1
|
Herring JA, Crabtree JE, Hill JT, Tessem JS. Loss of glucose-stimulated β-cell Nr4a1 expression impairs insulin secretion and glucose homeostasis. Am J Physiol Cell Physiol 2024; 327:C1111-C1124. [PMID: 39219449 PMCID: PMC11482045 DOI: 10.1152/ajpcell.00315.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
A central aspect of type 2 diabetes is decreased functional β-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the β-cell. Nr4a1 expression is decreased in type 2 diabetes rodent β-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced β-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 β-cells. Here, we demonstrate that glucose concentration directly regulates β-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 β-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the β-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and β-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.
Collapse
Affiliation(s)
- Jacob A Herring
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, Utah, United States
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah, United States
| | - Jeffery S Tessem
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
2
|
Montaser O, El-Aasr M, Tawfik HO, Meshrif WS, Elbrense H. Drosophila melanogaster as a model organism for diabetes II treatment by the ethyl acetate fraction of Atriplex halimus L. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:702-716. [PMID: 38623920 DOI: 10.1002/jez.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Type 2 diabetes (T2D) is the most common metabolic disorder. The undesirable effects of synthetic drugs demand a search for safe antidiabetic agents. This study aimed to assess the antidiabetic activity of different fractions of Atriplex halimus (petroleum ether 60-80, methylene chloride, ethyl acetate, and n-butanol) using Drosophila melanogaster larvae. Titers of total glucose and trehalose, as well as larval weight, were measured and compared with those of control and diabetic larvae. The expression of Drosophila insulin-like peptides (DILP2 and DILP3) and adipokinetic hormone (AKH) was evaluated. The results revealed a significant increase in total glucose, trehalose, and a decrease in body weight in the larvae fed a high-sugar diet compared with those in the control. When larvae fed diets containing the tested fractions, the total glucose and trehalose decreased to the control level, and the body weight increased. DILP2, DILP3, and AKH exhibited significant decreases upon treatment with A. halimus ethyl acetate. Metabolomic profiling of the ethyl acetate fraction of A. halimus revealed the presence of flavonoids and flavonoid glycosides. After docking screening to predict the most powerful moiety, we discovered that flavonoid glycosides (especially eriodictyol-7-O-neohesperidoside) have a greater affinity for the pocket than the other moieties. The results indicated the therapeutic activity of the A. halimus ethyl acetate fraction against induced T2D in Drosophila larvae. The antidiabetic activity may be attributed to flavonoids, which are the main components of the A. halimus ethyl acetate fraction.
Collapse
Affiliation(s)
- Omnia Montaser
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Wesam S Meshrif
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
4
|
Geng DQ, Wang XL, Lyu XY, Raikhel AS, Zou Z. Ecdysone-controlled nuclear receptor ERR regulates metabolic homeostasis in the disease vector mosquito Aedes aegypti. PLoS Genet 2024; 20:e1011196. [PMID: 38466721 PMCID: PMC10957079 DOI: 10.1371/journal.pgen.1011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/21/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.
Collapse
Affiliation(s)
- Dan-Qian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Xu X, Pu S, Jiang M, Hu X, Wang Q, Yu J, Chu J, Wei G, Wang L. Knockout of nuclear receptor HR38 gene impairs pupal-adult development in silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:29-40. [PMID: 37738573 DOI: 10.1111/imb.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa-adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.
Collapse
Affiliation(s)
- Xinyue Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shangkun Pu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mouzhen Jiang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoxuan Hu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jun Yu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jianghong Chu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Morimoto J, Wenzel M, Derous D, Henry Y, Colinet H. The transcriptomic signature of responses to larval crowding in Drosophila melanogaster. INSECT SCIENCE 2023; 30:539-554. [PMID: 36115064 PMCID: PMC10947363 DOI: 10.1111/1744-7917.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsKing's CollegeUniversity of AberdeenAberdeenUnited Kingdom
| | - Marius Wenzel
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Davina Derous
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Youn Henry
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Herve Colinet
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
7
|
Xu Z, Bai J, Li L, Liang L, Ma X, Ma L. Sublethal concentration of emamectin benzoate inhibits the growth of gypsy moth by inducing digestive dysfunction and nutrient metabolism disorder. PEST MANAGEMENT SCIENCE 2021; 77:4073-4083. [PMID: 33908141 DOI: 10.1002/ps.6432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Gypsy moth (Lymantria dispar) is one of the most important pests in the world. Emamectin benzoate (EMB) is widely used in the control of agricultural and forestry pests. Here, we explored the sublethal effects of EMB on gypsy moths in order to better understand the toxicological mechanism of EMB. RESULTS The sublethal concentration of EMB exposure significantly decreased the larvae body weight. To further explore the mechanism, indicators related to digestion and nutrient metabolism were detected. The results showed that EMB exposure caused midgut damage, reduced the activities of digestive enzymes and changed the content of sugar and amino acids. Moreover, the expression of insulin/phosphoinositide-3-kinase (PI3K)/forkhead box protein O (FoxO) pathway and sugar metabolism-related genes was abnormal. The expression of insulin receptor (InR), chico, PI3K, and protein kinase B (Akt) significantly reduced, and that of phosphatase and tensin homologue (PTEN) and FoxO increased. The expression of glycogen phosphorylase (GP) was upregulation and that of glycogen synthase (GS), trehalase (TRE) and trehalose-phosphate synthase (TPS) were downregulation. All results indicated that EMB inhibits the growth of gypsy moth by inducing midgut injury, digestive dysfunction and nutrient metabolism disorder. In addition, EMB caused midgut injury may be related to apoptosis or a collateral effect of the damage in other tissues, and more extensive and deeper research is still needed to investigate the detailed mechanism. CONCLUSION Our finding strengthens the understanding of the sublethal effect of EMB, and provides a theoretical basis for the application of EMB in the prevention and control of gypsy moth.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Liwei Liang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiaoqian Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Meschi E, Delanoue R. Adipokine and fat body in flies: Connecting organs. Mol Cell Endocrinol 2021; 533:111339. [PMID: 34082046 DOI: 10.1016/j.mce.2021.111339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Under conditions of nutritional and environmental stress, organismal homeostasis is preserved through inter-communication between multiple organs. To do so, higher organisms have developed a system of interorgan communication through which one tissue can affect the metabolism, activity or fate of remote organs, tissues or cells. In this review, we discuss the latest findings emphasizing Drosophila melanogaster as a powerful model organism to study these interactions and may constitute one of the best documented examples depicting the long-distance communication between organs. In flies, the adipose tissue appears to be one of the main organizing centers for the regulation of insect development and behavior: it senses nutritional and hormonal signals and in turn, orchestrates the release of appropriate adipokines. We discuss the nature and the role of recently uncovered adipokines, their regulations by external cues, their secretory routes and their modes of action to adjust developmental growth and timing accordingly. These findings have the potential for identification of candidate factors and signaling pathways that mediate conserved interorgan crosstalk.
