1
|
Kuang K, Chen X, Wang M, Han W, Qiu X, Jin T, Xu R, Yuan B, Qian M, Li C, Xiang R, Li F, Zhang S, Yang Z, Du J, Li D, Zhang C, Wang Q, Jia T. Design and Discovery of New Collagen V-Derived FGF2-Blocking Natural Peptides Inhibiting Lung Squamous Cell Carcinoma In Vitro and In Vivo. J Med Chem 2024. [PMID: 39045829 DOI: 10.1021/acs.jmedchem.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aberrant FGF2/FGFR signaling is implicated in lung squamous cell carcinoma (LSCC), posing treatment challenges due to the lack of targeted therapeutic options. Designing drugs that block FGF2 signaling presents a promising strategy different from traditional kinase inhibitors. We previously reported a ColVα1-derived fragment, HEPV (127AA), that inhibits FGF2-induced angiogenesis. However, its large size may limit therapeutic application. This study combines rational peptide design, molecular dynamics simulations, knowledge-based prediction, and GUV and FRET assays to identify smaller peptides with FGF2-blocking properties. We synthesized two novel peptides, HBS-P1 (45AA) and HBS-P2 (66AA), that retained the heparin-binding site. Both peptides demonstrated anti-LSCC and antiangiogenesis properties in cell viability and microvessel network induction assays. In two LSCC subcutaneous models, HBS-P1, with its affinity for FGF2 and enhanced penetration ability, demonstrated substantial therapeutic potential without apparent toxicities. Our study provides the first evidence supporting the development of collagen V-derived natural peptides as FGF2-blocking agents for LSCC treatment.
Collapse
Affiliation(s)
- Keli Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory forMarine Drugs and Bioproducts, Qingdao National Laboratory for Marine Scienceand Technology, Ocean University of China, Qingdao 266237, China
| | - Taoli Jin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Rong Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Meiqi Qian
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory forMarine Drugs and Bioproducts, Qingdao National Laboratory for Marine Scienceand Technology, Ocean University of China, Qingdao 266237, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuwen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Zhang C, Qin Q, Liu Z, Wang Y, Lan M, Zhao D, Zhang J, Wang Z, Li J, Liu Z. Combining multiomics to analyze the molecular mechanism of hair follicle cycle change in cashmere goats from Inner Mongolia. Front Vet Sci 2024; 11:1405355. [PMID: 39036798 PMCID: PMC11257874 DOI: 10.3389/fvets.2024.1405355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep.Inner Mongolia Cashmere Goat is a local excellent breed of cashmere and meat dual-purpose, which is a typical heterogeneous indumentum. The hair follicles cycle through periods of vigorous growth (anagen), a regression caused by apoptosis (catagen), and relative rest (telogen). At present, it is not clear which genes affect the cycle transformation of hair follicles and unclear how proteins impact the creation and expansion of hair follicles.we using multi-omics joint analysis methodologies to investigated the possible pathways of transformation and apoptosis in goat hair follicles. The results showed that 917,1,187, and 716 proteins were specifically expressed in anagen, catagen andtelogen. The result of gene ontology (GO) annotation showed that differentially expressed proteins (DEPs) are in different growth cycle periods, and enriched GO items are mostly related to the transformation of cells and proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment result indicated that the apoptosis process has a great impact on hair follicle's growth cycle. The results of the protein interaction network of differential proteins showed that the ribosomal protein family (RPL4, RPL8, RPS16, RPS18, RPS2, RPS27A, RPS3) was the core protein in the network. The results of combined transcriptome and proteomics analysis showed that there were 16,34, and 26 overlapped DEGs and DEPs in the comparison of anagen VS catagen, catagen VS telogen and anagen VS telogen, of which API5 plays an important role in regulating protein and gene expression levels. We focused on API5 and Ribosomal protein and found that API5 affected the apoptosis process of hair follicles, and ribosomal protein was highly expressed in the resting stage of hair follicles. They are both useful as molecular marker candidate genes to study hair follicle growth and apoptosis,and they both have an essential function in the cycle transition process of hair follicles. The results of this study may provide a theoretical basis for further research on the growth and development of hair follicles in Inner Mongolian Cashmere goats.
Collapse
Affiliation(s)
- Chongyan Zhang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Qing Qin
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhichen Liu
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yichuan Wang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Mingxi Lan
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Dan Zhao
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jingwen Zhang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
| | - Zhixin Wang
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jinquan Li
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhihong Liu
- Department of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep & Goat Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Northern Agriculture and Livestock Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
3
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
4
|
Matsuzawa-Ishimoto Y, Yao X, Koide A, Ueberheide BM, Axelrad JE, Reis BS, Parsa R, Neil JA, Devlin JC, Rudensky E, Dewan MZ, Cammer M, Blumberg RS, Ding Y, Ruggles KV, Mucida D, Koide S, Cadwell K. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. Nature 2022; 610:547-554. [PMID: 36198790 PMCID: PMC9720609 DOI: 10.1038/s41586-022-05259-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akiko Koide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Beatrix M. Ueberheide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA,Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA,Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jordan E. Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bernardo S. Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Jessica A. Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene Rudensky
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - M Zahidunnabi Dewan
- Experimental Pathology, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA,Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Mucida
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Shohei Koide
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA,Corresponding author: Ken Cadwell, Address: 430 East 29th street, 4th Floor, New York, NY 10016, , Phone: 212-263-8891, Fax: 212-263-5711, Shohei Koide, Address: 522 1st Avenue, Smilow Research Center, 8th floor, New York, NY 10016, , Phone: 646-501-4601
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA.,Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA,Corresponding author: Ken Cadwell, Address: 430 East 29th street, 4th Floor, New York, NY 10016, , Phone: 212-263-8891, Fax: 212-263-5711, Shohei Koide, Address: 522 1st Avenue, Smilow Research Center, 8th floor, New York, NY 10016, , Phone: 646-501-4601
| |
Collapse
|
5
|
Li C, Kuang K, Du J, Eymin B, Jia T. Far beyond anti-angiogenesis: Benefits for anti-basicFGF therapy in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119253. [PMID: 35259425 DOI: 10.1016/j.bbamcr.2022.119253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients. In this review, we firstly discuss bFGF's canonical signaling pathways and later review newly identified bFGF's functions that contribute to the cancer hallmarks besides its typical role in angiogenesis. After, we summarize the role of bFGF as a therapeutic target in response to different cancer therapies including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and highlight the difficulties we must solve regarding the design of drugs targeting specifically bFGF. We also emphasize the need, especially for natural bFGF traps, to deepen their molecular mechanisms of action considering the specific context of cancer with different FGFR status, as well as the urgence of stratifying patients for both anti-bFGF first line and second line anti-cancer therapy. Finally, a perspective on potential feed-forward oncogenic signaling pathways mediated by bFGF is made. We discuss the importance of developing additional robust biomarkers to select patients who will benefit from bFGF-targeted therapy, as well as the rationale of developing combinatory therapies targeting either bFGF and/or its intracellular (co)effectors. This would ultimately provide novel therapeutic strategies to fight cancer.
Collapse
Affiliation(s)
- ChunYan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - KeLi Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - JunRong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, 38700 La Tronche, France; University Grenoble Alpes, 38000 Grenoble, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Sharma VK, Lahiri M. Interplay between p300 and HDAC1 regulate acetylation and stability of Api5 to regulate cell proliferation. Sci Rep 2021; 11:16427. [PMID: 34385547 PMCID: PMC8361156 DOI: 10.1038/s41598-021-95941-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Api5, is a known anti-apoptotic and nuclear protein that is responsible for inhibiting cell death in serum-starved conditions. The only known post-translational modification of Api5 is acetylation at lysine 251 (K251). K251 acetylation of Api5 is responsible for maintaining its stability while the de-acetylated form of Api5 is unstable. This study aimed to find out the enzymes regulating acetylation and deacetylation of Api5 and the effect of acetylation on its function. Our studies suggest that acetylation of Api5 at lysine 251 is mediated by p300 histone acetyltransferase while de-acetylation is carried out by HDAC1. Inhibition of acetylation by p300 leads to a reduction in Api5 levels while inhibition of deacetylation by HDAC1 results in increased levels of Api5. This dynamic switch between acetylation and deacetylation regulates the localisation of Api5 in the cell. This study also demonstrates that the regulation of acetylation and deacetylation of Api5 is an essential factor for the progression of the cell cycle.
