1
|
Li J, Cui HL, Xie DD, Wang QY, Luo C, Tian L, Shi LK, Sheng ZF. Global and regional estimates of hip fracture burden associated with type 1 diabetes from 1990 to 2021. Diabetes Obes Metab 2024. [PMID: 39323371 DOI: 10.1111/dom.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
AIM To assess the global and regional burden of hip fractures associated with type 1 diabetes (T1D) from 1990 to 2021. MATERIALS AND METHODS The population attributable fraction was calculated by combining the published risk ratio with T1D prevalence (age ≥ 20 years) from the Global Burden of Disease study to estimate the T1D-associated hip-fracture burden. Trends were assessed using the age-standardized incidence rate (ASIR) and estimated annual percentage change (EAPC). RESULTS The global incidence of T1D-related hip fractures was 290 180 in 2021 with an ASIR of 3.96 (95% confidence interval: 1.92-5.87) per 100 000 population and a male-to-female ratio of 0.54. At the super-regional level, the highest incidence (204 610) and ASIR (13.09 per 100 000 population; 6.40-25.53) were observed in high-income regions, in particular in Australasia and Western Europe. Notably, Australasia exhibited the highest EAPC, 2.90% in T1D-associated ASIR, followed by East Asia (2.73%). The incidence among those aged 45-64 years grew significantly in 14 regions over the past decade. Nationally, the ASIR increased in 166 countries from 1990 to 2021. CONCLUSIONS High-income regions experienced the greatest burden of T1D-associated hip fracture, while Australasia and East Asia witnessed the largest increase over the last 32 years. Prioritizing the promotion of T1D treatment and hip-fracture screening for middle-aged females living with T1D is crucial in these regions.
Collapse
Affiliation(s)
- Jing Li
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao-Liang Cui
- School of Public Health, Peking University, Beijing, China
| | - Dan-Dan Xie
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, China
- Department of Clinical Nutrition, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qin-Yi Wang
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuo Luo
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Tian
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin-Ke Shi
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-Feng Sheng
- Health Management Center, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Clinical Medicine Research Center for Intelligent Management of Chronic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Topkaya MS, Akın O, Cömert TK. Does metabolic control of the disease related with bone turnover markers in children with type 1 diabetes mellitus in Turkey? BMC Endocr Disord 2024; 24:89. [PMID: 38872156 DOI: 10.1186/s12902-024-01553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The aim was to evaluate the effect of metabolic control on bone biomarkers in children with type I diabetes. MATERIALS AND METHODS The children were divided into two groups according to their glycated hemoglobin (HbA1c) (%) levels: a group with HbA1c levels < 8% (n = 16) and: a group with HbA1c levels > 8% (n = 18). The serum total oxidative status (TOS) (µmol/L), total antioxidant status (TAS) (mmol/L), alkaline phosphatase (ALP) (IU/L), osteocalcin (OC) (ng/ml), procollagen type-1-N-terminal peptide (P1NP) (ng/ml), and vitamin D (IU) levels and food consumption frequencies were determined. RESULTS When patients were classified according to HbA1c (%) levels, those with HbA1c levels < 8% were found to have lower TOS (µmol/L) values (8.7 ± 6.16, 9.5 ± 5.60) and higher serum OC (ng/mL) (24.2 ± 16.92, 22.0 ± 6.21) levels than those with HbA1c levels > 8% (p < 0.05). Regardless of the level of metabolic control, there was a statistically significant association between serum TOS (µmol/L) and P1NP (ng/ml) (p < 0.05) levels, with no group-specific relationship (HbA1c levels <%8 or HbA1c levels >%8). CONCLUSION HbA1c and serum TOS levels had an effect on bone turnover biomarkers in individuals with type I diabetes.
Collapse
Affiliation(s)
- Merve Sena Topkaya
- Department of Nutrition and Dietetics, Gülhane Health Sciences Institute, Health Sciences University, Ankara, Turkey
| | - Onur Akın
- Specialist of Pediatric Endocrinology, Department of Pediatric Endocrinology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Tuğba Küçükkasap Cömert
- Department of Nutrition and Dietetics, Gülhane Health Sciences Institute, Health Sciences University, Ankara, Turkey.
| |
Collapse
|
3
|
Rubin MR, Dhaliwal R. Role of advanced glycation endproducts in bone fragility in type 1 diabetes. Bone 2024; 178:116928. [PMID: 37802378 DOI: 10.1016/j.bone.2023.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The excess fracture risk observed in adults with type 1 diabetes (T1D) is inexplicable in the presence of only modest reductions in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been invoked as one explanation for the increased bone fragility in diabetes. The evidence linking AGEs and fractures in individuals with T1D is sparse, although the association has been observed in individuals with type 2 diabetes. Recent data show that in T1D, AGEs as measured by skin intrinsic fluorescence, are a risk factor for lower BMD. Further research in T1D is needed to ascertain whether there is a causal relationship between fractures and AGEs. If confirmed, this would pave the way for finding interventions that can slow AGE accumulation and thus reduce fractures in T1D.