Collapse
Affiliation(s)
- Eleonora Meschi
- Centre for Neural Circuit and Behaviour, University of Oxford, Mansfield road, OX3 1SR, Oxford, UK
| | - Renald Delanoue
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose Parc Valrose, 06108, Nice, France.
| |
Collapse
|
9
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Bretscher H, O’Connor MB. The Role of Muscle in Insect Energy Homeostasis. Front Physiol 2020; 11:580687. [PMID: 33192587 PMCID: PMC7649811 DOI: 10.3389/fphys.2020.580687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maintaining energy homeostasis is critical for ensuring proper growth and maximizing survival potential of all organisms. Here we review the role of somatic muscle in regulating energy homeostasis in insects. The muscle is not only a large consumer of energy, it also plays a crucial role in regulating metabolic signaling pathways and energy stores of the organism. We examine the metabolic pathways required to supply the muscle with energy, as well as muscle-derived signals that regulate metabolic energy homeostasis.
Collapse
Affiliation(s)
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Xing K, Liu Y, Yan C, Zhou Y, Sun Y, Su N, Yang F, Xie S, Zhang J. Transcriptome analysis of Neocaridina denticulate sinensis under copper exposure. Gene 2020; 764:145098. [PMID: 32861881 DOI: 10.1016/j.gene.2020.145098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
Neocaridina denticulate sinensis is a small freshwater economic shrimp, as well as excellent laboratory model for their short life cycle and easy availability. However, the response of N. denticulate sinensis to pervasive copper pollution in aquatic environments has not been deeply investigated yet. Herein, we preformed Illumina sequencing technology to mine the alterations of cephalothorax transcriptome under 2.5 μmol/L of Cu2+ after 48 h. 122,512 unigenes were assembled and 219 unigenes were identified as significantly differentially expressed genes (DEGs) between control and Cu2+ treatment groups. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses and molting, such as endocytosis, Fc gamma R-mediated phagocytosis and chitin metabolic process. Seven genes were chosen for qPCR verification, and the results showed that the transcriptome sequencing data were consistent with the qPCR results. This is the first report of transcriptome information about N. denticulate sinensis. These results provided a direction for the future research of resistance to Cu2+ in this shrimp, and simultaneously enriched gene information of N. denticulate sinensis.
Collapse
Affiliation(s)
- Kefan Xing
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yujie Liu
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yongzhao Zhou
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Naike Su
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China
| | - Fusheng Yang
- Xiaoshan Donghai Aquaculture Co., Ltd, Xiaoshan 310012, China
| | - Song Xie
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- College of Life Science, Institute of Life and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Bonelli M, Bruno D, Brilli M, Gianfranceschi N, Tian L, Tettamanti G, Caccia S, Casartelli M. Black Soldier Fly Larvae Adapt to Different Food Substrates through Morphological and Functional Responses of the Midgut. Int J Mol Sci 2020; 21:ijms21144955. [PMID: 32668813 PMCID: PMC7404193 DOI: 10.3390/ijms21144955] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of nutrient digestion and absorption is one of the post-ingestion mechanisms that guarantees the best exploitation of food resources, even when they are nutritionally poor or unbalanced, and plays a pivotal role in generalist feeders, which experience an extreme variability in diet composition. Among insects, the larvae of black soldier fly (BSF), Hermetia illucens, can grow on a wide range of feeding substrates with different nutrient content, suggesting that they can set in motion post-ingestion processes to match their nutritional requirements. In the present study we address this issue by investigating how the BSF larval midgut adapts to diets with different nutrient content. Two rearing substrates were compared: a nutritionally balanced diet for dipteran larvae and a nutritionally poor diet that mimics fruit and vegetable waste. Our data show that larval growth performance is only moderately affected by the nutritionally poor diet, while differences in the activity of digestive enzymes, midgut cell morphology, and accumulation of long-term storage molecules can be observed, indicating that diet-dependent adaptation processes in the midgut ensure the exploitation of poor substrates. Midgut transcriptome analysis of larvae reared on the two substrates showed that genes with important functions in digestion and absorption are differentially expressed, confirming the adaptability of this organ.
Collapse
Affiliation(s)
- Marco Bonelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (M.B.); (M.B.); (N.G.)
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Matteo Brilli
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (M.B.); (M.B.); (N.G.)
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milano, 20133 Milano, Italy
| | - Novella Gianfranceschi
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (M.B.); (M.B.); (N.G.)
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80138 Napoli, Italy
- Correspondence: (G.T.); (S.C.); (M.C.)
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici (NA), Italy
- Correspondence: (G.T.); (S.C.); (M.C.)
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy; (M.B.); (M.B.); (N.G.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80138 Napoli, Italy
- Correspondence: (G.T.); (S.C.); (M.C.)
| |
Collapse
|
13
|
Yang PJ, Chen EH, Song ZH, He W, Liu SH, Dou W, Wang JJ. Molecular Characterization and Expression Profiling of Nuclear Receptor Gene Families in Oriental Fruit Fly, Bactrocera Dorsalis (Hendel). INSECTS 2020; 11:E126. [PMID: 32079114 PMCID: PMC7074177 DOI: 10.3390/insects11020126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
The oriental fruit fly (Bactrocera dorsalis) is a pest that causes large economic losses in the fruit and vegetable industry, so its control is a major challenge. Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that directly combine with DNA to regulate the expression of downstream target genes. NRs are closely associated with multiple physiological processes such as metabolism, reproduction, and development. Through sequence searches and analysis, we identified 21 B. dorsalis NR genes, all of which contained at least one of the two characteristic binding domains. On the basis of the conserved sequences and phylogenetic relationships, we divided the 21 NR genes into seven subfamilies. All members of the NR0 subfamily and BdHR83, which belonged to the NR2E group, lacked ligand-binding domains. The BdDSF and BdHR51, which also belonged to the NR2Egroup, and BdE78 (which belonged to the NR1E group) all lacked DNA-binding domains. The BdDSF and BdHR83 sequences were incomplete, and were not successfully amplified. Development- and tissue-specific expression profiling demonstrated that the transcript levels of the 19 NR genes varied considerably among eggs, larva, pupae, and adults, as well as among larval and adult male and female tissues. Our results will contribute to a better understanding of NR evolution and expand our knowledge of B. dorsalis physiology.