Collapse
Affiliation(s)
- Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
7
|
Bong SM, Bae SH, Song B, Gwak H, Yang SW, Kim S, Nam S, Rajalingam K, Oh SJ, Kim TW, Park S, Jang H, Lee BI. Regulation of mRNA export through API5 and nuclear FGF2 interaction. Nucleic Acids Res 2020; 48:6340-6352. [PMID: 32383752 PMCID: PMC7293033 DOI: 10.1093/nar/gkaa335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
API5 (APoptosis Inhibitor 5) and nuclear FGF2 (Fibroblast Growth Factor 2) are upregulated in various human cancers and are correlated with poor prognosis. Although their physical interaction has been identified, the function related to the resulting complex is unknown. Here, we determined the crystal structure of the API5–FGF2 complex and identified critical residues driving the protein interaction. These findings provided a structural basis for the nuclear localization of the FGF2 isoform lacking a canonical nuclear localization signal and identified a cryptic nuclear localization sequence in FGF2. The interaction between API5 and FGF2 was important for mRNA nuclear export through both the TREX and eIF4E/LRPPRC mRNA export complexes, thus regulating the export of bulk mRNA and specific mRNAs containing eIF4E sensitivity elements, such as c-MYC and cyclin D1. These data show the newly identified molecular function of API5 and nuclear FGF2, and provide a clue to understanding the dynamic regulation of mRNA export.
Collapse
Affiliation(s)
- Seoung Min Bong
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - HyeRan Gwak
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seung-Won Yang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology and Department of Genome Medicine and Science, Graduate School of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | | | - Se Jin Oh
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Woo Kim
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi 10408, Republic of Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi 10408, Republic of Korea
| |
Collapse
|
8
|
Inhibition of FGF2-Mediated Signaling in GIST-Promising Approach for Overcoming Resistance to Imatinib. Cancers (Basel) 2020; 12:cancers12061674. [PMID: 32599808 PMCID: PMC7352302 DOI: 10.3390/cancers12061674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs.
Collapse
|
9
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
10
|
Figueroa V, Rodríguez MS, Lanari C, Lamb CA. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019; 152:108492. [PMID: 31513818 DOI: 10.1016/j.steroids.2019.108492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.
Collapse
Affiliation(s)
- Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Caroline Ana Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
11
|
Hong X, Yu Z, Chen Z, Jiang H, Niu Y, Huang Z. High molecular weight fibroblast growth factor 2 induces apoptosis by interacting with complement component 1 Q subcomponent-binding protein in vitro. J Cell Biochem 2018; 119:8807-8817. [PMID: 30159917 PMCID: PMC6220755 DOI: 10.1002/jcb.27131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a multifunctional cell growth factor that regulates cell proliferation, differentiation, adhesion, migration, and apoptosis. FGF2 has multiple isoforms, including an 18-kDa low molecular weight isoform (lo-FGF2) and 22-, 23-, 24-, and 34-kDa high molecular weight isoforms (hi-FGF2). Hi-FGF2 overexpression induces chromatin compaction, which requires the mitochondria and leads to apoptosis. Complement component 1 Q subcomponent-binding protein (C1QBP) plays an important role in mitochondria-dependent apoptosis by regulating the opening of the mitochondrial permeability transition pore. However, the interaction between C1QBP and hi-FGF2 and its role in hi-FGF2-mediated apoptosis remain unclear. Here, we found that hi-FGF2 overexpression induced depolarization of the mitochondrial membrane, cytochrome c release into the cytosol, and a considerable increase in C1QBP messenger RNA and protein expression. Furthermore, coimmunoprecipitation results showed that the mitochondrial protein, C1QBP, interacts with hi-FGF2. C1QBP knockdown using small interfering RNA significantly decreased the localization of hi-FGF2 to the mitochondria and increased the rate of apoptosis. Our results highlight a novel mechanism underlying hi-FGF2-induced, mitochondria-driven cell death involving the direct interaction between hi-FGF2 and C1QBP and the upregulation of C1QBP expression.
Collapse
Affiliation(s)
- Xiaobing Hong
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zelin Yu
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zhonglin Chen
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Hongyan Jiang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Yongdong Niu
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Zhanqin Huang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| |
Collapse
|
12
|
Kostas M, Lampart A, Bober J, Wiedlocha A, Tomala J, Krowarsch D, Otlewski J, Zakrzewska M. Translocation of Exogenous FGF1 and FGF2 Protects the Cell against Apoptosis Independently of Receptor Activation. J Mol Biol 2018; 430:4087-4101. [DOI: 10.1016/j.jmb.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023]
|
13
|
Cloning, expression pattern, and potential role of apoptosis inhibitor 5 in the termination of embryonic diapause and early embryo development of Artemia sinica. Gene 2017; 628:170-179. [DOI: 10.1016/j.gene.2017.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/05/2023]
|
14
|
Basset C, Bonnet-Magnaval F, Navarro MGJ, Touriol C, Courtade M, Prats H, Garmy-Susini B, Lacazette E. Api5 a new cofactor of estrogen receptor alpha involved in breast cancer outcome. Oncotarget 2017; 8:52511-52526. [PMID: 28881748 PMCID: PMC5581047 DOI: 10.18632/oncotarget.17281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/10/2017] [Indexed: 01/31/2023] Open
Abstract
Api5 (Apoptosis inhibitor 5) is an anti-apoptotic factor that confers resistance to genotoxic stress in human cancer. Api5 is also expressed in endothelial cells and participates to the Estrogen Receptor α (ERα) signaling to promote cell migration. In this study, we found an over expression of Api5 in human breast cancer. Given that we show that high expression of Api5 in breast cancer patients is associated with shorter recurrence free survival, we investigated the relationship between ERα and Api5 at the molecular level. We found that Api5 Nuclear Receptor box (NR box) drives a direct interaction with the C domain of ERα. Furthermore, Api5 participates to gene transcription activation of ERα target genes upon estrogen treatment. Besides, Api5 expression favors tumorigenicity and migration and is necessary for tumor growth in vivo in mice xenografted model of breast cancer cell line. These finding suggest that Api5 is a new cofactor of ERα that functionally participates to the tumorigenic phenotype of breast cancer cells. In ERα breast cancer patients, Api5 overexpression is associated with poor survival, and may be used as a predictive marker of breast cancer recurrence free survival.
Collapse
Affiliation(s)
- Céline Basset
- U1037-CRCT, INSERM, Université Toulouse, F-31037, Toulouse, France.,Laboratoire d'Histologie-Embryologie, Faculté de Médecine Rangueil, F-31062, Toulouse, France
| | | | | | | | - Monique Courtade
- U1037-CRCT, INSERM, Université Toulouse, F-31037, Toulouse, France.,Laboratoire d'Histologie-Embryologie, Faculté de Médecine Rangueil, F-31062, Toulouse, France
| | - Hervé Prats
- U1037-CRCT, INSERM, Université Toulouse, F-31037, Toulouse, France
| | | | - Eric Lacazette
- UMR 1048-I2MC, INSERM, Université Toulouse, F-31432, Toulouse, France
| |
Collapse
|
15
|
Imre G, Berthelet J, Heering J, Kehrloesser S, Melzer IM, Lee BI, Thiede B, Dötsch V, Rajalingam K. Apoptosis inhibitor 5 is an endogenous inhibitor of caspase-2. EMBO Rep 2017; 18:733-744. [PMID: 28336776 DOI: 10.15252/embr.201643744] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase-2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase-2 also regulates autophagy, genomic stability and ageing. Caspase-2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase-2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase-2 and impedes dimerization and activation of caspase-2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase-2. Depletion of endogenous API5 leads to an increase in caspase-2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase-2-dependent apoptotic cell death. These results establish API5/AAC-11 as a direct inhibitor of caspase-2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.
