1
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
2
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
3
|
Alipour M, Fadakar S, Aghazadeh M, Salehi R, Samadi Kafil H, Roshangar L, Mousavi E, Aghazadeh Z. Synthesis, characterization, and evaluation of curcumin-loaded endodontic reparative material. J Biochem Mol Toxicol 2021; 35:e22854. [PMID: 34331815 DOI: 10.1002/jbt.22854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Curcumin (CUR) is an ancient therapeutic agent with remarkable antimicrobial and anti-inflammatory properties. The purpose of the current study was to synthesize and evaluate a curcumin-based reparative endodontic material to reduce infection and inflammation besides the induction of mineralization during the healing of the dentin-pulp complex. Poly-ɛ-caprolactone (PCL)/gelatin (Gel)/CUR scaffold was synthesized and assessed by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis (TGA). Agar diffusion test was performed against E. coli, A. baumannii, P. aeruginosa, S. aureus, E. faecalis, and S. mutans. Moreover, proliferative, antioxidative, anti-inflammatory, and calcification properties of these scaffolds on human dental pulp stem cells (hDPSCs) were evaluated. The results showed that PCL/Gel/CUR scaffold had antibacterial effects. Also, these CUR-based scaffolds had significant inhibitory effects on the expression of tumor necrosis factor α and DCF from inflamed hDPSCs (p < 0.05). Moreover, the induction of mineralization in hDPSCs significantly increased after seeding on CUR-based scaffolds (p < 0.05). Based on these findings, the investigated CUR-loaded material was fabricated successfully and provided an appropriate structure for the attachment and proliferation of hDPSCs. It was found that these scaffolds had antimicrobial, antioxidant, and anti-inflammatory characteristics and could induce mineralization in hDPSCs, which is essential for healing and repairing the injured dentin-pulp complex.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Fadakar
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensieh Mousavi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
|
5
|
Sadegh Malvajerd S, Izadi Z, Azadi A, Kurd M, Derakhshankhah H, Sharifzadeh M, Akbari Javar H, Hamidi M. Neuroprotective Potential of Curcumin-Loaded Nanostructured Lipid Carrier in an Animal Model of Alzheimer's Disease: Behavioral and Biochemical Evidence. J Alzheimers Dis 2020; 69:671-686. [PMID: 31156160 DOI: 10.3233/jad-190083] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and is caused by accumulation of amyloid-β (Aβ) peptide and is associated with neurological abnormalities in learning and memory. The protective role of curcumin on nerve cells, along with a potent antioxidant and free radical scavenging activity, has been widely studied. However, its low bioavailability and limited transport ability across the blood-brain barrier are two major drawbacks of its application in the treatment of different neurodegenerative diseases. The present study was designed to improve the effectiveness of curcumin in the treatment of Aβ-induced cognitive deficiencies in a rat model of AD by loading it into nanostructured lipid carriers (NLCs). The accumulation rate of curcumin (505.76±38.4 ng/g-1 h) in rat brain, as well as its serum levels, were significantly increased by using curcumin-loaded NLCs. The effective role of NLCs for brain delivery of curcumin was confirmed by reduced oxidative stress parameters (ROS formation, lipid peroxidation, and ADP/ATP ratio) in the hippocampal tissue and improvement of spatial memory. Also, histopathological studies revealed the potential of Cur-NLCs in decreasing the hallmarks of Aβ in AD in the animal model. The result of studying the neuroprotective potential of Cur-NLC in both pre-treatment and treatment modes showed that loading curcumin in NLCs is an effective strategy for increasing curcumin delivery to the brain and reducing Aβ-induced neurological abnormalities and memory defects and that it can be the basis for further studies in the area of AD prevention and treatment.
Collapse
Affiliation(s)
- Soroor Sadegh Malvajerd
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Kurd
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Tehran Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Spasov AA, Kucheryavenko AF, Gaidukova KA, Kosolapov VA, Zhukovskaya ON. Antiplatelet activity of new derivatives of benzimidazole containing sterically hindered phenolic group in their structure. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.50373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: Cardiovascular diseases are currently the leading cause of global disability and mortality. According to the centers for disease control and prevention, the average life expectancy of a person would be 10 years longer but for a high prevalence of cardiovascular diseases, and if antiplatelet drugs and special therapy were used.
Materials and methods: Antiplatelet activity of the novel benzimidazole derivatives containing a sterically hindered phenolic group in their structure has been investigated in vitro, using a model of ADP-induced platelet aggregation of rabbit’s plasma. The compounds exhibiting high antiplatelet activity and acetylsalicylic acid, as a reference drug, were examined for antioxidant properties in an ascorbate-dependent model of lipid peroxidation.
