1
|
Sun L, Huang K, Deng Q, Zhu Y, Cao Y, Dong K, Yang S, Li Y, Wu S, Huang R. REV-ERBα negatively regulates NLRP6 transcription and reduces the severity of Salmonella infection in mice. Heliyon 2024; 10:e28432. [PMID: 38628724 PMCID: PMC11019167 DOI: 10.1016/j.heliyon.2024.e28432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Non-typhoidal Salmonella infection is among the most frequent foodborne diseases threatening human health worldwide. The host circadian clock orchestrates daily rhythms to adapt to environmental changes, including coordinating immune function in response to potential infections. However, the molecular mechanisms underlying the interplay between the circadian clock and the immune system in modulating infection processes are incompletely understood. Here, we demonstrate that NLRP6, a novel nucleotide-oligomerization domain (NOD)-like receptor (NLR) family member highly expressed in the intestine, is closely associated with the differential day-night response to Salmonella infection. The core clock component REV-ERBα negatively regulates NLRP6 transcription, leading to the rhythmic expression of NLRP6 and the secretion of IL-18 in intestinal epithelial cells, playing a crucial role in mediating the differential day-night response to Salmonella infection. Activating REV-ERBα with agonist SR9009 in wild-type mice attenuated the severity of infection by decreasing the NLRP6 level in intestinal epithelial cells. Our findings provide new insights into the association between the host circadian clock and the immune response to enteric infections by revealing the regulation of Salmonella infection via the inhibitory effect of REV-ERBα on NLRP6 transcription. Targeting REV-ERBα to modulate NLRP6 activation may be a potential therapeutic strategy for bacterial infections.
Collapse
Affiliation(s)
- Lanqing Sun
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000 Jiangsu, PR China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062 Jiangsu, PR China
- Cambridge–Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
| | - Qifeng Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 Guangdong, PR China
| | - Yuan Zhu
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010 Zhejiang, PR China
| | - Yu Cao
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
- Laboratory Department, Children's Hospital of Soochow University, Suzhou, 215025 Jiangsu, PR China
| | - Kedi Dong
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, 315010 Zhejiang, PR China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou International BioIsland, Guangzhou, 510005 Guangdong, PR China
| | - Yuanyuan Li
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
| | - Shuyan Wu
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
| | - Rui Huang
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu, PR China
| |
Collapse
|
2
|
Yao B, Li L, Guan X, Zhu J, Liu Q, Qu B, Ding H. Endurance Training Inhibits the JAK2/STAT3 Pathway to Alleviate Sarcopenia. Physiol Res 2024; 73:295-304. [PMID: 38710060 PMCID: PMC11081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 05/08/2024] Open
Abstract
Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).
Collapse
Affiliation(s)
- B Yao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Cvammen W, Kemp MG. The REV-ERB antagonist SR8278 modulates keratinocyte viability in response to UVA and UVB radiation. Photochem Photobiol 2024. [PMID: 38459721 DOI: 10.1111/php.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
The nucleotide excision repair (NER) system removes UV photoproducts from genomic DNA and is controlled by the circadian clock. Given that small-molecule compounds have been developed to target various clock proteins, we examined whether the cryptochrome inhibitor KS15 and REV-ERB antagonist SR8278 could modulate keratinocyte responses to UV radiation in vitro. We observed that though SR8278 promoted cell viability in UVB-irradiated cells, it had little effect on NER or on the expression of the clock-regulated NER factor XPA. Rather, we found that both KS15 and SR8278 absorb light within the UV spectrum to limit initial UV photoproduct formation in DNA. Moreover, SR8278 promoted UVB viability even in cells in which the core circadian clock protein BMAL1 was disrupted, which indicates that SR8278 is likely acting via other REV-ERB transcriptional targets. We further observed that SR8278 sensitized keratinocytes to light sources containing primarily UVA wavelengths of light likely due to the generation of toxic reactive oxygen species. Though other studies have demonstrated beneficial effects of SR8278 in other model systems, our results here suggest that SR8278 has limited utility for UV photoprotection in the skin and will likely cause phototoxicity in humans or mammals exposed to solar radiation.
Collapse
Affiliation(s)
- William Cvammen
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Dayton Veterans Administration Medical Center, Dayton, Ohio, USA
| |
Collapse
|
4
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Goswamy D, Gonzalez X, Labed SA, Irazoqui JE. C. elegans orphan nuclear receptor NHR-42 represses innate immunity and promotes lipid loss downstream of HLH-30/TFEB. Front Immunol 2023; 14:1094145. [PMID: 36860863 PMCID: PMC9968933 DOI: 10.3389/fimmu.2023.1094145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, transcription factors of the Microphthalmia-TFE (MiT) family, including TFEB and TFE3 in mammals and HLH-30 in Caenorhabditis elegans, have emerged as important regulators of innate immunity and inflammation in invertebrates and vertebrates. Despite great strides in knowledge, the mechanisms that mediate downstream actions of MiT transcription factors in the context of innate host defense remain poorly understood. Here, we report that HLH-30, which promotes lipid droplet mobilization and host defense, induces the expression of orphan nuclear receptor NHR-42 during infection with Staphylococcus aureus. Remarkably, NHR-42 loss of function promoted host infection resistance, genetically defining NHR-42 as an HLH-30-controlled negative regulator of innate immunity. During infection, NHR-42 was required for lipid droplet loss, suggesting that it is an important effector of HLH-30 in lipid immunometabolism. Moreover, transcriptional profiling of nhr-42 mutants revealed wholesale activation of an antimicrobial signature, of which abf-2, cnc-2, and lec-11 were important for the enhanced survival of infection of nhr-42 mutants. These results advance our knowledge of the mechanisms by which MiT transcription factors promote host defense, and by analogy suggest that TFEB and TFE3 may similarly promote host defense via NHR-42-homologous nuclear receptors in mammals.