Collapse
Affiliation(s)
- Pei-Jin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhong-Hao Song
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
15
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Gassias E, Durand N, Demondion E, Bourgeois T, Bozzolan F, Debernard S. The insect HR38 nuclear receptor, a member of the NR4A subfamily, is a synchronizer of reproductive activity in a moth. FEBS J 2018; 285:4019-4040. [DOI: 10.1111/febs.14648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Nicolas Durand
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| | - Elodie Demondion
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris INRA Versailles France
| | - Thomas Bourgeois
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris INRA Versailles France
| | - Françoise Bozzolan
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| | - Stéphane Debernard
- Département d'Ecologie Sensorielle UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris Université Paris VI France
| |
Collapse
|
17
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
18
|
Adhikari P, Orozco D, Randhawa H, Wolf FW. Mef2 induction of the immediate early gene Hr38/Nr4a is terminated by Sirt1 to promote ethanol tolerance. GENES BRAIN AND BEHAVIOR 2018; 18:e12486. [PMID: 29726098 PMCID: PMC6215524 DOI: 10.1111/gbb.12486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Drug naïve animals given a single dose of ethanol show changed responses to subsequent doses, including the development of ethanol tolerance and ethanol preference. These simple forms of behavioral plasticity are due in part to changes in gene expression and neuronal properties. Surprisingly little is known about how ethanol initiates changes in gene expression or what the changes do. Here we demonstrate a role in ethanol plasticity for Hr38, the sole Drosophila homolog of the mammalian Nr4a1/2/3 class of immediate early response transcription factors. Acute ethanol exposure induces transient expression of Hr38 and other immediate early neuronal activity genes. Ethanol activates the Mef2 transcriptional activator to induce Hr38, and the Sirt1 histone/protein deacetylase is required to terminate Hr38 induction. Loss of Hr38 decreases ethanol tolerance and causes precocious but short‐lasting ethanol preference. Similarly, reduced Mef2 activity in all neurons or specifically in the mushroom body α/β neurons decreases ethanol tolerance; Sirt1 promotes ethanol tolerance in these same neurons. Genetically decreasing Hr38 expression levels in Sirt1 null mutants restores ethanol tolerance, demonstrating that both induction and termination of Hr38 expression are important for behavioral plasticity to proceed. These data demonstrate that Hr38 functions as an immediate early transcription factor that promotes ethanol behavioral plasticity.
Collapse
Affiliation(s)
- P Adhikari
- Quantitative and Systems Biology, University of California, Merced, California
| | - D Orozco
- Molecular Cell Biology, University of California, Merced, California
| | - H Randhawa
- Molecular Cell Biology, University of California, Merced, California
| | - F W Wolf
- Quantitative and Systems Biology, University of California, Merced, California.,Molecular Cell Biology, University of California, Merced, California
| |
Collapse
|
19
|
Dong D, Zhang Y, Smykal V, Ling L, Raikhel AS. HR38, an ortholog of NR4A family nuclear receptors, mediates 20-hydroxyecdysone regulation of carbohydrate metabolism during mosquito reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 96. [PMID: 29526770 PMCID: PMC5959765 DOI: 10.1016/j.ibmb.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Aedes aegypti mosquito is the principal vector for many dangerous human viral diseases. Carbohydrate metabolism (CM) is essential for supplying the energy necessary for host seeking, blood digestion and rapid egg development of this vector insect. The steroid hormone 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) are important regulators of CM, coordinating it with female reproductive events. We report here that the NR4A nuclear receptor AHR38 plays a critical role in mediating these actions of 20E and EcR. AHR38 RNA interference (RNAi) depletion in female mosquitoes blocked the transcriptional activation of CM genes encoding phosphoglucomutase (PGM) and trehalose-6-phophate synthase (TPS); it caused an increase of glycogen accumulation and a decrease of the circulating sugar trehalose. This treatment also resulted in a dramatic reduction in fecundity. Considering that these phenotypes resulting from AHR38 RNAi depletion are similar to those of EcR RNAi, we investigated a possible connection between these transcription factors in CM regulation. EcR RNAi inhibits the AHR38 gene expression. Moreover, the 20E-induced EcR complex directly activates AHR38 by binding to the ecdysone response element (EcRE) in the upstream regulatory region of this gene. The present work has implicated AHR38 in the 20E-mediated control of CM and provided new insight into mechanisms of 20E regulation of metabolism during female mosquito reproduction.
