1
|
Defourny SV, Caioni G, Bellocci M, Melai V, Scortichini G, Salini R, Martino M, Di Teodoro G, Cocco A, Cantelmi MC, Merola C, Petrini A. Domestic dogs as environmental sentinel in comparative toxicologic pathology: Assessment of metals and rare earth elements concentrations in healthy and neoplastic mammary glands. One Health 2024; 18:100749. [PMID: 38765761 PMCID: PMC11101696 DOI: 10.1016/j.onehlt.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Quantification of trace element concentrations in human and animal tissues has acquired great importance in the last few years, considering the pivotal role of these elements in several physiological and pathological processes. Variations in their concentrations appear to have a role in the development and advancement of diseases in both humans and animals, for example, cancer. The purpose of this study was to investigate the concentration of rare earth elements and metals in healthy and neoplastic Formalin-Fixed Paraffin-Embedded (FFPE) mammary gland tissue of dogs. All samples were processed to have a quantitative determination of inorganic elements including metals of known toxicological interest such as Pb, Cd, Tl, As, Hg, the trace elements Mn, Fe, Co, Cu, Zn, Se, and other elements including Cr, V, Mo, Ni, Sb, W, Sn. Moreover, rare earth elements (REEs) (Sc, Y, Lu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) were also investigated. Cu and Mo concentrations in mammary cancerous tissue were greater than those in normal mammary glands (p < 0.05). In non-neoplastic tissue increased concentrations of Cd, Co, Ni, Tl, and V were also reported (p < 0.05). The mammary tissue of healthy individuals had greater concentrations of REEs than the neoplastic mammary glands (p < 0.05). The results of our study confirmed differences in mammary inorganic element concentrations between healthy and neoplastic groups, highlighting the potential relevance of these fluctuations in toxicologic pathology.
Collapse
Affiliation(s)
- Sabrina V.P. Defourny
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giulia Caioni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Michele Martino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Maria Chiara Cantelmi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
2
|
de Carvalho JCB, de Oliveira IM, Trindade C, Juchem ALM, da Silva Machado M, Guecheva TN, Moura S, de Souza LAG, Vainstein MH, Henriques JAP. Chemical characterization of Callingcard Vine (Entada polystachya (L.) DC. var. polystachya) aqueous seed extract and evaluation of its cytotoxic, genotoxic and mutagenic properties. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503687. [PMID: 37770144 DOI: 10.1016/j.mrgentox.2023.503687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.
Collapse
Affiliation(s)
- Juliane Cristina Bugs de Carvalho
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Iuri Marques de Oliveira
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Cristiano Trindade
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | | | - Miriana da Silva Machado
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil
| | - Temenouga Nikolova Guecheva
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luiz Augusto Gomes de Souza
- Environment and Health Society Coordination of the National Institute for Research in the Amazon (COSAS/INPA), Manaus, AM, Brazil
| | - Marilene Henning Vainstein
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil; Postgraduate Programs in Biotechnology and Medical Sciences, University of Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
3
|
Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY, Zhang J, Jiang Y, Ning S, El Gazzar M, Moorman JP, Yao ZQ. ROS-Induced Mitochondrial Dysfunction in CD4 T Cells from ART-Controlled People Living with HIV. Viruses 2023; 15:1061. [PMID: 37243148 PMCID: PMC10224005 DOI: 10.3390/v15051061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
We have previously demonstrated mitochondrial dysfunction in aging CD4 T cells from antiretroviral therapy (ART)-controlled people living with HIV (PLWH). However, the underlying mechanisms by which CD4 T cells develop mitochondrial dysfunction in PLWH remain unclear. In this study, we sought to elucidate the mechanism(s) of CD4 T cell mitochondrial compromise in ART-controlled PLWH. We first assessed the levels of reactive oxygen species (ROS), and we observed significantly increased cellular and mitochondrial ROS levels in CD4 T cells from PLWH compared to healthy subjects (HS). Furthermore, we observed a significant reduction in the levels of proteins responsible for antioxidant defense (superoxide dismutase 1, SOD1) and ROS-mediated DNA damage repair (apurinic/apyrimidinic endonuclease 1, APE1) in CD4 T cells from PLWH. Importantly, CRISPR/Cas9-mediated knockdown of SOD1 or APE1 in CD4 T cells from HS confirmed their roles in maintaining normal mitochondrial respiration via a p53-mediated pathway. Reconstitution of SOD1 or APE1 in CD4 T cells from PLWH successfully rescued mitochondrial function as evidenced by Seahorse analysis. These results indicate that ROS induces mitochondrial dysfunction, leading to premature T cell aging via dysregulation of SOD1 and APE1 during latent HIV infection.
Collapse
Affiliation(s)
- Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
4
|
Sawicka E, Kulbacka J, Drąg-Zalesińska M, Woźniak A, Piwowar A. Effect of Interaction between Chromium(VI) with 17β-Estradiol and Its Metabolites on Breast Cancer Cell Lines MCF-7/WT and MDA-MB-175-VII: Preliminary Study. Molecules 2023; 28:molecules28062752. [PMID: 36985725 PMCID: PMC10052759 DOI: 10.3390/molecules28062752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The number of factors initiating and stimulating the progression of breast cancer are constantly increasing. Estrogens are a risk factor for breast adenocarcinoma, the toxicity of which increases as a result of metabolism and interaction with other factors. Due to the presence of environmental exposure to estrogens and metalloestrogens, we investigated how interactions between estrogens and toxic chromium(VI)[Cr(VI)] affect breast cancer lines and investigated whether estrogens play a protective role. The aim of the study was to investigate the effect of 17β-estradiol and its metabolites: 2-methoxyestradiol (2-MeOE2), 4-hydroxyestradiol (4-OHE2), and 16α-hydroxyestrone (16α-OHE1) in exposure to Cr(VI) on cell viability and DNA cell damage. Two estrogen-dependent breast cancer cell lines, MCF 7/WT and MDA-MB-175-VII, were examined. In addition, the expression of Cu-Zn superoxide dismutase (SOD1) was determined immunocytochemically to elucidate the mechanism of oxidative stress. The effects of single substances and their mixtures were tested in the model of simultaneous and 7-day estrogen pre-incubation. As a result, the viability of MCF-7 and MDA-MB-175-VII cells is lowered most by Cr(VI) and least by 17β-E2. In the combined action of estrogens and metalloestrogens, we observed a protective effect mainly of 17β-E2 against Cr(VI)-induced cytotoxicity. The highest expression of SOD1 was found in MCF-7/WT cells exposed to 17β-E2. Moreover, high apoptosis was caused by both Cr(VI) itself and its interaction with 4-OHE2 and 2-MeOE2. The direction and dynamics of changes in viability are consistent for both lines.
Collapse
Affiliation(s)
- Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-04-53; Fax: +48-71-784-04-52
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embrylogy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chałubińskiego 6a, 50-368 Wroclaw, Poland
| | - Arkadiusz Woźniak
- Students’ Scientific Society at the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Fermentation Extract of Naringenin Increases the Expression of Estrogenic Receptor β and Modulates Genes Related to the p53 Signalling Pathway, miR-200c and miR-141 in Human Colon Cancer Cells Exposed to BPA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196588. [PMID: 36235125 PMCID: PMC9572342 DOI: 10.3390/molecules27196588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
The estrogenic receptor beta (ERβ) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERβ. Naringenin in the colon is metabolized by the microbiota. Cancer involves genetic and epigenetic mechanisms, including miRNAs. The objective of the present study was to evaluate the co-exposure effect of colonic in vitro fermented extract of naringenin (FEN) and BPA, to elucidate molecular effects in HT-29 colon cancer cell line. For this, we quantified genes related to the p53 signaling pathway as well as ERβ, miR-200c, and miR-141. As an important result, naringenin (IC50 250 µM) and FEN (IC50 37%) promoted intrinsic pathways of apoptosis through phosphatase and tensin homolog (PTEN) (+2.70, +1.72-fold, respectively) and CASP9 (+3.99, +2.03-fold, respectively) expression. BPA decreased the expression of PTEN (−3.46-fold) gene regulated by miR-200. We suggest that once co-exposed, cells undergo a greater stress forcing them to mediate other extrinsic apoptosis mechanisms associated with death domain FASL. In turn, these findings are related to the increase of ERβ (5.3-fold with naringenin and 13.67-fold with FEN) gene expression, important in the inhibition of carcinogenic development.