Collapse
Affiliation(s)
- Gergely Imre
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany
| | - Jean Berthelet
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany
| | - Jan Heering
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Inga Maria Melzer
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany
| | - Byung Il Lee
- Division of Convergence Technology, Biomolecular Function Research Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- MSU-FZI, Institute of Immunology, University Medical Center Mainz, JGU, Mainz, Germany .,UCT, Mainz, German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
API5 confers cancer stem cell-like properties through the FGF2-NANOG axis. Oncogenesis 2017; 6:e285. [PMID: 28092370 PMCID: PMC5294250 DOI: 10.1038/oncsis.2016.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Immune selection drives the evolution of tumor cells toward an immune-resistant and cancer stem cell (CSC)-like phenotype. We reported that apoptosis inhibitor-5 (API5) acts as an immune escape factor, which has a significant role in controlling immune resistance to antigen-specific T cells, but its functional association with CSC-like properties remains largely unknown. In this study, we demonstrated for the first time that API5 confers CSC-like properties, including NANOG expression, the frequency of CD44-positive cells and sphere-forming capacity. Critically, these CSC-like properties mediated by API5 are dependent on FGFR1 signaling, which is triggered by E2F1-dependent FGF2 expression. Furthermore, we uncovered the FGF2-NANOG molecular axis as a downstream component of API5 signaling that is conserved in cervical cancer patients. Finally, we found that the blockade of FGFR signaling is an effective strategy to control API5high human cancer. Thus, our findings reveal a crucial role of API5 in linking immune resistance and CSC-like properties, and provide the rationale for its therapeutic application for the treatment of API5+ refractory tumors.
Collapse
|
17
|
Jagot-Lacoussiere L, Kotula E, Villoutreix BO, Bruzzoni-Giovanelli H, Poyet JL. A Cell-Penetrating Peptide Targeting AAC-11 Specifically Induces Cancer Cells Death. Cancer Res 2016; 76:5479-90. [DOI: 10.1158/0008-5472.can-16-0302] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
|
18
|
Song KH, Kim SH, Noh KH, Bae HC, Kim JH, Lee HJ, Song J, Kang TH, Kim DW, Oh SJ, Jeon JH, Kim TW. Apoptosis Inhibitor 5 Increases Metastasis via Erk-mediated MMP expression. BMB Rep 2016; 48:330-5. [PMID: 25248562 PMCID: PMC4578619 DOI: 10.5483/bmbrep.2015.48.6.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells. However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway.
Collapse
Affiliation(s)
- Kwon-Ho Song
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Seok-Ho Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience & Biothechnology (KRIBB), Daejeon 305-806, Korea
| | - Kyung Hee Noh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyun Cheol Bae
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707, Korea
| | - Jin Hee Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707, Korea
| | - Hyo-Jung Lee
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Jinhoi Song
- Immunotherapy Research Center, Korea Research Institute of Bioscience & Biothechnology (KRIBB), Daejeon 305-806, Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-779, Korea
| | - Se-Jin Oh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University, College of Medicine, Seoul 110-779, Korea
| | - Tae Woo Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Ansan 425-707; Department of Biochemistry, Korea University College of Medicine, Seoul 136-705, Korea
| |
Collapse
|
19
|
Long Noncoding RNA LOC100129973 Suppresses Apoptosis by Targeting miR-4707-5p and miR-4767 in Vascular Endothelial Cells. Sci Rep 2016; 6:21620. [PMID: 26887505 PMCID: PMC4757888 DOI: 10.1038/srep21620] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are key regulators of multiple biological processes by altering gene expression at various levels. Apoptosis in vascular endothelial cells (VECs) is closely linked to numerous cardiovascular diseases, such as arteriosclerosis, thrombus formation and plaque erosion. However, studies on lncRNAs in the cardiovascular system are just beginning. And thus far, no anti-apoptosis lncRNAs have been identified in VECs. Here, we focused on the anti-apoptosis roles of lncRNAs in the serum and FGF-2 starvation-induced apoptosis of VECs. Using microarray analysis, we found a novel lncRNA LOC100129973 which acted as an apoptosis inhibitor in VECs. Through sponging miR-4707-5p and miR-4767, lncRNA LOC100129973 upregulated the expression of two apoptosis repressors gene, Apoptosis Inhibitor 5 (API5) and BCL2 like 12 (BCL2L12), and thus alleviated the serum and FGF-2 starvation-induced apoptosis in VECs. This evidence suggests that lncRNA LOC100129973 is an attractive target to improve endothelial function and for therapy of apoptosis related cardiovascular diseases.
Collapse
|
20
|
Mayank AK, Sharma S, Nailwal H, Lal SK. Nucleoprotein of influenza A virus negatively impacts antiapoptotic protein API5 to enhance E2F1-dependent apoptosis and virus replication. Cell Death Dis 2015; 6:e2018. [PMID: 26673663 PMCID: PMC4720893 DOI: 10.1038/cddis.2015.360] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/02/2022]
Abstract
Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV replication. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication.
Collapse
Affiliation(s)
- A K Mayank
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - S Sharma
- Virology Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - H Nailwal
- School of Science, Monash University, Bandar Sunway, Petaling Jaya, Selangor DE 47500, Malaysia
| | - S K Lal
- School of Science, Monash University, Bandar Sunway, Petaling Jaya, Selangor DE 47500, Malaysia
| |
Collapse
|
21
|
Förthmann B, Grothe C, Claus P. A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cell Mol Life Sci 2015; 72:1651-62. [PMID: 25552245 PMCID: PMC11113852 DOI: 10.1007/s00018-014-1818-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023]
Abstract
Nuclear localization of classical growth factors is a well-known phenomenon but still remains a molecular and cellular conundrum. Fibroblast growth factor-2 (FGF-2) is an excellent example of a protein which functions as an extracellular molecule involved in canonical receptor tyrosine kinase signaling as well as displaying intracellular functions. Paracrine and nuclear functions are two important sides of the same protein. FGF-2 is expressed in isoforms with different molecular weights from one mRNA species. In rodents, all of these isoforms become imported to the nucleus. In this review, we discuss structural and functional aspects of FGF-2 isoforms in the nervous system. The nuclear odyssey of FGF-2 is reflected by nuclear dynamics, localization to nuclear bodies such as nucleoli, binding to chromatin and engagement in various protein interactions. Recently discovered molecular partnerships of the isoforms shed light on their nuclear functions, thereby greatly extending our knowledge of the multifaceted functions of FGF-2.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Claudia Grothe
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Department of Neuroanatomy, Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
22
|
Cho H, Chung JY, Song KH, Noh KH, Kim BW, Chung EJ, Ylaya K, Kim JH, Kim TW, Hewitt SM, Kim JH. Apoptosis inhibitor-5 overexpression is associated with tumor progression and poor prognosis in patients with cervical cancer. BMC Cancer 2014; 14:545. [PMID: 25070070 PMCID: PMC4125689 DOI: 10.1186/1471-2407-14-545] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/17/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The apoptosis inhibitor-5 (API5), anti-apoptosis protein, is considered a key molecule in the tumor progression and malignant phenotype of tumor cells. Here, we investigated API5 expression in cervical cancer, its clinical significance, and its relationship with phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2) in development and progression of cervical cancer. METHODS API5 effects on cell growth were assessed in cervical cancer cell lines. API5 and pERK1/2 immunohistochemical staining were performed on a cervical cancer tissue microarray consisting of 173 primary cervical cancers, 306 cervical intraepithelial neoplasias (CINs), and 429 matched normal tissues. RESULTS API5 overexpression promoted cell proliferation and colony formation in CaSki cells, whereas API5 knockdown inhibited the both properties in HeLa cells. Immunohistochemical staining showed that API5 expression increased during the normal to tumor transition of cervical carcinoma (P < 0.001), and this increased expression was significantly associated with tumor stage (P = 0.004), tumor grade (P < 0.001), and chemo-radiation response (P = 0.004). API5 expression levels were positively associated with pERK1/2 in cervical cancer (P < 0.001) and high grade CIN (P = 0.031). In multivariate analysis, API5+ (P = 0.039) and combined API5+/pERK1/2+ (P = 0.032) were independent prognostic factors for overall survival. CONCLUSIONS API5 expression is associated with pERK1/2 in a subset of cervical cancer patients and its expression predicts poor overall survival, supporting that API5 may be a promising novel target for therapeutic interventions.