Collapse
Affiliation(s)
- Mishaela R Rubin
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, United States of America
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, United States of America.
| |
Collapse
|
4
|
Fröhlich-Reiterer E, Elbarbary NS, Simmons K, Buckingham B, Humayun KN, Johannsen J, Holl RW, Betz S, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2022: Other complications and associated conditions in children and adolescents with type 1 diabetes. Pediatr Diabetes 2022; 23:1451-1467. [PMID: 36537532 DOI: 10.1111/pedi.13445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Elke Fröhlich-Reiterer
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | - Kimber Simmons
- Barbara Davis Center for Diabetes, University of Colorado, Denver, Colorado, USA
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University Medical Center, Stanford, California, USA
| | - Khadija N Humayun
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jesper Johannsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Herlev and Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
| | - Shana Betz
- Parent/Advocate for people with diabetes, Markham, Canada
| | - Farid H Mahmud
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Weber DR, Long F, Zemel BS, Kindler JM. Glycemic Control and Bone in Diabetes. Curr Osteoporos Rep 2022; 20:379-388. [PMID: 36214991 PMCID: PMC9549036 DOI: 10.1007/s11914-022-00747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent developments on the effects of glycemic control and diabetes on bone health. We discuss the foundational cellular mechanisms through which diabetes and impaired glucose control impact bone biology, and how these processes contribute to bone fragility in diabetes. RECENT FINDINGS Glucose is important for osteoblast differentiation and energy consumption of mature osteoblasts. The role of insulin is less clear, but insulin receptor deletion in mouse osteoblasts reduces bone formation. Epidemiologically, type 1 (T1D) and type 2 diabetes (T2D) associate with increased fracture risk, which is greater among people with T1D. Accumulation of cortical bone micro-pores, micro-vascular complications, and AGEs likely contribute to diabetes-related bone fragility. The effects of youth-onset T2D on peak bone mass attainment and subsequent skeletal fragility are of particular concern. Further research is needed to understand the effects of hyperglycemia on skeletal health through the lifecycle, including the related factors of inflammation and microvascular damage.
Collapse
Affiliation(s)
- David R Weber
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia,, PA, USA
| | - Fanxin Long
- Department of Orthopedic Surgery, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of GI, Hepatology & Nutrition, Roberts Center for Pediatric Research, 2716 South Street, 14th Floor/Room 14471, Philadelphia, PA, 19146, USA.
| | - Joseph M Kindler
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 2022; 10:207-220. [PMID: 35101185 DOI: 10.1016/s2213-8587(21)00347-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Increased fracture risk represents an emerging and severe complication of diabetes. The resulting prolonged immobility and hospitalisations can lead to substantial morbidity and mortality. In type 1 diabetes, bone mass and bone strength are reduced, resulting in up to a five-times greater risk of fractures throughout life. In type 2 diabetes, fracture risk is increased despite a normal bone mass. Conventional dual-energy x-ray absorptiometry might underestimate fracture risk, but can be improved by applying specific adjustments. Bone fragility in diabetes can result from cellular abnormalities, matrix interactions, immune and vascular changes, and musculoskeletal maladaptation to chronic hyperglycaemia. This Review summarises how the bone microenvironment responds to type 1 and type 2 diabetes, and the mechanisms underlying fragility fractures. We describe the value of novel imaging technologies and the clinical utility of biomarkers, and discuss current and future therapeutic approaches that protect bone health in people with diabetes.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Morten Frost