Collapse
Affiliation(s)
| | | | | | - Javier E. Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Colombini B, Dinu M, Murgo E, Lotti S, Tarquini R, Sofi F, Mazzoccoli G. Ageing and Low-Level Chronic Inflammation: The Role of the Biological Clock. Antioxidants (Basel) 2022; 11:2228. [PMID: 36421414 PMCID: PMC9686908 DOI: 10.3390/antiox11112228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 09/01/2023] Open
Abstract
Ageing is a multifactorial physiological manifestation that occurs inexorably and gradually in all forms of life. This process is linked to the decay of homeostasis due to the progressive decrease in the reparative and regenerative capacity of tissues and organs, with reduced physiological reserve in response to stress. Ageing is closely related to oxidative damage and involves immunosenescence and tissue impairment or metabolic imbalances that trigger inflammation and inflammasome formation. One of the main ageing-related alterations is the dysregulation of the immune response, which results in chronic low-level, systemic inflammation, termed "inflammaging". Genetic and epigenetic changes, as well as environmental factors, promote and/or modulate the mechanisms of ageing at the molecular, cellular, organ, and system levels. Most of these mechanisms are characterized by time-dependent patterns of variation driven by the biological clock. In this review, we describe the involvement of ageing-related processes with inflammation in relation to the functioning of the biological clock and the mechanisms operating this intricate interaction.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
9
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
10
|
Lamorte S, Shinde R, McGaha TL. Nuclear receptors, the aryl hydrocarbon receptor, and macrophage function. Mol Aspects Med 2021; 78:100942. [PMID: 33451803 DOI: 10.1016/j.mam.2021.100942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are key regulators of innate immune responses and tissue homeostasis. Evidence indicates that NRs significantly impact steady-state immune regulation, uptake and processing of apoptotic cells, tolerance induction, and control of inflammatory immunity. In this review, we describe our current understanding of the NR activity for balancing inflammation and tolerance, the signaling cascade inducing the NR activation and functional responses, and different mechanisms of the NR-driven immune effects in the context of autoimmune diseases. We further describe the ligand-activated transcription factor the aryl hydrocarbon receptor (AhR) that exhibits analogous functionality. Moreover, we will discuss the putative role of NRs and AhR in immune regulation and disease pathogenesis providing a rationale for therapeutic targeting as a unique opportunities in the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Sara Lamorte
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Tracy L McGaha
- Tumor Immunotherapy Program, The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; The Department of Immunology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Duez H, Pourcet B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Front Endocrinol (Lausanne) 2021; 12:630536. [PMID: 33716981 PMCID: PMC7947301 DOI: 10.3389/fendo.2021.630536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of defense specialized in the clearing of invaders whether foreign elements like microbes or self-elements that accumulate abnormally including cellular debris. Inflammasomes are master regulators of the innate immune system, especially in macrophages, and are key sensors involved in maintaining cellular health in response to cytolytic pathogens or stress signals. Inflammasomes are cytoplasmic complexes typically composed of a sensor molecule such as NOD-Like Receptors (NLRs), an adaptor protein including ASC and an effector protein such as caspase 1. Upon stimulation, inflammasome complex components associate to promote the cleavage of the pro-caspase 1 into active caspase-1 and the subsequent activation of pro-inflammatory cytokines including IL-18 and IL-1β. Deficiency or overactivation of such important sensors leads to critical diseases including Alzheimer diseases, chronic inflammatory diseases, cancers, acute liver diseases, and cardiometabolic diseases. Inflammasomes are tightly controlled by a two-step activation regulatory process consisting in a priming step, which activates the transcription of inflammasome components, and an activation step which leads to the inflammasome complex formation and the subsequent cleavage of pro-IL1 cytokines. Apart from the NF-κB pathway, nuclear receptors have recently been proposed as additional regulators of this pathway. This review will discuss the role of nuclear receptors in the control of the NLRP3 inflammasome and the putative beneficial effect of new modulators of inflammasomes in the treatment of inflammatory diseases including colitis, fulminant hepatitis, cardiac ischemia-reperfusion and brain diseases.
Collapse
|
12
|
Zhao L, Lei W, Deng C, Wu Z, Sun M, Jin Z, Song Y, Yang Z, Jiang S, Shen M, Yang Y. The roles of liver X receptor α in inflammation and inflammation-associated diseases. J Cell Physiol 2020; 236:4807-4828. [PMID: 33305467 DOI: 10.1002/jcp.30204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Liver X receptor α (LXRα; also known as NR1H3), an isoform of LXRs, is a member of the nuclear receptor family of transcription factors and plays essential roles in the transcriptional control of cholesterol homeostasis. Previous in-depth phenotypic analyses of mouse models with deficient LXRα have also demonstrated various physiological functions of this receptor within inflammatory responses. LXRα activation exerts a combination of metabolic and anti-inflammatory actions resulting in the modulation and the amelioration of inflammatory disorders. The tight "repercussions" between LXRα and inflammation, as well as cholesterol homeostasis, have suggested that LXRα could be pharmacologically targeted in pathologies such as atherosclerosis, acute lung injury, and Alzheimer's disease. This review gives an overview of the recent advances in understanding the roles of LXRα in inflammation and inflammation-associated diseases, which will help in the design of future experimental researches on the potential of LXRα and advance the investigation of LXRα as pharmacological inflammatory targets.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China.,Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China.,Hainan Branch of National Clinical Reasearch Center of Geriatrics Disease, Sanya, Hainan, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education Life of Sciences, Northwest University, Xi'an, China
| |
Collapse
|
13
|
Wang S, Li F, Lin Y, Wu B. Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics 2020; 10:4168-4182. [PMID: 32226546 PMCID: PMC7086371 DOI: 10.7150/thno.43834] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
REV-ERBα (NR1D1) is a circadian clock component that functions as a transcriptional repressor. Due to its role in direct modulation of metabolic genes, REV-ERBα is regarded as an integrator of cell metabolism with circadian clock. Accordingly, REV-ERBα is first proposed as a drug target for treating sleep disorders and metabolic syndromes (e.g., dyslipidaemia, hyperglycaemia and obesity). Recent years of studies uncover a rather broad role of REV-ERBα in pathological conditions including local inflammatory diseases, heart failure and cancers. Moreover, REV-ERBα is involved in regulation of circadian drug metabolism that has implications in chronopharmacology. In the meantime, recent years have witnessed discovery of an array of new REV-ERBα ligands most of which have pharmacological activities in vivo. In this article, we review the regulatory role of REV-ERBα in various types of diseases and discuss the underlying mechanisms. We also describe the newly discovered ligands and the old ones together with their targeting potential. Despite well-established pharmacological effects of REV-ERBα ligands in animals (preclinical studies), no progress has been made regarding their translation to clinical trials. This implies certain challenges associated with drug development of REV-ERBα ligands. In particular, we discuss the potential challenges related to drug safety (or adverse effects) and bioavailability. For new drug development, it is advocated that REV-ERBα should be targeted to treat local diseases and a targeting drug should be locally distributed, avoiding the adverse effects on other tissues.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
14
|
Machado-Aranda DA, Raghavendran K. Light at the end of the tunnel? J Leukoc Biol 2019; 107:7-8. [PMID: 31746474 DOI: 10.1002/jlb.3ce1019-252r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/25/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
Discussion on how the modulation of Rev-Erb-alpha and the circadian CLOCK proteins remain an interesting but elusive target for modulation of acute inflammatory response in critical illness.
Collapse
Affiliation(s)
- D A Machado-Aranda
- Division of Acute Care surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - K Raghavendran
- Division of Acute Care surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Pastore N, Vainshtein A, Herz NJ, Huynh T, Brunetti L, Klisch TJ, Mutarelli M, Annunziata P, Kinouchi K, Brunetti-Pierri N, Sassone-Corsi P, Ballabio A. Nutrient-sensitive transcription factors TFEB and TFE3 couple autophagy and metabolism to the peripheral clock. EMBO J 2019; 38:embj.2018101347. [PMID: 31126958 DOI: 10.15252/embj.2018101347] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.
