1
|
Navien TN, Thevendran R, Citartan M. In silico selection against progesterone receptor DNA-binding domain. Anal Biochem 2025; 699:115752. [PMID: 39719189 DOI: 10.1016/j.ab.2024.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Progesterone receptor is one of the markers used in antibody-based immunohistochemistry for the diagnostics of breast cancer. The shortcomings of antibodies raise the need to focus on alternative molecular recognition. Aptamers are chosen due to their many advantages as compared to antibodies. However, the rigor of conventional SELEX intensifies the efforts to select DNA aptamers using in silico-docking approach. In this study, we performed in silico selection and experimental validation of DNA aptamers against the progesterone receptor DNA binding domain (PR DBD) using the ssDNA sequences derived from human progesterone response elements (PREs). Firstly, a library of sixty-four different ssDNA was subjected to secondary and tertiary structural determination prior to docking using PatchDock. PRDBDapt17 appeared to be the best candidate, with the highest docking scores of 11334. Molecular dynamic simulation also substantiates PRDBDapt17 as the most potent aptamer. This aptamer, PRDBDapt17 was validated by using direct ELASA. Direct ELASA demonstrated a limit of detection of 3.91 nM while the equilibrium dissociation constant was estimated at 366.6 nM. As PRDBDapt17 also interacts with estrogen receptor and androgen receptor, it can also be a potential universal binder of steroid hormone receptors. PRDBDapt17 can be used in the diagnostics of breast cancer.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Ramesh Thevendran
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Lohry DP, Stevens TA, Shen T, Fernandez EJ. Hormone response elements for the thyroid receptor-α include specific distal 5'-flanking DNA. SCIENCE ADVANCES 2024; 10:eadr1033. [PMID: 39602540 PMCID: PMC11601197 DOI: 10.1126/sciadv.adr1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Optimal gene transcription is achieved through precise interactions between transcription factors and their DNA binding sites. We provide evidence that conserved distally located 5'-flanking sequences interact directly with the intrinsically disordered amino-terminal region of the thyroid receptor-α (TRα) to control transcriptional activity. Simulated modeling and dynamics with multiple ChIP-seq-derived sequences consistently reveal specific lysine/arginine-DNA minor groove interactions. The impact of these interactions is to distort DNA structural conformations, and these are also revealed with atomic force microscopy. The importance of the 5'-flanking DNA is further emphasized with reporter gene assays and comparisons with canonical response elements. Overall, the study reveals the inadequacy of current definitions of the DNA hormone response element (HRE) and suggests that future descriptions of the HRE include the conserved distal DNA sequences. The broad impact of this study is further underscored by the common occurrence of Lys/Arg-rich motifs within the intrinsically disordered regions of nuclear receptors.
Collapse
Affiliation(s)
- David P. Lohry
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Taylor A. Stevens
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Elias J. Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
3
|
Griffin P, Mann M, Wang M, Ferreon J, Suess M, Jain A, Malovannaya A, Alvarez RV, Pascal B, Kumar R, Edwards D. Structural proteomics defines a sequential priming mechanism for the progesterone receptor. RESEARCH SQUARE 2024:rs.3.rs-5199635. [PMID: 39606477 PMCID: PMC11601812 DOI: 10.21203/rs.3.rs-5199635/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The progesterone receptor (PR) is a steroid-responsive nuclear receptor with two isoforms: PR-A and PR-B. Disruption of PR-A:PR-B signaling is associated with breast cancer through interactions with oncogenic co-regulatory proteins (CoRs). However, molecular details of isoform-specific PR-CoR interactions remain poorly understood. Using structural mass spectrometry, we investigate the sequential binding mechanism of purified full-length PR and intact CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes on target DNA. Our findings reveal selective CoR NR-box binding by PR and unique interaction surfaces between PR and CoRs during complex assembly, providing a structural basis for CoR sequential binding on PR. Antagonist-bound PR showed persistent CoR interactions, challenging the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and infer the mechanisms behind the interactions of these proteins, both in active and inactive conformations.
Collapse
|
4
|
Mann MD, Wang M, Ferreon JC, Suess MP, Jain A, Malovannaya A, Alvarez RV, Pascal BD, Kumar R, Edwards DP, Griffin PR. Structural proteomics defines a sequential priming mechanism for the progesterone receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611729. [PMID: 39282295 PMCID: PMC11398526 DOI: 10.1101/2024.09.06.611729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The progesterone receptor (PR) is a steroid-responsive nuclear receptor with two isoforms: PR-A and PR-B. Disruption of PR-A:PR-B signaling is associated with breast cancer through interactions with oncogenic co-regulatory proteins (CoRs). However, molecular details of isoform-specific PR-CoR interactions remain poorly understood. Using structural mass spectrometry, we investigate the sequential binding mechanism of purified full-length PR and intact CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes on target DNA. Our findings reveal selective CoR NR-box binding by PR and unique interaction surfaces between PR and CoRs during complex assembly, providing a structural basis for CoR sequential binding on PR. Antagonist-bound PR showed persistent CoR interactions, challenging the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and infer the mechanisms behind the interactions of these proteins, both in active and inactive conformations.
Collapse
Affiliation(s)
- Matthew D. Mann
- Skaggs Graduate School of Chemical and Biological Sciences,
Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Josephine C. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular
Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Michael P. Suess
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core Facility. Advanced Technology
Cores, Baylor College of Medicine, Houston, TX 77030
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular
Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | | | - Bruce D. Pascal
- Omics Informatics LLC. 1050 Bishop Street #517, Honolulu, HI
96813
| | - Raj Kumar
- Department of Pharmaceutical and Biomedical Sciences, Touro
College of Pharmacy, Touro University, New York, NY, USA 10036
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Patrick R. Griffin
- Skaggs Graduate School of Chemical and Biological Sciences,
Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| |
Collapse
|
5
|
Gillen AD, Hunter I, Ullner E, McEwan IJ. Mechanistic insights into steroid hormone-mediated regulation of the androgen receptor gene. PLoS One 2024; 19:e0304183. [PMID: 39088439 PMCID: PMC11293711 DOI: 10.1371/journal.pone.0304183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/08/2024] [Indexed: 08/03/2024] Open
Abstract
Expression of the androgen receptor is key to the response of cells and tissues to androgenic steroids, such as testosterone or dihydrotestosterone, as well as impacting the benefit of hormone-dependent therapies for endocrine diseases and hormone-dependent cancers. However, the mechanisms controlling androgen receptor expression are not fully understood, limiting our ability to effectively promote or inhibit androgenic signalling therapeutically. An autoregulatory loop has been described in which androgen receptor may repress its own expression in the presence of hormone, although the molecular mechanisms are not fully understood. In this work, we elucidate the mechanisms of autoregulation and demonstrate, for the first time, that a similar repression of the AR gene is facilitated by the progesterone receptor. We show that the progesterone receptor, like the androgen receptor binds to response elements within the AR gene to effect transcriptional repression in response to hormone treatment. Mechanistically, this repression involves hormone-dependent histone deacetylation within the AR 5'UTR region and looping between sequences in intron 2 and the transcription start site (TSS). This novel pathway controlling AR expression in response to hormone stimulation may have important implications for understanding cell or tissue selective receptor signalling.