- Molecular Endocrinology Laboratory and Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| | - Ralph Müller
- Institute of Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea M Burden
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Nicola Napoli
- RU of Endocrinology and Diabetes, Campus Bio-Medico University of Rome and Fondazione Policlinico Campus Bio-Medico, Rome, Italy; Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Gong Z, Da W, Tian Y, Zhao R, Qiu S, Wu Q, Wen K, Shen L, Zhou R, Tao L, Zhu Y. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int 2022; 33:453-466. [PMID: 34519833 PMCID: PMC8813725 DOI: 10.1007/s00198-021-06061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
UNLABELLED Exogenous melatonin inhibited the senescence of preosteoblast cells in type 1 diabetic (T1D) mice and those cultured in high glucose (HG) by multiple regulations. Exogenous melatonin had a protective effect on diabetic osteoporosis, which may depend on the inhibition of senescence. INTRODUCTION Senescence is thought to play an important role in the pathophysiological mechanisms underlying diabetic bone loss. Increasing evidence has shown that melatonin exerts anti-senescence effects. In this study, we investigated whether melatonin can inhibit senescence and prevent diabetic bone loss. METHODS C57BL/6 mice received a single intraperitoneal injection of 160 mg/kg streptozotocin, followed by the oral administration of melatonin or vehicle for 2 months. Then, tissues were harvested and subsequently examined. MC3T3-E1 cells were cultured under HG conditions for 7 days and then treated with melatonin or not for 24 h. Sirt1-specific siRNAs and MT1- or MT2-specific shRNA plasmids were transfected into MC3T3-E1 cells for mechanistic study. RESULTS The total protein extracted from mouse femurs revealed that melatonin prevented senescence in T1D mice. The micro-CT results indicated that melatonin prevented bone loss in T1D mice. Cellular experiments indicated that melatonin administration prevented HG-induced senescence, whereas knockdown of the melatonin receptors MT1 or MT2 abolished these effects. Sirt1 expression was upregulated by melatonin administration but significantly reduced after MT1 or MT2 was knocked down. Knockdown of Sirt1 blocked the anti-senescence effects of melatonin. Additionally, melatonin promoted the expression of CDK2, CDK4, and CyclinD1, while knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the expression of the polycomb repressive complex (PRC), but knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the protein levels of Sirt1, PRC1/2 complex-, and cell cycle-related proteins. CONCLUSION This work shows that melatonin protects against T1D-induced bone loss, probably by inhibiting senescence. Targeting senescence in the investigation of diabetic osteoporosis may lead to novel discoveries.
Collapse
Affiliation(s)
- Z Gong
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - W Da
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Y Tian
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - S Qiu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Q Wu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - K Wen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Shen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Y Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Travis C, Srivastava PS, Hawke TJ, Kalaitzoglou E. Diabetic Bone Disease and Diabetic Myopathy: Manifestations of the Impaired Muscle-Bone Unit in Type 1 Diabetes. J Diabetes Res 2022; 2022:2650342. [PMID: 35601019 PMCID: PMC9119786 DOI: 10.1155/2022/2650342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes is associated with complications affecting muscle and bone, with diabetic bone disease and diabetic myopathy becoming increasingly reported in the past few decades. This review is aimed at succinctly reviewing the literature on the current knowledge regarding these increasingly identified and possibly interconnected complications on the musculoskeletal system. Furthermore, this review summarizes several nonmechanical factors that could be mediating the development and progression of premature musculoskeletal decline in this population and discusses preventative measures to reduce the burden of diabetes on the musculoskeletal system.