Collapse
Affiliation(s)
- Nunzia Pastore
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anna Vainshtein
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Niculin J Herz
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tuong Huynh
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Tiemo J Klisch
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Medical and Translational Sciences, Medical Genetics, Federico II University, Naples, Italy
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
| | - Andrea Ballabio
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Medical and Translational Sciences, Medical Genetics, Federico II University, Naples, Italy
| |
Collapse
|
16
|
Yu D, Fang X, Xu Y, Xiao H, Huang T, Zhang Y, Ge Y, Li Y, Zong L, Gao J. Rev-erbα can regulate the NF-κB/NALP3 pathway to modulate lipopolysaccharide-induced acute lung injury and inflammation. Int Immunopharmacol 2019; 73:312-320. [PMID: 31129418 DOI: 10.1016/j.intimp.2019.04.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 03/16/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Progressive lung injury and pulmonary inflammation can be induced by an intraperitoneal injection of lipopolysaccharide (LPS). Interleukin-1β (IL-1β) is a key pro-inflammatory cytokine that can further exaggerate inflammation, which is cleaved and activated by the NALP3 inflammasome. Although the nuclear receptor Rev-erbα attenuates the level of LPS-induced pulmonary inflammation, the mechanism remains unclear. In this study, we investigated the influence of LPS-induced production of IL-1β and Rev-erbα on the development of lung inflammation. Herein, we demonstrate that Rev-erbα reduces IL-1β production and lung injury following an intraperitoneal injection of LPS, which is dependent on the NF-κB/NALP3 pathway. Thus, Rev-erbα is able to decrease the extent of acute lung injury by regulating IL-1β production. This mechanism may represent a potential novel therapeutic approach for lung injury.
Collapse
Affiliation(s)
- Dapeng Yu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangzhi Fang
- Department of Anesthesiology, Norhtern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yingying Xu
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Huashi Xiao
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China; Clinical Medical College, Dalian Medical University, Dalian, Liaoning Province, China
| | - Tianfeng Huang
- Department of Anesthesiology, Norhtern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yang Zhang
- Department of Anesthesiology, Norhtern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yali Ge
- Department of Anesthesiology, Norhtern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yong Li
- Department of Anesthesiology, Norhtern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Ju Gao
- Department of Anesthesiology, Norhtern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Aging renders desynchronization between clock and immune genes in male Wistar rat kidney: chronobiotic role of curcumin. Biogerontology 2019; 20:515-532. [PMID: 31098769 DOI: 10.1007/s10522-019-09813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
Suprachiasmatic nucleus (SCN) contains the central clock that orchestrate circadian rhythms in physiology and behavior in mammals. Tightly interlocked transcriptional and translational feedback loops (TTFLs) comprising of various clock genes such as Clock, Bmal1, Periods, Cryptochromes etc. in the SCN, send the timing signals to peripheral clocks that governs local metabolism with similar TTFLs. Peripheral clocks in kidney regulates several circadian rhythms like blood pressure, immunity etc. However, aging leads to circadian and inflammatory disorders in kidney. Though there are increasing evidences on age associated perturbations, studies elucidating the rhythmic expression of clock and immune genes across aging in kidney are obscure. We therefore studied changes in daily rhythms of clock and immune genes in kidney. In this study we measured mRNA expression of clock genes rBmal1, rPer1, rPer2, rCry1, rCry2, rRev-erbα, rRorα, and inflammatory genes rNfκb1, rTnfα, rIl6, rTlr4 and rTlr9 in 3, 12 and 24 months male Wistar rat kidney using qRT-PCR. From our study, we did not observe significant changes in clock genes expression except rRorα, but immune genes showed significant phase alterations as well as increase in mean 24 h levels. Pearson correlation analysis of data showed desynchronization between immune and clock genes expression. We further studied the effect of administration of curcumin which has anti-aging, anti-inflammatory, anti-oxidant etc. properties, and evaluated its chronobiotic properties. We here report differential effects of curcumin administration on daily rhythms of clock and immune genes expression.
Collapse
|
18
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
19
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
20
|
The Liver X Receptor Is Upregulated in Monocyte-Derived Macrophages and Modulates Inflammatory Cytokines Based on LXR α Polymorphism. Mediators Inflamm 2019; 2019:6217548. [PMID: 30944547 PMCID: PMC6421810 DOI: 10.1155/2019/6217548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/08/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Liver X receptors (LXRs) have emerged as important regulators of inflammatory gene expression. Previously, we had reported that an LXRα gene promoter polymorphism (-1830 T > C) is associated with systemic lupus erythematosus (SLE). Therefore, we assessed cytokine expression in relation to LXRα polymorphism in monocyte-derived macrophages from patients with SLE. Macrophages were obtained after 72 hours of culture of human monocytes supplemented with phorbol 12-myristate 13-acetate. Cells were transfected with LXRα promoter constructs. Additionally, peripheral blood mononuclear cell- (PBMC-) derived macrophages from the patients were evaluated for proinflammatory cytokines in relation to the genotypes of LXRα -1830 T > C. The expression of LXRα was increased in macrophages; levels of proinflammatory cytokines were decreased with LXRα expression. Production of proinflammatory cytokines varied depending on LXRα -1830 T > C genotype. In particular, expression of LXRα was decreased and that of proinflammatory cytokines was increased for LXRα -1830 TC genotype compared to that for TT genotype. The data were consistent in PBMC-derived macrophages from patients with SLE. Increased proinflammatory cytokines is related to TLR7 and TLR9 expression. These data suggest that the expression levels of LXRα, according to LXRα -1830 T > C genotype, may contribute to the inflammatory response by induction of inflammatory cytokines in SLE.
Collapse
|
21
|
Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, Haas J, Eeckhoute J, Dombrowicz D, Duhem C, Boulinguiez A, Lancel S, Sebti Y, Burris T, Staels B, Duez H. Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology 2018; 154:1449-1464.e20. [PMID: 29277561 PMCID: PMC5892845 DOI: 10.1053/j.gastro.2017.12.019] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. METHODS We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1-/- mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1β (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow-derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow-derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1-/- mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1-/- mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. RESULTS In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)-this regulation required NR1D1. Primary macrophages from Nr1d1-/- mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). CONCLUSIONS In studies of Nr1d1-/- mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.
Collapse
Affiliation(s)
- B Pourcet
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - M Zecchin
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - L Ferri
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Beauchamp
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - S Sitaula
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA. The Scripps Research Institute, Jupiter, FL, USA
| | - C Billon
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA. The Scripps Research Institute, Jupiter, FL, USA
| | - S Delhaye
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Vanhoutte
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - A Mayeuf-Louchart
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Q Thorel
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Haas
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - J Eeckhoute
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - D Dombrowicz
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - C Duhem
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - A Boulinguiez
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - S Lancel
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Y Sebti
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - T Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA. The Scripps Research Institute, Jupiter, FL, USA
| | - B Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - H Duez
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Univ. Lille, F-59000 Lille, France; INSERM UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France,Correspondence should be addressed to Hélène Duez, UMR1011, Institut Pasteur de Lille, 1 rue Calmette, F-59019 Lille, France. Tel: +33(0)3 2087 7793,
| |
Collapse
|
22
|
Audo R, Deckert V, Daien CI, Che H, Elhmioui J, Lemaire S, Pais de Barros JP, Desrumaux C, Combe B, Hahne M, Lagrost L, Morel J. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity. PLoS One 2018; 13:e0193815. [PMID: 29565987 PMCID: PMC5863966 DOI: 10.1371/journal.pone.0193815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA.