Collapse
|
7
|
Duzgun Ergun D, Doganer F, Koc G, Soyocak A, Pastaci Ozsobaci N, Ergun S. The relationship of 50 bp deletion in the promoter region of SOD1 gene with viscosity and trace elements in chronic gastritis with Helicobacter Pylori: A case study. J Trace Elem Med Biol 2022; 73:127039. [PMID: 35868167 DOI: 10.1016/j.jtemb.2022.127039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
The aim of research was to evaluate the superoxide dismutase-1 (SOD1) promoter region Insertion/Deletion (Ins/Del) gene variations in chronic gastritis patients infected with Helicobacter pylori (H. pylori), as well as the association between trace elements and viscosity. The study consisted 154 volunteer (18-65 age) with 107 H. pylori (+) and 47 (-). Biochemical parameters, whole blood viscosity (WBV), trace element levels and SOD1 promoter region Ins/Del gene variations were analyzed in blood samples provided from patients. It was determined that zinc (Zn), copper (Cu), iron (Fe) and magnesium (Mg) levels decreased whereas WBV, selenium (Se) and Cu/Zn ratio increased in H.pylori (+) chronic gastritis patients. The SOD1 50 bp Ins/Del gene polymorphism genotype and allele frequency distributions in H.pylori (+) and (-) chronic gastritis patients were not statistically significant. It was reported that Zn level decreased in H.pylori (+) patients with a deletion in at least one locus (Ins/Del+Del/Del), Se level increased. It has been found that the presence of H.pylori affects trace element metabolism and biochemical parameters in chronic gastritis patients. The 50 bp Ins/Del polymorphism in the promoter region of the SOD1 gene was shown to have no association with chronic gastritis. Investigation of different variants of the SOD1 gene in patients with gastritis will contribute to the determination of its role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - F Doganer
- Department of Biotechnology, Faculty of Arts and Science, Aksaray University, Aksaray, Turkey
| | - G Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - A Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - S Ergun
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of General Surgery, Istanbul Avcılar Murat Koluk State Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
9
|
Nojima Y. Characterization of Heat Shock Protein 60 as an Interacting Partner of Superoxide Dismutase 2 in the Silkworm, Bombyx mori, and Its Response to the Molting Hormone, 20-Hydroxyecdysone. Antioxidants (Basel) 2021; 10:antiox10091385. [PMID: 34573018 PMCID: PMC8468717 DOI: 10.3390/antiox10091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress promotes pupation in some holometabolous insects. The levels of superoxide, a reactive oxygen species (ROS), are increased and superoxide dismutase 1 (BmSod1) and superoxide dismutase 2 (BmSod2) are decreased during metamorphic events in silkworm (Bombyx mori). These observations strongly suggest that pupation is initiated by oxidative stress via the down-regulation of BmSod1 and BmSod2. However, the molecular mechanisms underlying ROS production during metamorphic events in silkworm remain unknown. To investigate these molecular mechanisms, the peripheral proteins of BmSod1 and BmSod2 were identified and characterized using dry and wet approaches in this study. Based on the results, silkworm heat shock protein 60 (BmHsp60) was identified as an interacting partner of BmSod2, which belongs to the Fe/MnSOD family. Furthermore, the present study results showed that BmHsp60 mRNA expression levels were increased in response to oxidative stress caused by ultraviolet radiation and that BmHsp60 protein levels (but not mRNA levels) were decreased during metamorphic events, which are regulated by the molting hormone 20-hydroxyecdysone. These findings improve our understanding of the mechanisms by which holometabolous insects control ROS during metamorphosis.
Collapse
Affiliation(s)
- Yosui Nojima
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
10
|
Yang YCSH, Li ZL, Huang TY, Su KW, Lin CY, Huang CH, Chen HY, Lu MC, Huang HM, Lee SY, Whang-Peng J, Lin HY, Davis PJ, Wang K. Effect of Estrogen on Heteronemin-Induced Anti-proliferative Effect in Breast Cancer Cells With Different Estrogen Receptor Status. Front Cell Dev Biol 2021; 9:688607. [PMID: 34381775 PMCID: PMC8350732 DOI: 10.3389/fcell.2021.688607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Estrogen (E2) has multiple functions in breast cancers including stimulating cancer growth and interfering with chemotherapeutic efficacy. Heteronemin, a marine sesterterpenoid-type natural product, has cytotoxicity on cancer cells. Breast cancer cell lines, MCF-7 and MDA-MB-231, were used for investigating mechanisms involved in inhibitory effect of E2 on heteronemin-induced anti-proliferation in breast cancer cells with different estrogen receptor (ER) status. Cytotoxicity was detected by cell proliferation assay and flow cytometry, gene expressions were determined by qPCR, mechanisms were investigated by Western blot and Mitochondrial ROS assay. Heteronemin exhibited potent cytotoxic effects against both ER-positive and ER-negative breast cancer cells. E2 stimulated cell growth in ER-positive breast cancer cells. Heteronemin induced anti-proliferation via suppressing activation of ERK1/2 and STAT3. Heteronemin suppressed E2-induced proliferation in both breast cancer cells although some gene expressions and anti-proliferative effects were inhibited in the presence of E2 in MCF-7 and MDA-MB-231 cells with a higher concentration of heteronemin. Heteromenin decreased the Bcl-2/Bax ratio to inhibit proliferation in MDA-MB-231 but not in MCF-7 cells. Both heteronemin and E2 increased mitochondrial reactive oxygen species but combined treatment reversed superoxide dismutase (SOD)s accumulation in MCF-7 cells. Heteronemin caused G0/G1 phase arrest and reduced the percentage of cells in the S phase to suppress cancer cell growth. In conclusion, Heteronemin suppressed both ER-positive and ER-negative breast cancer cell proliferation. Interactions between E2 and heteronemin in signal transduction, gene expressions, and biological activities provide insights into the complex pathways by which anti-proliferation is induced by heteronemin in E2-replete environments.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yung Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Wei Su
- Department of Dentistry, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Han-Yu Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chin Lu
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Jaqueline Whang-Peng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.,Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Więch A, Tarczewska A, Ożyhar A, Orłowski M. Metal Ions Induce Liquid Condensate Formation by the F Domain of Aedes aegypti Ecdysteroid Receptor. New Perspectives of Nuclear Receptor Studies. Cells 2021; 10:cells10030571. [PMID: 33807814 PMCID: PMC7999165 DOI: 10.3390/cells10030571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world's most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.
Collapse
|
12
|
Nour Eldin EEM, Nour Eldein MM, El-Readi MZ, Mirza AA, Fatani SH, Al-Amodi HS, Althubiti MA, Al-Ezzi EM, Eid SY, Kamel HFM. Evaluation of the Diagnostic and Predicative Values of 8-Iso-Prostaglandin F2α as a Biomarker of Breast Cancer. Oncol Res Treat 2020; 43:506-517. [PMID: 32721979 DOI: 10.1159/000509671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer (BC) is a commonly reported cancer that is widely prevalent among women. Its early detection improves patient survival and results in better outcomes. For diagnosis and follow-up care, tumor markers are one of the feasible investigations to be ordered. 8-Iso-prostaglandin F2α (8-iso-PGF2α) serves as a serum marker reflecting oxidative stress and subsequent damaging of DNA. In the present study, we aimed to evaluate both diagnostic and predictive values of 8-iso-PGF2α in BC patients. MATERIALS AND METHODS Serum levels of 8-iso-PGF2α were assessed for 66 women with benign breast tumors and 65 women who had malignant BC. To compare the patients who had breast tumors with healthy individuals, 63 women free of breast diseases were selected as controls. RESULTS The serum level of 8-iso-PGF2α in the BC patients (57.92 pg/mL) was significantly higher compared to those with benign tumors (18.89 pg/mL) (p < 0.001). In addition, individuals with no breast diseases had less 8-iso-PGF2α (4.02 pg/mL) compared to those who had developed a tumor (p < 0.001). Serum 8-iso-PGF2α was found to be positively correlated with both carcinoembryonic antigen (r = 0.74, p < 0.001) and cancer antigen 15-3 (r = 0.80, p < 0.001). Furthermore, serum 8-iso-PGF2α showed high diagnostic performance in BC (AUC = 0.999, sensitivity = 100%, specificity = 99.2% at a cutoff value of 36.18 pg/mL). CONCLUSIONS Our study found that the high level of serum 8-iso-PGF2α helps to provide a non-invasive indicator to detect BC. Future work with a larger sample size and various phases of BC can confirm the current results which provide insights into the early detection of cancer.
