1
|
Shrivastav S, Lee H, Okamoto K, Lu H, Yoshida T, Latt KZ, Wakashin H, Dalgleish JLT, Koritzinsky EH, Xu P, Asico LD, Chung JY, Hewitt S, Gildea JJ, Felder RA, Jose PA, Rosenberg AZ, Knepper MA, Kino T, Kopp JB. HIV-1 Vpr suppresses expression of the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule. PLoS One 2022; 17:e0273313. [PMID: 36129874 PMCID: PMC9491550 DOI: 10.1371/journal.pone.0273313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.
Collapse
Affiliation(s)
- Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Huiyan Lu
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Hidefumi Wakashin
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - James L. T. Dalgleish
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Erik H. Koritzinsky
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peng Xu
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Stephen Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - John J. Gildea
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robin A. Felder
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland, United States of America
| | - Tomoshige Kino
- Laboratory for Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Aguilar-Recarte D, Barroso E, Gumà A, Pizarro-Delgado J, Peña L, Ruart M, Palomer X, Wahli W, Vázquez-Carrera M. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep 2021; 36:109501. [PMID: 34380027 DOI: 10.1016/j.celrep.2021.109501] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates AMP-activated protein kinase (AMPK) and plays a crucial role in glucose and lipid metabolism. Here, we examine whether PPARβ/δ activation effects depend on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy metabolism. Pharmacological PPARβ/δ activation increases GDF15 levels and ameliorates glucose intolerance, fatty acid oxidation, endoplasmic reticulum stress, and inflammation, and activates AMPK in HFD-fed mice, whereas these effects are abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15-/- mice. The AMPK-p53 pathway is involved in the PPARβ/δ-mediated increase in GDF15, which in turn activates again AMPK. Consistently, Gdf15-/- mice show reduced AMPK activation in skeletal muscle, whereas GDF15 administration results in AMPK activation in this organ. Collectively, these data reveal a mechanism by which PPARβ/δ activation increases GDF15 levels via AMPK and p53, which in turn mediates the metabolic effects of PPARβ/δ by sustaining AMPK activation.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Anna Gumà
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Maria Ruart
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
3
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Pin F, Novinger LJ, Huot JR, Harris RA, Couch ME, O'Connell TM, Bonetto A. PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia. FASEB J 2019; 33:7778-7790. [PMID: 30894018 DOI: 10.1096/fj.201802799r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cachexia is frequently accompanied by severe metabolic derangements, although the mechanisms responsible for this debilitating condition remain unclear. Pyruvate dehydrogenase kinase (PDK)4, a critical regulator of cellular energetic metabolism, was found elevated in experimental models of cancer, starvation, diabetes, and sepsis. Here we aimed to investigate the link between PDK4 and the changes in muscle size in cancer cachexia. High PDK4 and abnormal energetic metabolism were found in the skeletal muscle of colon-26 tumor hosts, as well as in mice fed a diet enriched in Pirinixic acid, previously shown to increase PDK4 levels. Viral-mediated PDK4 overexpression in myotube cultures was sufficient to promote myofiber shrinkage, consistent with enhanced protein catabolism and mitochondrial abnormalities. On the contrary, blockade of PDK4 was sufficient to restore myotube size in C2C12 cultures exposed to tumor media. Our data support, for the first time, a direct role for PDK4 in promoting cancer-associated muscle metabolic alterations and skeletal muscle atrophy.-Pin, F., Novinger, L. J., Huot, J. R., Harris, R. A., Couch, M. E., O'Connell, T. M., Bonetto, A. PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leah J Novinger
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joshua R Huot
- Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marion E Couch
- Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas M O'Connell
- Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Bonetto
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Guimarães MP, Ferriolli E, Pfrimer K, Navarro AM. Doubly Labeled Water Method and Accelerometer for the Measurement of Energy Expenditure in Human Immunodeficiency Virus-Infected Patients. ANNALS OF NUTRITION AND METABOLISM 2017; 70:66-73. [PMID: 28278503 DOI: 10.1159/000458766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Several studies have reported increased resting energy expenditure (REE) in human immunodeficiency virus (HIV)-infected patients with HIV-associated lipodystrophy syndrome (HALS). However, limited data exist on the total energy expenditure (TEE). This study was aimed at evaluating the REE and TEE of HIV-infected patients with and without HALS by using the doubly labeled water (DLW) technique and the activity monitor based on accelerometry system (AM), and comparing the results obtained using both methods. METHODS Evaluated total of 45 HIV+ men undergoing antiretroviral therapy, including 18 LIPO- (without lipodystrophy) and 27 LIPO+ (with lipodystrophy) individuals were evaluated. Habitual physical activity patterns were measured by using the ActivPAL™ AM system, REE by indirect calorimetry, and TEE by DLW and AM. RESULTS No significant differences were found between LIPO- and LIPO+ in REE (1,433 ± 196 vs. 1,510 ± 203 kcal), TEE-DLW (2,691 ± 856 vs. 2,618 ± 415 kcal) and TEE-AM (2,560 ± 458 vs. 2,594 ± 456 kcal), respectively. RQ was a predictor of REE in LIPO+. TEE estimated by the AM had a moderate correlation with DLW, but there was a wide variance in the intra-subject results. CONCLUSIONS TEE is not increased in HIV-infected patients with HALS. AM should be used with caution for TEE evaluation during clinical practice.