Collapse
Affiliation(s)
- Rachel Audo
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| | - Valérie Deckert
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Claire I. Daien
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Hélène Che
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Jamila Elhmioui
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Stéphanie Lemaire
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jean-Paul Pais de Barros
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Catherine Desrumaux
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- INSERM U1198, (MMDN), EiAlz Team, University Montpellier 2, EPHE, Montpellier, France
| | - Bernard Combe
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Michael Hahne
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Laurent Lagrost
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jacques Morel
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| |
Collapse
|
23
|
Kim SM, Neuendorff N, Alaniz RC, Sun Y, Chapkin RS, Earnest DJ. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism. FASEB J 2018; 32:3085-3095. [PMID: 29405095 DOI: 10.1096/fj.201700784r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Based on genetic models with mutation or deletion of core clock genes, circadian disruption has been implicated in the pathophysiology of metabolic disorders. Thus, we examined whether circadian desynchronization in response to shift work-type schedules is sufficient to compromise metabolic homeostasis and whether inflammatory mediators provide a key link in the mechanism by which alterations of circadian timekeeping contribute to diet-induced metabolic dysregulation. In high-fat diet (HFD)-fed mice, exposure to chronic shifts of the light-dark cycle (12 h advance every 5 d): 1) disrupts photoentrainment of circadian behavior and modulates the period of spleen and macrophage clock gene rhythms; 2) potentiates HFD-induced adipose tissue infiltration and activation of proinflammatory M1 macrophages; 3) amplifies macrophage proinflammatory cytokine expression in adipose tissue and bone marrow-derived macrophages; and 4) exacerbates diet-induced increases in body weight, insulin resistance, and glucose intolerance in the absence of changes in total daily food intake. Thus, complete disruption of circadian rhythmicity or clock gene function as transcription factors is not requisite to the link between circadian and metabolic phenotypes. These findings suggest that macrophage proinflammatory activation and inflammatory signaling are key processes in the physiologic cascade by which dysregulation of circadian rhythmicity exacerbates diet-induced systemic insulin resistance and glucose intolerance.-Kim, S.-M., Neuendorff, N., Alaniz, R. C., Sun, Y., Chapkin, R. S., Earnest, D. J. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism.
Collapse
Affiliation(s)
- Sam-Moon Kim
- Department of Biology, Texas A&M University, College Station, Texas, USA.,Center for Biological Clocks Research, Texas A&M University, College Station, Texas, USA
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA; and
| | - Robert S Chapkin
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA; and.,Program in Integrative Nutrition and Complex Diseases, Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas, USA
| | - David J Earnest
- Department of Biology, Texas A&M University, College Station, Texas, USA.,Center for Biological Clocks Research, Texas A&M University, College Station, Texas, USA.,Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| |
Collapse
|
24
|
Eichenfield DZ, Troutman TD, Link VM, Lam MT, Cho H, Gosselin D, Spann NJ, Lesch HP, Tao J, Muto J, Gallo RL, Evans RM, Glass CK. Tissue damage drives co-localization of NF-κB, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. eLife 2016; 5. [PMID: 27462873 PMCID: PMC4963201 DOI: 10.7554/elife.13024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/30/2016] [Indexed: 12/24/2022] Open
Abstract
Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype. DOI:http://dx.doi.org/10.7554/eLife.13024.001
Collapse
Affiliation(s)
- Dawn Z Eichenfield
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, United States
| | - Ty Dale Troutman
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department II, Faculty of Biology, Ludwig-Maximilian Universität München, Planegg-Martinsried, Germany
| | - Michael T Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, United States.,Department of Medicine, University of California, San Diego, San Diego, United States
| | - Han Cho
- Salk Institute for Biological Sciences, La Jolla, United States
| | - David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Hanna P Lesch
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Jun Muto
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Ronald M Evans
- Salk Institute for Biological Sciences, La Jolla, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
25
|
Huang G, Zhang F, Ye Q, Wang H. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbα and indirectly via Cebpb/(C/ebpβ) in zebrafish. Autophagy 2016; 12:1292-309. [PMID: 27171500 PMCID: PMC4968235 DOI: 10.1080/15548627.2016.1183843] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation system, and recently was shown to display circadian rhythms in mice. The mechanisms underlying circadian regulation of autophagy, however, are still unclear. Here, we observed that numbers of autophagosomes and autolysosomes exhibit daily rhythms in the zebrafish liver, and cebpb/(c/ebpβ) and various autophagy genes are rhythmically expressed in zebrafish larvae but significantly upregulated in per1b and TALEN-generated nr1d1/rev-erbα mutant fish, indicating that both Per1b and Nr1d1 play critical roles in autophagy rhythms. Luciferase reporter and ChIP assays show that the circadian clock directly regulates autophagy genes through Nr1d1, and also regulates transcription of cebpb through Per1b. We also found that fasting leads to altered expression of both circadian clock genes and autophagy genes in zebrafish adult peripheral organs. Further, transcriptome analysis reveals multiple functions of Nr1d1 in zebrafish. Taken together, these findings provide evidence for how the circadian clock regulates autophagy, imply that nutritional signaling affects both circadian regulation and autophagy activities in peripheral organs, and shed light on how circadian gene mutations act through autophagy to contribute to common metabolic diseases such as obesity.
Collapse
Affiliation(s)
- Guodong Huang
- a Center for Circadian Clocks , Soochow University ; Suzhou , Jiangsu , China.,b School of Biology & Basic Medical Sciences , Medical College, Soochow University , Suzhou , Jiangsu , China
| | - Fanmiao Zhang
- a Center for Circadian Clocks , Soochow University ; Suzhou , Jiangsu , China.,b School of Biology & Basic Medical Sciences , Medical College, Soochow University , Suzhou , Jiangsu , China
| | - Qiang Ye
- a Center for Circadian Clocks , Soochow University ; Suzhou , Jiangsu , China.,b School of Biology & Basic Medical Sciences , Medical College, Soochow University , Suzhou , Jiangsu , China
| | - Han Wang
- a Center for Circadian Clocks , Soochow University ; Suzhou , Jiangsu , China.,b School of Biology & Basic Medical Sciences , Medical College, Soochow University , Suzhou , Jiangsu , China
| |
Collapse
|
26
|
Kojo H, Eguchi Y, Makino K, Terada H. Characteristic gene expression profile of nuclear receptor superfamily induced by hepatotoxic and antimetabolic drugs in human primary hepatocytes. CHEM-BIO INFORMATICS JOURNAL 2016. [DOI: 10.1273/cbij.16.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Kimiko Makino
- Systems PharmaSciences Research Organization
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hiroshi Terada
- Systems PharmaSciences Research Organization
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Niigata University of Pharmacy and Applied Life Sciences
| |
Collapse
|
27
|
Everett LJ, Lazar MA. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab 2014; 25:586-92. [PMID: 25066191 PMCID: PMC4252361 DOI: 10.1016/j.tem.2014.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Rev-erbα is a nuclear receptor that links circadian rhythms to transcriptional control of metabolic pathways. Rev-erbα is a potent transcriptional repressor and plays an important role in the core mammalian molecular clock while also serving as a key regulator of clock output in metabolic tissues including liver and brown adipose tissue (BAT). Recent findings have shed new light on the role of Rev-erbα and its paralog Rev-erbβ in rhythm generation, as well as additional regulatory roles for Rev-erbα in other tissues that contribute to energy expenditure, inflammation, and behavior. This review highlights physiological functions of Rev-erbα and β in multiple tissues and discusses the therapeutic potential and challenges of targeting these pathways in human disease.