Results: It was established that the compounds with high antiplatelet activity demonstrated the pronounced antioxidant action. The compound RU-1144 (1-(3,5-ditretbutyl-4-hydroxyphenyl) -1-hydroxypropyl)-phenyl-pyrimidobenzimidazole hydrochloride), in in vitro experiments, had a pronounced antiplatelet activity, surpassing the reference drug acetylsalicylic acid by 21.8 times; in the study of antioxidant activity, the leader compound was inferior to the reference drug dibunol by 1.7 times. By inhibiting intravascular platelet aggregation in vivo, this compound exceeded acetylsalicylic acid by 1.5 times and was slightly inferior to clopidogrel by 1.4 times.
Discussion: Benzimidazole derivatives with a hindered phenolic substituent in their structure exhibited antiplatelet and antioxidant properties. It was established that the compounds with high antiplatelet activity demonstrated the pronounced antioxidant action.
Conclusion: The chemical class of benzimidazole derivatives with a hindered phenolic substituent in their structure is promising for the search for new antiaggregant and antioxidant drugs.
Collapse
|
7
|
Alvarez‐Ricardo YF, Sánchez‐López DM, Meza‐Morales WE, Obregón‐Mendoza MA, Arias‐Olguín II, Nieto‐Camacho A, Toscano RA, Enríquez RG. Stereochemistry and Antioxidant Activity of 1,3‐Diol Derivatives of Diacetylcurcumin‐4H: A Joint NMR, X‐Ray, and Biological Approach. ChemistrySelect 2020. [DOI: 10.1002/slct.201903089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yair F. Alvarez‐Ricardo
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - Dylan M. Sánchez‐López
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - William E. Meza‐Morales
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - Marco A. Obregón‐Mendoza
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - Imilla I. Arias‐Olguín
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - Antonio Nieto‐Camacho
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - Rubén A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria Mexico City C.P. 07340 Mexico
| |
Collapse
|
8
|
Hooshmand SE, Ghadari R, Mohammadian R, Shaabani A, Khavasi HR. Rhodanine‐Furan Bis‐Heterocyclic Frameworks Synthesis via Green One‐Pot Sequential Six‐Component Reactions: A Synthetic and Computational Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201903361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seyyed Emad Hooshmand
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Rahim Ghadari
- Department of Organic and BiochemistryFaculty of ChemistryUniversity of Tabriz, Tabriz Iran
| | - Reza Mohammadian
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Ahmad Shaabani
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Hamid Reza Khavasi
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| |
Collapse
|
9
|
Synthesis, characterization, electrochemical behavior and antioxidant activity of new copper(II) coordination compounds with curcumin derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Wolosewicz K, Podgorska K, Rutkowska E, Lazny R. Synthesis of Dicarbonyl Curcumin Analogues Containing the Tropane Scaffold. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karol Wolosewicz
- Institute of Chemistry; University of Bialystok; Ciołkowskiego 1K 15-245 Bialystok Poland
| | - Katarzyna Podgorska
- Institute of Chemistry; University of Bialystok; Ciołkowskiego 1K 15-245 Bialystok Poland
| | - Ewelina Rutkowska
- Institute of Chemistry; University of Bialystok; Ciołkowskiego 1K 15-245 Bialystok Poland
| | - Ryszard Lazny
- Institute of Chemistry; University of Bialystok; Ciołkowskiego 1K 15-245 Bialystok Poland
| |
Collapse
|
11
|
The 3 Curcuminoid Analogs Comprising the Curcumin Extract Comparably Inhibit Nuclear Factor kappa-light-chain-enhancer Activation. PROGRESS IN PREVENTIVE MEDICINE 2019. [DOI: 10.1097/pp9.0000000000000023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Francis AP, Devasena T, Ganapathy S, Palla VR, Murthy PB, Ramaprabhu S. Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1809-1822. [DOI: 10.1016/j.nano.2018.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
13
|
Nieto CI, Cornago MP, Cabildo MP, Sanz D, Claramunt RM, Torralba MC, Torres MR, Martínez Casanova D, Sánchez-Alegre YR, Escudero E, Lavandera JL. Evaluation of the Antioxidant and Neuroprotectant Activities of New Asymmetrical 1,3-Diketones. Molecules 2018; 23:E1837. [PMID: 30042315 PMCID: PMC6222706 DOI: 10.3390/molecules23081837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
A series of fourteen new asymmetrical 1,3-diketone derivatives have been synthesized and evaluated in the ABTS, FRAP and DPPH assays as a new chemotype with antioxidant and drug-like properties. All the compounds displayed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y cell line. Among them, (3Z,5E)-6-(2,5-difluoro-4-hydroxy-phenyl)-1,1,1-trifluoro-4-hydroxyhexa-3,5-dien-2-one (6b) and (3Z,5E)-6-(2,3-difluoro-4-hydroxy-phenyl)-1,1,1-trifluoro-4-hydroxyhexa-3,5-dien-2-one (7b) with excellent solubility and chemical stability in biorelevant media, have also shown a similar Fe+2 chelation behavior to that of curcumin. Additionally, both derivatives 6b and 7b have afforded good neuroprotection activity against H₂O₂ induced oxidative stress in the same neuronal cell line, with a significant reduction of intracellular ROS levels, in parallel with a good recovery of the Mitochondrial Membrane Potential (ΔΨm). Compounds 6b and 7b with a promising antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitute a new interesting chemical class with high potential as new therapeutic agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla I Nieto
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a distancia (UNED), Paseo Senda del Rey 9, E-28040 Madrid, Spain.