Collapse
Affiliation(s)
- Callie Travis
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - Priya S. Srivastava
- Department of Pediatrics, Division of Pediatric Endocrinology, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Evangelia Kalaitzoglou
- University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Santiprabhob J, Charoentawornpanich P, Khemaprasit K, Manpayak T, Kiattisakthavee P, Pipatsathian A, Wannasilp N, Tangjittipokin W. Effect of gender, diabetes duration, inflammatory cytokines, and vitamin D level on bone mineral density among Thai children and adolescents with type 1 diabetes. Bone 2021; 153:116112. [PMID: 34252600 DOI: 10.1016/j.bone.2021.116112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is considered a risk factor for osteoporosis in adults; however, studies in bone mineral density (BMD) in children with T1DM reported conflicting results. The aim of this study was to compare BMD between T1DM youth and healthy controls, and to identify factors that affect BMD in T1DM youth. METHODS One hundred T1DM youths and 100 healthy controls (both groups aged 5-20 years) were recruited. BMD of total body, lumbar (L2-4), femoral neck, and total hip were assessed using dual energy X-ray absorptiometry. Blood investigations, including hemoglobin A1c (HbA1c), 25-hydroxyvitamin D, and inflammatory cytokines, were performed. RESULTS Forty-four boys and 56 girls with T1DM were enrolled [mean age 14.5 ± 2.7 years, median (IQR) duration of T1DM 5.80 (2.97-9.07) years, and mean HbA1c entire duration 9.2 ± 1.4%]. T1DM girls had a lower height Z-score than control girls (p < 0.05), and 25-hydroxyvitamin D level was higher in T1DM youth than in controls (p < 0.001). After adjusting for pubertal status, height Z-score, and 25-hydroxyvitamin D, T1DM youth had a significantly lower lumbar BMD Z-score and femoral neck BMD than controls (p = 0.027 and p = 0.025, respectively). We also found that T1DM boys had a significantly lower lumbar BMD Z-score (p = 0.028), femoral neck BMD (p = 0.004), and total hip BMD (p = 0.016) than control boys. In contrast, these significant differences were not found in T1DM girls. Factors affecting BMD were different between T1DM boys and girls, and among different BMD sites. IL-13 was positively correlated with BMD in the total cohort and among girls. In boys - IL-2 and 25-hydroxyvitamin D were positively associated with BMD, and duration of diabetes was found to negatively affect BMD. CONCLUSION Deleterious effect of T1DM on BMD is gender specific. The longer the duration of T1DM, the greater the deficit in BMD found among boys with T1DM.
Collapse
Affiliation(s)
- Jeerunda Santiprabhob
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Diabetes Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Parichat Charoentawornpanich
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Khwanhatai Khemaprasit
- Siriraj Diabetes Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Teerarat Manpayak
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pornpimol Kiattisakthavee
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Amornrat Pipatsathian
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Nilrat Wannasilp
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Weber DR. Bone accrual in children and adolescents with type 1 diabetes: current knowledge and future directions. Curr Opin Endocrinol Diabetes Obes 2021; 28:340-347. [PMID: 33965967 DOI: 10.1097/med.0000000000000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Skeletal fragility is now recognized as a significant complication of type 1 diabetes (T1D). Many patients with T1D develop the disease in childhood and prior to the attainment of peak bone mass and strength. This manuscript will review recent studies investigating the effects of T1D on skeletal development. RECENT FINDINGS Mild-to-moderate deficits in bone density, structure, and mineral accrual were reported early in the course of T1D in some but not all studies. Childhood-onset disease was associated with a more severe skeletal phenotype in some adult studies. Lower than expected bone mass for muscle size was been described. Hemoglobin A1c was negatively associated with bone density and structure in several studies, though the mechanism was not clear. SUMMARY The use of advanced imaging techniques has shown that the adverse effects of T1D on the developing skeleton extend beyond bone density to include abnormalities in bone size, shape, microarchitecture, and strength. Despite these gains, a uniform understanding of the pathophysiology underlying skeletal fragility in this disorder remains elusive. Longitudinal studies, especially in association with interventions to reduce hyperglycemia or improve muscle strength, are needed to inform bone healthcare in T1D.
Collapse
Affiliation(s)
- David R Weber
- Division of Pediatric Endocrinology and Diabetes, The Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF THE REVIEW Patients with inflammatory bowel disease (IBD) have increased bone fragility, demonstrated by increased fracture risk, and often have low bone density and altered bone geometry, but the underlying pathophysiology remains poorly understood. RECENT FINDINGS Children and adolescents with IBD appear to have decreased bone formation, at diagnosis, which frequently improves with treatment of their underlying IBD. There is a growing body of evidence regarding how the immune system interacts with bone metabolism. There are likely multi-factorial etiologies that contribute to suboptimal bone accrual and subsequent lack of peak bone mass attainment in growing patients with IBD. There appears to be differential effects dependent upon IBD sub-type and bone compartment. Pediatric patients with IBD require recognition of several risk factors that may adversely impact their bone accrual. Future studies are necessary to further delineate the effects of IBD on pediatric bone health.