Collapse
Affiliation(s)
- Logan J Everett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Burkhardt AM, Maravillas-Montero JL, Carnevale CD, Vilches-Cisneros N, Flores JP, Hevezi PA, Zlotnik A. CXCL17 is a major chemotactic factor for lung macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:1468-74. [PMID: 24973458 DOI: 10.4049/jimmunol.1400551] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemokines are a superfamily of chemotactic cytokines that direct the movement of cells throughout the body under homeostatic and inflammatory conditions. The mucosal chemokine CXCL17 was the last ligand of this superfamily to be characterized. Several recent studies have provided greater insight into the basic biology of this chemokine and have implicated CXCL17 in several human diseases. We sought to better characterize CXCL17's activity in vivo. To this end, we analyzed its chemoattractant properties in vivo and characterized a Cxcl17 (-/-) mouse. This mouse has a significantly reduced number of macrophages in its lungs compared with wild-type mice. In addition, we observed a concurrent increase in a new population of macrophage-like cells that are F4/80(+)CDllc(mid). These results indicate that CXCL17 is a novel macrophage chemoattractant that operates in mucosal tissues. Given the importance of macrophages in inflammation, these observations strongly suggest that CXCL17 is a major regulator of mucosal inflammatory responses.
Collapse
Affiliation(s)
- Amanda M Burkhardt
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - José L Maravillas-Montero
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Christina D Carnevale
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Natalia Vilches-Cisneros
- Department of Pathologic Anatomy and Cytopathology, University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Juan P Flores
- Department of Pathologic Anatomy and Cytopathology, University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Peter A Hevezi
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| | - Albert Zlotnik
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697; Institute for Immunology, University of California, Irvine, Irvine, CA 92697; and
| |
Collapse
|
29
|
Xu H, Li H, Woo SL, Kim SM, Shende VR, Neuendorff N, Guo X, Guo T, Qi T, Pei Y, Zhao Y, Hu X, Zhao J, Chen L, Chen L, Ji JY, Alaniz RC, Earnest DJ, Wu C. Myeloid cell-specific disruption of Period1 and Period2 exacerbates diet-induced inflammation and insulin resistance. J Biol Chem 2014; 289:16374-88. [PMID: 24770415 DOI: 10.1074/jbc.m113.539601] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Hang Xu
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Honggui Li
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Shih-Lung Woo
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Sam-Moon Kim
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Vikram R Shende
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Xin Guo
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Ting Guo
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Ting Qi
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Ya Pei
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Yan Zhao
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Xiang Hu
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843, Department of Endocrinology and
| | - Jiajia Zhao
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843, Department of Stomatology, Union Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China, and
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China, and
| | | | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine and
| | - Robert C Alaniz
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - David J Earnest
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807,
| | - Chaodong Wu
- From the Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843,
| |
Collapse
|
30
|
Jager J, O'Brien WT, Manlove J, Krizman EN, Fang B, Gerhart-Hines Z, Robinson MB, Klein PS, Lazar MA. Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα. Mol Endocrinol 2014; 28:490-8. [PMID: 24552589 DOI: 10.1210/me.2013-1351] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The regulation of behavior by the molecular components of the circadian clock is not well understood. Here we report that mice lacking the nuclear receptor Rev-erbα, a potent transcriptional repressor and core clock component, displayed marked hyperactivity and impaired response habituation in novel environments. In addition, Rev-erbα knockout (KO) mice were deficient in short-term, long-term, and contextual memories and also showed impairment in nest-building ability. Together, these results suggest that Rev-erbα KO mice manifest defective hippocampal function. Interestingly, the changes in novelty-induced locomotor activity of Rev-erbα KO mice were comparable at multiple times of day, potentially due to the muted amplitude of Rev-erbα oscillation in the hippocampus of wild-type mice. Hippocampal dopamine turnover was increased in Rev-erbα KO mice, due to up-regulation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine production, and pharmacologic inhibition of tyrosine hydroxylase activity partially rescued locomotor hyperactivity. These findings reveal a novel, nonredundant function for Rev-erbα that links a core component of the circadian gene-regulatory network to the control of dopaminergic and hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism (J.J., B.F., Z.G-H., M.A.L.), Department of Neurosciences (W.T.O., J.M.), and Division of Hematology-Oncology, Department of Medicine (P.S.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104; and Children's Hospital of Philadelphia Research Institute (E.N.K., M.B.R.), Departments of Pediatrics and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li H, Wang C, Hu J, Tan J. A study on circadian rhythm disorder of rat lung tissue caused by mechanical ventilation induced lung injury. Int Immunopharmacol 2014; 18:249-54. [DOI: 10.1016/j.intimp.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
32
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
33
|
Ma H, Zhong W, Jiang Y, Fontaine C, Li S, Fu J, Olkkonen VM, Staels B, Yan D. Increased atherosclerotic lesions in LDL receptor deficient mice with hematopoietic nuclear receptor Rev-erbα knock- down. J Am Heart Assoc 2013; 2:e000235. [PMID: 23963755 PMCID: PMC3828791 DOI: 10.1161/jaha.113.000235] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Nuclear receptor Rev-erbα plays important roles in circadian clock timing, lipid metabolism, adipogenesis, and vascular inflammation. However, the role of Rev-erbα in atherosclerotic lesion development has not been assessed in vivo. METHODS AND RESULTS The nuclear receptor Rev-erbα was knocked down in mouse haematopoietic cells by means of shRNA-lentiviral transduction, followed by bone marrow transplantation into LDL receptor knockout mice. The Rev-erbα protein in peripheral macrophage was reduced by 70% as compared to control mice injected with nontargeting shRNA lentivirus-transduced bone marrow. A significant increase in atherosclerotic lesions was observed around the aorta valves as well as upon en face aorta analysis of Rev-erbα knock-down bone marrow recipients (P<0.01) as compared to the control mice, while plasma cholesterol, phospholipid, and triacylglycerol levels were not affected. Overexpression of Rev-erbα in bone marrow mononuclear cells decreased inflammatory M1 while increasing M2 macrophage markers, while Rev-erbα knock down increased the macrophage inflammatory phenotype in vitro and in vivo. Furthermore, treatment of differentiating macrophages with the Rev-erbα ligand heme promoted expression of antiinflammatory M2 markers. CONCLUSIONS These observations identify hematopoietic cell Rev-erbα as a new modulator of atherogenesis in mice.