Collapse
Affiliation(s)
- Dujuan Dong
- Department of Entomology, University of California, Riverside, CA 92521, USA; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Yang Zhang
- Department of Entomology, University of California, Riverside, CA 92521, USA; Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Vlastimil Smykal
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Lin Ling
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521, USA; Institute for Integrative Genomic Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Yamada T, Habara O, Kubo H, Nishimura T. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development 2018; 145:dev.158865. [DOI: 10.1242/dev.158865] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
Adapting to changes in food availability is a central challenge for survival. Glucose is an important resource for energy production, and therefore, many organisms synthesize and retain sugar storage molecules. In insects, glucose is stored in two different forms: the disaccharide trehalose and the branched polymer glycogen. Glycogen is synthesized and stored in several tissues, including in muscle and the fat body. Despite the important role of the fat body as a center for energy metabolism, the importance of its glycogen content remains unclear. Here, we show that glycogen metabolism is regulated in a tissue-specific manner under starvation conditions in the fruit fly Drosophila. The mobilization of fat body glycogen in larvae is independent of adipokinetic hormone (Akh, the glucagon homolog) but is regulated by sugar availability in a tissue-autonomous manner. Fat body glycogen plays a critical role in the maintenance of circulating sugars, including trehalose, under fasting conditions. These results demonstrate the importance of fat body glycogen as a metabolic safeguard in Drosophila.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hitomi Kubo
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
21
|
Fischer Z, Das R, Shipman A, Fan JY, Pence L, Bouyain S, Dobens LL. A Drosophila model of insulin resistance associated with the human TRIB3 Q/R polymorphism. Dis Model Mech 2017; 10:1453-1464. [PMID: 29025897 PMCID: PMC5769606 DOI: 10.1242/dmm.030619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
Members of the Tribbles family of proteins are conserved pseudokinases with diverse roles in cell growth and proliferation. Both Drosophila Tribbles (Trbl) and vertebrate Trib3 proteins bind to the kinase Akt (Akt1) to block its phosphorylation activation and reduce downstream insulin-stimulated anabolism. A single nucleotide polymorphism (SNP) variant in human TRIB3, which results in a glutamine (Q) to arginine (R) missense mutation in a conserved motif at position 84, confers stronger Akt binding, resulting in reduced Akt phosphorylation, and is associated with a predisposition to Type 2 diabetes, cardiovascular disease, diabetic nephropathy, chronic kidney disease and leukemogenesis. Here, we used a Drosophila model to understand the importance of the conserved R residue in several Trbl functions. In the fly fat body, misexpression of a site-directed Q mutation at position R141 resulted in weakened binding to Drosophila Akt (dAkt), leading to increased levels of phospho-dAkt, increased cell and tissue size, and increases in the levels of stored glycogen and triglycerides. Consistent with the functional conservation of this arginine in modulating Akt activity, mouse Trib3 R84 misexpressed in the fly fat body blocked dAkt phosphorylation with a strength similar to wild-type Trbl. Limited mutational analysis shows that the R141 site dictates the strength of Akt binding but does not affect other Trbl-dependent developmental processes, suggesting a specificity that could serve as a drug target for metabolic diseases.
Collapse
Affiliation(s)
- Zachary Fischer
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Rahul Das
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Anna Shipman
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Jin-Yuan Fan
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Laramie Pence
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Leonard L Dobens
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
22
|
Marxreiter S, Thummel CS. Adult functions for the Drosophila DHR78 nuclear receptor. Dev Dyn 2017; 247:315-322. [PMID: 29171103 DOI: 10.1002/dvdy.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Testicular Receptors 2 and 4 (TR2, TR4) comprise a small subfamily of orphan nuclear receptors. Genetic studies in mouse models have identified roles for TR4 in developmental progression, fertility, brain development, and metabolism, as well as genetic redundancy with TR2. Here we study the adult functions of the single Drosophila member of this subfamily, DHR78, with the goal of defining its ancestral functions in the absence of genetic redundancy. RESULTS We show that DHR78 mutants have a shortened lifespan, reduced motility, and mated DHR78 mutant females display a reduced feeding rate. Transcriptional profiling reveals a major role for DHR78 in promoting the expression of genes that are expressed in the midgut, suggesting that it contributes to nutrient uptake. We also identify roles for DHR78 in maintaining the expression of genes in the ecdysone and Notch signaling pathways. CONCLUSIONS This study provides a new context for linking the molecular activity of the TR orphan nuclear receptors with their complex roles in adult physiology and lifespan. Developmental Dynamics 247:315-322, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefanie Marxreiter
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
23
|
Yang H, Hultmark D. Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Sci Rep 2017; 7:15713. [PMID: 29146985 PMCID: PMC5691183 DOI: 10.1038/s41598-017-15940-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
We recently found that JAK/STAT signaling in skeletal muscles is important for the immune response of Drosophila larvae against wasp infection, but it was not clear how muscles could affect the immune response. Here we show that insulin signaling is required in muscles, but not in fat body or hemocytes, during larval development for an efficient encapsulation response and for the formation of lamellocytes. This effect requires TOR signaling. We show that muscle tissue affects the immune response by acting as a master regulator of carbohydrate metabolism in the infected animal, via JAK/STAT and insulin signaling in the muscles, and that there is indirect positive feedback between JAK/STAT and insulin signaling in the muscles. Specifically, stimulation of JAK/STAT signaling in the muscles can rescue the deficient immune response when insulin signaling is suppressed. Our results shed new light on the interaction between metabolism, immunity, and tissue communication.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden.,Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden. .,Institute of Biomedical Technology, University of Tampere, FI-33520, Tampere, Finland.
| |
Collapse
|
24
|
Wang P, Qiu Z, Xia D, Tang S, Shen X, Zhao Q. Transcriptome analysis of the epidermis of the purple quail-like (q-lp) mutant of silkworm, Bombyx mori. PLoS One 2017; 12:e0175994. [PMID: 28414820 PMCID: PMC5393886 DOI: 10.1371/journal.pone.0175994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
A new purple quail-like (q-lp) mutant found from the plain silkworm strain 932VR has pigment dots on the epidermis similar to the pigment mutant quail (q). In addition, q-lp mutant larvae are inactive, consume little and grow slowly, with a high death rate and other developmental abnormalities. Pigmentation of the silkworm epidermis consists of melanin, ommochrome and pteridine. Silkworm development is regulated by ecdysone and juvenile hormone. In this study, we performed RNA-Seq on the epidermis of the q-lp mutant in the 4th instar during molting, with 932VR serving as the control. The results showed 515 differentially expressed genes, of which 234 were upregulated and 281 downregulated in q-lp. BLASTGO analysis indicated that the downregulated genes mainly encode protein-binding proteins, membrane components, oxidation/reduction enzymes, and proteolytic enzymes, whereas the upregulated genes largely encode cuticle structural constituents, membrane components, transport related proteins, and protein-binding proteins. Quantitative reverse transcription PCR was used to verify the accuracy of the RNA-Seq data, focusing on key genes for biosynthesis of the three pigments and chitin as well as genes encoding cuticular proteins and several related nuclear receptors, which are thought to play key roles in the q-lp mutant. We drew three conclusions based on the results: 1) melanin, ommochrome and pteridine pigments are all increased in the q-lp mutant; 2) more cuticle proteins are expressed in q-lp than in 932VR, and the number of upregulated cuticular genes is significantly greater than downregulated genes; 3) the downstream pathway regulated by ecdysone is blocked in the q-lp mutant. Our research findings lay the foundation for further research on the developmental changes responsible for the q-lp mutant.