Collapse
Affiliation(s)
- Hanbyoul Cho
- />Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 146-92 Dogok-Dong, Gangnam-Gu, Seoul 135-720 South Korea
- />Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Joon-Yong Chung
- />Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Kwon-Ho Song
- />Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
- />Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | - Kyung Hee Noh
- />Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
- />Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | - Bo Wook Kim
- />Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Eun Joo Chung
- />Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD USA
| | - Kris Ylaya
- />Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Jin Hee Kim
- />Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
- />Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | - Tae Woo Kim
- />Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea
- />Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | - Stephen M Hewitt
- />Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Jae-Hoon Kim
- />Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 146-92 Dogok-Dong, Gangnam-Gu, Seoul 135-720 South Korea
| |
Collapse
|
23
|
Noh KH, Kim SH, Kim JH, Song KH, Lee YH, Kang TH, Han HD, Sood AK, Ng J, Kim K, Sonn CH, Kumar V, Yee C, Lee KM, Kim TW. API5 confers tumoral immune escape through FGF2-dependent cell survival pathway. Cancer Res 2014; 74:3556-66. [PMID: 24769442 DOI: 10.1158/0008-5472.can-13-3225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identifying immune escape mechanisms used by tumors may define strategies to sensitize them to immunotherapies to which they are otherwise resistant. In this study, we show that the antiapoptotic gene API5 acts as an immune escape gene in tumors by rendering them resistant to apoptosis triggered by tumor antigen-specific T cells. Its RNAi-mediated silencing in tumor cells expressing high levels of API5 restored antigen-specific immune sensitivity. Conversely, introducing API5 into API5(low) cells conferred immune resistance. Mechanistic investigations revealed that API5 mediated resistance by upregulating FGF2 signaling through a FGFR1/PKCδ/ERK effector pathway that triggered degradation of the proapoptotic molecule BIM. Blockade of FGF2, PKCδ, or ERK phenocopied the effect of API5 silencing in tumor cells expressing high levels of API5 to either murine or human antigen-specific T cells. Our results identify a novel mechanism of immune escape that can be inhibited to potentiate the efficacy of targeted active immunotherapies.
Collapse
Affiliation(s)
- Kyung Hee Noh
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Seok-Ho Kim
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University; Immunotherapy Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jin Hee Kim
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Kwon-Ho Song
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Young-Ho Lee
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University
| | - Tae Heung Kang
- Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea
| | - Hee Dong Han
- Department of Immunology, College of Medicine, Konkuk University, Chungju, South Korea; Center for RNA Interference and Non-coding RNA
| | - Anil K Sood
- Department of Gynecologic Oncology and Center for RNA Interference and Non-coding RNA
| | - Joanne Ng
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul
| | - Kwanghee Kim
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul; Department of Melanoma Medical Oncology and Immunology, U.T. MD Anderson Cancer Center, Houston Texas; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chung Hee Sonn
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul
| | - Vinay Kumar
- Department of Pathology, University of Chicago, Chicago, Illinois; and
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, U.T. MD Anderson Cancer Center, Houston Texas; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kyung-Mi Lee
- Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul;
| | - Tae Woo Kim
- Authors' Affiliations: Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University; Global Research Lab, Division of Brain Korea 21 Program for Biomedical Science and Department of Biochemistry, Korea University College of Medicine, Seoul;
| |
Collapse
|
24
|
Garcia-Jove Navarro M, Basset C, Arcondéguy T, Touriol C, Perez G, Prats H, Lacazette E. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition. PLoS One 2013; 8:e71443. [PMID: 23940755 PMCID: PMC3737092 DOI: 10.1371/journal.pone.0071443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/05/2013] [Indexed: 02/02/2023] Open
Abstract
Background The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. Methodology/Principal Findings In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. Conclusion/Significance The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.
Collapse
Affiliation(s)
| | - Céline Basset
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Tania Arcondéguy
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Christian Touriol
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Guillaume Perez
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Hervé Prats
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Eric Lacazette
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
- * E-mail:
| |
Collapse
|
25
|
Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI. Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules. J Biol Chem 2012; 287:10727-37. [PMID: 22334682 DOI: 10.1074/jbc.m111.317594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all α-helical structure. The N-terminal half of API5 is similar to the HEAT repeat and the C-terminal half is similar to the ARM (Armadillo-like) repeat. HEAT and ARM repeats have been implicated in protein-protein interactions, suggesting that the cellular roles of API5 may be to mediate protein-protein interactions. Various components of multiprotein complexes have been identified as API5-interacting protein partners, suggesting that API5 may act as a scaffold for multiprotein complexes. API5 exists as a monomer, and the functionally important heptad leucine repeat does not exhibit the predicted a dimeric leucine zipper. Additionally, Lys-251, which can be acetylated in cells, plays important roles in the inhibition of apoptosis under serum deprivation conditions. The acetylation of this lysine also affects the stability of API5 in cells.
Collapse
Affiliation(s)
- Byeong-Gu Han
- Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Caldas J, Kaski S. Hierarchical generative biclustering for microRNA expression analysis. J Comput Biol 2011; 18:251-61. [PMID: 21385032 DOI: 10.1089/cmb.2010.0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous yet flexible and computations feasible. The model can additionally be used in information retrieval for relating relevant samples. We show that the model outperforms four other biclustering procedures on a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study. Software is publicly available at http://research.ics.tkk.fi/mi/software/treebic/.
Collapse
Affiliation(s)
- José Caldas
- Aalto University School of Science and Technology, Department of Information and Computer Science, Helsinki Institute for Information Technology, Aalto, Finland
| | | |
Collapse
|
27
|
Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C. Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5'-triphosphate-dependent RNA helicases regulates tapetum degeneration. THE PLANT CELL 2011; 23:1416-34. [PMID: 21467577 PMCID: PMC3101562 DOI: 10.1105/tpc.110.082636] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 02/28/2011] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) during tapetum degeneration in postmeiotic anthers is critical for the proper development of male gametophytes in flowering plants. Although several genes involved in this process have been identified recently, the molecular mechanism is still poorly understood. Here, we show that knockout of rice (Oryza sativa) APOPTOSIS INHIBITOR5 (API5), which encodes a putative homolog of antiapoptosis protein Api5 in animals, results in delayed degeneration of the tapetum due to inhibition of the tapetal PCD process leading to defects in formation of male gametophytes. Os API5 is a nuclear protein that interacts with two DEAD-box ATP-dependent RNA helicases, API5-INTERACTING PROTEIN1 (AIP1) and AIP2. AIP1 and AIP2 are homologs of yeast (Saccharomyces cerevisiae) Suppressor of Bad Response to Refrigeration1 protein 2 (SUB2p) that have critical roles in transcription elongation and pre-mRNA splicing. Os AIP1 and AIP2 can form dimers and interact directly with the promoter region of CP1, a rice cysteine protease gene. Suppression of Os AIP1/2 leads to down-regulation of CP1, resulting in sterility, which is highly similar to the effects of suppressed expression of Os CP1. Our results uncover a previously unknown pathway for regulating PCD during tapetum degeneration in rice, one that may be conserved among eukaryotic organisms.
Collapse
|
28
|
Abstract
IMPORTANCE OF THE FIELD Since its discovery in 1997, the antiapoptotic factor AAC-11 has rapidly gained attention due to its potential use in cancer therapy. Indeed, most cancer cells express elevated levels of AAC-11, which is now known to be involved in both tumor cells growth as well as sensitivity to chemotherapeutic drugs. AREAS COVERED IN THIS REVIEW In this review, we examine the most recent evidence about the role of AAC-11 in cancer biology and the therapeutic perspectives associated with its specific targeting. For that purpose, literature dealing with AAC-11 in the PubMed database was reviewed from 1997 up to date. WHAT THE READER WILL GAIN AAC-11 is an antiapoptotic gene that has the potential to be a target for anti-cancer therapy, and warrants further investigation. As its expression seems to predict unfavorable prognosis, at least in some cancers, it also may become a potent prognostic marker. TAKE HOME MESSAGE Blocking AAC-11 function in cancer for therapeutic purposes might be of great interest. The recent report of efficient AAC-11 inhibiting peptides that sensitize tumor cells to chemotherapeutic drugs has raise the exciting notion that AAC-11 might be a druggable target and fueled the search for new therapeutic agents that could block AAC-11 function.