Collapse
Affiliation(s)
- Hongling Ma
- Department of Biotechnology, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, Delhaye S, Shin Y, Kamenecka TM, Schaart G, Lefebvre P, Nevière R, Burris TP, Schrauwen P, Staels B, Duez H. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 2013; 19:1039-46. [PMID: 23852339 PMCID: PMC3737409 DOI: 10.1038/nm.3213] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function.
Collapse
|
35
|
Chandra V, Mahajan S, Saini A, Dkhar HK, Nanduri R, Raj EB, Kumar A, Gupta P. Human IL10 gene repression by Rev-erbα ameliorates Mycobacterium tuberculosis clearance. J Biol Chem 2013; 288:10692-702. [PMID: 23449984 PMCID: PMC3624449 DOI: 10.1074/jbc.m113.455915] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/28/2013] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors modulate macrophage effector functions, which are imperative for clearance or survival of mycobacterial infection. The adopted orphan nuclear receptor Rev-erbα is a constitutive transcriptional repressor as it lacks AF2 domain and was earlier shown to be present in macrophages. In the present study, we highlight the differences in the relative subcellular localization of Rev-erbα in monocytes and macrophages. The nuclear localization of Rev-erbα in macrophages is subsequent to monocyte differentiation. Expression analysis of Rev-erbα elucidated it to be considerably more expressed in M1 phenotype in comparison with M2. Rev-erbα overexpression augments antimycobacterial properties of macrophage by keeping IL10 in a basal repressed state. Further, promoter analysis revealed that IL10 promoter harbors a Rev-erbα binding site exclusive to humans and higher order primates and not mouse, demonstrating a species barrier in its functionality. This direct gene repression is mediated by recruitment of co-repressors NCoR and HDAC3. In addition, our data elucidate that its overexpression reduced the survival of intracellular pathogen Mycobacterium tuberculosis by enhancing phagosome lysosome maturation, an event resulting from IL10 repression. Thus, these findings suggest that Rev-erbα bestows protection against mycobacterial infection by direct gene repression of IL10 and thus provide a novel target in modulating macrophage microbicidal properties.
Collapse
Affiliation(s)
- Vemika Chandra
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Sahil Mahajan
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Ankita Saini
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Hedwin K. Dkhar
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Ravikanth Nanduri
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Ella B. Raj
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Ashwani Kumar
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Pawan Gupta
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology/Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| |
Collapse
|
36
|
Okazawa S, Furusawa Y, Kariya A, Hassan MA, Arai M, Hayashi R, Tabuchi Y, Kondo T, Tobe K. Inactivation of DNA-dependent protein kinase promotes heat-induced apoptosis independently of heat-shock protein induction in human cancer cell lines. PLoS One 2013; 8:e58325. [PMID: 23505488 PMCID: PMC3594312 DOI: 10.1371/journal.pone.0058325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 12/14/2022] Open
Abstract
The inhibition of DNA damage response pathway seems to be an attractive strategy for cancer therapy. It was previously reported that in rodent cells exposed to heat stress, cell growth was promoted by the activity of DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair. The absence of a functioning DNA-PK was associated with down regulation of heat shock protein 70 (HSP70). The objective of this study is thus to investigate the role of DNA-PK inhibition in heat-induced apoptosis in human cell lines. The inhibitors of phosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser2056, such as NU7026 and NU7441, were utilized. Furthermore, knock down of DNA-PKcs was carried out using small interfering RNA (siDNA-PKcs). For heat exposure, cells were placed in water bath at 44°C for 60 min. Apoptosis was evaluated after 24 h incubation flow cytometrically. Proteins were extracted after 24 h and analyzed for HSP70 and HSP40 expression by Western blotting. Total RNA was extracted 6 h after treatment and analyzed using a GeneChip® microarray system to identify and select the up-regulated genes (≥1.5 fold). The results showed an enhancement in heat-induced apoptosis in absence of functioning DNA-PKcs. Interestingly, the expression levels of HSP70 and HSP40 were elevated in the absence of DNA-PKcs under heat stress. The results of genetic network analysis showed that HSPs and JUN genes were up-regulated independently of DNA-PKcs in exposed parent and knock out cells. In the presence of functioning DNA-PKcs, there was an observed up-regulation of anti-apoptotic genes, such as NR1D1, whereas in the absence of DNA-PKcs the pro-apoptotic genes, such as EGR2, were preferentially up-regulated. From these findings, we concluded that in human cells, the inactivation of DNA-PKcs can promote heat-induced apoptosis independently of heat-shock proteins.
Collapse
Affiliation(s)
- Seisuke Okazawa
- First Department of Internal Medicine, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ayako Kariya
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mariame Ali Hassan
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mie Arai
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryuji Hayashi
- First Department of Internal Medicine, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
37
|
Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF. Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. ACTA ACUST UNITED AC 2012; 209:2501-13. [PMID: 23209315 PMCID: PMC3526350 DOI: 10.1084/jem.20121239] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To be added There is extensive evidence that cholesterol and membrane lipids play a key role in Alzheimer disease (AD) pathogenesis. Cyclodextrins (CD) are cyclic oligosaccharide compounds widely used to bind cholesterol. Because CD exerts significant beneficial effects in Niemann-Pick type C disease, which shares neuropathological features with AD, we examined the effects of hydroxypropyl-β-CD (HP-β-CD) in cell and mouse models of AD. Cell membrane cholesterol accumulation was detected in N2a cells overexpressing Swedish mutant APP (SwN2a), and the level of membrane cholesterol was reduced by HP-β-CD treatment. HP-β-CD dramatically lowered the levels of Aβ42 in SwN2a cells, and the effects were persistent for 24 h after withdrawal. 4 mo of subcutaneous HP-β-CD administration significantly improved spatial learning and memory deficits in Tg19959 mice, diminished Aβ plaque deposition, and reduced tau immunoreactive dystrophic neurites. HP-β-CD lowered levels of Aβ42 in part by reducing β cleavage of the APP protein, and it also up-regulated the expression of genes involved in cholesterol transport and Aβ clearance. This is the first study to show neuroprotective effects of HP-β-CD in a transgenic mouse model of AD, both by reducing Aβ production and enhancing clearance mechanisms, which suggests a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 2012; 29:227-51. [PMID: 22390237 DOI: 10.3109/07420528.2012.658127] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital Casa Sollievo della Sofferenza, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.