Collapse
Affiliation(s)
- Andrew D. Gillen
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Irene Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Ekkehard Ullner
- Department of Physics, Institute of Complex Sciences and Mathematical Biology University of Aberdeen, Scotland, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| |
Collapse
|
6
|
Presela R, Prabu SS, Ch'ng ES, Tang TH, Citartan M. The diagnostic potentiality of the RNA aptamer against progesterone receptor isolated by crush and soak (CRUSOAK)-SELEX. Mikrochim Acta 2024; 191:346. [PMID: 38802696 DOI: 10.1007/s00604-024-06423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Aptamers are a class of molecular recognition elements that exhibit high binding affinity and specificity against their respective targets. In view of the many advantages aptamers harbor over their counterpart antibodies, we were impelled to isolate an RNA aptamer against progesterone receptor, particularly its DNA binding domain. A total of eight SELEX cycles were executed against the recombinant Progesterone Receptor DNA-binding domain (PR DBD). The RNA-protein complex in the gel shift assay was subjected to crush and soak method to elute the binders prior to conventional sequencing, the step of which was based upon to coin the term CRUSOAK-SELEX. The sequencing revealed three different classes of sequences, with one class termed, PRapt-3, showing the strongest binding against PR DBD. The dissociation constant of PRapt-3 RNA aptamer was estimated at 380 nM ± 35 nM. PRapt-3 was successfully used to develop aptamer-based diagnostic assays such as ELASA, aptamer-based dot blot, and aptamer-based western blot. The prominent highlight is the performance of the aptamer in aptacytostaining, which was unachievable with antibodies. Compared to its counterpart antibodies, PRapt-3 has a better penetration capacity in aptahistostaining using the formalin-fixed paraffin-embedded (FFPE) breast cancer cells and tissue blocks. This study represents the first ever demonstration of an aptamer against progesterone receptor and its diagnostic capacity.
Collapse
Affiliation(s)
- Ravinderan Presela
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siva Sankar Prabu
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
7
|
Patel AK, Vilela P, Shaik TB, McEwen A, Hazemann I, Brillet K, Ennifar E, Hamiche A, Markov G, Laudet V, Moras D, Klaholz B, Billas IL. Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA. Nucleic Acids Res 2023; 51:8864-8879. [PMID: 37503845 PMCID: PMC10484738 DOI: 10.1093/nar/gkad632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.
Collapse
Affiliation(s)
- Abdul Kareem Mohideen Patel
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Pierre Vilela
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Tajith Baba Shaik
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Alastair G McEwen
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle Hazemann
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Eric Ennifar
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Ali Hamiche
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit. Okinawa Institute of Science and Technology. 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Dino Moras
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Bruno P Klaholz
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M L Billas
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
8
|
Jayaprakash S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Lee EHC, Yap KCH, Sethi G, Kumar AP, Kunnumakkara AB. Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. Int J Mol Sci 2022; 23:ijms231810952. [PMID: 36142861 PMCID: PMC9501100 DOI: 10.3390/ijms231810952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal cancer (EC), an aggressive and poorly understood disease, is one of the top causes of cancer-related fatalities. GLOBOCAN 2020 reports that there are 544,076 deaths and 604,100 new cases expected worldwide. Even though there are various advancements in treatment procedures, this cancer has been reported as one of the most difficult cancers to cure, and to increase patient survival; treatment targets still need to be established. Nuclear receptors (NRs) are a type of transcription factor, which has a key role in several biological processes such as reproduction, development, cellular differentiation, stress response, immunity, metabolism, lipids, and drugs, and are essential regulators of several diseases, including cancer. Numerous studies have demonstrated the importance of NRs in tumor immunology and proved the well-known roles of multiple NRs in modulating proliferation, differentiation, and apoptosis. There are surplus of studies conducted on NRs and their implications in EC, but only a few studies have demonstrated the diagnostic and prognostic potential of NRs. Therefore, there is still a paucity of the role of NRs and different ways to target them in EC cells to stop them from spreading malignancy. This review emphasizes the significance of NRs in EC by discussing their diverse agonists as well as antagonists and their response to tumor progression. Additionally, we emphasize NRs’ potential to serve as a novel therapeutic target and their capacity to treat and prevent EC.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - E. Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (A.P.K.); (A.B.K.)
| |
Collapse
|
9
|
Sadar MD. Drugging the Undruggable: Targeting the N-Terminal Domain of Nuclear Hormone Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:311-326. [PMID: 36107327 DOI: 10.1007/978-3-031-11836-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter focuses on the development of drugs targeting the N-terminal domain of nuclear hormone receptors, using progress with the androgen receptor as an example. Historically, development of therapies targeting nuclear hormone receptors has focused on the folded C-terminal ligand-binding domain. Therapies were traditionally not developed to target the intrinsically disordered N-terminal domain as it was considered "undruggable". Recent developments have now shown it is possible to direct therapies to the N-terminal domain. This chapter will provide an introduction of the structure and function of the domains of nuclear hormone receptors, followed by a discussion of the rationale supporting the development of N-terminal domain inhibitors. Chemistry and mechanisms of action of small molecule inhibitors will be described with emphasis on N-terminal domain inhibitors developed to the androgen receptor including those in clinical trials.
Collapse
Affiliation(s)
- Marianne D Sadar
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Bianchetti L, Sinar D, Depenveiller C, Dejaegere A. Insights into mineralocorticoid receptor homodimerization from a combined molecular modeling and bioinformatics study. Proteins 2021; 89:952-965. [PMID: 33713045 DOI: 10.1002/prot.26073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
In vertebrates, the mineralocorticoid receptor (MR) is a steroid-activated nuclear receptor (NR) that plays essential roles in water-electrolyte balance and blood pressure homeostasis. It belongs to the group of oxo-steroidian NRs, together with the glucocorticoid (GR), progesterone (PR), and androgen (AR) receptors. Classically, these oxo-steroidian NRs homodimerize and bind to specific genomic sequences to activate gene expression. NRs are multi-domain proteins, and dimerization is mediated by both the DNA (DBD) and ligand binding domains (LBDs), with the latter thought to provide the largest dimerization interface. However, at the structural level, the dimerization of oxo-steroidian receptors LBDs has remained largely a matter of debate and, despite their sequence homology, there is currently no consensus on a common homodimer assembly across the four receptors, that is, GR, PR, AR, and MR. Here, we examined all available MR LBD crystals using different computational methods (protein common interface database, proteins, interfaces, structures and assemblies, protein-protein interaction prediction by structural matching, and evolutionary protein-protein interface classifier, and the molecular mechanics Poisson-Boltzmann surface area method). A consensus is reached by all methods and singles out an interface mediated by helices H9, H10 and the C-terminal F domain as having characteristics of a biologically relevant assembly. Interestingly, a similar assembly was previously identified for GRα, MR closest homolog. Alternative architectures that were proposed for GRα were not observed for MR. These data call for further experimental investigations of oxo-steroid dimer architectures.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Deniz Sinar
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Camille Depenveiller
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| | - Annick Dejaegere
- Laboratoire de Chimie Biophysique de la Signalisation de la Transcription, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, Illkirch, France
| |
Collapse
|
11
|
Veras Ribeiro Filho H, Tambones IL, Mariano Gonçalves Dias M, Bernardi Videira N, Bruder M, Amorim Amato A, Migliorini Figueira AC. Modulation of nuclear receptor function: Targeting the protein-DNA interface. Mol Cell Endocrinol 2019; 484:1-14. [PMID: 30703486 DOI: 10.1016/j.mce.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that modulate several biological processes. Traditionally, modulation of NRs has been focused on the development of ligands that recognize and bind to the ligand binding domain (LBD), resulting in activation or repression of transcription through the recruitment of coregulators. However, for more severe diseases, such as breast and prostate cancer, the conventional treatment addressing LBD modulation is not always successful, due to tumor resistance. To overcome these challenges and aiming to modulate NR activity by inhibiting the NR-DNA interaction, new studies focus on the development of molecules targeting alternative sites and domains on NRs. Here, we discuss two different approaches for this alternative NR modulation: one targeting the NR DNA binding domain (DBD); and the other targeting the DNA sites recognized by NRs. Our aim is to present the challenges and perspectives for developing specific inhibitors for each purpose, alongside with already reported examples.