Collapse
Affiliation(s)
- Mariana P Guimarães
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
7
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
8
|
Park H, Jeoung NH. Inflammation increases pyruvate dehydrogenase kinase 4 (PDK4) expression via the Jun N-Terminal Kinase (JNK) pathway in C2C12 cells. Biochem Biophys Res Commun 2015; 469:1049-54. [PMID: 26740179 DOI: 10.1016/j.bbrc.2015.12.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/24/2015] [Indexed: 01/22/2023]
Abstract
Chronic inflammation augments the deleterious effects of several diseases, particularly diabetes, cancer, and sepsis. It is also involved in the process of metabolic shift from glucose oxidation to lactate production. Although several studies suggest that the change in activity of the pyruvate dehydrogenase complex (PDC) is a major factor causing this metabolic change, the exact mechanism of the inflammatory state remains unclear. In this study, we investigated the effect of lipopolysaccharide (LPS) on the expression of pyruvate dehydrogenase kinase 4 (PDK4), which is strongly associated with inactivation of the PDC in C2C12 myoblasts. In C2C12 myoblasts, LPS exposure led to increased PDK4 mRNA and protein expression levels as well as lactate production in culture medium. However, the expression levels of other PDK isoenzymes (PDK1 - 3) remained unchanged. Additionally, we observed that LPS treatment induced phosphorylation of Jun N-Terminal Kinases (JNK). To confirm the role of JNK, we inhibited the JNK pathway and observed that PDK4 expression and lactate production were decreased, but p38 and ERK were not significantly changed. Taken together, our results suggest that LPS induces PDK4 expression and alters glucose metabolism via the JNK pathway.
Collapse
Affiliation(s)
- Hana Park
- Department of Biomedical Sciences, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, Catholic University of Daegu, Gyeongsan, Republic of Korea.
| |
Collapse
|
9
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
10
|
Agarwal N, Balasubramanyam A. Viral mechanisms of adipose dysfunction: lessons from HIV-1 Vpr. Adipocyte 2015; 4:55-9. [PMID: 26167403 DOI: 10.4161/adip.29852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023] Open
Abstract
HIV-associated lipodystrophy is a heterogeneous, evolving condition associated with fundamental defects in adipose tissue differentiation, turnover and function. Although many antiretroviral drugs can affect adipose tissues adversely, clinical evidence suggests that factors associated with the virus per se could play a role. We have focused on the possibility that an HIV accessory protein, viral protein R (Vpr) could dysregulate metabolically critical transcription factors to cause the adipose dysfunction. In a recent study published in Science Translational Medicine, we utilized 2 animal models to show that Vpr, produced in tissues that sequester HIV after antiretroviral therapy, can act in a paracrine or endocrine fashion to disrupt adipocyte differentiation and function by inhibiting PPARγ target gene expression and activating glucocorticoid target gene expression. The phenotypic consequences included many features typical of the human syndrome, including accelerated lipolysis, increased macrophage infiltration in adipose tissue, diminished size of white adipose depots and hepatic steatosis. In this commentary, we summarize the background, results, and implications of these studies, and raise important questions for future investigation. More broadly, these studies suggest that chronic viral infections may be a causative factor in the pathogenesis of some forms of lipid metabolic disease, insulin resistance, and diabetes.
Collapse
|
11
|
Fornoni A, Merscher S, Kopp JB. Lipid biology of the podocyte--new perspectives offer new opportunities. Nat Rev Nephrol 2014; 10:379-88. [PMID: 24861084 DOI: 10.1038/nrneph.2014.87] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the past 15 years, major advances have been made in understanding the role of lipids in podocyte biology. First, susceptibility to focal segmental glomerulosclerosis (FSGS) and glomerular disease is associated with an APOL1 sequence variant, is expressed in podocytes and encodes apolipoprotein L1, an important component of HDL. Second, acid sphingomyelinase-like phosphodiesterase 3b encoded by SMPDL3b has a role in the conversion of sphingomyelin to ceramide and its levels are reduced in renal biopsy samples from patients with recurrent FSGS. Furthermore, decreased SMPDL3b expression is associated with increased susceptibility of podocytes to injury after exposure to sera from these patients. Third, in many individuals with membranous nephropathy, autoantibodies against the phospholipase A2 (PLA2) receptor, which is expressed in podocytes, have been identified. Whether these autoantibodies affect the activity of PLA2, which liberates arachidonic acid from glycerophospholipids and modulates podocyte function, is unknown. Fourth, clinical and experimental evidence support a role for ATP-binding cassette sub-family A member 1-dependent cholesterol efflux, free fatty acids and glycerophospolipids in the pathogenesis of diabetic kidney disease. An improved understanding of lipid biology in podocytes might provide insights to develop therapeutic targets for primary and secondary glomerulopathies.
Collapse
Affiliation(s)
- Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue, Miami, FL 33136, USA
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue, Miami, FL 33136, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 10 Center Drive, 3N116 Bethesda, MD 20892-1268, USA
| |
Collapse
|