| | | | | |
Collapse
|
39
|
Malhotra D, Fletcher AL, Astarita J, Lukacs-Kornek V, Tayalia P, Gonzalez SF, Elpek KG, Chang SK, Knoblich K, Hemler ME, Brenner MB, Carroll MC, Mooney DJ, Turley SJ. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 2012; 13:499-510. [PMID: 22466668 PMCID: PMC3366863 DOI: 10.1038/ni.2262] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/14/2012] [Indexed: 12/12/2022]
Abstract
Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly elucidated. Here, comparative transcriptomic analyses of mouse LNSC subsets demonstrated the expression of important immune mediators, growth factors and previously unknown structural components. Pairwise analyses of ligands and cognate receptors across hematopoietic and stromal subsets suggested a complex web of crosstalk. Fibroblastic reticular cells (FRCs) showed enrichment for higher expression of genes relevant to cytokine signaling, relative to their expression in skin and thymic fibroblasts. LNSCs from inflamed lymph nodes upregulated expression of genes encoding chemokines and molecules involved in the acute-phase response and the antigen-processing and antigen-presentation machinery. Poorly studied podoplanin (gp38)-negative CD31(-) LNSCs showed similarities to FRCs but lacked expression of interleukin 7 (IL-7) and were identified as myofibroblastic pericytes that expressed integrin α(7). Together our data comprehensively describe the transcriptional characteristics of LNSC subsets.
Collapse
Affiliation(s)
- Deepali Malhotra
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon ASI. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 2012; 109:582-7. [PMID: 22184247 PMCID: PMC3258648 DOI: 10.1073/pnas.1106750109] [Citation(s) in RCA: 490] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diurnal variation in inflammatory and immune function is evident in the physiology and pathology of humans and animals, but molecular mechanisms and mediating cell types that provide this gating remain unknown. By screening cytokine responses in mice to endotoxin challenge at different times of day, we reveal that the magnitude of response exhibited pronounced temporal dependence, yet only within a subset of proinflammatory cytokines. Disruption of the circadian clockwork in macrophages (primary effector cells of the innate immune system) by conditional targeting of a key clock gene (bmal1) removed all temporal gating of endotoxin-induced cytokine response in cultured cells and in vivo. Loss of circadian gating was coincident with suppressed rev-erbα expression, implicating this nuclear receptor as a potential link between the clock and inflammatory pathways. This finding was confirmed in vivo and in vitro through genetic and pharmacological modulation of REV-ERBα activity. Circadian gating of endotoxin response was lost in rev-erbα(-/-) mice and in cultured macrophages from these animals, despite maintenance of circadian rhythmicity within these cells. Using human macrophages, which show circadian clock gene oscillations and rhythmic endotoxin responses, we demonstrate that administration of a synthetic REV-ERB ligand, or genetic knockdown of rev-erbα expression, is effective at modulating the production and release of the proinflammatory cytokine IL-6. This work demonstrates that the macrophage clockwork provides temporal gating of systemic responses to endotoxin, and identifies REV-ERBα as the key link between the clock and immune function. REV-ERBα may therefore represent a unique therapeutic target in human inflammatory disease.
Collapse
Affiliation(s)
- Julie E. Gibbs
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - John Blaikley
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen Beesley
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Laura Matthews
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Karen D. Simpson
- Respiratory Therapy, Medicines Research Centre, GlaxoSmithKline plc, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Susan H. Boyce
- Respiratory Therapy, Medicines Research Centre, GlaxoSmithKline plc, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Stuart N. Farrow
- Respiratory Therapy, Medicines Research Centre, GlaxoSmithKline plc, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Kathryn J. Else
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Dave Singh
- Respiratory Research Group, University Hospital of South Manchester Foundation Trust/University of Manchester, Manchester M23 9LT, United Kingdom
| | - David W. Ray
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Andrew S. I. Loudon
- Centre for Nuclear Hormone Receptor Research, Faculties of Life Sciences and Medicine, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
41
|
Cellier MFM. Nutritional immunity: homology modeling of Nramp metal import. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:335-51. [PMID: 21948377 DOI: 10.1007/978-1-4614-0106-3_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Natural resistance-associated macrophage proteins (Nramp1 and 2) are proton-dependent solute carriers of divalent metals such as Fe(2+) and Mn(2+) (Slc11a1 and 2). Their expression in both resting and microbicidal macrophages which metabolize iron differently, raises questions about Nramp mechanism of Me(2+) transport and its impact in distinct phenotypic contexts. We developed a low resolution 3D model for Slc11 based on detailed phylogeny and remote homology threading using Escherichia coli Nramp homolog (proton-dependent Mn(2+) transporter, MntH) as experimental system. The predicted fold is consistent with determinations of transmembrane topology and activity; it indicates Slc11 carriers are part of the LeuT superfamily. Homology implies that inverted structural symmetry facilitates Slc11 H(+)-driven Me(2+) import and provides a 3D framework to test structure-activity relationships in macrophages and study functional evolution of MntH/Nramp (Slc11) carriers.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531, Bd des prairies, H7V 1B7, Laval, QC, Canada.
| |
Collapse
|
42
|
|
43
|
Diehl CJ, Barish GD, Downes M, Chou MY, Heinz S, Glass CK, Evans RM, Witztum JL. Research resource: Comparative nuclear receptor atlas: basal and activated peritoneal B-1 and B-2 cells. Mol Endocrinol 2011; 25:529-45. [PMID: 21273443 DOI: 10.1210/me.2010-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Naïve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease.
Collapse
Affiliation(s)
- Cody J Diehl
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Viennois E, Pommier AJC, Mouzat K, Oumeddour A, Hajjaji FZE, Dufour J, Caira F, Volle DH, Baron S, Lobaccaro JMA. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets 2011; 15:219-32. [DOI: 10.1517/14728222.2011.547853] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Crumbley C, Wang Y, Kojetin DJ, Burris TP. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. J Biol Chem 2010; 285:35386-92. [PMID: 20817722 DOI: 10.1074/jbc.m110.129288] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian clock is regulated at the cellular level by a transcriptional/translational feedback loop. BMAL1/clock (or NPAS2) heterodimers activate the expression of the period (PER) and cryptochrome (CRY) genes acting as transcription factors directed to the PER and CRY promoters via E-box elements. PER and CRY proteins form heterodimers and suppress the activity of the BMAL1/clock (or NPAS2) completing the feedback loop. The circadian expression of BMAL1 is influenced by retinoic acid receptor-related orphan receptor α (RORα) and REV-ERBα, two nuclear receptors that target a ROR-response element in the promoter of the BMAL1 gene. Given that BMAL1 functions as an obligate heterodimer with either clock or NPAS2, it is unclear how the expression of the partner is coordinated with BMAL1 expression. Here, we demonstrate that NPAS2 is also a RORα and REV-ERBα target gene. Using a ChIP/microarray screen, we identified both RORα and REV-ERBα occupancy of the NPAS2 promoter. We identified two functional ROREs within the NPAS2 promoter and also demonstrate that both RORα and REV-ERBα regulate the expression of NPAS2 mRNA. These data suggest a mechanism by which RORα and REV-ERBα coordinately regulate the expression of the positive arm of the circadian rhythm feedback loop.