Collapse
Affiliation(s)
- Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Izabella Luisa Tambones
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Marieli Mariano Gonçalves Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Molecular and Functional Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, 13083-970, Brazil
| | - Natalia Bernardi Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Science, University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
12
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front Endocrinol (Lausanne) 2019; 10:53. [PMID: 30833931 PMCID: PMC6387912 DOI: 10.3389/fendo.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Role of Steroid Therapy after Ischemic Stroke by n-Methyl-d-Aspartate Receptor Gene Regulation. J Stroke Cerebrovasc Dis 2018; 27:3066-3075. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/14/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022] Open
|
14
|
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner. Diseases 2018; 6:diseases6010005. [PMID: 29301281 PMCID: PMC5871951 DOI: 10.3390/diseases6010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022] Open
Abstract
Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors’ dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others down-regulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.
Collapse
|
15
|
Bascom GD, Kim T, Schlick T. Kilobase Pair Chromatin Fiber Contacts Promoted by Living-System-Like DNA Linker Length Distributions and Nucleosome Depletion. J Phys Chem B 2017; 121:3882-3894. [PMID: 28299939 DOI: 10.1021/acs.jpcb.7b00998] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleosome placement, or DNA linker length patterns, are believed to yield specific spatial features in chromatin fibers, but details are unknown. Here we examine by mesoscale modeling how kilobase (kb) range contacts and fiber looping depend on linker lengths ranging from 18 to 45 bp, with values modeled after living systems, including nucleosome free regions (NFRs) and gene encoding segments. We also compare artificial constructs with alternating versus randomly distributed linker lengths in the range of 18-72 bp. We show that nonuniform distributions with NFRs enhance flexibility and encourage kb-range contacts. NFRs between neighboring gene segments diminish short-range contacts between flanking nucleosomes, while enhancing kb-range contacts via hierarchical looping. We also demonstrate that variances in linker lengths enhance such contacts. In particular, moderate sized variations in fiber linker lengths (∼27 bp) encourage long-range contacts in randomly distributed linker length fibers. Our work underscores the importance of linker length patterns, alongside bound proteins, in biological regulation. Contacts formed by kb-range chromatin folding are crucial to gene activity. Because we find that special linker length distributions in living systems promote kb contacts, our work suggests ways to manipulate these patterns for regulation of gene activity.
Collapse
Affiliation(s)
- Gavin D Bascom
- Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States
| | - Taejin Kim
- Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States
| | - Tamar Schlick
- Department of Chemistry, New York University , 100 Washington Square E, New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, New York University , 251 Mercer St, New York, New York 10012, United States.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai , Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China
| |
Collapse
|
16
|
Yang L, Orenstein Y, Jolma A, Yin Y, Taipale J, Shamir R, Rohs R. Transcription factor family-specific DNA shape readout revealed by quantitative specificity models. Mol Syst Biol 2017; 13:910. [PMID: 28167566 PMCID: PMC5327724 DOI: 10.15252/msb.20167238] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcription factors (TFs) achieve DNA‐binding specificity through contacts with functional groups of bases (base readout) and readout of structural properties of the double helix (shape readout). Currently, it remains unclear whether DNA shape readout is utilized by only a few selected TF families, or whether this mechanism is used extensively by most TF families. We resequenced data from previously published HT‐SELEX experiments, the most extensive mammalian TF–DNA binding data available to date. Using these data, we demonstrated the contributions of DNA shape readout across diverse TF families and its importance in core motif‐flanking regions. Statistical machine‐learning models combined with feature‐selection techniques helped to reveal the nucleotide position‐dependent DNA shape readout in TF‐binding sites and the TF family‐specific position dependence. Based on these results, we proposed novel DNA shape logos to visualize the DNA shape preferences of TFs. Overall, this work suggests a way of obtaining mechanistic insights into TF–DNA binding without relying on experimentally solved all‐atom structures.
Collapse
Affiliation(s)
- Lin Yang
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Yaron Orenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Remo Rohs
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
McKeown AN, Bridgham JT, Anderson DW, Murphy MN, Ortlund EA, Thornton JW. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 2015; 159:58-68. [PMID: 25259920 DOI: 10.1016/j.cell.2014.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 09/03/2014] [Indexed: 11/29/2022]
Abstract
Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequences. To understand how novel TF specificity evolves, we combined phylogenetic, biochemical, and biophysical approaches to interrogate how DNA recognition diversified in the steroid hormone receptor (SR) family. After duplication of the ancestral SR, three mutations in one copy radically weakened binding to the ancestral estrogen response element (ERE) and improved binding to a new set of DNA sequences (steroid response elements, SREs). They did so by establishing unfavorable interactions with ERE and abolishing unfavorable interactions with SRE; also required were numerous permissive substitutions, which nonspecifically improved cooperativity and affinity of DNA binding. Our findings indicate that negative determinants of binding play key roles in TFs' DNA selectivity and-with our prior work on the evolution of SR ligand specificity during the same interval-show how a specific new gene regulatory module evolved without interfering with the integrity of the ancestral module.
Collapse
Affiliation(s)
- Alesia N McKeown
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Dave W Anderson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Michael N Murphy
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Joseph W Thornton
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA; Department of Ecology and Evolution and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Liu JL, Peng Y, Fu YS. Efficient prediction of progesterone receptor interactome using a support vector machine model. Int J Mol Sci 2015; 16:4774-85. [PMID: 25741764 PMCID: PMC4394448 DOI: 10.3390/ijms16034774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Protein-protein interaction (PPI) is essential for almost all cellular processes and identification of PPI is a crucial task for biomedical researchers. So far, most computational studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners for a single protein is likely a simpler problem. Given enough data for a particular protein, the results can be more accurate than general PPI predictors. In the present study, we assessed the potential of using the support vector machine (SVM) model with selected features centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied this method to identify the interactome of progesterone receptor (PR), a protein which is essential for coordinating female reproduction in mammals by mediating the actions of ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity of 91.2%. Our method is generally applicable to any other proteins and therefore may be of help in guiding biomedical experiments.
Collapse
Affiliation(s)
- Ji-Long Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Ying Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yong-Sheng Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Activation of PPARδ: from computer modelling to biological effects. Br J Pharmacol 2015; 172:754-70. [PMID: 25255770 PMCID: PMC4301687 DOI: 10.1111/bph.12950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/13/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022] Open
Abstract
PPARδ is a ligand-activated receptor that dimerizes with another nuclear receptor of the retinoic acid receptor family. The dimers interact with other co-activator proteins and form active complexes that bind to PPAR response elements and promote transcription of genes involved in lipid metabolism. It appears that various natural fatty acids and their metabolites serve as endogenous activators of PPARδ; however, there is no consensus in the literature on the nature of the prime activators of the receptor. In vitro and cell-based assays of PPARδ activation by fatty acids and their derivatives often produce conflicting results. The search for synthetic and selective PPARδ agonists, which may be pharmacologically useful, is intense. Current rational modelling used to obtain such compounds relies mostly on crystal structures of synthetic PPARδ ligands with the recombinant ligand binding domain (LBD) of the receptor. Here, we introduce an original computational prediction model for ligand binding to PPARδ LBD. The model was built based on EC50 data of 16 ligands with available crystal structures and validated by calculating binding probabilities of 82 different natural and synthetic compounds from the literature. These compounds were independently tested in cell-free and cell-based assays for their capacity to bind or activate PPARδ, leading to prediction accuracy of between 70% and 93% (depending on ligand type). This new computational tool could therefore be used in the search for natural and synthetic agonists of the receptor.
