. Sexual dimorphism in testosterone programming of cardiomyocyte development in sheep. Am J Physiol Heart Circ Physiol 2022; 322:H607-H621. [PMID: 35119334 PMCID: PMC8957338 DOI: 10.1152/ajpheart.00691.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Perturbed in utero hormone milieu leads to intrauterine growth retardation (IUGR), a known risk factor for left ventricular (LV) dysfunction later in life. Gestational testosterone (T) excess predisposes offspring to IUGR and leads to LV myocardial disarray and hypertension in adult females. However, the early impact of T excess on LV programming and if it is female specific is unknown. LV tissues were obtained at day 90 gestation from days 30-90 T-treated or control fetuses (n = 6/group/sex) and morphometric and molecular analyses were conducted. Gestational T treatment increased cardiomyocyte number only in female fetuses. T excess upregulated receptor expression of insulin and insulin-like growth factor. Furthermore, in a sex-specific manner, T increased expression of phosphatidylinositol 3-kinase (PI3K) while downregulating phosphorylated mammalian target of rapamycin (pmTOR)-to-mTOR ratio suggestive of compensatory response. T excess 1) upregulated atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), markers of stress and cardiac hypertrophy and 2) upregulated estrogen receptors1 (ESR1) and 2 (ESR2), but not in androgen receptor (AR). Thus, gestational T excess upregulated markers of cardiac stress and hypertrophy in both sexes while inducing cardiomyocyte hyperplasia only in females, likely mediated via insulin and estrogenic programming.NEW & NOTEWORTHY The present study demonstrates sex-specific effects of gestational T excess between days 30 and 90 of gestation on the cardiac phenotype. Furthermore, the sex-specific programming is likely secondary to perturbation in both estrogen and insulin signaling pathways collectively. These findings are supportive of the role of androgen excess to serve as early biomarkers of CVD and could be critical in identifying therapeutic targets for LV hypertrophy and predict long-term CVD.
Collapse
Affiliation(s)
- Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Arpita Vyas
- College of Human Medicine, California Northstate University, Elk Grove, California
| |
Collapse
|
9
|
Huang G, Aroner SA, Bay CP, Gilman SE, Ghassabian A, Loucks EB, Buka SL, Handa RJ, Lasley BL, Bhasin S, Goldstein JM. Sex-dependent associations of maternal androgen levels with offspring BMI and weight trajectory from birth to early childhood. J Endocrinol Invest 2021; 44:851-863. [PMID: 32776198 PMCID: PMC7873156 DOI: 10.1007/s40618-020-01385-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 01/06/2023]
Abstract
CONTEXT In preclinical studies, high androgen levels during pregnancy are associated with low birth weight and rapid postnatal weight gain in the offspring. However, human data linking prenatal androgens with birth weight and early life weight gain in the offspring are scarce. DESIGN We evaluated 516 mother-child pairs enrolled in the New England birth cohorts of the Collaborative Perinatal Project (1959-1966). We assayed androgen bioactivity in maternal sera during third-trimester using a receptor-mediated luciferase expression bioassay. Age and sex-specific BMI Z-scores (BMIz), defined using established standards, were assessed at birth, 4 months, 1 year, 4 years, and 7 years. We used linear mixed models to evaluate the relation of maternal androgens with childhood BMIz overall and by sex. We examined the association of maternal androgens with fetal growth restriction. The association of weight trajectories with maternal androgens was examined using multinomial logistic regression. RESULTS Higher maternal androgen levels associated with lower BMIz at birth (β = - 0.39, 95% CI: - 0.73, - 0.06); this relation was sex-dependent, such that maternal androgens significantly associated with BMIz at birth in girls alone (β = - 0.72, 95% CI: - 1.40, - 0.04). The relation of maternal androgens with fetal growth restriction revealed dose threshold effects that differed by sex. There was no significant association between maternal androgens and weight trajectory overall. However, we found a significant sex interaction (p = 0.01); higher maternal androgen levels associated with accelerated catch-up growth in boys (aOR = 2.14, 95% CI: 1.14, 4.03). CONCLUSION Our findings provide evidence that maternal androgens may have differential effects on the programming of intrauterine growth and postnatal weight gain depending on fetal sex.