Collapse
Affiliation(s)
| | - Mohamed Mahmoud Nour Eldein
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmad A Mirza
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia, .,Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | - Sameer Hasan Fatani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hiba Saeed Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Esmail M Al-Ezzi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala Fawzy Mohammed Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Verderame M, Scudiero R. How Glyphosate Impairs Liver Condition in the Field Lizard Podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and Molecular Evidence. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4746283. [PMID: 31218226 PMCID: PMC6536989 DOI: 10.1155/2019/4746283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
The potential toxicity of glyphosate, a widely used broad-spectrum herbicide, is currently a great matter of debate. As vertebrate insectivores, lizards protect plants from herbivorous insects increasing plant biomass via the trophic cascade and represent an important link between invertebrates and higher predators. A negative effect of glyphosate on lizards' survival could have major impacts at the ecological levels. In this study, we investigated the effects of the exposure to low doses of glyphosate on the liver of the wall lizard Podarcis siculus, a suitable bioindicator of soil pollution. Two different doses of pure glyphosate (0.05 and 0.5 μg/kg body weight) were orally administered every other day for 3 weeks to sexually mature males and females. The results demonstrated that both doses, despite being very low, are toxic for the liver that showed clear signs of suffering, regardless of sex. The histological analysis provided a scenario of severe hepatic condition, which degenerated until the appearance of fibrotic formations. The morphological observations were consistent with a loss of liver physiological functions. Immunocytochemical investigations allowed us to detect an involvement of antioxidant/cytoprotective proteins, such as superoxide dismutase 1 (Cu/Zn SOD, known as SOD1), glutathione peroxidase 1 (GPx1), metallothionein (MT), and tumor suppressor protein 53, (p53) suggesting that the liver was trying to react against stress signals and damage induced by glyphosate. Finally, in situ hybridization and Real-Time PCR analysis showed the upregulation of estrogen receptor α and vitellogenin gene expression, thus demonstrating the xenoestrogenic action of glyphosate. The imbalance of the hormonal homeostasis could threaten the lizards' reproductive fitness and survival, altering the trophic cascade.
Collapse
Affiliation(s)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
14
|
Gomez M, Germain D. Cross talk between SOD1 and the mitochondrial UPR in cancer and neurodegeneration. Mol Cell Neurosci 2019; 98:12-18. [PMID: 31028834 DOI: 10.1016/j.mcn.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is rapidly gaining attention. While the CHOP (ATF4/5) axis of the UPRmt was the first to be described, other axes have subsequently been reported. Validation of this complex pathway in C. elegans has been extensively studied. However, validation of the UPRmt in mouse models of disease known to implicate mitochondrial reprogramming or dysfunction, such as cancer and neurodegeneration, respectively, is only beginning to emerge. This review summarizes recent findings and highlights the major role of the superoxide dismutase SOD1 in the communication between the mitochondria and the nucleus in these settings. While SOD1 has mostly been studied in the context of familial amyotrophic lateral sclerosis (fALS), recent studies suggest that SOD1 may be a potentially important mediator of the UPRmt and converge to emphasize an increasingly vital role of SOD1 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Maria Gomez
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA.
| |
Collapse
|
15
|
Więch A, Rowińska-Żyrek M, Wątły J, Czarnota A, Hołubowicz R, Szewczuk Z, Ożyhar A, Orłowski M. The intrinsically disordered C-terminal F domain of the ecdysteroid receptor from Aedes aegypti exhibits metal ion-binding ability. J Steroid Biochem Mol Biol 2019; 186:42-55. [PMID: 30243841 DOI: 10.1016/j.jsbmb.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022]
Abstract
The dominant vector of dengue and Zika diseases is a female Aedes aegypti mosquito. Its reproduction is controlled by the formation of an active heterodimer complex of the 20-hydroxyecdysone receptor (EcR) and Ultraspiracle protein (Usp). Although EcR exhibits a structural and functional organization typical of nuclear receptors (NRs), the EcR C-terminus has an additional F domain (AaFEcR) that is rarely present in the NRs superfamily. The presence of F domains is evolutionarily not well conserved in the NRs. The structure-function relationship of EcR F domains in arthropods is unclear and enigmatic. To date, there have been no data concerning the structure and function of AaFEcR. Our results showed that AaFEcR belongs to a family of intrinsically disordered proteins (IDPs) and possesses putative pre-molten globule (PMG) characteristics. Unexpectedly, additional amino acid composition in silico analyses revealed the presence of short unique repeated Pro-His clusters forming an HGPHPHPHG motif, which is similar to those responsible for Zn2+ and Cu2+ binding in histidine-proline-rich glycoproteins (HPRGs). Using SEC, SV-AUC and ESI-TOF MS, we showed that the intrinsically disordered AaFEcR is able to bind metal ions and form complexes with these ions. Our studies provide new insight into the structural organization and activities of the F domains of NRs. This unique for the F domains of NRs ion-binding propensity demonstrated by the AaFEcR domain may be a part of the ecdysteroid receptor's mechanism for regulating the expression of genes encoding oxidative stress-protecting proteins.
Collapse
Affiliation(s)
- Anna Więch
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | | | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Aleksandra Czarnota
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | | | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
16
|
Xie B, Lin J, Sui K, Huang Z, Chen Z, Hang W. Differential diagnosis of multielements in cancerous and non-cancerous esophageal tissues. Talanta 2018; 196:585-591. [PMID: 30683409 DOI: 10.1016/j.talanta.2018.12.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
It is known that variations in the concentrations of certain elements in humans may be an indication of cancers. In this work, a method for the quantitative analysis of 22 elements in non-tumor and esophageal squamous cell carcinoma (ESCC) tissues from the same individual is reported. Based on the optimized platform combined with multivariate analysis, diagnostic models of ESCC were established using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), showing excellent classification of cancerous and non-cancerous group by metallomic profiling. Elemental concentrations of 10 elements (Mn, Se, Cu, Ti, Mg, Fe, Co, Zn, Sr, Ca) showed significant difference (p < 0.001) in tumor and non-tumor tissues, in which Mn, Se, Cu and Ti are the top 4 elements of statistical significance and a shift towards higher concentration levels has also been observed in the tumor samples. These results confirm the considerable potential of elemental studies for biomedical purposes. To our knowledge, previous studies on elemental concentration in esophageal cancer were performed in serum or plasma levels; and this is the first study to evaluate the association of tissue elemental concentrations with ESCC.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | - Jianqing Lin
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Ke Sui
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | - Zhijun Huang
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhiyao Chen
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
17
|
Kepinska M, Kizek R, Milnerowicz H. Metallothionein and Superoxide Dismutase-Antioxidative Protein Status in Fullerene-Doxorubicin Delivery to MCF-7 Human Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19103253. [PMID: 30347787 PMCID: PMC6214080 DOI: 10.3390/ijms19103253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
Doxorubicin (DOX) is one of the most frequently used anticancer drugs in breast cancer treatment. However, clinical applications of DOX are restricted, largely due to the fact that its action disturbs the pro/antioxidant balance in both cancerous and non-cancerous cells. The aim of this study was to investigate the influence of fullerene (C60) in cell treatment by DOX on the proliferation of human breast cancer cells (MCF-7), concentration of metallothionein (MT) and superoxide dismutase (SOD), and SOD activity in these cells. The use of C60 in complexes with DOX causes a change in the level of cell proliferation of about 5% more than when caused by DOX alone (from 60–65% to 70%). The use of C60 as a DOX nanotransporter reduced the MT level increase induced by DOX. C60 alone caused an increase of SOD1 concentration. On the other hand, it led to a decrease of SOD activity. C60 in complex with DOX caused a decrease of the DOX-induced SOD activity level. Exposure of MCF-7 cells to DOX-C60 complexes results in a decrease in viable cells and may become a new therapeutic approach to breast cancer. The effects of C60 in complexes with DOX on MCF-7 cells included a decreased enzymatic (SOD activity) and nonenzymatic (MT) antioxidant status, thus indicating their prooxidant role in MCF-7 cells.
Collapse
Affiliation(s)
- Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho nam. 1949, 612 42 Brno, Czech Republic.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|
18
|
SOD1 in Amyotrophic Lateral Sclerosis: "Ambivalent" Behavior Connected to the Disease. Int J Mol Sci 2018; 19:ijms19051345. [PMID: 29751510 PMCID: PMC5983710 DOI: 10.3390/ijms19051345] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
In 1993, Rosen and collaborators discovered that the gene encoding SOD1 has mutations in amyotrophic lateral sclerosis (ALS) patients; moreover, these mutations are found in the exon regions, suggesting that their toxic effects are the consequence of protein dysfunction with an increase of oxidative stress. While a clear genetic picture has been delineated, a more complex scenario has been ascribed to the SOD1 protein. On the one hand, some evidence sustains the hypothesis of an additionally toxic role for wild-type SOD1 (WT-SOD1) in the pathogenesis of sporadic ALS. On the other hand, our group identified a discrepancy among WT-SOD1 protein expression levels and mRNA in ALS sporadic patients, thus providing the hypothesis of a re-localization of the “missing” SOD1 in a different sub-cellular compartment, i.e., nucleus, or an aggregation/precipitation in the insoluble fraction. Moreover, our data also indicate an association between longer disease duration and higher amounts of soluble SOD1 within the nucleus, suggesting a possible defensive role of the protein in this compartment. Starting from this evidence, in this review we will attempt to resolve the “ambivalent” behavior of SOD1 in ALS disease and we will try to classify sporadic ALS patients according to a novel biological signature, i.e., SOD localization.