Collapse
Affiliation(s)
- Shirin Kahremany
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Ariela Livne
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of JerusalemJerusalem, Israel
| | - Arie Gruzman
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Hanoch Senderowitz
- Division of Medicinal Chemistry, Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Shlomo Sasson
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
20
|
Li H, Ban F, Dalal K, Leblanc E, Frewin K, Ma D, Adomat H, Rennie PS, Cherkasov A. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J Med Chem 2014; 57:6458-67. [PMID: 25062331 DOI: 10.1021/jm500802j] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human androgen receptor (AR) is considered as a master regulator in the development and progression of prostate cancer (PCa). As resistance to clinically used anti-AR drugs remains a major challenge for the treatment of advanced PCa, there is a pressing need for new anti-AR therapeutic avenues. In this study, we identified a binding site on the DNA binding domain (DBD) of the receptor and utilized virtual screening to discover a set of micromolar hits for the target. Through further exploration of the most potent hit (1), a structural analogue (6) was identified demonstrating 10-fold improved anti-AR potency. Further optimization resulted in a more potent synthetic analogue (25) with anti-AR potency comparable to a newly FDA-approved drug Enzalutamide. Site-directed mutagenesis demonstrated that the developed inhibitors do interact with the intended target site. Importantly, the AR DBD inhibitors could effectively inhibit the growth of Enzalutamide-resistant cells as well as block the transcriptional activity of constitutively active AR splice variants, such as V7.
Collapse
Affiliation(s)
- Huifang Li
- Vancouver Prostate Centre, University of British Columbia , 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat Commun 2014; 5:4139. [DOI: 10.1038/ncomms5139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/16/2014] [Indexed: 11/09/2022] Open
|
22
|
Connaghan KD, Yang Q, Miura MT, Moody AD, Bain DL. Homologous steroid receptors assemble at identical promoter architectures with unique energetics of cooperativity. Proteins 2014; 82:2078-87. [PMID: 24648119 DOI: 10.1002/prot.24563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/05/2014] [Accepted: 03/14/2014] [Indexed: 01/27/2023]
Abstract
Steroid receptors comprise a homologous family of ligand-activated transcription factors. The receptors bind largely identical response elements in vitro, yet regulate distinct gene networks in vivo. This paradox raises the issue of how transcriptional specificity is achieved, particularly if multiple receptor populations are competing for identical sites. Noting that receptor-DNA energetics are a primary force in driving transcriptional activity, differences in interaction energetics among the receptors might underlie receptor-specific transcriptional control. Thermodynamic dissections support this premise-upon assembling at an identical promoter architecture, individual receptors exhibit vast differences in cooperative and self-association energetics. More intriguingly, these parameters distribute in a way that mirrors the evolutionary divergence of the steroid receptor family. For example, the closely related progesterone and glucocorticoid receptors (PR and GR) display little or no self-association but strong intersite cooperativity, whereas the more distantly related estrogen receptor (ER-α) shows inverse behavior. These findings suggest that receptors view genomic promoter architectures as a collection of affinity landscapes; receptors select from this landscape via their unique interaction energetics. To test this idea, we analyzed the cooperative binding energetics of the above three receptors using an array of promoters. We find that cooperativity is not only receptor-specific but also highly promoter-specific. Thus PR shows maximal cooperativity at promoters with closely spaced and in phase binding sites. GR cooperativity is maintained over greater distances, is larger energetically, and shows markedly different phase dependency. Finally, ER-α appears incapable of cooperativity regardless of promoter architecture, consistent with its more distant phylogeny.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | | | | | | | | |
Collapse
|
23
|
Helsen C, Claessens F. Looking at nuclear receptors from a new angle. Mol Cell Endocrinol 2014; 382:97-106. [PMID: 24055275 DOI: 10.1016/j.mce.2013.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
While the structures of the DNA- and ligand-binding domains of many nuclear receptors have been determined in great detail; the mechanisms by which these domains interact and possibly 'communicate' is still under debate. The first crystal structures of receptor dimers bound to ligand, DNA and coactivator peptides provided new insights in this matter. The observed binding modes revealed exciting new interaction surfaces between the different nuclear receptor domains. Such interfaces are proposed to be the route through which allosteric signals from the DNA are passed on to the ligand-binding domain and the activating functions of the receptor. The structural determinations of DNA-bound receptor dimers in solution, however, revealed an extended structure of the receptors. Here, we discuss these apparent contradictory structural data and their possible implications for the functioning of nuclear receptors.
Collapse
Affiliation(s)
- Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, O&N1, Herestraat 49, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, O&N1, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
25
|
Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 2013; 51:T1-T21. [PMID: 24103914 PMCID: PMC3871882 DOI: 10.1530/jme-13-0173] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are a major transcription factor family whose members selectively bind small-molecule lipophilic ligands and transduce those signals into specific changes in gene programs. For over two decades, structural biology efforts were focused exclusively on the individual ligand-binding domains (LBDs) or DNA-binding domains of NRs. These analyses revealed the basis for both ligand and DNA binding and also revealed receptor conformations representing both the activated and repressed states. Additionally, crystallographic studies explained how NR LBD surfaces recognize discrete portions of transcriptional coregulators. The many structural snapshots of LBDs have also guided the development of synthetic ligands with therapeutic potential. Yet, the exclusive structural focus on isolated NR domains has made it difficult to conceptualize how all the NR polypeptide segments are coordinated physically and functionally in the context of receptor quaternary architectures. Newly emerged crystal structures of the peroxisome proliferator-activated receptor-γ-retinoid X receptor α (PPARγ-RXRα) heterodimer and hepatocyte nuclear factor (HNF)-4α homodimer have recently revealed the higher order organizations of these receptor complexes on DNA, as well as the complexity and uniqueness of their domain-domain interfaces. These emerging structural advances promise to better explain how signals in one domain can be allosterically transmitted to distal receptor domains, also providing much better frameworks for guiding future drug discovery efforts.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, USA
| | | | | | | |
Collapse
|
26
|
Kumar R, Moure CM, Khan SH, Callaway C, Grimm SL, Goswami D, Griffin PR, Edwards DP. Regulation of the structurally dynamic N-terminal domain of progesterone receptor by protein-induced folding. J Biol Chem 2013; 288:30285-30299. [PMID: 23995840 DOI: 10.1074/jbc.m113.491787] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal domain (NTD) of steroid receptors harbors a transcriptional activation function (AF1) that is composed of an intrinsically disordered polypeptide. We examined the interaction of the TATA-binding protein (TBP) with the NTD of the progesterone receptor (PR) and its ability to regulate AF1 activity through coupled folding and binding. As assessed by solution phase biophysical methods, the isolated NTD of PR contains a large content of random coil, and it is capable of adopting secondary α-helical structure and more stable tertiary folding either in the presence of the natural osmolyte trimethylamine-N-oxide or through a direct interaction with TBP. Hydrogen-deuterium exchange coupled with mass spectrometry confirmed the highly dynamic intrinsically disordered property of the NTD within the context of full-length PR. Deletion mapping and point mutagenesis defined a region of the NTD (amino acids 350-428) required for structural folding in response to TBP interaction. Overexpression of TBP in cells enhanced transcriptional activity mediated by the PR NTD, and deletion mutations showed that a region (amino acids 327-428), similar to that required for TBP-induced folding, was required for functional response. TBP also increased steroid receptor co-activator 1 (SRC-1) interaction with the PR NTD and cooperated with SRC-1 to stimulate NTD-dependent transcriptional activity. These data suggest that TBP can mediate structural reorganization of the NTD to facilitate the binding of co-activators required for maximal transcriptional activation.