Collapse
Affiliation(s)
- Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Zhiyong Qiu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xingjia Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
25
|
Chng WBA, Hietakangas V, Lemaitre B. Physiological Adaptations to Sugar Intake: New Paradigms from Drosophila melanogaster. Trends Endocrinol Metab 2017; 28:131-142. [PMID: 27923532 DOI: 10.1016/j.tem.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022]
Abstract
Sugars are important energy sources, but high sugar intake poses a metabolic challenge and leads to diseases. Drosophila melanogaster is a generalist fruit breeder that encounters high levels of dietary sugars in its natural habitat. Consequently, Drosophila displays adaptive responses to dietary sugars, including highly conserved and unique metabolic adaptations not described in mammals. Carbohydrate homeostasis is maintained by a network comprising intracellular energy sensors, transcriptional regulators, and hormonal and neuronal mechanisms that together coordinate animal behavior, gut function, and metabolic flux. Here we give an overview of the physiological responses associated with sugar intake and discuss some of the emerging themes and applications of the Drosophila model in understanding sugar sensing and carbohydrate metabolism.
Collapse
Affiliation(s)
- Wen-Bin Alfred Chng
- Global Health Institute, School of Life Sciences, EPFL, Station 19, 1015 Lausanne, Switzerland.
| | - Ville Hietakangas
- Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, EPFL, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
26
|
Insulin and TOR signal in parallel through FOXO and S6K to promote epithelial wound healing. Nat Commun 2016; 7:12972. [PMID: 27713427 PMCID: PMC5059774 DOI: 10.1038/ncomms12972] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022] Open
Abstract
The TOR and Insulin/IGF signalling (IIS) network controls growth, metabolism and ageing. Although reducing TOR or insulin signalling can be beneficial for ageing, it can be detrimental for wound healing, but the reasons for this difference are unknown. Here we show that IIS is activated in the cells surrounding an epidermal wound in Drosophila melanogaster larvae, resulting in PI3K activation and redistribution of the transcription factor FOXO. Insulin and TOR signalling are independently necessary for normal wound healing, with FOXO and S6K as their respective effectors. IIS is specifically required in cells surrounding the wound, and the effect is independent of glycogen metabolism. Insulin signalling is needed for the efficient assembly of an actomyosin cable around the wound, and constitutively active myosin II regulatory light chain suppresses the effects of reduced IIS. These findings may have implications for the role of insulin signalling and FOXO activation in diabetic wound healing.
Collapse
|
27
|
Gu SH, Hsieh YC, Lin PL. Stimulation of orphan nuclear receptor HR38 gene expression by PTTH in prothoracic glands of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2016; 90:8-16. [PMID: 27090809 DOI: 10.1016/j.jinsphys.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). Less is known about the genomic action of PTTH signaling. In the present study, we investigated the effect of PTTH on the expression of Bombyx mori HR38, an immediate early gene (IEG) identified in insect systems. Our results showed that treatment of B. mori PGs with PTTH in vitro resulted in a rapid increase in HR38 expression. Injection of PTTH into day-5 last instar larvae also greatly increased HR38 expression, verifying the in vitro effect. Cycloheximide did not affect induction of HR38 expression, suggesting that protein synthesis is not required for PTTH's effect. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), partially inhibited PTTH-stimulated HR38 expression, implying the involvement of both the ERK and PI3K signaling pathways. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), an increase in HR38 expression was also detected, indicating that Ca(2+) is involved in PTTH-stimulated HR38 gene expression. A Western blot analysis showed that PTTH treatment increased the HR38 protein level, and protein levels showed a dramatic increase during the later stages of the last larval instar. Expression of HR38 transcription in response to PTTH appeared to undergo development-specific changes. Treatment with ecdysone in vitro did not affect HR38 expression. However, 20-hydroxyecdysone treatment decreased HR38 expression. Taken together, these results demonstrate that HR38 is a PTTH-stimulated IEG that is, at least in part, induced through Ca(2+)/ERK and PI3K signaling. The present study proposes a potential cross talk mechanism between PTTH and ecdysone signaling to regulate insect development and lays a foundation for a better understanding of the mechanisms of PTTH's actions.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Yun-Chih Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
28
|
Defferrari MS, Orchard I, Lange AB. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: Involvement in metabolic homeostasis of lipids and carbohydrates. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:148-159. [PMID: 26742603 DOI: 10.1016/j.ibmb.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Insulin-like peptides (ILPs) are functional analogs of insulin and have been identified in many insect species. The insulin cell signaling pathway is a conserved regulator of metabolism, and in insects, as well as in other animals, can modulate physiological functions associated with the metabolism of lipids and carbohydrates. In the present study, we have identified the first ILP from the Rhodnius prolixus genome (termed Rhopr-ILP) and investigated its involvement in energy metabolism of unfed and recently fed fifth instars. We have cloned the cDNA sequence and analyzed the expression profile of the transcript, which is predominantly present in neurosecretory cells in the brain, similar to other insect ILPs. Using RNAi, we have reduced the expression of this peptide transcript by 90% and subsequently measured the carbohydrate and lipid levels in the hemolymph, fat body and leg muscles. Reduced levels of Rhopr-ILP transcript induced increased carbohydrate and lipid levels in the hemolymph and increased lipid content in the fat body, in unfed insects and recently fed insects. Also their fat bodies displayed enlarged lipid droplets within the cells. On the other hand, the carbohydrate content in the fat body and in the leg muscles of unfed insects were decreased when compared to control insects. Our results indicate that Rhopr-ILP is a modulator of lipid and carbohydrate metabolism, probably through signaling the presence of available energy and nutrients in the hemolymph.
Collapse
Affiliation(s)
- Marina S Defferrari
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
29
|
Conservation of gene and tissue networks regulating insulin signalling in flies and vertebrates. Biochem Soc Trans 2015; 43:1057-62. [DOI: 10.1042/bst20150078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fruit flies have emerged as a powerful tool to investigate metabolism. Not only are gene structures and gene networks that control metabolism conserved through evolution, but the interactions among organs to store and process metabolites have strong similarities between flies and humans. Accordingly, the Drosophila system has the potential to address human disorders associated with metabolic dysfunction including obesity, type 2 diabetes and lipotoxicity.