Collapse
Affiliation(s)
- Audrey Faye
- INSERM UMRS 940, Equipe Avenir, Université Paris 7, Institut de Génétique Moléculaire, 75010 Paris, France
| | | |
Collapse
|
29
|
The antiapoptotic protein AAC-11 interacts with and regulates Acinus-mediated DNA fragmentation. EMBO J 2009; 28:1576-88. [PMID: 19387494 DOI: 10.1038/emboj.2009.106] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/23/2009] [Indexed: 02/05/2023] Open
Abstract
The nuclear factor Acinus has been suggested to mediate apoptotic chromatin condensation after caspase cleavage. However, this role has been challenged by recent observations suggesting a contribution of Acinus in apoptotic internucleosomal DNA cleavage. We report here that AAC-11, a survival protein whose expression prevents apoptosis that occurs on deprivation of growth factors, physiologically binds to Acinus and prevents Acinus-mediated DNA fragmentation. AAC-11 was able to protect Acinus from caspase-3 cleavage in vivo and in vitro, thus interfering with its biological function. Interestingly, AAC-11 depletion markedly increased cellular sensitivity to anticancer drugs, whereas its expression interfered with drug-induced cell death. AAC-11 possesses a leucine-zipper domain that dictates, upon oligomerization, its interaction with Acinus as well as the antiapoptotic effect of AAC-11 on drug-induced cell death. A cell permeable peptide that mimics the leucine-zipper subdomain of AAC-11, thus preventing its oligomerization, inhibited the AAC-11-Acinus complex formation and potentiated drug-mediated apoptosis in cancer cells. Our results, therefore, show that targeting AAC-11 might be a potent strategy for cancer treatment by sensitization of tumour cells to chemotherapeutic drugs.
Collapse
|
30
|
Chlebova K, Bryja V, Dvorak P, Kozubik A, Wilcox WR, Krejci P. High molecular weight FGF2: the biology of a nuclear growth factor. Cell Mol Life Sci 2009; 66:225-35. [PMID: 18850066 PMCID: PMC3229932 DOI: 10.1007/s00018-008-8440-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is one of the most studied growth factors to date. Most attention has been dedicated to the smallest, 18 kDa FGF2 variant that is released by cells and acts through activation of cell-surface FGF-receptor tyrosine kinases. There are, however, several higher molecular weight (HMW) variants of FGF2 that rarely leave their producing cells, are retained in the nucleus and act independently of FGF-receptors (FGFR). Despite significant evidence documenting the expression and intracellular trafficking of HMW FGF2, many important questions remain about the physiological roles and mechanisms of action of HMW FGF2. In this review, we summarize the current knowledge about the biology of HMW FGF2, its role in disease and areas for future investigation.
Collapse
Affiliation(s)
- K. Chlebova
- Institute of Experimental Biology, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - V. Bryja
- Institute of Experimental Biology, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics ASCR, 61265 Brno, Czech Republic
| | - P. Dvorak
- Department of Biology, Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic
- Department of Molecular Embryology, Institute of Experimental Medicine ASCR, 625 00 Brno, Czech Republic
| | - A. Kozubik
- Institute of Experimental Biology, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics ASCR, 61265 Brno, Czech Republic
| | - W. R. Wilcox
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, CA 90095 USA
| | - P. Krejci
- Institute of Experimental Biology, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics ASCR, 61265 Brno, Czech Republic
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| |
Collapse
|
31
|
Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006; 2:e196. [PMID: 17112319 PMCID: PMC1636698 DOI: 10.1371/journal.pgen.0020196] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022] Open
Abstract
Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation. The retinoblastoma protein (pRB) was the first human tumor suppressor to be described, and it works by limiting the activity of the E2F transcription factor. The pRB pathway is inactivated in most forms of cancer, and, accordingly, most tumor cells have deregulated E2F. Uncontrolled E2F drives cell proliferation, but it also sensitizes cells to die (apoptosis). E2F-induced apoptosis is not well understood, but it affects the development of cancer and, potentially, could be exploited for cancer treatment. To date, however, there have been very few studies of E2F-induced apoptosis in animal models. The authors describe a series of genetic tools that allow systematic studies of E2F-induced apoptosis in Drosophila. As validation, this approach identified some known regulators of E2F-dependent apoptosis and also identified Api5, a little-studied gene that had not previously been linked to E2F, as a potent suppressor of E2F-induced cell death. The effects of Api5 on E2F occur in several different tissues and are conserved from flies to humans. This last point is significant since Api5 is upregulated in cancer cells. The discovery of the E2F–Api5 interaction demonstrates that important modulators of E2F-induced apoptosis are waiting to be discovered and that they can be found using Drosophila.
Collapse
Affiliation(s)
- Erick J Morris
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A Michaud
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Jun-Yuan Ji
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nam-Sung Moon
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - James W Rocco
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
|
33
|
Planque N. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers. Cell Commun Signal 2006; 4:7. [PMID: 17049074 PMCID: PMC1626074 DOI: 10.1186/1478-811x-4-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 10/18/2006] [Indexed: 12/14/2022] Open
Abstract
Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.
Collapse
Affiliation(s)
- Nathalie Planque
- Laboratoire d'Oncologie Virale et Moléculaire, Université Paris7-Denis Diderot, UFR de Biochimie, 2 place Jussieu, 75005 Paris, France.
| |
Collapse
|
34
|
Sørensen V, Nilsen T, Wiedłocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays 2006; 28:504-14. [PMID: 16615083 DOI: 10.1002/bies.20405] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation of the subcellular localization of certain proteins is a mechanism for the regulation of their biological activities. FGF-2 can be produced as distinct isoforms by alternative initiation of translation on a single mRNA and the isoforms are differently sorted in cells. High molecular weight FGF-2 isoforms are not secreted from the cell, but are transported to the nucleus where they regulate cell growth or behavior in an intracrine fashion. 18 kDa FGF-2 can be secreted to the extracellular medium where it acts as a conventional growth factor by binding to and activation of cell-surface receptors. Furthermore, following receptor-mediated endocytosis, the exogenous FGF-2 can be transported to the nuclei of target cells, and this is of importance for the transmittance of a mitogenic signal. The growth factor is able to interact with several intracellular proteins. Here, the mode of action and biological role of intracellular FGF-2 are discussed.
Collapse
Affiliation(s)
- Vigdis Sørensen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Norway
| | | | | |
Collapse
|
35
|
Popovici C, Berda Y, Conchonaud F, Harbis A, Birnbaum D, Roubin R. Direct and heterologous approaches to identify the LET-756/FGF interactome. BMC Genomics 2006; 7:105. [PMID: 16672054 PMCID: PMC1513213 DOI: 10.1186/1471-2164-7-105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 05/03/2006] [Indexed: 11/16/2022] Open
Abstract
Background Fibroblast growth factors (FGFs) are multifunctional proteins that play important roles in cell communication, proliferation and differentiation. However, many aspects of their activities are not well defined. LET-756, one of the two C. elegans FGFs, is expressed throughout development and is essential for worm development. It is both expressed in the nucleus and secreted. Results To identify nuclear factors associated with LET-756, we used three approaches. First, we screened a two-hybrid cDNA library derived from mixed stages worms and from a normalized library, using LET-756 as bait. This direct approach allowed the identification of several binding partners that play various roles in the nucleus/nucleolus, such as PAL-1, a transcription regulator, or RPS-16, a component of the small ribosomal subunit. The interactions were validated by co-immunoprecipitation and determination of their site of occurrence in mammalian cells. Second, because patterns of protein interactions may be conserved throughout species, we searched for orthologs of known mammalian interactors and measured binary interaction with these predicted candidates. We found KIN-3 and KIN-10, the orthologs of CK2α and CK2β, as new partners of LET-756. Third, following the assumption that recognition motifs mediating protein interaction may be conserved between species, we screened a two-hybrid cDNA human library using LET-756 as bait. Among the few FGF partners detected was 14-3-3β. In support of this interaction we showed that the two 14-3-3β orthologous proteins, FTT-1 and FTT-2/PAR-5, interacted with LET-756. Conclusion We have conducted the first extensive search for LET-756 interactors using a multi-directional approach and established the first interaction map of LET-756/FGF with other FGF binding proteins from other species. The interactors identified play various roles in developmental process or basic biochemical events such as ribosome biogenesis.