Collapse
Affiliation(s)
- Raj Kumar
- the Department of Basic Sciences, Commonwealth Medical College, Scranton, Pennsylvania 18509
| | - Carmen M Moure
- From the Departments of Molecular and Cellular Biology and
| | - Shagufta H Khan
- the Department of Basic Sciences, Commonwealth Medical College, Scranton, Pennsylvania 18509
| | | | - Sandra L Grimm
- From the Departments of Molecular and Cellular Biology and
| | - Devrishi Goswami
- the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Patrick R Griffin
- the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Dean P Edwards
- From the Departments of Molecular and Cellular Biology and; Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030,.
| |
Collapse
|
27
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Connaghan KD, Miura MT, Maluf NK, Lambert JR, Bain DL. Analysis of a glucocorticoid-estrogen receptor chimera reveals that dimerization energetics are under ionic control. Biophys Chem 2012; 172:8-17. [PMID: 23333595 DOI: 10.1016/j.bpc.2012.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 11/28/2022]
Abstract
Steroid receptors assemble at DNA response elements as dimers, resulting in coactivator recruitment and transcriptional activation. Our work has focused on dissecting the energetics associated with these events and quantitatively correlating the results with function. A recent finding is that different receptors dimerize with large differences in energetics. For example, estrogen receptor-α (ER-α) dimerizes with a ΔG=-12.0 kcal/mol under conditions in which the glucocorticoid receptor (GR) dimerizes with a ΔG≤-5.1 kcal/mol. To determine the molecular forces responsible for such differences, we created a GR/ER chimera, replacing the hormone-binding domain (HBD) of GR with that of ER-α. Cellular and biophysical analyses demonstrate that the chimera is functionally active. However, GR/ER dimerization energetics are intermediate between the parent proteins and coupled to a strong ionic linkage. Since the ER-α HBD is the primary contributor to dimerization, we suggest that GR residues constrain an ion-regulated HBD assembly reaction.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
29
|
Jacobsen BM, Horwitz KB. Progesterone receptors, their isoforms and progesterone regulated transcription. Mol Cell Endocrinol 2012; 357:18-29. [PMID: 21952082 PMCID: PMC3272316 DOI: 10.1016/j.mce.2011.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/11/2011] [Accepted: 09/11/2011] [Indexed: 01/16/2023]
Abstract
This review discusses mechanisms by which progesterone receptors (PR) regulate transcription. We examine available data in different species and tissues regarding: (1) regulation of PR levels; and (2) expression profiling of progestin-regulated genes by total PRs, or their PRA and PRB isoforms. (3) We address current views about the composition of progesterone response elements, and postulate that PR monomers acting through "half-site" elements are common, entailing cooperativity with neighboring DNA-bound transcription factors. (4) We summarize transcription data for multiple progestin-regulated promoters as directed by total PR, or PRA vs. PRB. We conclude that current models and methods used to study PR function are problematical, and recommend that future work employ cells and receptors appropriate to the species, focusing on analyses of the effects of endogenous receptors targeting endogenous genes in native chromatin.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine/Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| | | |
Collapse
|
30
|
Robblee JP, Miura MT, Bain DL. Glucocorticoid receptor-promoter interactions: energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry 2012; 51:4463-72. [PMID: 22587663 DOI: 10.1021/bi3003956] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. A number of studies have shown that steroid receptors regulate distinct but overlapping sets of genes; however, the molecular basis for such specificity remains unclear. Previous work from our laboratory has demonstrated that under identical solution conditions, three other steroid receptors [the progesterone receptor A isoform (PR-A), the progesterone receptor B isoform (PR-B), and estrogen receptor α (ER-α)] differentially partition their self-association and promoter binding energetics. For example, PR-A and PR-B generate similar dimerization free energies but differ significantly in their extents of intersite cooperativity. Conversely, ER-α maintains an intersite cooperativity most comparable to that of PR-A yet dimerizes with an affinity orders of magnitude greater than that of either of the PR isoforms. We have speculated that these differences serve to generate receptor-specific promoter occupancies, and thus receptor-specific gene regulation. Noting that GR regulates a unique subset of genes relative to the other receptors, we hypothesized that the receptor should maintain a unique set of interaction energetics. We rigorously determined the self-association and promoter binding energetics of full-length, human GR under conditions identical to those used in our earlier studies. We find that unlike all other receptors, GR shows no evidence of reversible self-association. Moreover, GR assembles with strong intersite cooperativity comparable to that seen only for PR-B. Finally, simulations show that such partitioning of interaction energetics allows for receptor-specific promoter occupancies, even under conditions where multiple receptors are competing for binding at identical sites.
Collapse
Affiliation(s)
- James P Robblee
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
31
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|
32
|
van Royen ME, van Cappellen WA, de Vos C, Houtsmuller AB, Trapman J. Stepwise androgen receptor dimerization. J Cell Sci 2012; 125:1970-9. [PMID: 22328501 DOI: 10.1242/jcs.096792] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Androgen-regulated gene expression is a highly coordinated dynamic process mediated by androgen receptor (AR) ligand binding and DNA binding, and by specific AR protein-protein interactions. The latter include DNA-binding domain (D-box) interactions in AR homodimers, and the interaction of the FQNLF motif in the AR N-terminal domain and the coactivator groove in the ligand-binding domain (N/C interaction). We have studied these interactions in AR homodimerization using quantitative imaging techniques. We found that the initial cytoplasmic intramolecular AR N/C interaction after ligand binding is followed by a D-box-dimerization-dependent transition to intermolecular N/C interaction in a proportion of nuclear ARs. The consecutive steps leading to homodimerization are initiated prior to DNA binding. Our data indicate the presence of nuclear pools of both AR homodimers and monomers. On the basis of AR-regulated reporter assays we propose specificity in regulation of gene expression by AR homodimers and monomers mediated by AR domain interactions. Moreover, our findings elucidate important steps in the spatiotemporal organization of AR intra- and inter-molecular interactions.
Collapse
Affiliation(s)
- Martin E van Royen
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol 2012; 348:411-7. [PMID: 21801809 DOI: 10.1016/j.mce.2011.07.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
Abstract
The gene family of nuclear receptors is characterized by the presence of a typical, well conserved DNA-binding domain. In general, two zinc coordinating modules are folded such that an α-helix is inserted in the major groove of the DNA-helix displaying a sequence similar to one of two hexameric consensus motifs. Both zinc molecules coordinate four cysteines. Although the DNA-binding domains as well as the hormone response elements are very similar, each nuclear receptor will affect transcription of a specific set of target genes. This is in part due to some important receptor-specific variations on the general theme of DNA interaction. For most nuclear receptors, the DNA-binding domain dimerizes on DNA, which explains why most hormone response elements consist of a repeat of two hexamers. The hexamer dimers can be organized either as direct, inverted or everted repeats with spacers of varying lengths. The DNA can be bound by homodimers, heterodimers and for some orphan receptors, as monomer. Another key element for DNA binding by nuclear receptors is the carboxy-terminal extension of the DNA-binding domain extending into the hinge region. This part not only co-determines sequence specificity, but also affects other functions of the receptors like nuclear translocation, intranuclear mobility and transactivation potential. Moreover, allosteric signals passing through towards other receptor domains, explain why to some extent, the DNA elements can also be considered as controlling ligands.
Collapse
Affiliation(s)
- Christine Helsen
- Molecular Endocrinology Laboratory, Department Molecular Cell Biology, Campus GHB, ON1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hill KK, Roemer SC, Churchill ME, Edwards DP. Structural and functional analysis of domains of the progesterone receptor. Mol Cell Endocrinol 2012; 348:418-29. [PMID: 21803119 PMCID: PMC4437577 DOI: 10.1016/j.mce.2011.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.