Collapse
|
19
|
Analysis of the diagnostic efficiency of serum oxidative stress parameters in patients with breast cancer at various clinical stages. Clin Biochem 2016; 49:692-698. [DOI: 10.1016/j.clinbiochem.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/17/2023]
|
20
|
Yuan L, Dietrich AK, Ziegler YS, Nardulli AM. 17β-Estradiol alters oxidative damage and oxidative stress response protein expression in the mouse mammary gland. Mol Cell Endocrinol 2016; 426:11-21. [PMID: 26872614 PMCID: PMC4818174 DOI: 10.1016/j.mce.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 12/29/2022]
Abstract
Although substantial evidence has demonstrated that parity and 17β-estradiol (E2) reduce mammary carcinogenesis, it is not clear how this protection is conferred. Thus, we examined the effects of parity and E2 treatment in the mammary glands of ovariectomized 15 week-old virgin mice, 15 week-old primiparous mice, and 9 month-old retired breeders. E2 treatment significantly increased lipid peroxidation, protein carbonylation, and protein nitrosylation in the virgin mice, but not in the age-matched primiparous mice or retired breeders. Mammary gland expression of the oxidative stress response protein Cu/Zn superoxide dismutase was consistently reduced in all of the E2-treated mice regardless of parity. Expression of the oxidative stress and DNA repair protein apurinic endonuclease (Ape1) was significantly increased only in the mammary glands of the E2-treated retired breeders. These findings suggest that E2 and parity help to reduce mammary oncogenesis by maintaining the structure and function of proteins, lipids, and DNA.
Collapse
Affiliation(s)
- Lisi Yuan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yvonne S Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Che M, Wang R, Li X, Wang HY, Zheng XFS. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 2015; 21:143-149. [PMID: 26475962 DOI: 10.1016/j.drudis.2015.10.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy.
Collapse
Affiliation(s)
- Meixia Che
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Ren Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui-Yun Wang
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
22
|
Papa L, Manfredi G, Germain D. SOD1, an unexpected novel target for cancer therapy. Genes Cancer 2014; 5:15-21. [PMID: 24955214 PMCID: PMC4063254 DOI: 10.18632/genesandcancer.4] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/22/2014] [Indexed: 11/25/2022] Open
Abstract
Cancer cells have elevated levels of reactive oxygen species (ROS), which are generated in majority by the mitochondria. In the mitochondrial matrix, the manganese dismutase SOD2 acts as a major anti-oxidant enzyme. The deacetylase SIRT3 regulates the activity of SOD2. Recently, SIRT3 was reported to be decreased in 87% of breast cancers, resulting therefore in a decrease in the activity of SOD2 and an elevation in ROS. In addition to SIRT3, we recently reported that SOD2 itself is down-regulated in breast cancer cell lines upon activation of oncogenes, such as Ras. Since in absence of SOD2, superoxide levels are elevated and may cause irreversible damage, mechanisms must exist to retain superoxide below a critical threshold and maintain viability of cancer cells. The copper/zinc dismutase SOD1 localizes in the cytoplasm, the inter-membrane space of the mitochondria and the nucleus. Emerging evidences from several groups now indicate that SOD1 is overexpressed in cancers and that the activity of SOD1 may be essential to maintain cellular ROS under this critical threshold. This review summarizes the studies reporting important roles of SOD1 in cancer and addresses the potential cross-talk between the overexpression of SOD1 and the regulation of the mitochondrial unfolded protein response (UPR(mt)). While mutations in SOD1 is the cause of 20% of cases of familial amyotrophic lateral sclerosis (fALS), a devastating neurodegenerative disease, these new studies expand the role of SOD1 to cancer.
Collapse
Affiliation(s)
- Luena Papa
- From the Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY
| | - Giovanni Manfredi
- The Weill Cornell Medical College, Department of Neurology and Neuroscience, New York, New York
| | - Doris Germain
- From the Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY
| |
Collapse
|
23
|
Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat LA, Ruíz-García E, Astudillo-de la Vega H, González-Santiago AE, Flores-Pérez A, Díaz-Chávez J, Carlos-Reyes Á, Álvarez-Sánchez E, López-Camarillo C. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J Proteomics 2014; 111:198-211. [PMID: 24768906 DOI: 10.1016/j.jprot.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED There are no targeted therapeutic modalities for triple-negative breast cancer (TNBC), thus it is associated with poor prognosis and worst clinical outcome. Here, our aim was to identify deregulated proteins in TNBC with potential therapeutic applications. Proteomics profiling of TNBC and normal breast tissues through two-dimensional electrophoresis and ESI-MS/MS mass spectrometry revealed the existence of 16 proteins (RhoGDI-2, HSP27, SOD1, DJ1, UBE2N, PSME1, FTL, SH3BGRL, and eIF5A-1) with increased abundance in carcinomas. We also evidenced for the first time the deregulation of COX5, MTPN and DB1 proteins in TNBC that may represent novel tumor markers. Particularly, we confirmed the overexpression of the Rho-GDP dissociation inhibitor 2 (RhoGDI-2) in distinct breast cancer subtypes, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Remarkably, targeted disruption of RhoGDI-2 by RNA interference induced mitochondrial dysfunction, and facilitated caspase-3 and -9 activation in two breast cancer cell lines. Moreover, suppression of RhoGDI-2 resulted in a robust sensitization of breast cancer cells to cisplatin therapy. In conclusion, we identified novel proteins deregulated in TNBC, and confirmed the overexpression of RhoGDI-2. We propose that RhoGDI-2 inhibition may be exploited as a potential therapeutic strategy along cisplatin-based chemotherapy in breast cancer. BIOLOGICAL SIGNIFICANCE There are no useful biomarkers neither targeted therapeutic modalities for triple-negative breast cancer, which highly contributes to the poor prognosis of this breast cancer subtype. In this work, we used two-dimensional electrophoresis and ESI-MS/MS spectrometry to identify novel deregulated proteins in breast cancer tissues. Particularly, our results showed that RhoGDI-2, a protein that has been associated to metastasis and poor survival in human cancers, is overexpressed in different subtypes of breast tumors, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Our data also provided novel insights about the role of RhoGDI-2 in apoptosis through intrinsic pathway inhibition. Importantly, they suggested that targeted modulation of RhoGDI-2 levels might be a useful strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Marcos A Muñiz Lino
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | | | | | | | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | | | - Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico.
| |
Collapse
|
24
|
Yuan L, Dietrich AK, Nardulli AM. 17β-Estradiol alters oxidative stress response protein expression and oxidative damage in the uterus. Mol Cell Endocrinol 2014; 382:218-226. [PMID: 24103313 PMCID: PMC3900311 DOI: 10.1016/j.mce.2013.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
The steroid hormone 17β-estradiol (E2) has profound effects on the uterus. However, with the E2-induced increase in uterine cell proliferation and metabolism comes increased production of reactive oxygen species (ROS). We examined the expression of an interactive network of oxidative stress response proteins including thioredoxin (Trx), Cu/Zn superoxide dismutase (SOD1), apurinic endonuclease (Ape1), and protein disulfide isomerase (PDI). We demonstrated that treatment of ovariectomized C57BL/6J female mice with E2 increased the mRNA and protein levels of Trx, but decreased SOD1 and Ape1 mRNA and protein expression. In contrast, E2 treatment increased PDI protein levels but had no effect on PDI transcript levels. Interestingly, E2 treatment also increased two markers of cellular damage, lipid peroxidation and protein carbonylation. Our studies suggest that the decreased expression of SOD1 and Ape1 caused by E2 treatment may in the long term result in disruption of ROS regulation and play a role in endometrial carcinogenesis.
Collapse
Affiliation(s)
- Lisi Yuan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
25
|
Carter EL, Ragsdale SW. Modulation of nuclear receptor function by cellular redox poise. J Inorg Biochem 2014; 133:92-103. [PMID: 24495544 DOI: 10.1016/j.jinorgbio.2014.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/28/2013] [Accepted: 01/09/2014] [Indexed: 02/09/2023]
Abstract
Nuclear receptors (NRs) are ligand-responsive transcription factors involved in diverse cellular processes ranging from metabolism to circadian rhythms. This review focuses on NRs that contain redox-active thiol groups, a common feature within the superfamily. We will begin by describing NRs, how they regulate various cellular processes and how binding ligands, corepressors and/or coactivators modulate their activity. We will then describe the general area of redox regulation, especially as it pertains to thiol-disulfide interconversion and the cellular systems that respond to and govern this redox equilibrium. Lastly, we will discuss specific examples of NRs whose activities are regulated by redox-active thiols. Glucocorticoid, estrogen, and the heme-responsive receptor, Rev-erb, will be described in the most detail as they exhibit archetypal redox regulatory mechanisms.