Collapse
Affiliation(s)
- G Huang
- Section of Men's Health, Aging and Metabolism, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - S A Aroner
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - C P Bay
- Center for Clinical Investigation, Brigham and Women's Hospital, Boston, MA, USA
| | - S E Gilman
- Social and Behavioral Sciences Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Ghassabian
- Departments of Pediatrics, Environmental Medicine, and Population Health, New York University School of Medicine, New York, NY, USA
| | - E B Loucks
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - S L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - R J Handa
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - B L Lasley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Obstetrics and Gynecology, School of Medicine, Center for Health and the Environment, University of California Davis, Davis, CA, USA
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - S Bhasin
- Section of Men's Health, Aging and Metabolism, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Uji T, Wada K, Yamakawa M, Koda S, Nakashima Y, Onuma S, Nagata C. Birth month and mortality in Japan: a population-based prospective cohort study. Chronobiol Int 2021; 38:1023-1031. [PMID: 33792442 DOI: 10.1080/07420528.2021.1903482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiologic studies investigating the association between birth season and risk of mortality in adulthood are limited and have yielded inconclusive results. We aimed to examine the relationship between birth month and all-cause and cause-specific mortality, after controlling for potential confounders, including lifestyle and medical factors, in a population-based cohort study in Japan. We included 28,884 subjects (13,262 men and 15,622 women) from Takayama City, aged 35 years or older without cancer, stroke, and ischemic heart disease, who were born in Japan at baseline. Participants who were enrolled in 1992 were followed up for over 16 years. Information including place of birth, lifestyles, and medical history was obtained from a baseline questionnaire. We performed a Cox proportional hazards analysis to determine the association between birth month and all-cause and cause-specific mortality after adjusting for potential confounders. During the follow-up period (mean follow-up: 14.1 years), 5,303 deaths (2,881 men and 2,422 women) were identified. After controlling for multiple covariates, it was found that being born in April or June was associated with an increased risk of all-cause mortality compared to being born in January (hazard ratio [HR] 1.138; 95% confidence interval [CI], 1.006-1.288 and HR 1.169; 95% CI, 1.028-1.329, respectively). The HRs for cardiovascular mortality were significantly higher in participants born in March and May (HR 1.285; 95% CI, 1.056-1.565 and HR 1.293; 95% CI, 1.040-1.608, respectively). Our findings indicate that an individual's birth month may be an indicator of the susceptibility to mortality in later life.
Collapse
Affiliation(s)
- Takahiro Uji
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Sachi Koda
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuma Nakashima
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Sakiko Onuma
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
11
|
Irakoze L, Manirakiza A, Zhang Y, Liu J, Li J, Nkengurutse L, Deng S, Xiao X. Metabolic Syndrome in Offspring of Parents with Metabolic Syndrome: A Meta-Analysis. Obes Facts 2021; 14:148-162. [PMID: 33508842 PMCID: PMC7983676 DOI: 10.1159/000513370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The metabolic syndrome (MetS) represents a clustering of risk factors for cardiovascular diseases that includes abdominal obesity, hypertension, dyslipidemia, and insulin resistance. OBJECTIVES The objective of this study was to reassess the parent-offspring association of MetS since the available findings are still controversial. METHODS The Cochrane Library, PubMed, Embase, and Web of Science databases were searched to identify relevant articles. All studies comparing MetS status between the offspring of parents with MetS and offspring of parents without MetS were included in the analysis. RESULTS A total of 9 studies met the inclusion criteria and they were analyzed. Offspring of at least 1 parent with MetS had a higher risk of MetS (OR 3.88, 95% CI 2.58-5.83, p < 0.001). Sons and daughters of fathers with MetS both had a higher risk of MetS (OR 2.31, 95% CI 1.70-3.12, p < 0.001, and OR 1.73, 95% CI 1.37-2.18, p < 0.001, respectively). Sons and daughters of mothers with MetS both had a higher risk of MetS (OR 1.95, 95% CI 1.37-2.76, p = 0.0002, and OR 1.91, 95% CI 1.54-2.35, p < 0.001, respectively). CONCLUSION This meta-analysis showed that there is a higher risk of MetS in the offspring of parents with MetS. However, there was no differential association of MetS according to gender and/or age of the offspring.