Collapse
Affiliation(s)
- Krista K. Hill
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Sarah C. Roemer
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mair E.A. Churchill
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Moody AD, Miura MT, Connaghan KD, Bain DL. Thermodynamic dissection of estrogen receptor-promoter interactions reveals that steroid receptors differentially partition their self-association and promoter binding energetics. Biochemistry 2012; 51:739-49. [PMID: 22201220 DOI: 10.1021/bi2017156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steroid receptors define a family of ligand-activated transcription factors. Recent work has demonstrated that the receptors regulate distinct but overlapping gene networks, yet the mechanisms by which they do so remain unclear. We previously determined the microscopic binding energetics for progesterone receptor (PR) isoform assembly at promoters containing multiple response elements. We found that the two isoforms (PR-A and PR-B) share nearly identical dimerization and intrinsic DNA binding free energies but maintain large differences in cooperative free energy. Moreover, cooperativity can be modulated by monovalent ion binding and promoter layout, suggesting that differences in cooperativity might control isoform-specific promoter occupancy and thus receptor function. To determine whether cooperative binding energetics are common to other members of the steroid receptor family, we dissected the thermodynamics of estrogen receptor-α (ER-α):promoter interactions. We find that the ER-α intrinsic DNA binding free energy is identical to that of the PR isoforms. This was expected, noting that receptor DNA binding domains are highly conserved. Unexpectedly, ER-α generates negligible cooperativity-orders of magnitude less than predicted based on our studies of the PR isoforms. However, analysis of the cooperativity term suggests that it reflects a balance between highly favorable cooperative stabilization and unfavorable promoter bending. Moreover, ER-α cooperative free energy is compensated for by a large increase in dimerization free energy. Collectively, the results demonstrate that steroid receptors differentially partition not only cooperative energetics but also dimerization energetics. We speculate that this ability serves as a framework for regulating receptor-specific promoter occupancy and thus receptor-specific gene regulation.
Collapse
Affiliation(s)
- Amie D Moody
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | | | |
Collapse
|
36
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
37
|
Garza AS, Khan SH, Moure CM, Edwards DP, Kumar R. Binding-folding induced regulation of AF1 transactivation domain of the glucocorticoid receptor by a cofactor that binds to its DNA binding domain. PLoS One 2011; 6:e25875. [PMID: 22003412 PMCID: PMC3189220 DOI: 10.1371/journal.pone.0025875] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered (ID) regions of proteins commonly exist within transcription factors, including the N-terminal domain (NTD) of steroid hormone receptors (SHRs) that possesses a powerful activation function, AF1 region. The mechanisms by which SHRs pass signals from a steroid hormone to control gene expression remain a central unresolved problem. The role of N-terminal activation function AF1, which exists in an intrinsically disordered (ID) conformation, in this process is of immense importance. It is hypothesized that under physiological conditions, ID AF1 undergoes disorder/order transition via inter- and intra-molecular communications, which allows AF1 surfaces to interact with specific co-regulatory proteins, critical for the final outcome of target gene expression regulated by SHRs. However, the means by which AF1 acquires functionally folded conformations is not well understood. In this study, we tested whether binding of jun dimerization protein 2 (JDP2) within the DNA binding domain (DBD) of the glucocorticoid receptor (GR) leads to acquisition of functionally active structure in its AF1/NTD. Our results show that signals mediated from GR DBD:JDP2 interactions in a two domain GR fragment, consisting of the entire NTD and little beyond DBD, significantly increased secondary/tertiary structure formation in the NTD/AF1. This increased structure formation facilitated AF1's interaction with specific co-regulatory proteins and subsequent glucocorticoid response element-mediated AF1 promoter:reporter activity. These results support the hypothesis that inter- and intra-molecular signals give a functionally active structure(s) to the GR AF1, which is important for its transcriptional activity.
Collapse
Affiliation(s)
- Anna S. Garza
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shagufta H. Khan
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Carmen M. Moure
- Department of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| |
Collapse
|
38
|
Jensik PJ, Arbogast LA. Differential and interactive effects of ligand-bound progesterone receptor A and B isoforms on tyrosine hydroxylase promoter activity. J Neuroendocrinol 2011; 23:915-25. [PMID: 21815951 PMCID: PMC3721978 DOI: 10.1111/j.1365-2826.2011.02197.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The classical progesterone receptors (PRs) are expressed in some hypothalamic dopaminergic and brainstem noradrenergic neurones. Progesterone influences prolactin and luteinising hormone release from the anterior pituitary gland, in part by regulating the activity of these catecholaminergic neurones. The present study aimed to determine the effects of PRs on tyrosine hydroxylase (TH) promoter activity. When CAD, SK-N-SH and CV-1 cells were transfected with TH promoter constructs and PR-A or PR-B expression vectors, progesterone treatment caused three- to six-fold increases in TH-9.0 kb promoter activity in PR-B expressing cells, although only a modest increase or no change in PR-A expressing cells. Using CAD cells, deletional analysis mapped the site of PR action to the -1403 to -1304 bp region of the TH promoter. Mutational analysis of putative regulatory sequences in this region indicated that multiple DNA elements are required for complete PR-B transactivation. Electrophoretic mobility shift assays were unable to demonstrate direct PR-B binding to TH promoter DNA sequences. However, chromatin immunoprecipitation analysis indicated PR-B was recruited to the TH promoter. Two different PR-B DNA binding domain mutants had opposing effects on PR-B-mediated TH promoter activation. A GS to AA mutation located in the p-box of the first zinc finger of PR-B inhibited progesterone transactivation of the TH promoter, whereas a C to A mutation in the zinc finger increased transactivation. PR-A was able to inhibit PR-B transactivation in a dose-dependent manner, although the degree of PR-A inhibition was dependent on the TH promoter deletion construct. These data indicate that ligand-bound PR-B is recruited to DNA elements in the TH promoter and acts as a transcriptional activator of the TH gene, and also that changes in the ratio of PR-A to PR-B may affect the ability of progesterone to increase TH expression.
Collapse
Affiliation(s)
- P J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | |
Collapse
|
39
|
Joshi SR, Ghattamaneni RB, Scovell WM. Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol Endocrinol 2011; 25:980-94. [PMID: 21527498 DOI: 10.1210/me.2010-0302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Estrogen receptor (ER) binds to a spectrum of functional estrogen response elements (ERE) within the human genome, including ERE half-sites (HERE), inverted and direct repeats. This has been confounding, because ER has been reported to bind weakly, if at all, to these sites in vitro. We show that ER binds strongly to these nonconventional EREs, and the binding is enhanced by the presence of high-mobility group protein B1 (HMGB1). Collectively, these and previous findings reinforce the notion of the plasticity of strong ER/ERE interactions, consistent with their broader range of observed binding specificity. In addition, transient transfection studies using luciferase reporter gene assays show that these EREs drive luciferase activity, and HMGB1 enhances transcriptional activity. Furthermore, HMGB1 gene expression knockdown results in a precipitous drop in luciferase activity, suggesting a prominent role for HMGB1 in activation of estrogen/ER-responsive genes. Therefore, these data advocate that the minimal target site for ER is a cHERE (consensus HERE) that occurs in many different contexts and that HMGB1 enhances both the binding affinity and transcriptional activity. This challenges the current paradigm for ER binding affinity and functional activity and suggests that the paradigm requires significant reevaluation and modification. These findings also suggest a possible mechanism for a cross talk between genes regulated by ER and class II nuclear receptors.