Collapse
Affiliation(s)
- Eric L Carter
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Dietrich AK, Humphreys GI, Nardulli AM. 17β-estradiol increases expression of the oxidative stress response and DNA repair protein apurinic endonuclease (Ape1) in the cerebral cortex of female mice following hypoxia. J Steroid Biochem Mol Biol 2013; 138:410-20. [PMID: 23907014 PMCID: PMC3825811 DOI: 10.1016/j.jsbmb.2013.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain. To test this hypothesis, we utilized three model systems including primary cortical neurons, brain slice cultures, and whole animals. Although estrogen receptor α and Ape1 were expressed in primary cortical neurons, E2 did not alter Ape1 expression in these cells. However, immunofluorescent staining and quantitative Western blot analysis demonstrated that estrogen receptor α and Ape1 were expressed in the nuclei of cortical neurons in brain slice cultures and that E2 increased Ape1 expression in the cerebral cortex of these cultures. Furthermore, Ape1 expression was increased and oxidative DNA damage was decreased in the cerebral cortices of ovariectomized female C57Bl/6J mice that had been treated with E2 and exposed to hypoxia. Taken together, our studies demonstrate that the neuronal microenvironment may be required for increased Ape1 expression and that E2 enhances expression of Ape1 and reduces oxidative DNA damage, which may in turn help to reduce ischemia-induced damage in the cerebral cortex and mediate the neuroprotective effects of E2.
Collapse
Affiliation(s)
- Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | | |
Collapse
|
27
|
Cereda C, Leoni E, Milani P, Pansarasa O, Mazzini G, Guareschi S, Alvisi E, Ghiroldi A, Diamanti L, Bernuzzi S, Ceroni M, Cova E. Altered intracellular localization of SOD1 in leukocytes from patients with sporadic amyotrophic lateral sclerosis. PLoS One 2013; 8:e75916. [PMID: 24155874 PMCID: PMC3796534 DOI: 10.1371/journal.pone.0075916] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/17/2013] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence support the hypothesis of a toxic role played by wild type SOD1 (WT-SOD1) in the pathogenesis of sporadic amyotrophic lateral sclerosis (SALS). In this study we investigated both distribution and expression profile of WT-SOD1 in leukocytes from 19 SALS patients and 17 healthy individuals. Immunofluorescence experiments by confocal microscopy showed that SOD1 accumulates in the nuclear compartment in a group of SALS subjects. These results were also confirmed by western blot carried out on soluble nuclear and cytoplasmic fractions, with increased nuclear SOD1 level (p<0.05). In addition, we observed the presence of cytoplasmic SOD1 aggregates in agreement with an increased amount of the protein recovered by the insoluble fraction. A further confirmation of the overall increased level of SOD1 has been obtained from single cells analysis using flow cytometry as cells from SALS patients showed an higher SOD1 protein content (p<0.05). These findings add further evidence to the hypothesis of an altered WT-SOD1 expression profile in peripheral blood mononuclear cells (PBMCs) from patients with ALS suggesting that WT-SOD1 species with different degrees of solubility could be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Cristina Cereda
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Emanuela Leoni
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- * E-mail:
| | - Pamela Milani
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | - Orietta Pansarasa
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Giuliano Mazzini
- IGM-CNR, Histochemistry and Cytometry, Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Stefania Guareschi
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Elena Alvisi
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Division of General Neurology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Andrea Ghiroldi
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | - Luca Diamanti
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Division of General Neurology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Stefano Bernuzzi
- Immunohematological and Transfusional Service and Centre of Transplantation Immunology, IRCCS Foundation “San Matteo”, Pavia, Italy
| | - Mauro Ceroni
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Division of General Neurology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Emanuela Cova
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| |
Collapse
|
28
|
Okuhira K, Demizu Y, Hattori T, Ohoka N, Shibata N, Nishimaki-Mogami T, Okuda H, Kurihara M, Naito M. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci 2013; 104:1492-8. [PMID: 23992566 DOI: 10.1111/cas.12272] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/30/2022] Open
Abstract
Manipulation of protein stability with small molecules has a great potential for both basic research and clinical therapy. Recently, we have developed a series of hybrid small molecules named SNIPER (Specific and Non-genetic IAP-dependent Protein ERaser) that induces degradation of target proteins via ubiquitin-proteasome system. Here we report the activities of SNIPER(ER) that targets estrogen receptor alpha (ERα) for degradation. SNIPER(ER) induced degradation of ERα and inhibited estrogen-dependent expression of pS2 gene in an estrogen-dependent breast cancer cell line MCF-7. A proteasome inhibitor MG132 and siRNA-mediated downregulation of cIAP1 abrogated the SNIPER(ER)-induced ERα degradation, suggesting that the ERα is degraded by proteasome subsequent to cIAP1-mediated ubiquitylation. Intriguingly, after the ERα degradation, the SNIPER(ER)-treated MCF-7 cells undergo rapid cell death. Detailed analysis indicated that SNIPER(ER) caused necrotic cell death accompanied by a release of HMGB1, a marker of necrosis, from the cells. Following the ERα degradation, reactive oxygen species (ROS) was produced in the SNIPER(ER)-treated MCF-7 cells, and an anti-oxidant N-acetylcysteine inhibited the necrotic cell death. These results indicate that SNIPER(ER) induces ERα degradation, ROS production and necrotic cell death, implying a therapeutic potential of SNIPER(ER) as a lead for the treatment of ERα-positive breast cancers.
Collapse
Affiliation(s)
- Keiichiro Okuhira
- Division of Biochemistry and Molecular Biology, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Artacho-Cordón A, Artacho-Cordón F, Ríos-Arrabal S, Calvente I, Núñez MI. Tumor microenvironment and breast cancer progression: a complex scenario. Cancer Biol Ther 2012; 13:14-24. [PMID: 22336584 DOI: 10.4161/cbt.13.1.18869] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is now widely accepted that the development and progression of a tumor toward the malignant phenotype is highly dependent on interactions between tumor cells and the tumor microenvironment. Different components of the tumor microenvironment may have stimulatory or inhibitory effects on tumor progression by regulating the gene expression repertoire in tumor cells and stromal cells. This review analyzes novel research findings on breast cancer progression, discussing acquisition of the metastatic phenotype in breast disease in relation to different aspects of cross-talk among components of the tumor microenvironment. Knowledge of the interaction of all of these factors would contribute to elucidating the mechanisms that disrupt regulatory/signaling cascades and downstream effects in breast cancer.
Collapse
|
30
|
Rao AK, Dietrich AK, Ziegler YS, Nardulli AM. 17β-Estradiol-mediated increase in Cu/Zn superoxide dismutase expression in the brain: a mechanism to protect neurons from ischemia. J Steroid Biochem Mol Biol 2011; 127:382-9. [PMID: 21704159 PMCID: PMC3901640 DOI: 10.1016/j.jsbmb.2011.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022]
Abstract
A number of studies have demonstrated that 17β-estradiol (E(2)) protects the brain from ischemia and yet the mechanism by which this hormone brings about its protective effect is unclear. Interestingly, like E(2), overexpression of the oxidative stress response protein Cu/Zn superoxide dismutase (SOD1), which plays a critical role in regulating reactive oxygen species, also protects the brain from ischemia. Because we previously showed that E(2) treatment of cultured mammary cells increases SOD1 expression, we hypothesized that E(2) might increase SOD1 expression in the brain and that this E(2)-mediated increase in SOD1 expression might help to protect the brain from ischemia. We now show that SOD1 is expressed in cortical neurons, that SOD1 expression is increased by exposure of brain slice cultures to E(2), and that the E(2)-mediated increase in SOD1 expression is further augmented by exposure of brain slice cultures to increased superoxide levels or oxygen and glucose deprivation. Importantly, when cortical neurons are exposed to increased superoxide levels and markers of protein and DNA damage, nitrotyrosine and 8-oxoguanine, respectively, are measured, both protein and DNA damage are reduced. In fact, E(2) reduces nitrotyrosine and 8-oxoguanine levels in brain slice cultures regardless of whether they have or have not been exposed to increased superoxide levels. Likewise, when brain slice cultures are treated with E(2) and deprived of oxygen and glucose, 8-oxoguanine levels are reduced. Taken together, these studies provide a critical link between E(2) treatment, SOD1 expression, and neuroprotection and help to define a mechanism through which E(2)-mediated neuroprotection may be conferred.