Collapse
|
30
|
Mattila J, Havula E, Suominen E, Teesalu M, Surakka I, Hynynen R, Kilpinen H, Väänänen J, Hovatta I, Käkelä R, Ripatti S, Sandmann T, Hietakangas V. Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe. Cell Rep 2015; 13:350-64. [PMID: 26440885 DOI: 10.1016/j.celrep.2015.08.081] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/02/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023] Open
Abstract
The ChREBP/Mondo-Mlx transcription factors are activated by sugars and are essential for sugar tolerance. They promote the conversion of sugars to lipids, but beyond this, their physiological roles are insufficiently understood. Here, we demonstrate that in an organism-wide setting in Drosophila, Mondo-Mlx controls the majority of sugar-regulated genes involved in nutrient digestion and transport as well as carbohydrate, amino acid, and lipid metabolism. Furthermore, human orthologs of the Mondo-Mlx targets display enrichment among gene variants associated with high circulating triglycerides. In addition to direct regulation of metabolic genes, Mondo-Mlx maintains metabolic homeostasis through downstream effectors, including the Activin ligand Dawdle and the Gli-similar transcription factor Sugarbabe. Sugarbabe controls a subset of Mondo-Mlx-dependent processes, including de novo lipogenesis and fatty acid desaturation. In sum, Mondo-Mlx is a master regulator of other sugar-responsive pathways essential for adaptation to a high-sugar diet.
Collapse
Affiliation(s)
- Jaakko Mattila
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Essi Havula
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Erja Suominen
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Mari Teesalu
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00270, Finland; Department of Health, National Institute for Health and Welfare, Helsinki 00251, Finland
| | - Riikka Hynynen
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Helena Kilpinen
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Juho Väänänen
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Department of Health, National Institute for Health and Welfare, Helsinki 00251, Finland
| | - Reijo Käkelä
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00270, Finland; Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki 00251, Finland; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Thomas Sandmann
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ville Hietakangas
- Department of Biosciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
31
|
Hou Y, Wang XL, Saha TT, Roy S, Zhao B, Raikhel AS, Zou Z. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction. PLoS Genet 2015; 11:e1005309. [PMID: 26158648 PMCID: PMC4497655 DOI: 10.1371/journal.pgen.1005309] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Hematophagous mosquitoes serve as vectors of multiple devastating human diseases, and many unique physiological features contribute to the incredible evolutionary success of these insects. These functions place high-energy demands on a reproducing female mosquito, and carbohydrate metabolism (CM) must be synchronized with these needs. Functional analysis of metabolic gene profiling showed that major CM pathways, including glycolysis, glycogen and sugar metabolism, and citrate cycle, are dramatically repressed at post eclosion (PE) stage in mosquito fat body followed by a sharply increase at post-blood meal (PBM) stage, which were also verified by Real-time RT-PCR. Consistent to the change of transcript and protein level of CM genes, the level of glycogen, glucose and trehalose and other secondary metabolites are also periodically accumulated and degraded during the reproductive cycle respectively. Levels of triacylglycerols (TAG), which represent another important energy storage form in the mosquito fat body, followed a similar tendency. On the other hand, ATP, which is generated by catabolism of these secondary metabolites, showed an opposite trend. Additionally, we used RNA interference studies for the juvenile hormone and ecdysone receptors, Met and EcR, coupled with transcriptomics and metabolomics analyses to show that these hormone receptors function as major regulatory switches coordinating CM with the differing energy requirements of the female mosquito throughout its reproductive cycle. Our study demonstrates how, by metabolic reprogramming, a multicellular organism adapts to drastic and rapid functional changes. Mosquitoes transmit numerous devastating human diseases due to their obligatory hematophagy that is required for the efficient reproduction. Metabolism must be synchronized with high energetic needs of a female mosquito for host seeking, blood feeding and rapid egg development. Each reproductive cycle is divided into two phases that are sequentially governed by juvenile hormone (JH) and 20-hydroxyecdysone. During the pre-blood meal phase, the JH receptor Methoprene-tolerant (Met) controls carbohydrate metabolism (CM) pathways and its RNA interference (RNAi) silencing caused up-regulation of CM enzymes at the transcript and protein levels activating glycolytic flux and depletion of storage and circulating sugars. During the second, post blood meal phase, CM was regulated by the ecdysone receptor EcR and its RNAi silencing had a dramatic effect opposite to that of Met RNAi. Thus, we show that Met and EcR function as regulatory switches coordinating carbohydrate metabolism with energetic requirements of the female mosquito reproductive cycle.
Collapse
Affiliation(s)
- Yuan Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tusar T. Saha
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Sourav Roy
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Bo Zhao
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Alexander S. Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (ASR); (ZZ)
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ASR); (ZZ)
| |
Collapse
|
32
|
Ugrankar R, Berglund E, Akdemir F, Tran C, Kim MS, Noh J, Schneider R, Ebert B, Graff JM. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism. Nat Commun 2015; 6:7102. [PMID: 25994086 PMCID: PMC4455130 DOI: 10.1038/ncomms8102] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D. melanogaster to uncover the ‘glucome', the complete set of genes involved in glucose regulation in flies. Partial genomic screens of ∼1,000 genes yield ∼160 hyperglycaemia ‘flyabetes' candidates that we classify using fat body- and muscle-specific knockdown and biochemical assays. The results highlight the minor glucose fraction as a physiological indicator of metabolism in Drosophila. The hits uncovered in our screen may have conserved functions in mammalian glucose homeostasis, as heterozygous and homozygous mutants of Ck1alpha in the murine adipose lineage, develop diabetes. Our findings demonstrate that glucose has a role in fly biology and that genetic screenings carried out in flies may increase our understanding of mammalian pathophysiology. Diabetes is associated with aberrations in glucose metabolism. Here the authors perform a genomic screen in fruit flies to identify new regulators of fly glucose metabolism, and show that mice lacking the murine homologue of one of their hits, the protein kinase CK1alpha, in the adipose lineage develop diabetes.