Collapse
Affiliation(s)
- S R Joshi
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | |
Collapse
|
40
|
Aagaard MM, Siersbæk R, Mandrup S. Molecular basis for gene-specific transactivation by nuclear receptors. Biochim Biophys Acta Mol Basis Dis 2010; 1812:824-35. [PMID: 21193032 DOI: 10.1016/j.bbadis.2010.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 01/31/2023]
Abstract
Nuclear receptors (NRs) are key transcriptional regulators of metazoan physiology and metabolism. Different NRs bind to similar or even identical core response elements; however, they regulate transcription in a highly receptor- and gene-specific manner. These differences in gene activation can most likely be accounted for by mechanisms involving receptor-specific interactions with DNA as well as receptor-specific interactions with protein complexes binding to adjacent and distant DNA sequences. Here, we review key molecular aspects of transactivation by NRs with special emphasis on the recent advances in the molecular mechanisms responsible for receptor- and gene-specific transcriptional activation. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Mads M Aagaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | |
Collapse
|
41
|
Daniel AR, Gaviglio AL, Czaplicki LM, Hillard CJ, Housa D, Lange CA. The progesterone receptor hinge region regulates the kinetics of transcriptional responses through acetylation, phosphorylation, and nuclear retention. Mol Endocrinol 2010; 24:2126-38. [PMID: 20861224 DOI: 10.1210/me.2010-0170] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Progesterone receptors (PRs) are critical regulators of mammary gland development and contributors to breast cancer progression. Posttranslational modifications of PR have been shown to alter hormone responsiveness. Site-directed mutagenesis demonstrated that upon hormone binding, PR is acetylated at the consensus sequence, KXKK (amino acids 638-641), located within the hinge region. We created an acetylation-deficient (K-A) mutant as well as acetylation mimics (K-Q or K-T). Interestingly, similar to K-A PR, PR acetylation mimics (K-Q or K-T) displayed delayed phosphorylation and nuclear entry relative to wild-type (wt) PR-B, indicative of disruption of PR nuclear-cytoplasmic shuttling. Wt PR-B, but not K-mutant PRs, induced c-myc at 1 h of progestin treatment. However, at 6 h of treatment, c-myc induction was comparable with levels induced by wt PR-B, suggesting that the precise timing of PR phosphorylation and nuclear retention are critical for cells to rapidly initiate robust transcriptional programs. In contrast to c-myc, progestin-induced serum- and glucocorticoid-regulated kinase (SGK) expression displayed sensitivity to PR acetylation but not nuclear entry. Namely, in the presence of progestin, acetylation-deficient (K-A) mutant PR-B up-regulated SGK mRNA relative to wt PR; progesterone response element-luciferase assays confirmed this result. However, K-Q and K-T acetylation mimics only weakly induced SGK expression independently of nuclear retention. These data reveal the ability of PR acetylation to alter the magnitude of transcriptional response at selected (slow response) promoters (SGK), whereas the hinge region dictates the kinetics of the transcriptional response to hormone at other (rapid response) promoters (c-myc). In sum, the PR hinge region is multifunctional. Understanding the ability of this region to couple acetylation, phosphorylation, and nuclear entry may provide clues to mechanisms of altered hormone responsiveness.
Collapse
Affiliation(s)
- Andrea R Daniel
- University of Minnesota Cancer Center, 420 Delaware Street SE, MMC 806, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tanner TM, Denayer S, Geverts B, Tilborgh NV, Kerkhofs S, Helsen C, Spans L, Dubois V, Houtsmuller AB, Claessens F, Haelens A. A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cell Mol Life Sci 2010; 67:1919-27. [PMID: 20186458 PMCID: PMC11115488 DOI: 10.1007/s00018-010-0302-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/14/2010] [Accepted: 02/02/2010] [Indexed: 12/01/2022]
Abstract
The androgen receptor protein has specific domains involved in DNA binding, ligand binding, and transactivation, whose activities need to be integrated during transcription activation. The hinge region, more particular a (629)RKLKK(633) motif, seems to play a crucial role in this process. Indeed, although the motif is not part of the DNA-binding domain, its positive residues are involved in optimal DNA binding and nuclear translocation as shown by mutation analysis. When the mutated ARs are forced into the nucleus, however, the residues seem to play different roles in transactivation. Moreover, we show by FRAP analysis that during activation, the AR is distributed in the nucleus in a mobile and two immobile fractions, and that mutations in the (629)RKLKK(633) motif affect the distribution of the AR over these three intranuclear fractions. Taken together, the (629)RKLKK(633) motif is a multifunctional motif that integrates nuclear localization, receptor stability, DNA binding, transactivation potential and intranuclear mobility.
Collapse
Affiliation(s)
- Tamzin M. Tanner
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Sarah Denayer
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Bart Geverts
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Nora Van Tilborgh
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Stefanie Kerkhofs
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Lien Spans
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Adriaan B. Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Annemie Haelens
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Amorim MA, Guerra-Araiza C, Garcia-Segura LM. Progesterone as a regulator of phosphorylation in the central nervous system. Horm Mol Biol Clin Investig 2010; 4:601-7. [DOI: 10.1515/hmbci.2010.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/15/2022]
Abstract
AbstractProgesterone exerts a variety of actions in the central nervous system under physiological and pathological conditions. As in other tissues, progesterone acts in the brain through classical progesterone receptors and through alternative mechanisms. Here, we review the role of progesterone as a regulator of kinases and phosphatases, such as extracellular-signal regulated kinases, phosphoinositide 3-kinase, Akt, glycogen synthase kinase 3, protein phosphatase 2A and phosphatase and tensin homolog deleted on chromosome 10. In addition, we analyzed the effects of progesterone on the phosphorylation of Tau, a protein that is involved in microtubule stabilization in neurons.
Collapse
|
44
|
Ellmann S, Sticht H, Thiel F, Beckmann MW, Strick R, Strissel PL. Estrogen and progesterone receptors: from molecular structures to clinical targets. Cell Mol Life Sci 2009; 66:2405-26. [PMID: 19333551 PMCID: PMC11115849 DOI: 10.1007/s00018-009-0017-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 01/24/2023]
Abstract
Research involving estrogen and progesterone receptors (ER and PR) have greatly contributed to our understanding of cell signaling and transcriptional regulation. In addition to the classical ER and PR nuclear actions, new signaling pathways have recently been identified due to ER and PR association with cell membranes and signal transduction proteins. Bio-informatics has unveiled how ER and PR recognize their ligands, selective modulators and co-factors, which has helped to implement them as key targets in the treatment of benign and malignant tumors. Knowledge regarding ER and PR is vast and complex; therefore, this review will focus on their isoforms, signaling pathways, co-activators and co-repressors, which lead to target gene regulation. Moreover it will highlight ER and PR involvement in benign and malignant diseases as well as pharmacological substances influencing cell signaling and provide established and new structural insights into the mechanism of activation and inhibition of these receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Computational Biology
- Estradiol/chemistry
- Estradiol/metabolism
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Progesterone/chemistry
- Progesterone/metabolism
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/classification
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/classification
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/antagonists & inhibitors
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/metabolism
- Sequence Alignment
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Stephan Ellmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Department of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Falk Thiel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| |
Collapse
|
45
|
Hill KK, Roemer SC, Jones DNM, Churchill MEA, Edwards DP. A progesterone receptor co-activator (JDP2) mediates activity through interaction with residues in the carboxyl-terminal extension of the DNA binding domain. J Biol Chem 2009; 284:24415-24. [PMID: 19553667 DOI: 10.1074/jbc.m109.003244] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Progesterone receptor (PR) belongs to the nuclear receptor family of ligand-dependent transcription factors and mediates the major biological effects of progesterone. Transcriptional co-activators that are recruited by PR through the carboxyl-terminal ligand binding domain have been studied extensively. Much less is known about co-activators that interact with other regions of receptors. Jun dimerization protein 2 (JDP2) is a PR co-activator that enhances the transcriptional activity of the amino-terminal domain by increasing the alpha-helical content and stability of the intrinsically disordered amino-terminal domain. To gain insights into the mechanism of JDP2 co-activation of PR, the structural basis of JDP2-PR interaction was analyzed using NMR. The smallest regions of each protein needed for efficient protein interaction were used for NMR and included the basic region plus leucine zipper (bZIP) domain of JDP2 and the core zinc modules of the PR DNA binding domain plus the intrinsically disordered carboxyl-terminal extension (CTE) of the DNA binding domain. Chemical shift changes in PR upon titration with JDP2 revealed that most of the residues involved in binding of JDP2 reside within the CTE. The importance of the CTE for binding JDP2 was confirmed by peptide competition and mutational analyses. Point mutations within CTE sites identified by NMR and a CTE domain swapping experiment also confirmed the functional importance of JDP2 interaction with the CTE for enhancement of PR transcriptional activity. These studies provide insights into the role and functional importance of the CTE for co-activator interactions.