Collapse
Affiliation(s)
- Rebecca J Gordon
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Catherine M Gordon
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Adolescent/Young Adult Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Napoli N, Incalzi RA, De Gennaro G, Marcocci C, Marfella R, Papalia R, Purrello F, Ruggiero C, Tarantino U, Tramontana F, Conte C. Bone fragility in patients with diabetes mellitus: A consensus statement from the working group of the Italian Diabetes Society (SID), Italian Society of Endocrinology (SIE), Italian Society of Gerontology and Geriatrics (SIGG), Italian Society of Orthopaedics and Traumatology (SIOT). Nutr Metab Cardiovasc Dis 2021; 31:1375-1390. [PMID: 33812734 DOI: 10.1016/j.numecd.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
Bone fragility is one of the possible complications of diabetes, either type 1 (T1D) or type 2 (T2D). Bone fragility can affect patients of different age and with different disease severity depending on type of diabetes, disease duration and the presence of other complications. Fracture risk assessment should be started at different stages in the natural history of the disease depending on the type of diabetes and other risk factors. The risk of fracture in T1D is higher than in T2D, imposing a much earlier screening and therapeutic intervention that should also take into account a patient's life expectancy, diabetes complications etc. The therapeutic armamentarium for T2D has been enriched with drugs that may influence bone metabolism, and clinicians should be aware of these effects. Considering the complexity of diabetes and osteoporosis and the range of variables that influence treatment choices in a given individual, the Working Group on bone fragility in patients with diabetes mellitus has identified and issued recommendations based on the variables that should guide screening of bone fragility and management of diabetes and bone fragility: (A)ge, (B)MD, (C)omplications, (D)uration of disease, & (F)ractures (ABCD&F). Consideration of these parameters may help clinicians identify the best time for screening, the appropriate glycaemic target and anti-osteoporosis drug for patients with diabetes at risk of or with bone fragility.
Collapse
Affiliation(s)
- Nicola Napoli
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy; Division of Bone and Mineral Diseases, Washington University in St. Louis, St. Louis, MO, USA.
| | - Raffaele A Incalzi
- Unit of Geriatrics, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Giovanni De Gennaro
- Diabetes Center, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rocco Papalia
- Unit of Orthopedic and Trauma Surgery, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, Rome, Italy; Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Rome, Italy
| | - Flavia Tramontana
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
13
|
Xu L, Yu J, Wang O, Hou Y, Li W, Zhang H, Ping F, Xu Q, Li Y, Xia W. Comparison of differences in bone microarchitecture in adult- versus juvenile-onset type 1 diabetes Asian males versus non-diabetes males: an observational cross-sectional pilot study. Endocrine 2021; 71:87-95. [PMID: 32915436 PMCID: PMC7835289 DOI: 10.1007/s12020-020-02480-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Evidence about bone microarchitecture in Asian type 1 diabetes (T1D) patients is lacking. We assessed the bone microarchitecture in T1D patients versus controls and compare the differences between juvenile-onset and adult-onset T1D patients. METHODS This cross-sectional study recruited 32 Asian males with T1D and 32 age-, sex-, and body mass index (BMI)-matched controls. Dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) for ultradistal nondominant radius and tibia were performed. The data were analyzed using Student's t test and analysis of covariance. RESULTS Among the patients, 15 had juvenile-onset T1D, with a median disease duration of 11 years, and 17 had adult-onset T1D, with a median disease duration of 7 years. At the radius, adult-onset and juvenile-onset T1D patients had lower total volumetric bone mineral density (vBMD), trabecular vBMD, trabecular bone volume fraction (BV/TV), and trabecular thickness (Tb.Th) (p < 0.05) than the control subjects. After adjusting for BMI, disease duration, and insulin dose, juvenile-onset patients tended to have lower trabecular vBMD, BV/TV, Tb.Th, and intracortical porosity (Ct.Po) than adult-onset patients. At the tibia, adult-onset patients displayed lower total vBMD, lower Ct. vBMD, and higher Ct.Po (p < 0.05), while juvenile-onset patients had lower Tb.Th and standard deviation of trabecular number (1/Tb.N.SD) (p < 0.05) than control subjects. After adjustment for covariates, adult-onset patients tended to have higher cortical pore diameter (Ct.Po.Dm) than juvenile-onset patients. CONCLUSIONS T1D patients were associated with compromised bone microarchitecture, adult-onset and juvenile-onset T1D patients demonstrated some differences in cortical and trabecular microarchitecture.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Jie Yu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Yanfang Hou
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 100005, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China.