Collapse
Affiliation(s)
- Rupali Ugrankar
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric Berglund
- 1] Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Fatih Akdemir
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher Tran
- 1] Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] University of Texas, Dallas, Texas 75080, USA
| | - Min Soo Kim
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jungsik Noh
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rebekka Schneider
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonathan M Graff
- 1] Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity. PLoS Genet 2015; 11:e1004995. [PMID: 25692475 PMCID: PMC4334898 DOI: 10.1371/journal.pgen.1004995] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023] Open
Abstract
Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)—composed of three FA units esterified to a glycerol backbone—is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs) that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1) works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN) mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell-autonomous accumulation of MG-derived-AGEs, supporting the notion that MG is the most deleterious α-oxoaldehyde at the intracellular level. Consumption of sugar and lipid (fat) enriched food increases the risk of developing metabolic diseases and cancers. However, lipids are essential molecules for life, as they are the major components of cell membranes. Metabolism refers to biochemical reactions that transform nutrients into molecules required by an organism, although toxic by-products can also formed. Sugars or their derivatives are likely to induce toxic effects by forming stable conjugates with proteins. To neutralize their toxic potential, sugars are metabolized and stored as fat. Here, we have used the fruitfly model to investigate the consequences of lipogenesis deficiency upon ingestion of sugar-enriched diets. We show that lipogenesis deficient animals are dramatically sensitive to dietary sugar. Further, we have identified the sugar by-product responsible for intracellular toxicity, in the context of lipogenesis inhibition. Our study reveals that inhibiting lipogenesis does not disrupt cellular growth if extracellular lipids are available. In contrast lipogenesis inhibition may have deleterious consequences due to accumulation of toxic by-products. The efficacy of lipogenic inhibitors in fighting cancers and metabolic diseases is currently under investigation. Therefore, to evaluate the clinical benefit of these inhibitors, accumulation of the toxic molecules should be monitored in both sick and healthy cells.
Collapse
|
34
|
Abstract
Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.
Collapse
Affiliation(s)
- Hiroko Matsuda
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and
| | - Takayuki Yamada
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and
| | - Miki Yoshida
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and the Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Takashi Nishimura
- From the Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo 650-0047 and the Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
35
|
Armstrong AR, Laws KM, Drummond-Barbosa D. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila. Development 2014; 141:4479-88. [PMID: 25359724 DOI: 10.1242/dev.116467] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk.
Collapse
Affiliation(s)
- Alissa R Armstrong
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Ranhotra HS. The NR4A orphan nuclear receptors: mediators in metabolism and diseases. J Recept Signal Transduct Res 2014; 35:184-8. [PMID: 25089663 DOI: 10.3109/10799893.2014.948555] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NR4A subfamily is orphan nuclear receptors that belong to the larger nuclear receptors (NRs) superfamily of eukaryotic transcription factors. The NR4A subfamily includes three members, namely Nur77 (NR4A1), Nurr1 (NR4A2) and Nor1 (NR4A3) which are gene regulators and participate in diverse biological functions. Though the ligands for these receptors are presently unidentified, they are thought to be constitutively active. NR4A acts as molecular switches in gene regulation and their action is increasingly seen to be modulated by complex network of cellular signaling pathways. Members of the NR4A are expressed in tissue-specific fashion which indicates their selective control of various biological processes. Data reveal a host of functions governed by the NR4A subfamily members including general metabolism, immunity, cellular stress, memory, insulin sensitivity and cardiac homeostasis by regulating specific target genes whose products participates in such processes. Moreover, these receptors have a role in the onset and progression of various diseases such as various types of cancer, inflammation, atherosclerosis and obesity. In this review, a concise overview of the current understanding of the important metabolic roles governed by NR4A members including their participation in a number of diseases shall be provided.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Orphan Nuclear Receptors Laboratory, Department of Biochemistry, St. Edmund's College , Shillong, Meghalaya , India
| |
Collapse
|
37
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
38
|
Tennessen JM, Barry WE, Cox J, Thummel CS. Methods for studying metabolism in Drosophila. Methods 2014; 68:105-15. [PMID: 24631891 PMCID: PMC4048761 DOI: 10.1016/j.ymeth.2014.02.034] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/17/2023] Open
Abstract
Recent research using Drosophila melanogaster has seen a resurgence in studies of metabolism and physiology. This review focuses on major methods used to conduct this work. These include protocols for dietary interventions, measurements of triglycerides, cholesterol, glucose, trehalose, and glycogen, stains for lipid detection, and the use of gas chromatography-mass spectrometry (GC-MS) to detect major polar metabolites. It is our hope that this will provide a useful framework for both new and current researchers in the field.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - William E Barry
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - James Cox
- Department of Biochemistry and the Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
39
|
Gissendanner CR, Cardin D, Dubose CJ, El Sayed M, Harmson JS, Praslicka B, Rowan BG. C. elegans nuclear receptor NHR-6 functionally interacts with the jun-1 transcription factor during spermatheca development. Genesis 2013; 52:29-38. [PMID: 24178943 DOI: 10.1002/dvg.22723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/27/2022]
Abstract
The NR4A nuclear receptor NHR-6 is an essential regulator of spermatheca organogenesis in C. elegans. In this study, we perform a focused, RNAi-based screen to identify modifiers of partial nhr-6 loss of function. Ninety-eight genes that encode signaling proteins expressed in the spermatheca were screened for enhancement of the nhr-6 RNAi phenotype. We identify the C. elegans gene jun-1, which encodes the homolog of the Jun transcription factor, as a strong enhancer of nhr-6 partial loss of function. We show that nhr-6 and jun-1 function together to regulate development of the spermatheca and are necessary for generating an organ with the normal number of cells. jun-1 is expressed in all cells of the developing spermatheca. We also provide evidence that NHR-6 and JUN-1 can physically interact in a yeast two-hybrid assay. Our results provide in vivo evidence that NR4A nuclear receptor and Jun transcription factor interactions are essential in regulating developmental processes in metazoans.
Collapse
Affiliation(s)
- Chris R Gissendanner
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, 71209
| | | | | | | | | | | | | |
Collapse
|
40
|
Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 2013; 11:e1001708. [PMID: 24265594 PMCID: PMC3825659 DOI: 10.1371/journal.pbio.1001708] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 10/04/2013] [Indexed: 01/19/2023] Open
Abstract
Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8.
Collapse
|
41
|
Close AF, Rouillard C, Buteau J. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. DIABETES & METABOLISM 2013; 39:478-84. [PMID: 24075454 DOI: 10.1016/j.diabet.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/23/2023]
Abstract
Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes.