Collapse
Affiliation(s)
- Abhi K Rao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | | | | | | |
Collapse
|
31
|
Lee S, Eskin SG, Shah AK, Schildmeyer LA, McIntire LV. Effect of zinc and nitric oxide on monocyte adhesion to endothelial cells under shear stress. Ann Biomed Eng 2011; 40:697-706. [PMID: 22009315 DOI: 10.1007/s10439-011-0434-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/06/2011] [Indexed: 11/26/2022]
Abstract
This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm(2) or 1 dyne/cm(2)) or reversing shear stress (time average 1 dyne/cm(2)) for 24 h. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike other shear stress regimes, reversing shear stress alone enhanced monocyte adhesion, which may be associated with increased H(2)O(2) and superoxide together with relatively low levels of nitric oxide (NO) production. L-N(G)-Nitroarginine methyl ester (L-NAME) treatment increased monocyte adhesion under 15 dynes/cm(2) and under reversing shear stress. After reversing shear stress, monocyte adhesion dramatically increased with heparinase III treatment followed by a zinc scavenger. Static culture experiments supported the reduction of monocyte adhesion by zinc following endothelial cell cytokine activation. These results suggest that endothelial cell zinc levels are important for the inhibition of monocyte adhesion to endothelial cells, and may be one of the key factors in the early stages of atherogenesis.
Collapse
Affiliation(s)
- Sungmun Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, GA 30332-0535, USA
| | | | | | | | | |
Collapse
|
32
|
Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int J Clin Oncol 2011; 17:575-83. [PMID: 21968912 DOI: 10.1007/s10147-011-0327-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Oxidative stress and trace elements have been implicated in the development of breast cancer. However, how they contribute to the pathogenesis of the disease and the relationship between them remain unclear. In addition, most previous studies detecting one or a few oxidant/antioxidant markers failed to consider the overall oxidant/antioxidant status of the subjects. This study was designed to address this and to investigate the association between oxidative status and trace elements in the pathogenesis of breast cancer. METHODS Fifty-six patients with breast carcinoma at different clinical stages, 32 patients with benign breast tumor, and 20 healthy subjects (controls) were recruited into this study. Their serum total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and levels of Cu, Zn, Fe, Se, Mg, and Mn were measured. RESULTS Levels of TAS, TOS, OSI, and trace elements significantly differed between the study groups. Among subgroups of patients with different clinical stages of breast cancer, the levels of all the trace elements except Zn were similar, whereas TAS, TOS, and OSI levels were all significantly different. There were significant correlations between oxidative stress parameters and levels of trace elements in patients with breast carcinoma but not in patients with benign breast tumor or in the healthy controls. CONCLUSIONS Disturbed oxidative stress status and trace element levels may contribute to the pathogenesis of breast tumors. TAS, TOS, and OSI may be useful biomarkers for monitoring the clinical status of breast cancer.
Collapse
|
33
|
Achuthan S, Santhoshkumar TR, Prabhakar J, Nair SA, Pillai MR. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem 2011; 286:37813-29. [PMID: 21878644 PMCID: PMC3199523 DOI: 10.1074/jbc.m110.200675] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor recurrence after chemotherapy or radiation remains a major obstacle to successful cancer treatment. A subset of cancer cells, termed cancer stem cells, can elude conventional treatments and eventually regenerate a tumor that is more aggressive. Despite the large number of studies, molecular events that govern the emergence of aggressive therapy-resistant cells with stem cell properties after chemotherapy are poorly defined. The present study provides evidence for the rare escape of tumor cells from drug-induced cell death, after an intermediate stay in a non-cycling senescent stage followed by unstable multiplication characterized by spontaneous cell death. However, some cells appear to escape and generate stable colonies with an aggressive tumor stem cell-like phenotype. These cells displayed higher CD133 and Oct-4 expression. Notably, the drug-selected cells that contained low levels of reactive oxygen species (ROS) also showed an increase in antioxidant enzymes. Consistent with this in vitro experimental data, we observed lower levels of ROS in breast tumors obtained after neoadjuvant chemotherapy compared with samples that did not receive preoperative chemotherapy. These latter tissues also expressed enhanced levels of ROS defenses with enhanced expression of superoxide dismutase. Higher levels of Oct-4 and CD133 were also observed in tumors obtained after neoadjuvant chemotherapy. Further studies provided evidence for the stabilization of Nrf2 due to reduced 26 S proteasome activity and increased p21 association as the driving signaling event that contributes to the transition from a high ROS quiescent state to a low ROS proliferating stage in drug-induced tumor stem cell enrichment.
Collapse
Affiliation(s)
- Santhi Achuthan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram 695014, Kerala, India
| | | | | | | | | |
Collapse
|
34
|
Antoon JW, Meacham WD, Bratton MR, Slaughter EM, Rhodes LV, Ashe HB, Wiese TE, Burow ME, Beckman BS. Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer. J Mol Endocrinol 2011; 46:205-16. [PMID: 21321095 PMCID: PMC4007162 DOI: 10.1530/jme-10-0116] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, crosstalk between sphingolipid signaling pathways and steroid hormones has been illuminated as a possible therapeutic target. Sphingosine kinase (SK), the key enzyme metabolizing pro-apoptotic ceramide to pro-survival sphingosine-1-phosphate (S1P), is a promising therapeutic target for solid tumor cancers. In this study, we examined the ability of pharmacological inhibition of S1P formation to block estrogen signaling as a targeted breast cancer therapy. We found that the Sphk1/2 selective inhibitor (SK inhibitor (SKI))-II, blocked breast cancer viability, clonogenic survival and proliferation. Furthermore, SKI-II dose-dependently decreased estrogen-stimulated estrogen response element transcriptional activity and diminished mRNA levels of the estrogen receptor (ER)-regulated genes progesterone receptor and steroid derived factor-1. This inhibitor binds the ER directly in the antagonist ligand-binding domain. Taken together, our results suggest that SKIs have the ability to act as novel ER signaling inhibitors in breast carcinoma.
Collapse
Affiliation(s)
- James W Antoon
- Tulane Department of Pharmacology Section of Hematology and Medical Oncology, Tulane Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schultz-Norton JR, Ziegler YS, Nardulli AM. ERα-associated protein networks. Trends Endocrinol Metab 2011; 22:124-9. [PMID: 21371903 DOI: 10.1016/j.tem.2010.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
Estrogen receptor α (ERα) is a ligand-activated transcription factor that, upon binding hormone, interacts with specific recognition sequences in DNA. An extensive body of literature has documented the association of individual regulatory proteins with ERα. It has recently become apparent that, instead of simply recruiting individual proteins, ERα recruits interconnected networks of proteins with discrete activities that play crucial roles in maintaining the structure and function of the receptor, stabilizing the receptor-DNA interaction, influencing estrogen-responsive gene expression, and repairing misfolded proteins and damaged DNA. Together these studies suggest that the DNA-bound ERα serves as a nucleating factor for the recruitment of protein complexes involved in key processes including the oxidative stress response, DNA repair, and transcription regulation.
Collapse
Affiliation(s)
- Jennifer R Schultz-Norton
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
36
|
Abstract
Cancer and neurodegeneration are often thought of as disease mechanisms at opposite ends of a spectrum; one due to enhanced resistance to cell death and the other due to premature cell death. There is now accumulating evidence to link these two disparate processes. An increasing number of genetic studies add weight to epidemiological evidence suggesting that sufferers of a neurodegenerative disorder have a reduced incidence for most cancers, but an increased risk for other cancers. Many of the genes associated with either cancer and/or neurodegeneration play a central role in cell cycle control, DNA repair, and kinase signalling. However, the links between these two families of diseases remain to be proven. In this review, we discuss recent and sometimes as yet incomplete genetic discoveries that highlight the overlap of molecular pathways implicated in cancer and neurodegeneration.