Collapse
|
46
|
Duez H, Staels B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 2010; 30:1529-34. [PMID: 20631353 DOI: 10.1161/atvbaha.110.209098] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep (fasting)/wake (feeding) cycles, and metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shift work, for instance, increases the risk to develop metabolic abnormalities resembling the metabolic syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie, Rev-erbalpha, RORalpha, and peroxisome proliferation-activated receptors) are subjected to circadian variations and are integral components of molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window.
Collapse
Affiliation(s)
- Hélène Duez
- Department of Nuclear Receptors, Cardiovascular Disease and Diabetes, University of Lille Nord de France, Inserm, UDSL, and Institut Pasteur de Lille, Lille, France.
| | | |
Collapse
|
47
|
Liver X receptor agonist GW3965 dose-dependently regulates lps-mediated liver injury and modulates posttranscriptional TNF-alpha production and p38 mitogen-activated protein kinase activation in liver macrophages. Shock 2010; 32:548-53. [PMID: 19295476 DOI: 10.1097/shk.0b013e3181a47f85] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Modulation of the host inflammatory response to infection may be a key approach to improve the outcome of patients with sepsis and organ injury. We previously reported that pretreatment of rats with the liver X receptor (LXR) agonist GW3965 reduced the liver injury associated with endotoxemia and attenuated the production of TNF-alpha by rat Kupffer cells. Here, we examine the dose-dependent effect of GW3965 on liver injury and cytokine production in a rat model of endotoxemia and explore the mechanisms underlying TNF-alpha attenuation in Kupffer cells. Low doses of GW3965 (0.1 or 0.3 mg/kg) administered 30 min before infusion of LPS and peptidoglycan significantly attenuated the increase in plasma levels of the liver injury markers alanine aminotransferase and bilirubin (6 h) as well as the inflammatory mediators TNF-alpha (1 h) and prostaglandin E2 (6 h) associated with endotoxemia. In contrast, pretreatment with a higher dose of GW3965 (1.0 mg/kg) had no such effect. Studies in primary cultures of rat Kupffer cells demonstrated that LXR agonist treatment attenuated both the secreted and cell-associated levels of TNF-alpha, whereas TNF-alpha mRNA levels were not altered. Phosphorylated p38 mitogen-activated protein kinase, which plays a major role in production of TNF-alpha at the posttranscriptional level, was attenuated by GW3965 treatment in Kupffer cells. Experiments in murine LXR-deficient Kupffer cells demonstrated enhanced production of TNF-alpha in Kupffer cells from LXR-alpha(-/-) mice when challenged with LPS compared with LXR-beta(-/-) and wild-type Kupffer cells. Taken together, these results argue in favor of a novel mechanism for LXR-mediated attenuation of liver injury by interfering with posttranscriptional regulation of TNF-alpha in Kupffer cells.
Collapse
|
48
|
Circadian dysfunction in disease. Trends Pharmacol Sci 2010; 31:191-8. [PMID: 20171747 DOI: 10.1016/j.tips.2010.01.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 02/06/2023]
Abstract
The classic view of circadian timing in mammals emphasizes a light-responsive 'master clock' within the hypothalamus which imparts temporal information to the organism. Recent work indicates that such a unicentric model of the clock is inadequate. Autonomous circadian timers have now been demonstrated in numerous brain regions and peripheral tissues in which molecular-clock machinery drives rhythmic transcriptional cascades in a tissue-specific manner. Clock genes also participate in reciprocal regulatory feedback with key signalling pathways (including many nuclear hormone receptors), thereby rendering the clock responsive to the internal environment of the body. This implies that circadian-clock genes can directly affect previously unforeseen physiological processes, and that amid such a network of body clocks, internal desynchronisation may be a key aspect to circadian dysfunction in humans. Here we consider the implications of decentralised and internally responsive clockwork to disease, with a focus on energy metabolism and the immune response.
Collapse
|
49
|
Duez H, Staels B. Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J Appl Physiol (1985) 2009; 107:1972-80. [PMID: 19696364 DOI: 10.1152/japplphysiol.00570.2009] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The endogenous circadian clock ensures daily rhythms in diverse behavioral and physiological processes, including locomotor activity and sleep/wake cycles, but also food intake patterns. Circadian rhythms are generated by an internal clock system, which synchronizes these daily variations to the day/night alternance. In addition, circadian oscillations may be reset by the time of food availability in peripheral metabolic organs. Circadian rhythms are seen in many metabolic pathways (glucose and lipid metabolism, etc.) and endocrine secretions (insulin, etc.). As a consequence, misalignment of the internal timing system vs. environmental zeitgebers (light, for instance), as experienced during jetlag or shift work, may result in disruption of physiological cycles of fuel utilization or energy storage. A large body of evidence from both human and animal studies now points to a relationship between circadian disorders and altered metabolic response, suggesting that circadian and metabolic regulatory networks are tightly connected. After a review of the current understanding of the molecular circadian core clock, we will discuss the hypothesis that clock genes themselves link the core molecular clock and metabolic regulatory networks. We propose that the nuclear receptor and core clock component Rev-erb-alpha behaves as a gatekeeper to timely coordinate the circadian metabolic response.
Collapse
Affiliation(s)
- Hélène Duez
- University Lille Nord de France, Lille, France.
| | | |
Collapse
|
50
|
Rébé C, Raveneau M, Chevriaux A, Lakomy D, Sberna AL, Costa A, Bessède G, Athias A, Steinmetz E, Lobaccaro JMA, Alves G, Menicacci A, Vachenc S, Solary E, Gambert P, Masson D. Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 2009; 105:393-401. [PMID: 19628791 DOI: 10.1161/circresaha.109.201855] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are involved in the control of cholesterol homeostasis and inflammatory response. Human monocytes and macrophages express high levels of these receptors and are appropriate cells to study the response to LXR agonists. OBJECTIVE The purpose of this study was to identify new LXR targets in human primary monocytes and macrophages and the consequences of their activation. METHODS AND RESULTS We show that LXR agonists significantly increase the mRNA and protein levels of the retinoic acid receptor (RAR)alpha in primary monocytes and macrophages. LXR agonists promote RARalpha gene transcription through binding to a specific LXR response element on RARalpha gene promoter. Preincubation of monocytes or macrophages with LXR agonists before RARalpha agonist treatment enhances synergistically the expression of several RARalpha target genes. One of these genes encodes transglutaminase (TGM)2, a key factor required for macrophage phagocytosis. Accordingly, the combination of LXR and RARalpha agonists at concentrations found in human atherosclerotic plaques markedly enhances the capabilities of macrophages to engulf apoptotic cells in a TGM2-dependent manner. CONCLUSIONS These results indicate an important role for LXRs in the control of phagocytosis through an RARalpha-TGM2-dependent mechanism. A combination of LXR/RARalpha agonists that may operate in atherosclerosis could also constitute a promising strategy to improve the clearance of apoptotic cells by macrophages in other pathological situations.
Collapse
Affiliation(s)
- Cédric Rébé
- Institut Fédératif de Recherche Santé-STIC, Faculté de Médecine, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|