Collapse
Affiliation(s)
- A F Close
- Department of AFNS, University of Alberta and Alberta Diabetes Institute, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
| | | | | |
Collapse
|
42
|
Buescher JL, Musselman LP, Wilson CA, Lang T, Keleher M, Baranski TJ, Duncan JG. Evidence for transgenerational metabolic programming in Drosophila. Dis Model Mech 2013; 6:1123-32. [PMID: 23649823 PMCID: PMC3759332 DOI: 10.1242/dmm.011924] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie) feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon.
Collapse
|
43
|
Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, Wicker-Thomas C, Montagne J. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet 2012; 8:e1002925. [PMID: 22956916 PMCID: PMC3431307 DOI: 10.1371/journal.pgen.1002925] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/13/2012] [Indexed: 02/07/2023] Open
Abstract
Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA–interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA–interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles—the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes. Fatty acid homeostasis is deregulated in several human diseases, including obesity, diabetes, and most cancers. Therefore, the enzymes that catalyze the reactions of fatty acid metabolism constitute attractive targets for drug therapy. However, the development of novel inhibitors requires extensive analysis of the organ-specific functions of the targeted enzyme. Given the availability of genetic tools, the fruit fly Drosophila is an appropriate model system to investigate the physiological and developmental roles of metabolic enzymes. Here we studied a Drosophila homologue of a rate-limiting enzyme for fatty acid synthesis. We have shown that this enzyme is necessary to control the storage of lipids in the fat tissue, validating our system to study fatty acid metabolism. We further observed that this enzyme is essential in the oenocytes, a group of cells proposed to contribute to the hepatic function and to the formation of the cuticle. Furthermore, we have shown that a putative fatty acid produced in these cells is required to control, at a distance, the watertightness of the respiratory system. In summary, our study identifies a novel fatty acid-mediated signal necessary to prevent liquid accumulation in the respiratory system, a critical issue for all air-breathing animals.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Pierre et Marie Curie- Paris 6, Paris, France
| | - Laura Napal
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Thomas Rubin
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Mickael Poidevin
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | | | | | - Jacques Montagne
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
- * E-mail:
| |
Collapse
|
44
|
Xu J, Raman C, Zhu F, Tan A, Palli SR. Identification of nuclear receptors involved in regulation of male reproduction in the red flour beetle, Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:710-717. [PMID: 22402169 DOI: 10.1016/j.jinsphys.2012.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Nineteen canonical and two Knirps-like family nuclear receptors (NRs) were identified in the genome of Tribolium castaneum. The current study was conducted to identify NRs involved in regulation of male reproduction. RNA interference (RNAi)-aided knockdown in the expression of genes coding for all 21 NRs showed that reduction in the levels of 11 NRs (E75, E78, FTZ-F1, HR38, HR4, Knirps-like, HNF4, Tailless, HR51, Dsf and HR39) in the male beetles caused more than 50% reduction in the eggs laid by the female beetles mated with RNAi male beetles. Among these 11 NRs that are required for male reproduction, knockdown in the expression of genes coding for E78 and HR39 in the male beetles resulted in a reduction in the number of sperm produced and transferred to the female when compared to the sperms produced and transferred by the control male beetles injected with bacterial malE dsRNA. In contrast, knockdown in the expression of genes coding for E75 and HR38 caused a reduction in the size of male accessory glands (MAG), the amount of protein produced by the MAG and the expression of genes coding for accessory gland proteins. These data suggest that NRs such as E78 and HR39 regulate sperm production and their transfer to the females and the other NRs such as E75 and HR38 regulate the development of MAG and the production of accessory gland proteins.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
45
|
Seay DJ, Thummel CS. The circadian clock, light, and cryptochrome regulate feeding and metabolism in Drosophila. J Biol Rhythms 2012; 26:497-506. [PMID: 22215608 DOI: 10.1177/0748730411420080] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies in mammals have demonstrated a central role for the circadian clock in maintaining metabolic homeostasis. In spite of these advances, however, little is known about how these complex pathways are coordinated. Here, we show that fundamental aspects of the circadian control of metabolism are conserved in the fruit fly Drosophila. We assay feeding behavior and basic metabolite levels in individual flies and show that, like mammals, Drosophila display a rapid increase in circulating sugar following a meal, which is subsequently stored in the form of glycogen. These daily rhythms in carbohydrate levels are disrupted in clock mutants, demonstrating a critical role for the circadian clock in the postprandial response to feeding. We also show that basic metabolite levels are coordinated in a clock-dependent manner and that clock function is required to maintain lipid homeostasis. By examining feeding behavior, we show that flies feed primarily during the first 4 hours of the day and that light suppresses a late day feeding bout through the cryptochrome photoreceptor. These studies demonstrate that central aspects of feeding and metabolism are dependent on the circadian clock in Drosophila. Our work also uncovers novel roles for light and cryptochrome on both feeding behavior and metabolism.
Collapse
Affiliation(s)
- Daniel J Seay
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | | |
Collapse
|
46
|
Ables ET, Laws KM, Drummond-Barbosa D. Control of adult stem cells in vivo by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:657-74. [PMID: 23799567 DOI: 10.1002/wdev.48] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult stem cells are inextricably linked to whole-body physiology and nutrient availability through complex systemic signaling networks. A full understanding of how stem cells sense and respond to dietary fluctuations will require identifying key systemic mediators, as well as elucidating how they are regulated and integrated with local and intrinsic factors across multiple tissues. Studies focused on the Drosophila germline have generated valuable insights into how stem cells are controlled by diet-dependent pathways, and increasing evidence suggests that diverse adult stem cell populations respond to nutrients through similar mechanisms. Systemic signals, including nutrients themselves and diet-regulated hormones such as Insulin/Insulin-like growth factor or steroid hormones, can directly or indirectly affect stem cell behavior by modifying local cell-cell communication or intrinsic factors. The physiological regulation of stem cells in response to nutritional status not only is a fascinating biological problem, but also has clinical implications, as research in this field holds the key to noninvasive approaches for manipulating stem cells in vivo. In addition, given the known associations between diet, stem cells, and cancer risk, this research may inspire novel anticancer therapies.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|