Collapse
|
37
|
Gagliardi S, Ogliari P, Davin A, Corato M, Cova E, Abel K, Cashman JR, Ceroni M, Cereda C. Flavin-containing monooxygenase mRNA levels are up-regulated in als brain areas in SOD1-mutant mice. Neurotox Res 2010; 20:150-8. [PMID: 21082301 DOI: 10.1007/s12640-010-9230-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/07/2010] [Accepted: 11/03/2010] [Indexed: 12/12/2022]
Abstract
Flavin-containing monooxygenases (FMOs) are a family of microsomal enzymes involved in the oxygenation of a variety of nucleophilic heteroatom-containing xenobiotics. Recent results have pointed to a relation between Amyotrophic Lateral Sclerosis (ALS) and FMO genes. ALS is an adult-onset, progressive, and fatal neurodegenerative disease. We have compared FMO mRNA expression in the control mouse strain C57BL/6J and in a SOD1-mutated (G93A) ALS mouse model. Fmo expression was examined in total brain, and in subregions including cerebellum, cerebral hemisphere, brainstem, and spinal cord of control and SOD1-mutated mice. We have also considered expression in male and female mice because FMO regulation is gender-related. Real-Time TaqMan PCR was used for FMO expression analysis. Normalization was done using hypoxanthine-guanine phosphoribosyl transferase (Hprt) as a control housekeeping gene. Fmo genes, except Fmo3, were detectably expressed in the central nervous system of both control and ALS model mice. FMO expression was generally greater in the ALS mouse model than in control mice, with the highest increase in Fmo1 expression in spinal cord and brainstem. In addition, we showed greater Fmo expression in males than in female mice in the ALS model. The expression of Fmo1 mRNA correlated with Sod1 mRNA expression in pathologic brain areas. We hypothesize that alteration of FMO gene expression is a consequence of the pathological environment linked to oxidative stress related to mutated SOD1.
Collapse
Affiliation(s)
- Stella Gagliardi
- Lab of Experimental Neurobiology, IRCCS National Neurological Institute C. Mondino, Via Mondino, 2, 27100, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Antoon JW, White MD, Meacham WD, Slaughter EM, Muir SE, Elliott S, Rhodes LV, Ashe HB, Wiese TE, Smith CD, Burow ME, Beckman BS. Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology 2010; 151:5124-35. [PMID: 20861237 PMCID: PMC2954724 DOI: 10.1210/en.2010-0420] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alterations in sphingolipid metabolism have been shown to contribute to the development of endocrine resistance and breast cancer tumor survival. Sphingosine kinase (SK), in particular, is overexpressed in breast cancer and is a promising target for breast cancer drug development. In this study, we used the novel SK inhibitor ABC294640 as a tool to explore the relationship between SK and estrogen (E2) receptor (ER) signaling in breast cancer cells. Treatment with ABC294640 decreased E2-stimulated ERE-luciferase activity in both MCF-7 and ER-transfected HEK293 cells. Furthermore, the inhibitor reduced E2-mediated transcription of the ER-regulated genes progesterone receptor and SDF-1. Competitive receptor-binding assays revealed that ABC294640 binds in the antagonist ligand-binding domain of the ER, acting as a partial antagonist similar to tamoxifen. Finally, treatment with ABC294640 inhibited ER-positive breast cancer tumor formation in vivo. After 15 d of treatment with ABC294640, tumor volume was reduced by 68.4% (P < 0.05; n = 5) compared with control tumors, with no marked weight loss or illness. Taken together, these results provide strong evidence that this novel SK inhibitor, which had not previously been known to interact with E2 signaling pathways, has therapeutic potential in treating ER-positive breast cancer via inhibition of both SK and ER signaling.
Collapse
Affiliation(s)
- James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Inoue E, Tano K, Yoshii H, Nakamura J, Tada S, Watanabe M, Seki M, Enomoto T. SOD1 Is Essential for the Viability of DT40 Cells and Nuclear SOD1 Functions as a Guardian of Genomic DNA. J Nucleic Acids 2010; 2010. [PMID: 20811569 PMCID: PMC2929635 DOI: 10.4061/2010/795946] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/04/2010] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROSs) are produced during normal cellular metabolism, particularly by respiration in mitochondria, and these ROSs are considered to cause oxidative damage to macromolecules, including DNA. In our previous paper, we found no indication that depletion of mitochondrial superoxide dismutase, SOD2, resulted in an increase in DNA damage. In this paper, we examined SOD1, which is distributed in the cytoplasm, nucleus, and mitochondrial intermembrane space. We generated conditional SOD1 knockout cells from chicken DT40 cells and analyzed their phenotypes. The results revealed that SOD1 was essential for viability and that depletion of SOD1, especially nuclear SOD1, increased sister chromatid exchange (SCE) frequency, suggesting that superoxide is generated in or near the nucleus and that nuclear SOD1 functions as a guardian of the genome. Furthermore, we found that ascorbic acid could offset the defects caused by SOD1 depletion, including cell lethality and increases in SCE frequency and apurinic/apyrimidinic sites.
Collapse
Affiliation(s)
- Eri Inoue
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Won Kim J, Nie B, Sahm H, Brown DPG, Tegeler T, You JS, Wang M. Targeted quantitative analysis of superoxide dismutase 1 in cisplatin-sensitive and cisplatin-resistant human ovarian cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:700-4. [PMID: 20117967 PMCID: PMC2827867 DOI: 10.1016/j.jchromb.2010.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/04/2010] [Accepted: 01/11/2010] [Indexed: 11/20/2022]
Abstract
Protein quantification in a complex protein mixture presents a daunting task in biochemical analysis. Antibody-based immunoassays are traditional methods for protein quantification. However, there are issues associated with accuracy and specificity in these assays, especially when the changes are small (e.g., <2-fold). With recent developments in mass spectrometry, monitoring a selected peptide, thus protein, in a complex biological sample has become possible. In this study, we demonstrate a simple mass spectrometry-based method for selective measurement of a moderately low abundant protein, superoxide dismutase 1 (SOD1), in cisplatin-sensitive and cisplatin-resistant human ovarian cancer cells. Selected-reaction-monitoring (SRM) technology was employed to specifically analyze the target peptides in a pair of human ovarian cancer cell lines: 2008/2008-C13*5.25 (cisplatin-sensitive/cisplatin-resistant, respectively). The observed 1.47-fold higher expression in the resistant cell line is consistent with findings by other approaches. This robust liquid chromatography/mass spectrometry (LC/MS) method provides a powerful tool for targeted proteomic verification and/or validation studies.
Collapse
Affiliation(s)
- Jong Won Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Bei Nie
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Heather Sahm
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Dawn P. G. Brown
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Tony Tegeler
- Monarch LifeSciences, LLC., Indianapolis, Indiana 46202, USA
| | - Jin-Sam You
- Monarch LifeSciences, LLC., Indianapolis, Indiana 46202, USA
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Monarch LifeSciences, LLC., Indianapolis, Indiana 46202, USA
| |
Collapse
|
41
|
Bonéy-Montoya J, Ziegler YS, Curtis CD, Montoya JA, Nardulli AM. Long-range transcriptional control of progesterone receptor gene expression. Mol Endocrinol 2010; 24:346-58. [PMID: 19952285 PMCID: PMC2817601 DOI: 10.1210/me.2009-0429] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/26/2009] [Indexed: 11/19/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) binds to specific target DNA sequences, estrogen response elements (EREs), to regulate estrogen-responsive gene expression. The progesterone receptor (PR) gene has been used extensively as a marker of estrogen responsiveness. Although we previously identified cis elements within 1 kb of the PR-B transcription start site that are associated with ERalpha and help to confer estrogen responsiveness, the identification of ERalpha binding sites far removed from the transcription start site suggested that long-range regulation of this gene may occur. We now show that eight regions of the PR gene from 311 kb upstream to 4 kb downstream of the PR-B transcription start site interact with ERalpha and that coactivator proteins and acetylated histones are selectively associated with these gene regions. Specific PR gene regions confer estrogen responsiveness to a heterologous reporter plasmid, and mutation of EREs within these regions diminishes estrogen-induced transactivation. Importantly, chromosome conformation capture assays reveal ERalpha- and ligand-dependent interactions between proximal and distal PR gene regions. Taken together, our studies suggest that distal regions of the PR gene participate in the dynamic regulation of this gene and that the coordinated action of proximal and distal PR gene regions allows cells to respond to changes in hormone levels with extraordinary versatility and sensitivity.
Collapse
Affiliation(s)
- Jamie Bonéy-Montoya
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
42
|
Curtis CD, Thorngren DL, Nardulli AM. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 2010; 10:9. [PMID: 20064251 PMCID: PMC2830938 DOI: 10.1186/1471-2407-10-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 01/11/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). METHODS Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. RESULTS We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. CONCLUSIONS Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells.
Collapse
Affiliation(s)
- Carol D Curtis
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana IL 61801, USA
| | - Daniel L Thorngren
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana IL 61801, USA
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana IL 61801, USA
| |
Collapse
|
43
|
Rao AK, Ziegler YS, McLeod IX, Yates JR, Nardulli AM. Thioredoxin and thioredoxin reductase influence estrogen receptor alpha-mediated gene expression in human breast cancer cells. J Mol Endocrinol 2009; 43:251-61. [PMID: 19620238 PMCID: PMC2994277 DOI: 10.1677/jme-09-0053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERalpha, Trx, and TrxR interact and ERalpha and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17beta-estradiol, Trx, and TrxR alter hydrogen peroxide (H(2)O(2)) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H(2)O(2) levels and transcription factor activity, aid ERalpha in regulating the expression of estrogen-responsive genes in target cells.