Collapse
Affiliation(s)
- Cornel Popovici
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Yael Berda
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Fabien Conchonaud
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Aurélie Harbis
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Daniel Birnbaum
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| | - Régine Roubin
- Institut de Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, Institut Paoli-Calmettes et UMR599 INSERM, 27 Bd. Leï Roure, 13009 Marseille, France
| |
Collapse
|
36
|
Dvorak P, Dvorakova D, Hampl A. Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 2006; 580:2869-74. [PMID: 16516203 DOI: 10.1016/j.febslet.2006.01.095] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 01/02/2023]
Abstract
Cancer stem cells are cancer cells that originate from the transformation of normal stem cells. The most important property of any stem cell is the ability to self-renew. Through this property, there are striking parallels between normal stem cells and cancer stem cells. Both cell types share various markers of "stemness". In particular, normal stem cells and cancer stem cells utilize similar molecular mechanisms to drive self-renewal, and similar signaling pathways may induce their differentiation. The fibroblast growth factor 2 (FGF-2) pathway is one of the most significant regulators of human embryonic stem cell (hESC) self-renewal and cancer cell tumorigenesis. Here we summarize recent data on the effects of FGF-2 and its receptors on hESCs and leukemic stem/progenitor cells. Also, we discuss the similarities of these findings with stem cell renewal and differentiation phenotypes.
Collapse
Affiliation(s)
- Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | |
Collapse
|
37
|
Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F, Conte C, Morin A, Cabon F, Prats H, Vagner S, Bayard F, Audigier S, Prats AC. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. FASEB J 2006; 20:476-8. [PMID: 16423876 DOI: 10.1096/fj.04-3314fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spermatogenesis is a complex process involving cell proliferation, differentiation, and apoptosis. Fibroblast growth factor 2 (FGF-2) is involved in testicular function, but its role in spermatogenesis has not been fully documented. The control of FGF-2 expression particularly occurs at the translational level, by an internal ribosome entry site (IRES)-dependent mechanism driving the use of alternative initiation codons. To study IRES activity regulation in vivo, we have developed transgenic mice expressing a bicistronic construct coding for two luciferase genes. Here, we show that the FGF-2 IRES is age-dependently activated in mouse testis, whereas EMCV and c-myc IRESs are not. Real-time PCR confirms that this regulation is translational. By using immunohistological techniques, we demonstrate that FGF-2 IRES stimulation occurs in adult, but not in immature, type-A spermatogonias. This is correlated with activation of endogenous FGF-2 expression in spermatogonia; whereas FGF-2 mRNA transcription is known to decrease in adult testis. Interestingly, the FGF-2 IRES activation is triggered by testosterone and is partially inhibited by siRNA directed against the androgen receptor. Two-dimensional analysis of proteins bound to the FGF-2 mRNA 5'UTR after UV cross-linking reveals that testosterone treatment correlates with the binding of several proteins. These data suggest a paracrine loop where IRES-dependent FGF-2 expression, stimulated by Sertoli cells in response to testosterone produced by Leydig cells, would in turn activate Leydig function and testosterone production. In addition, nuclear FGF-2 isoforms could be involved in an intracrine function of FGF-2 in the start of spermatogenesis, mitosis, or meiosis initiation. This report demonstrates that mRNA translation regulation by an IRES-dependent mechanism participates in a physiological process.
Collapse
MESH Headings
- 5' Untranslated Regions
- Age Factors
- Androgen Receptor Antagonists
- Animals
- Codon
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Genes, Reporter
- Genes, Synthetic
- Leydig Cells/physiology
- Luciferases, Renilla/genetics
- Male
- Meiosis
- Mice
- Mice, Transgenic
- Mitosis
- Paracrine Communication
- Peptide Chain Initiation, Translational/physiology
- Protein Biosynthesis
- Protein Isoforms/physiology
- RNA, Messenger/genetics
- RNA, Messenger/radiation effects
- RNA, Small Interfering/pharmacology
- Receptors, Androgen/genetics
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Ribosomes/metabolism
- Sertoli Cells/physiology
- Spermatogenesis/physiology
- Testis/growth & development
- Testis/metabolism
- Testis/physiology
- Testosterone/metabolism
- Testosterone/pharmacology
- Testosterone/physiology
- Ultraviolet Rays
Collapse
|
38
|
Villeneuve DJ, Hembruff SL, Veitch Z, Cecchetto M, Dew WA, Parissenti AM. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat 2005; 96:17-39. [PMID: 16322897 DOI: 10.1007/s10549-005-9026-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/06/2005] [Indexed: 12/13/2022]
Abstract
cDNA microarray analysis is a highly useful tool for the classification of tumors and for prediction of patient prognosis to specific cancers based on this classification. However, to date, there is little evidence that microarray approaches can be used to reliably predict patient response to specific chemotherapy drugs or regimens. This is likely due to an inability to differentiate between genes affecting patient prognosis and genes that play a role in response to specific drugs. Thus, it would be highly useful to identify genes whose expression correlates with tumor cell sensitivity to specific chemotherapy agents in a drug-specific manner. Using cDNA microarray analysis of wildtype MCF-7 breast tumor cells and isogenic paclitaxel-resistant (MCF-7(TAX)) or doxorubicin-resistant (MCF-7(DOX)) derivative cell lines, we have uncovered drug-specific changes in gene expression that accompany the establishment of paclitaxel or doxorubicin resistance. These changes in gene expression were confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting experiments, with a confirmation rate of approximately 91-95%. The genes identified may prove highly useful for prediction of response to paclitaxel or doxorubicin in patients with breast cancer. To our knowledge this is the first report of drug-specific genetic signatures of resistance to paclitaxel or doxorubicin, based on a comparison of gene expression between isogenic wildtype and drug-resistant tumor cell lines. Moreover, this study provides significant insight into the wide variety of mechanisms through which resistance to these agents may be acquired in breast cancer.
Collapse
Affiliation(s)
- David J Villeneuve
- Tumor Biology Research Program, Sudbury Regional Hospital, Sudbury, Ont., Canada
| | | | | | | | | | | |
Collapse
|
39
|
Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hampl A. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 2005; 23:1200-11. [PMID: 15955829 DOI: 10.1634/stemcells.2004-0303] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the detection of several components of the fibroblast growth factor (FGF) signaling pathway in human embryonic stem cells (hESCs) has been reported, the functionality of that pathway and effects on cell fate decisions are yet to be established. In this study we characterized expression of FGF-2, the prototypic member of the FGF family, and its receptors (FGFRs) in undifferentiated and differentiating hESCs; subsequently, we analyzed the effects of FGF-2 on hESCs, acting as both exogenous and endogenous factors. We have determined that undifferentiated hESCs are abundant in several molecular-mass isoforms of FGF-2 and that expression pattern of these isoforms remains unchanged under conditions that induce hESC differentiation. Significantly, FGF-2 is released by hESCs into the medium, suggesting an autocrine activity. Expression of FGFRs in undifferentiated hESCs follows a specific pattern, with FGFR1 being the most abundant species and other receptors showing lower expression in the following order: FGFR1 --> FGFR3 --> FGFR4 --> FGFR2. Initiation of differentiation is accompanied by profound changes in FGFR expression, particularly the upregulation of FGFR1. When hESCs are exposed to exogenous FGF-2, extracellular signal-regulated kinases are phosphorylated and thereby activated. However, the presence or absence of exogenous FGF-2 does not significantly affect the proliferation of hESCs. Instead, increased concentration of exogenous FGF-2 leads to reduced outgrowth of hESC colonies with time in culture. Finally, the inhibitor of FGFRs, SU5402, was used to ascertain whether FGF-2 that is released by hESCs exerts its activities via autocrine pathways. Strikingly, the resultant inhibition of FGFR suppresses activation of downstream protein kinases and causes rapid cell differentiation, suggesting an involvement of autocrine FGF signals in the maintenance of proliferating hESCs in the undifferentiated state. In conclusion from our data, we propose that this endogenous FGF signaling pathway can be implicated in self-renewal or differentiation of hESCs.