Collapse
Affiliation(s)
- Krista K Hill
- Molecular Biology Program, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
46
|
Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 2009; 324:407-10. [PMID: 19372434 DOI: 10.1126/science.1164265] [Citation(s) in RCA: 514] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.
Collapse
Affiliation(s)
- Sebastiaan H Meijsing
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
47
|
Jacobsen BM, Jambal P, Schittone SA, Horwitz KB. ALU repeats in promoters are position-dependent co-response elements (coRE) that enhance or repress transcription by dimeric and monomeric progesterone receptors. Mol Endocrinol 2009; 23:989-1000. [PMID: 19372234 DOI: 10.1210/me.2009-0048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have conducted an in silico analysis of progesterone response elements (PRE) in progesterone receptor (PR) up-regulated promoters. Imperfect inverted repeats, direct repeats, and half-site PRE are widespread, not only in PR-regulated, but also in non-PR-regulated and random promoters. Few resemble the commonly used palindromic PRE with three nucleotide (nt) spacers. We speculated that PRE may be necessary but insufficient to control endogenous PR-dependent transcription. A search for PRE partners identified a highly conserved 234-nt sequence invariably located within 1-2 kb of transcription start sites. It resembles ALU repeats and contains binding sites for 11 transcription factors. The 234-nt sequence of the PR-regulated 8-oxoguanine DNA glycosylase promoter was cloned in the forward or reverse orientation in front of zero, one, or two inverted repeat PRE, and one or tandem PRE half-sites, driving luciferase. Under these conditions the 234-nt sequence functions as a co-response element (coRE). From the PRE or tandem half-sites, the reverse coRE is a strong activator of PR and glucocorticoid receptor-dependent transcription. The forward coRE is a powerful repressor. The prevalence of PRE half-sites in natural promoters suggested that PR monomers regulate transcription. Indeed, dimerization-domain mutant PR monomers were stronger transactivators than wild-type PR on PRE or tandem half-sites. This was repressed by the forward coRE. We propose that in natural promoters the coRE functions as a composite response element with imperfect PRE and half-sites to present variable, orientation-dependent transcription factors for interaction with nearby PR.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine/Endocrinology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | | | |
Collapse
|
48
|
Sinquett FL, Dryer RL, Marcelli V, Batheja A, Covey LR. Single nucleotide changes in the human Igamma1 and Igamma4 promoters underlie different transcriptional responses to CD40. THE JOURNAL OF IMMUNOLOGY 2009; 182:2185-93. [PMID: 19201872 DOI: 10.4049/jimmunol.0802700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analysis of subclass-specific germline transcription in activated peripheral B cells revealed a highly biased expression pattern of the four Igamma transcripts to signals through CD40 and IL-4. This difference was most pronounced when comparing the profile of Igamma1 and Igamma4 transcripts and was not expected given the very high degree of sequence conservation between promoters. In this report, the influence of sequence differences on the regulation of the Igamma1 and Igamma4 promoters has been investigated given the highly muted transcriptional activity of the Igamma4 promoter. Two regions were analyzed where single nucleotide differences corresponded to major changes in transcriptional activity. These regions were the previously defined CD40 response region containing three putative NF-kappaB-binding sites and the downstream 36-bp region containing CREB/activating transcription factor and kappaB6 sites. Mutation of a single nucleotide at position 6 within the Igamma4 kappaB6 site increased promoter activity to approximately 50% of the activity of the Igamma1 promoter. Furthermore, elevated promoter strength corresponded with increased binding of p50, p65, c-Rel, RelB, and p300 proteins to a level comparable with that of Igamma1. Minor nucleotide changes to both the Igamma4 CD40 response region and the 36-bp element resulted in a response undistinguishable from an Igamma1 response, suggesting cooperation between the two regulatory regions for optimal transcriptional activity. Collectively, these mutational analyses suggest that minor sequence differences contribute to the composition and affinity of transcriptional protein complexes regulating subclass-specific germline transcription, which in part impacts the overall level of class switch recombination to targeted C(H) regions.
Collapse
Affiliation(s)
- Frank L Sinquett
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
49
|
Lu P, Rha GB, Melikishvili M, Wu G, Adkins BC, Fried MG, Chi YI. Structural basis of natural promoter recognition by a unique nuclear receptor, HNF4alpha. Diabetes gene product. J Biol Chem 2008; 283:33685-97. [PMID: 18829458 DOI: 10.1074/jbc.m806213200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HNF4alpha (hepatocyte nuclear factor 4alpha) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic beta-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4alpha is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4alpha recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 angstroms crystal structure of human HNF4alpha DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1alpha, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4alpha molecular function can cause significant effects in afflicted MODY patients.
Collapse
Affiliation(s)
- Peng Lu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. NUCLEAR RECEPTOR SIGNALING 2008; 6:e008. [PMID: 18612376 PMCID: PMC2443950 DOI: 10.1621/nrs.06008] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/29/2008] [Indexed: 01/07/2023]
Abstract
Androgens control male sexual development and maintenance of the adult male phenotype. They have very divergent effects on their target organs like the reproductive organs, muscle, bone, brain and skin. This is explained in part by the fact that different cell types respond differently to androgen stimulus, even when all these responses are mediated by the same intracellular androgen receptor. To understand these tissue- and cell-specific readouts of androgens, we have to learn the many different steps in the transcription activation mechanisms of the androgen receptor (NR3C4). Like all nuclear receptors, the steroid receptors have a central DNA-binding domain connected to a ligand-binding domain by a hinge region. In addition, all steroid receptors have a relatively large amino-terminal domain. Despite the overall structural homology with other nuclear receptors, the androgen receptor has several specific characteristics which will be discussed here. This receptor can bind two types of androgen response elements (AREs): one type being similar to the classical GRE/PRE-type elements, the other type being the more divergent and more selective AREs. The hormone-binding domain has low intrinsic transactivation properties, a feature that correlates with the low affinity of this domain for the canonical LxxLL-bearing coactivators. For the androgen receptor, transcriptional activation involves the alternative recruitment of coactivators to different regions in the amino-terminal domain, as well as the hinge region. Finally, a very strong ligand-induced interaction between the amino-terminal domain and the ligand-binding domain of the androgen receptor seems to be involved in many aspects of its function as a transcription factor. This review describes the current knowledge on the structure-function relationships within the domains of the androgen receptor and tries to integrate the involvement of different domains, subdomains and motifs in the functioning of this receptor as a transcription factor with tissue- and cell-specific readouts.
Collapse
Affiliation(s)
- Frank Claessens
- Molecular Endocrinology Laboratory, Campus Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|