Collapse
Affiliation(s)
- Abhi K Rao
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
44
|
Curtis CD, Thorngren DL, Ziegler YS, Sarkeshik A, Yates JR, Nardulli AM. Apurinic/apyrimidinic endonuclease 1 alters estrogen receptor activity and estrogen-responsive gene expression. Mol Endocrinol 2009; 23:1346-59. [PMID: 19460860 PMCID: PMC2737565 DOI: 10.1210/me.2009-0093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/14/2009] [Indexed: 12/31/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 or redox factor-1 (Ape1/Ref-1) is a pleiotropic cellular protein involved in DNA repair and, through its redox activity, enhances the binding of a select group of transcription factors to their cognate recognition sequences in DNA. Thus, we were intrigued when we identified Ape1/Ref-1 and a number of DNA repair and oxidative stress proteins in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Because Ape1/Ref-1 interacts with a number of transcription factors and influences their activity, we determined whether it might also influence ERalpha activity. We found that endogenously expressed Ape1/Ref-1 and ERalpha from MCF-7 human breast cancer cells interact and that Ape1/Ref-1 enhances the interaction of ERalpha with estrogen-response elements (EREs) in DNA. More importantly, Ape1/Ref-1 alters expression of the endogenous, estrogen-responsive progesterone receptor and pS2 genes in MCF-7 cells and associates with ERE-containing regions of these genes in native chromatin. Interestingly, knocking down Ape1/Ref-1 expression or inhibiting its redox activity with the small molecule inhibitor E3330 enhances estrogen responsiveness of the progesterone receptor and pS2 genes but does not alter the expression of the constitutively active 36B4 gene. Additionally, the reduced form of Ape1/Ref-1 increases and E3330 limits ERalpha-ERE complex formation in vitro and in native chromatin. Our studies demonstrate that Ape1/Ref-1 mediates its gene-specific effects, in part, by associating with endogenous, estrogen-responsive genes and that the redox activity of Ape1/Ref-1 is instrumental in altering estrogen-responsive gene expression.
Collapse
Affiliation(s)
- Carol D Curtis
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lee SH, Kim HJ, Kang HJ, Lee YJ, Nam HS, Bae I. Reactive Oxygen Species Generated by 17β-estradiol Play a Role in the Up-regulation of GPX4 Protein in MCF-7 Breast Cancer Cells. J Breast Cancer 2009. [DOI: 10.4048/jbc.2009.12.3.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sang-Han Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hee Jeong Kim
- Department of Oncology and Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Hyo Jin Kang
- Department of Oncology and Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hae-Seon Nam
- Department of Clinical Parasitology and Allergy, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Insoo Bae
- Department of Oncology and Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| |
Collapse
|
46
|
Ioannou E, Abdel-Razik AF, Zervou M, Christofidis D, Alexi X, Vagias C, Alexis MN, Roussis V. 5alpha,8alpha-Epidioxysterols from the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum: isolation and evaluation of their antiproliferative activity. Steroids 2009; 74:73-80. [PMID: 18851985 DOI: 10.1016/j.steroids.2008.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/06/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
Three new (1, 4, 9) and nine previously reported (2, 3, 5-8, 10-12) 5alpha,8alpha-epidioxysterols were isolated from the organic extracts of the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum. The structures and relative configurations of 1-12 were established on the basis of detailed NMR spectroscopic analyses and comparison with the literature. The growth inhibitory effects of 1-12 were evaluated against MCF-7 human breast cancer cells. Compound 1, bearing a cyclopropyl moiety in the side chain, exhibited the highest antiproliferative activity.
Collapse
Affiliation(s)
- Efstathia Ioannou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Regulating gene expression is a complex process requiring the interaction of multiple transcription factors with their cognate recognition sequences. While these DNA-bound transcription factors are the primary drivers of gene expression, the capacity of a transcription factor to alter gene expression is tempered by its association with a host of coregulatory proteins that are recruited to the DNA-bound transcription factor. We have developed a novel approach to isolate large complexes of proteins associated with the DNA-bound estrogen receptor alpha (ERalpha) using an agarose-based electrophoretic mobility shift assay (EMSA). This method should be readily adapted to a variety of cultured cell lines, DNA sequences, and transcription factors and has the potential to provide valuable information about a wide variety of regulatory proteins involved in influencing gene expression.
Collapse
|
48
|
Abstract
RNA interference can be extremely useful in determining the function of an endogenously-expressed protein in its normal cellular environment. In this chapter, we describe a method that uses small interfering RNA (siRNA) to knock down mRNA and protein expression in cultured cells so that the effect of a putative regulatory protein on gene expression can be delineated. Methods of assessing the effectiveness of the siRNA procedure using real time quantitative PCR and Western analysis are also included.
Collapse
Affiliation(s)
- Carol D Curtis
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
49
|
Schultz-Norton JR, Ziegler YS, Likhite VS, Yates JR, Nardulli AM. Isolation of novel coregulatory protein networks associated with DNA-bound estrogen receptor alpha. BMC Mol Biol 2008; 9:97. [PMID: 18973695 PMCID: PMC2585101 DOI: 10.1186/1471-2199-9-97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/30/2008] [Indexed: 12/19/2022] Open
Abstract
Background DNA-bound transcription factors recruit an array of coregulatory proteins that influence gene expression. We previously demonstrated that DNA functions as an allosteric modulator of estrogen receptor α (ERα) conformation, alters the recruitment of regulatory proteins, and influences estrogen-responsive gene expression and reasoned that it would be useful to develop a method of isolating proteins associated with the DNA-bound ERα using full-length receptor and endogenously-expressed nuclear proteins. Results We have developed a novel approach to isolate large complexes of proteins associated with the DNA-bound ERα. Purified ERα and HeLa nuclear extracts were combined with oligos containing ERα binding sites and fractionated on agarose gels. The protein-DNA complexes were isolated and mass spectrometry analysis was used to identify proteins associated with the DNA-bound receptor. Rather than simply identifying individual proteins that interact with ERα, we identified interconnected networks of proteins with a variety of enzymatic and catalytic activities that interact not only with ERα, but also with each other. Characterization of a number of these proteins has demonstrated that, in addition to their previously identified functions, they also influence ERα activity and expression of estrogen-responsive genes. Conclusion The agarose gel fractionation method we have developed would be useful in identifying proteins that interact with DNA-bound transcription factors and should be easily adapted for use with a variety of cultured cell lines, DNA sequences, and transcription factors.
Collapse
Affiliation(s)
- Jennifer R Schultz-Norton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
50
|
Creekmore A, Walt KA, Schultz-Norton JR, Ziegler YS, McLeod IX, Yates JR, Nardulli AM. The role of retinoblastoma-associated proteins 46 and 48 in estrogen receptor alpha mediated gene expression. Mol Cell Endocrinol 2008; 291:79-86. [PMID: 18577416 PMCID: PMC2642675 DOI: 10.1016/j.mce.2008.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
The differential recruitment of coregulatory proteins to the DNA-bound estrogen receptor alpha (ERalpha) plays a critical role in mediating estrogen-responsive gene expression. We previously isolated and identified retinoblastoma-associated proteins 46 (RbAp46) and 48 (RbAp48), which are associated with chromatin remodeling, histone deacetylation, and transcription repression, as proteins associated with the DNA-bound ERalpha. We now demonstrate that RbAp46 and RbAp48 interact with ERalphain vitro and in vivo, associate with ERalpha at endogenous, estrogen-responsive genes, and alter expression of endogenous, ERalpha-activated and -repressed genes in MCF-7 breast cancer cells. Our findings reveal that RbAp48 limits expression of estrogen-responsive genes and that RbAp46 modulates estrogen responsiveness in a gene-specific manner. The ability of RbAp46 and RbAp48 to interact with ERalpha and influence its activity reveals yet another role for these multifunctional proteins in regulating gene expression.
Collapse
Affiliation(s)
- Amy Creekmore
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801
| | - Kjirsten A. Walt
- Department of Molecular and Integrative Physiology University of Illinois, Urbana, IL 61801
| | | | - Yvonne S. Ziegler
- Department of Molecular and Integrative Physiology University of Illinois, Urbana, IL 61801
| | - Ian X. McLeod
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ann M. Nardulli
- Department of Molecular and Integrative Physiology University of Illinois, Urbana, IL 61801
| |
Collapse
|