| |
Collapse
|
14
|
Novak D, Forsander G, Kristiansen E, Svedlund A, Magnusson P, Swolin-Eide D. Altered cortical bone strength and lean mass in young women with long-duration (19 years) type 1 diabetes. Sci Rep 2020; 10:22367. [PMID: 33353965 PMCID: PMC7755915 DOI: 10.1038/s41598-020-78853-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
To investigate bone health and body composition in young women with long-duration type 1 diabetes (T1D) in relation to matched controls. Twenty-three Swedish women, age 19.2-27.9 years, with a T1D duration of 10 years or more were recruited from the Swedish National Diabetes Registry (NDR). An age-, gender- and geography-matched control group was recruited. Bone mass and body composition were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Data was retrieved from the NDR and SWEDIABKIDS registries. T1D individuals had a mean diabetes duration of 19 years. T1D individuals had reduced lean mass (40.0 ± 6.1 kg vs. 43.9 ± 4.9 kg) and were shorter (1.66 ± 0.06 m vs. 1.71 ± 0.06 m) although comparable BMI. Subjects with T1D had lower muscle area (P = 0.0045). No differences were observed for fractures; physical activity; total, lumbar spine or femur areal bone mineral density. The cortical bone strength strain index was lower for TD1 patients (1875 ± 399 mm3 vs. 2277 ± 332 mm3). In conclusion, young women with long-term diabetes duration showed reduced cortical bone strength, decreased periosteal circumference, endosteal circumference and altered body composition. These factors contribute to the health burden of TD1, which warrants further attention for advancing bone health in women with T1D.
Collapse
Affiliation(s)
- Daniel Novak
- Department of Paediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Paediatrics, Gothenburg, Sweden
| | - Gun Forsander
- Department of Paediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Paediatrics, Gothenburg, Sweden
| | - Eva Kristiansen
- Department of Paediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Paediatrics, Gothenburg, Sweden
| | - Anna Svedlund
- Department of Paediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Paediatrics, Gothenburg, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - Diana Swolin-Eide
- Department of Paediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Paediatrics, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
Many children with chronic disease are now surviving into adulthood. As a result, there is a growing interest in optimizing bone health early in the disease course with the dual goals of improving quality of life during childhood and reducing life-long fracture risk. Risk factors for impaired bone health in these children include immobility, nutritional deficiency, exposure to bone toxic therapies, hormonal deficiencies affecting growth and pubertal development, and chronic inflammation. This review focuses on the chronic diseases of childhood most commonly associated with impaired bone health. Recent research findings and clinical practice recommendations, when available, for specific disorders are summarized.
Collapse
Affiliation(s)
- David R Weber
- Department of Pediatrics - Endocrinology, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
16
|
Sherk VD, Vigers T, Pyle L, Snell-Bergeon JK, Nadeau KJ, Rickels MR, Miller KM, Greenbaum CJ, Shah VN. Acute Hyperinsulinemia Alters Bone Turnover in Women and Men With Type 1 Diabetes. JBMR Plus 2020; 4:e10389. [PMID: 32995692 PMCID: PMC7507374 DOI: 10.1002/jbm4.10389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) increases fracture risk across the lifespan. The low bone turnover associated with T1D is thought to be related to glycemic control, but it is unclear whether peripheral hyperinsulinemia due to dependence on exogenous insulin has an independent effect on suppressing bone turnover. The purpose of this study was to test the bone turnover marker (BTM) response to acute hyperinsulinemia. Fifty‐eight adults aged 18 to 65 years with T1D over 2 years were enrolled at seven T1D Exchange Clinic Network sites. Participants had T1D diagnosis between age 6 months to 45 years. Participants were stratified based on their residual endogenous insulin secretion measured as peak C‐peptide response to a mixed meal tolerance test. BTMs (CTX, P1NP, sclerostin [SCL], osteonectin [ON], alkaline phosphatase [ALP], osteocalcin [OCN], osteoprotegerin [OPG], osteopontin [OPN], and IGF‐1) were assessed before and at the end of a 2‐hour hyperinsulinemic‐euglycemic clamp (HEC). Baseline ON (r = −0.30, p = .022) and OCN (r = −0.41, p = .002) were negatively correlated with age at T1D diagnosis, but baseline BTMs were not associated with HbA1c. During the HEC, P1NP decreased significantly (−14.5 ± 44.3%; p = .020) from baseline. OCN, ON, and IGF‐1 all significantly increased (16.0 ± 13.1%, 29.7 ± 31.7%, 34.1 ± 71.2%, respectively; all p < .001) during the clamp. The increase in SCL was not significant (7.3 ± 32.9%, p = .098), but the decrease in CTX (−12.4 ± 48.9, p = .058) neared significance. ALP and OPG were not changed from baseline (p = .23 and p = .77, respectively). Baseline ON and SCL were higher in men, but OPG was higher in women (all p ≤ .029). SCL was the only BTM that changed differently in women than men. There were no differences in baseline BTMs or change in BTMs between C‐peptide groups. Exogenous hyperinsulinemia acutely alters bone turnover, suggesting a need to determine whether strategies to promote healthy remodeling may protect bone quality in T1D. © 2020 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of OrthopedicsSchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Timothy Vigers
- Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Pediatrics, Section of EndocrinologySchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA.,Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Laura Pyle
- Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Pediatrics, Section of EndocrinologySchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA.,Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Kristen J Nadeau
- Children's Hospital Colorado University of Colorado School of Medicine Aurora CO USA
| | - Michael R Rickels
- Institute for Diabetes, Obesity & Metabolism University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | | | | | - Viral N Shah
- Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| |
Collapse
|
17
|
Sherk VD, Schauer I, Shah VN. Update on the Acute Effects of Glucose, Insulin, and Incretins on Bone Turnover In Vivo. Curr Osteoporos Rep 2020; 18:371-377. [PMID: 32504189 PMCID: PMC8118128 DOI: 10.1007/s11914-020-00598-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To provide an update on the acute effects of glucose, insulin, and incretins on markers of bone turnover in those with and without diabetes. RECENT FINDINGS Bone resorption is suppressed acutely in response to glucose and insulin challenges in both healthy subjects and patients with diabetes. The suppression is stronger with oral glucose compared with intravenous delivery. Stronger responses with oral glucose may be related to incretin effects on insulin secretion or from a direct effect on bone turnover. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) infusion acutely suppresses bone resorption without much effect on bone formation. The bone turnover response to a metabolic challenge may be attenuated in type 2 diabetes, but this is an understudied area. A knowledge gap exists regarding bone turnover responses to a metabolic challenge in type 1 diabetes. The gut-pancreas-bone link is potentially an endocrine axis. This linkage is disrupted in diabetes, but the mechanism and progression of this disruption are not understood.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Irene Schauer
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Mitchell DM, Caksa S, Joseph T, Bouxsein ML, Misra M. Elevated HbA1c Is Associated with Altered Cortical and Trabecular Microarchitecture in Girls with Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5639696. [PMID: 31761940 PMCID: PMC7064304 DOI: 10.1210/clinem/dgz221] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
Abstract
CONTEXT Skeletal fragility is a significant complication of type 1 diabetes (T1D), with an increased risk of fracture observed starting in childhood. Altered bone accrual and microarchitectural development during the critical peripubertal years may contribute to this fragility. OBJECTIVE To evaluate differences in skeletal microarchitecture between girls with T1D and controls and to assess factors associated with these differences. DESIGN Cross-sectional comparison. PARTICIPANTS Girls ages 10-16 years, 62 with T1D and 61 controls. RESULTS Areal bone mineral density (BMD) measured by dual-energy x-ray absorptiometry did not differ between girls with and without T1D. At the distal tibia, trabecular BMD was 7.3 ± 2.9% lower in T1D (P = 0.013), with fewer plate-like and axially-aligned trabeculae. Cortical porosity was 21.5 ± 10.5% higher, while the estimated failure load was 4.7 ± 2.2% lower in T1D (P = 0.043 and P = 0.037, respectively). At the distal radius, BMD and microarchitecture showed similar differences between the groups but did not reach statistical significance. After stratifying by HbA1c, only those girls with T1D and HbA1c > 8.5% differed significantly from controls. P1NP, a marker of bone formation, was lower in T1D while CTX and TRAcP5b, markers of bone resorption and osteoclast number, respectively, did not differ. The insulin-like growth factor 1 (IGF-1) Z-score was lower in T1D, and after adjustment for the IGF-1 Z-score, associations between T1D status and trabecular microarchitecture were largely attenuated. CONCLUSIONS Skeletal microarchitecture is altered in T1D early in the course of disease and among those with higher average glycemia. Suppressed bone formation and lower circulating IGF-1 likely contribute to this phenotype.