Collapse
Affiliation(s)
- Laurent Irakoze
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Kamenge Military Hospital, Ministry of Public Health and Fighting AIDS, Bujumbura, Burundi
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Astère Manirakiza
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqi Zhang
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncheng Liu
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liliane Nkengurutse
- Ministry of Public Health and Fighting AIDS, Epidemiological Emergency Service, Bujumbura, Burundi
| | - Shuhua Deng
- Department of Respiratory Medicine, Chengdu First People's Hospital, Chengdu, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
12
|
Hwang SS, Dukhovny D, Gopal D, Cabral H, Farland LV, Stern JE. Sex differences in infant health following ART-treated, subfertile, and fertile deliveries. J Assist Reprod Genet 2020; 38:211-218. [PMID: 33185819 DOI: 10.1007/s10815-020-02004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Among infants following ART-treated, subfertile, and fertile deliveries to determine (1) the presence and magnitude of sex differences in health outcomes and (2) whether the presence of sex differences varied among maternal fertility groups. METHODS Retrospective cohort analysis of infants born in Massachusetts (MA) in 2004-2013 who were conceived by ART. The Society for Assisted Reproductive Technology Clinic Outcome Reporting System was linked to the Pregnancy to Early Life Longitudinal data system, which links birth certificates to hospital discharge records for MA mothers and infants. Included were singletons born via ART-treated, subfertile, and fertile deliveries. Multivariable logistic regression was used to model the association between infant sex and health outcomes, controlling for maternal demographic and health characteristics. RESULTS A total of 16,034 ART-treated, 13,277 subfertile, and 620,375 fertile singleton live births were included. For all three groups, males had greater odds of being preterm (AOR range 1.15-1.2), having birth defects (AOR range 1.31-1.71), experiencing respiratory (AOR range 1.33-1.35) and neurologic (AOR range 1.24-1.3) conditions, and prolonged hospital stay (AOR range 1.19-1.25) compared to females. The interaction between maternal fertility group and infant sex for all infant outcomes was nonsignificant, denoting that the presence of sex differences among fertile, subfertile, and ART groups did not vary. CONCLUSION Sex differences in birth outcomes of infants following ART-treated, subfertile, and fertile deliveries exist but the magnitude of these differences does not vary among these maternal fertility groups.
Collapse
Affiliation(s)
- Sunah S Hwang
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, 13121 East 17th Avenue, Education 2 South, Mailstop 8402, Aurora, CO, 80045, USA.
| | - Dmitry Dukhovny
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Daksha Gopal
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Howard Cabral
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Leslie V Farland
- Departmet of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Judy E Stern
- Department of Obstetrics and Gynecology and Pathology, Dartmouth-Hitchcock, Lebanon, NH, USA
| |
Collapse
|
13
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci Rep 2019; 9:19232. [PMID: 31848372 PMCID: PMC6917716 DOI: 10.1038/s41598-019-55291-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major reproductive disorder that is responsible for 80% of anovulatory infertility and that is associated with hyperandrogenemia, increased risk of obesity, and white adipose tissue (WAT) dysfunction. We have previously demonstrated that the combination of chronic testosterone (T) treatment and an obesogenic Western-style diet (WSD) exerts synergistic functional effects on WAT, leading to increased lipid accumulation in visceral adipocytes by an unknown mechanism. In this study, we examined the whole-genome transcriptional response in visceral WAT to T and WSD, alone and in combination. We observed a synergistic effect of T and WSD on gene expression, resulting in upregulation of lipid storage genes concomitant with adipocyte hypertrophy. Because DNA methylation is known to be associated with body fat distribution and the etiology of PCOS, we conducted whole-genome DNA methylation analysis of visceral WAT. While only a fraction of differentially expressed genes also exhibited differential DNA methylation, in silico analysis showed that differentially methylated regions were enriched in transcription factor binding motifs, suggesting a potential gene regulatory role for these regions. In summary, this study demonstrates that hyperandrogenemia alone does not induce global transcriptional and epigenetic response in young female macaques unless combined with an obesogenic diet.
Collapse
|