Collapse
Affiliation(s)
- Petr Dvorak
- Laboratory of Molecular Embryology, Mendel University, Brno Zemedelska 1, 613 00 Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
40
|
Bossard C, Van den Berghe L, Laurell H, Castano C, Cerutti M, Prats AC, Prats H. Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res 2004; 64:7507-12. [PMID: 15492277 DOI: 10.1158/0008-5472.can-04-0287] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By using the two-hybrid system with basic fibroblast growth factor (FGF-2) as bait, we isolated and characterized fibstatin, an endogenous M(r) 29,000 human basement membrane-derived inhibitor of angiogenesis and tumor growth. Fibstatin, a fragment containing the type III domains 12-14 of fibronectin, was produced as a recombinant protein and was shown to inhibit the proliferation, migration, and differentiation of endothelial cells in vitro. Antiangiogenic activity of fibstatin was confirmed in a Matrigel angiogenesis assay in vivo, and electrotransfer of the fibstatin gene into muscle tissue resulted in reduced B16F10 tumor growth. Taken together, these results suggest that fibstatin could act as a powerful molecule for antiangiogenic therapy.
Collapse
Affiliation(s)
- Carine Bossard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U589, C.H.U. Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Garmy-Susini B, Delmas E, Gourdy P, Zhou M, Bossard C, Bugler B, Bayard F, Krust A, Prats AC, Doetschman T, Prats H, Arnal JF. Role of Fibroblast Growth Factor-2 Isoforms in the Effect of Estradiol on Endothelial Cell Migration and Proliferation. Circ Res 2004; 94:1301-9. [PMID: 15073041 DOI: 10.1161/01.res.0000127719.13255.81] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both 17beta-estradiol (E2) and fibroblast growth factor-2 (FGF2) stimulate angiogenesis and endothelial cell migration and proliferation. The first goal of this study was to explore the potential link between this hormone and this growth factor. E2-stimulated angiogenesis in SC Matrigel plugs in Fgf2+/+ mice, but not in Fgf2-/- mice. Cell cultures from subcutaneous Matrigel plugs demonstrated that E2 increased both migration and proliferation in endothelial cells from Fgf2+/+ mice, but not from in Fgf2-/- mice. Several isoforms of fibroblast growth factor-2 (FGF2) are expressed: the low molecular weight 18-kDa protein (FGF2lmw) is secreted and activates tyrosine kinase receptors (FGFRs), whereas the high molecular weight (21 and 22 kDa) isoforms (FGF2hmw) remains intranuclear, but their role is mainly unknown. The second goal of this study was to explore the respective roles of FGF2 isoforms in the effects of E2. We thus generated mice deficient only in the FGF2lmw (Fgf2lmw-/-). E2 stimulated in vivo angiogenesis and in vitro migration in endothelial cells from Fgf2lmw-/- as it did in Fgf2+/+ mice. E2 increased FGF2hmw protein abundance in endothelial cell cultures from Fgf2+/+ and Fgf2lmw-/- mice. As shown using siRNA transfection, these effects were FGFR independent but involved FGF2-Interacting Factor, an intracellular FGF2hmw partner. This is the first report for a physiological role for the intracellular FGF2hmw found to mediate the effect of E2 on endothelial cell migration via an intracrine action.
Collapse
Affiliation(s)
- B Garmy-Susini
- INSERM U589, Institut L. Bugnard, CHU Rangueil, 31403 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Thomas-Mudge RJ, Okada-Ban M, Vandenbroucke F, Vincent-Salomon A, Girault JM, Thiery JP, Jouanneau J. Nuclear FGF-2 facilitates cell survival in vitro and during establishment of metastases. Oncogene 2004; 23:4771-9. [PMID: 15122340 DOI: 10.1038/sj.onc.1207638] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nuclear-targeted high molecular weight 24 kDa fibroblast growth factor 2 (FGF-2) may induce specific cell functions through intracrine mechanisms. The role of nuclear FGF-2 on the metastatic potential of carcinoma cells was examined by conditional FGF-2 expression, which demonstrated that spontaneous metastasis in nude mice is a direct consequence of its expression. The lung colonizing capacities of fluorescent nuclear FGF-2-expressing cells following intravenous injection was also investigated. All cells reaching the lung extravasated as soon as 5 min following injection with similar in vivo behavior during the first 24 h. However, after 2 days, dramatic differences were observed between the FGF-2 and parental cells: most control cells underwent apoptosis, while the FGF-2-producing cells instigated a survival program and proliferated. Therefore, sustained apoptosis in vivo prevents growth of metastatic foci, while nuclear FGF-2 induction of a survival program is responsible for growth of the lung metastases. In vitro serum deprivation assays also established that 24 kDa FGF-2 expression improves carcinoma cell survival. This study provides both in vitro and in vivo evidence that the role of the nuclear 24 kDa FGF-2 isoform in carcinoma is the promotion of cell survival, thereby defining its association with poor prognosis in some human carcinomas.
Collapse
Affiliation(s)
- Rachel J Thomas-Mudge
- UMR144 CNRS, Institut Curie, Research Division, 26 rue d'Ulm, 75248 Paris 05, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Małecki J, Wesche J, Skjerpen CS, Wiedłocha A, Olsnes S. Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism. Mol Biol Cell 2003; 15:801-14. [PMID: 14657241 PMCID: PMC329394 DOI: 10.1091/mbc.e03-08-0589] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The entry of exogenous fibroblast growth factor 2 (FGF-2) to the cytosolic/nuclear compartment was studied and compared with the translocation mechanism used by FGF-1. To differentiate between external and endogenous growth factor, we used FGF-2 modified to contain a farnesylation signal, a CaaX-box. Because farnesylation occurs only in the cytosol and nucleoplasm, farnesylation of exogenous FGF-2-CaaX was taken as evidence that the growth factor had translocated across cellular membranes. We found that FGF-2 translocation occurred in endothelial cells and fibroblasts, which express FGF receptors, and that the efficiency of translocation was increased in the presence of heparin. Concomitantly with translocation, the 18-kDa FGF-2 was N-terminally cleaved to yield a 16-kDa form. Translocation of FGF-2 required PI3-kinase activity but not transport through the Golgi apparatus. Inhibition of endosomal acidification did not prevent translocation, whereas dissipation of the vesicular membrane potential completely blocked it. The data indicate that translocation occurs from intracellular vesicles containing proton pumps and that an electrical potential across the vesicle membrane is required. Translocation of both FGF-1 and FGF-2 occurred during most of G(1) but decreased shortly before the G(1)-->S transition. A common mechanism for FGF-1 and FGF-2 translocation into cells is postulated.
Collapse
Affiliation(s)
- Jedrzej Małecki
- The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
44
|
Hu B, Wang S, Zhang Y, Feghali CA, Dingman JR, Wright TM. A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci U S A 2003; 100:10008-13. [PMID: 12913118 PMCID: PMC187743 DOI: 10.1073/pnas.1737765100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is growing evidence for the intracellular role of cytokines and growth factors, but the pathways by which these activities occur remain largely obscure. Previous work from our laboratory identified the constitutive, aberrant expression of the 31-kDa IL-1 alpha precursor (pre-IL-1 alpha) in the nuclei of fibroblasts from the lesional skin of patients with systemic sclerosis (SSc). We established that pre-IL-1 alpha expression was associated with increased fibroblast proliferation and collagen production. Further investigation has led to the identification of a mechanism by which nuclear expression of pre-IL-1 alpha affects fibroblast growth and matrix production. By using a yeast two-hybrid method, we found that pre-IL-1 alpha binds necdin, a nuclear protein with growth suppressor activity. We mapped the region of pre-IL-1 alpha responsible for necdin binding and found it to be localized near the N terminus, a region that is present on pre-IL-1 alpha, but not the mature 17-kDa cytokine. Expression studies demonstrated that pre-IL-1 alpha associates with necdin in the nuclei of mammalian cell lines and regulates cell growth and collagen expression. Our results provide the first evidence, to our knowledge, of a nuclear target for pre-IL-1 alpha. Based on these findings, we propose that the constitutively up-regulated expression of pre-IL-1 alpha in the nuclei of SSc fibroblasts up-regulates proliferation and matrix production of SSc fibroblasts through binding necdin, and by counteracting its effects on cell growth and collagen production.