Collapse
Affiliation(s)
- Deborah M Mitchell
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence and Reprint Requests: Deborah Mitchell, MD, Endocrine Unit, Massachusetts General Hospital, 50 Blossom St., Boston, MA 02114. Phone: 617-724-2034; Fax: 617-726-1703. E-mail:
| | - Signe Caksa
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Taïsha Joseph
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Madhusmita Misra
- Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Halper-Stromberg E, Gallo T, Champakanath A, Taki I, Rewers M, Snell-Bergeon J, Frohnert BI, Shah VN. Bone Mineral Density across the Lifespan in Patients with Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5611085. [PMID: 31676897 PMCID: PMC7112965 DOI: 10.1210/clinem/dgz153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/29/2019] [Indexed: 01/14/2023]
Abstract
CONTEXT Fracture risk in people with type 1 diabetes (T1D) is higher than their peers without diabetes. OBJECTIVE To compare bone mineral density (BMD) across the lifespan in individuals with T1D and age- and sex-matched healthy controls. DESIGN Cross-sectional. SETTING Subjects (5-71 years) with T1D and matched controls from ongoing research studies at Barbara Davis Center for Diabetes. PATIENTS OR OTHER PARTICIPANTS Participants with lumbar spine BMD by dual X-ray absorptiometry (DXA) were divided into 2 groups: children ≤20 years and adults >20 years. INTERVENTION None. MAIN OUTCOME MEASURES Comparison of BMD by diabetes status across age groups and sex using a linear least squares model adjusted for age and body mass index (body mass index (BMI) for adults; and BMI z-score in children). RESULTS Lumbar spine BMD from 194 patients with T1D and 156 controls were analyzed. There was no difference in age- and BMI-adjusted lumbar spine BMD between patients with T1D and controls: among male children (least squares mean ± standard error of the mean [LSM ± SEM]; 0.80 ± 0.01 vs 0.80 ± 0.02 g/cm2, P = .98) or adults (1.01 ± 0.03 vs 1.01 ± 0.03 g/cm2, P = .95), and female children (0.78 ± 0.02 vs 0.81 ± 0.02 g/cm2, P = .23) or adults (0.98 ± 0.02 vs 1.01 ± 0.02 g/cm2, P = .19). Lumbar spine (0.98 ± 0.02 vs 1.04 ± 0.02 g/cm2, P = .05), femoral neck (0.71 ± 0.02 vs 0.79 ± 0.02 g/cm2, P = .003), and total hip (0.84 ± 0.02 vs 0.91 ± 0.02, P = .005) BMD was lower among postmenopausal women with T1D than postmenopausal women without diabetes. CONCLUSION Across age groups, lumbar spine BMD was similar in patients with T1D compared with age- and sex-matched participants without diabetes, except postmenopausal females with T1D had lower lumbar spine, femoral neck, and total hip BMD.
Collapse
Affiliation(s)
- Eitan Halper-Stromberg
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Tyler Gallo
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Anagha Champakanath
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
| | - Iman Taki
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
| | - Janet Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
| | - Brigitte I Frohnert
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical campus, Aurora, Colorado
- Correspondence and Reprint Requests: Viral N. Shah, MD, Assistant Professor of Medicine & Pediatrics, Barbara Davis Center for Diabetes, Adult Clinic, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, Room M20-1318, Aurora, CO 80045. E-mail:
| |
Collapse
|
20
|
Liu JM, Zhu DL, Mu YM, Xia WB. Management of fracture risk in patients with diabetes-Chinese Expert Consensus. J Diabetes 2019; 11:906-919. [PMID: 31219236 DOI: 10.1111/1753-0407.12962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/20/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Da-Long Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yi-Ming Mu
- Department of Endocrinology, The General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
21
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
22
|
Starup-Linde J, Hygum K, Harsløf T, Langdahl B. Type 1 Diabetes and Bone Fragility: Links and Risks. Diabetes Metab Syndr Obes 2019; 12:2539-2547. [PMID: 31819579 PMCID: PMC6899065 DOI: 10.2147/dmso.s191091] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with an increased fracture risk, which is present at young and old age. Reductions in bone mineral density do not explain the increased fracture risk. Novel scanning modalities suggest that structural deficits may contribute to the increased fracture risk. Furthermore, T1D may due to insulinopenia be a state of low bone turnover. However, diabetes complications and comorbidities may influence fracture risk. Patients with T1D are fearful of falls. The diabetes related complications, hypoglycemic events, and antihypertensive treatment may all lead to falls. Thus, the increased fracture risk in T1D seems to be multifactorial, and earlier intervention with antiosteoporotic medication and focus on fall prevention is needed. This systematic review addresses the epidemiology of fractures and osteoporosis in patients with T1D and the factors that influence fracture risk.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Medicine, Region Hospital Horsens, Aarhus, Denmark
- Correspondence: Jakob Starup-Linde Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, Aarhus NDK-8200, DenmarkTel +45 29926952 Email
| | - Katrine Hygum
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|