Collapse
Affiliation(s)
- Bo Hu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Biomedical Science Tower South Wing, 7th Floor, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bossard C, Laurell H, Van den Berghe L, Meunier S, Zanibellato C, Prats H. Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 2003; 5:433-9. [PMID: 12717444 DOI: 10.1038/ncb979] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 12/26/2002] [Accepted: 02/10/2003] [Indexed: 11/09/2022]
Abstract
Basic fibroblast growth factor (bFGF or FGF-2) exerts its pleiotropic activities both as an exogenous and an intracellular factor. FGF-1 and FGF-2 are prototypes for this dual signalling, but the mechanisms of their intracellular actions remain unknown. Here we show that Translokin, a cytoplasmic protein of relative molecular mass 55,000 (M(r) 55K), interacts specifically with the 18K form of FGF-2. Translokin is ubiquitously expressed and colocalizes with the microtubular network. As Translokin does not interact with FGF-1, we used a strategy based on FGF-1-FGF-2 chimaeras to map the interacting regions in FGF-2 and to generate Nb1a2, a non-interacting variant of FGF-2. Although most of the FGF-2 properties are preserved in Nb1a2, this variant is defective in intracellular translocation and in stimulating proliferation. The fusion of a nuclear localization signal to Nb1a2 restores its mitogenic activity and its nuclear association. Inhibiting Translokin expression by RNA interference reduces the translocation of FGF-2 without affecting the intracellular trafficking of FGF-1. Our data show that the nuclear association of internalized FGF-2 is essential for its mitogenic activity and that Translokin is important in this translocation pathway.
Collapse
Affiliation(s)
- Carine Bossard
- INSERM U589, IFR 31, Institut Louis Bugnard, CHU Rangueil, Bat L3, 31403 Toulouse, Cedex 04, France
| | | | | | | | | | | |
Collapse
|
46
|
Krejci P, Faitova J, Laurell H, Hampl A, Dvorak P. FGF-2 expression and its action in human leukemia and lymphoma cell lines. Leukemia 2003; 17:818-20. [PMID: 12682649 DOI: 10.1038/sj.leu.2402861] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res 2003; 71:629-47. [PMID: 12584722 DOI: 10.1002/jnr.10498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid. As shown by immunohistochemistry, FGF-2 that was bound to latex microspheres depleted the FGF surface receptor protein, which localized with the microspheres in the cytoplasm and nucleus. For microsphere-bound FGF-2, the surface receptor-mediated responses to FGF-2 appear to be limited and the door opened to another venue of intracellular events or an intracrine mechanism.
Collapse
Affiliation(s)
- Masako M Bilak
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
48
|
Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C. Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 2003; 278:479-85. [PMID: 12397076 DOI: 10.1074/jbc.m206056200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is an important modulator of cell growth and differentiation and a neurotrophic factor. FGF-2 occurs in isoforms, at a low molecular weight of 18,000 and at least two high molecular weight forms (21,000 and 23,000), representing alternative translation products from a single mRNA. In addition to its role as an extracellular ligand, FGF-2 localizes to the nuclei of cells. Here we show differential localization of the 18- and 23-kDa isoforms in the nuclei of rat Schwann cells. Whereas the 18-kDa isoform was found in the nucleoli, nucleoplasm, and Cajal bodies, the 23-kDa isoform localized in a punctuate pattern and associates with mitotic chromosomes suggesting different functional roles of the isoforms. Moreover, we show here that the 23-kDa FGF-2 isoform co-immunoprecipitates specifically with the survival of motor neuron protein (SMN). SMN is an assembly and recycling factor of the splicing machinery and locates to the cytoplasm, the nucleoplasm, and nuclear gems, where it co-localizes with 23-kDa FGF-2. Patients with spinal muscular atrophy suffer from fatal degeneration of motoneurons because of mutations and deletions of the gene for the SMN protein.
Collapse
Affiliation(s)
- Peter Claus
- Department of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ader I, Muller C, Bonnet J, Favre G, Cohen-Jonathan E, Salles B, Toulas C. The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit. Oncogene 2002; 21:6471-9. [PMID: 12226750 DOI: 10.1038/sj.onc.1205838] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 06/05/2002] [Accepted: 06/28/2002] [Indexed: 11/09/2022]
Abstract
We previously reported that overexpression of the 24 kDa basic fibroblast factor (or FGF-2) isoform provides protection from the cytotoxic effect of ionizing radiation (IR). DNA double-strand breaks (DSB), the IR-induced lethal lesions, are mainly repaired in human cells by non-homologous end joining system (NHEJ). NHEJ reaction is dependent on the DNA-PK holoenzyme (composed of a regulatory sub-unit, Ku, and a catalytic sub-unit, DNA-PKcs) that assembles at sites of DNA damage. We demonstrated here that the activity of DNA-PK was increased by twofold in two independent radioresistant cell lines, HeLa 3A and CAPAN A3, over expressing the 24 kDa FGF-2. This increase was associated with an overexpression of the DNA-PKcs without modification of Ku expression or activity. This overexpression was due to an up-regulation of the DNA-PKcs gene transcription by the 24 kDa FGF-2 isoform. Finally, HeLa 3A cells exhibited the hallmarks of phenotypic changes associated with the overexpression of an active DNA-PKcs. Indeed, a faster repair rate of DSB and sensitization to IR by wortmannin was observed in these cells. Our results represent the characterization of a new mechanism of control of DNA repair and radioresistance in human tumor cells dependent on the overproduction of the 24 kDa FGF-2 isoform.
Collapse
Affiliation(s)
- Isabelle Ader
- Oncologie Cellulaire et Moléculaire, INSERM U563, Département d'Innovation thérapeutique et Oncologie Moléculaire, Centre de Lutte Contre le Cancer Claudius Regaud, 20-24 rue du Pont St Pierre, 31052 Toulouse Cedex France
| | | | | | | | | | | | | |
Collapse
|
50
|
Skjerpen CS, Wesche J, Olsnes S. Identification of ribosome-binding protein p34 as an intracellular protein that binds acidic fibroblast growth factor. J Biol Chem 2002; 277:23864-71. [PMID: 11964394 DOI: 10.1074/jbc.m112193200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the aim of identifying new intracellular binding partners for acidic fibroblast growth factor (aFGF), proteins from U2OS human osteosarcoma cells were adsorbed to immobilized aFGF. One of the adsorbed proteins is a member of the leucine-rich repeat protein family termed ribosome-binding protein p34 (p34). This protein has previously been localized to endoplasmic reticulum membranes and is thought to span the membrane with the N terminus on the cytosolic side. Confocal microscopy of cells transfected with Myc-p34 confirmed the endoplasmic reticulum localization, and Northern blotting determined p34 mRNA to be present in a multitude of different tissues. Cross-linking experiments indicated that the protein is present in the cell as a dimer. In vitro translated p34 was found to interact with maltose-binding protein-aFGF through its cytosolic coiled-coil domain. The interaction between aFGF and p34 was further characterized by surface plasmon resonance, giving a K(D) of 1.4 +/- 0.3 microm. Even though p34 interacted with mitogenic aFGF, it bound poorly to the non-mitogenic aFGF(K132E) mutant, indicating a possible involvement of p34 in intracellular signaling by aFGF.
Collapse
Affiliation(s)
- Camilla Skiple Skjerpen
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | |
Collapse
|