| | - María Pilar Cornago
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a distancia (UNED), Paseo Senda del Rey 9, E-28040 Madrid, Spain.
| | - María Pilar Cabildo
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a distancia (UNED), Paseo Senda del Rey 9, E-28040 Madrid, Spain.
| | - Dionisia Sanz
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a distancia (UNED), Paseo Senda del Rey 9, E-28040 Madrid, Spain.
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a distancia (UNED), Paseo Senda del Rey 9, E-28040 Madrid, Spain.
| | - María Carmen Torralba
- Departamento de Química Inorgánica I and CAI de Difracción de Rayos-X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain.
| | - María Rosario Torres
- Departamento de Química Inorgánica I and CAI de Difracción de Rayos-X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), E-28040 Madrid, Spain.
| | - Diana Martínez Casanova
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad CEU San Pablo, Campus de Montepríncipe, Boadilla, E-28668 Madrid, Spain.
| | - Yaiza Rebeca Sánchez-Alegre
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad CEU San Pablo, Campus de Montepríncipe, Boadilla, E-28668 Madrid, Spain.
| | - Esther Escudero
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad CEU San Pablo, Campus de Montepríncipe, Boadilla, E-28668 Madrid, Spain.
| | - José Luis Lavandera
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad CEU San Pablo, Campus de Montepríncipe, Boadilla, E-28668 Madrid, Spain.
| |
Collapse
|
14
|
Zokhtareh R, Rahimnejad M. A Novel Sensitive Electrochemical Sensor Based on Nickel Chloride Solution Modified Glassy Carbon Electrode for Curcumin Determination. ELECTROANAL 2018. [DOI: 10.1002/elan.201700770] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rosan Zokhtareh
- Biofuel & Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering; Babol Noshirvani University of Technology; Babol, Mazandaran Iran
| | - Mostafa Rahimnejad
- Biofuel & Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering; Babol Noshirvani University of Technology; Babol, Mazandaran Iran
| |
Collapse
|
15
|
Chaniad P, Morales NP, Rojsitthisak P, Luechapudiporn R. Effects of turmeric extract on hemin-induced low-density lipoprotein oxidation. J Food Biochem 2018. [DOI: 10.1111/jfbc.12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Prapaporn Chaniad
- Interdisciplinary Program in Pharmacology, Graduate School; Chulalongkorn University; Bangkok Thailand
- School of Medicine; Walailak University; Nakhon Si Thammarat Thailand
| | | | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit; Chulalongkorn University; Bangkok Thailand
| | - Rataya Luechapudiporn
- Natural Products for Ageing and Chronic Diseases Research Unit; Chulalongkorn University; Bangkok Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
16
|
Cavaleri F. Presenting a New Standard Drug Model for Turmeric and Its Prized Extract, Curcumin. Int J Inflam 2018; 2018:5023429. [PMID: 29568482 PMCID: PMC5820622 DOI: 10.1155/2018/5023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, 688-2397 King George Blvd., White Rock, BC, Canada V4A7E9
| |
Collapse
|
17
|
Li Y, Toscano M, Mazzone G, Russo N. Antioxidant properties and free radical scavenging mechanisms of cyclocurcumin. NEW J CHEM 2018. [DOI: 10.1039/c8nj01819g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclocurcumin has a strong ability to scavenge ˙OH by its 4′-OH phenolic hydroxyl via a hydrogen-atom transfer mechanism in a physiological environment.
Collapse
Affiliation(s)
- Yunkui Li
- College of Enology
- Northwest A&F University
- Yangling 712100
- China
- Dipartimento di Chimica e Tecnologie Chimiche
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende, CS
- Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende, CS
- Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende, CS
- Italy
| |
Collapse
|
18
|
Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson's disease model. Inflammopharmacology 2017; 26:349-360. [PMID: 29027056 DOI: 10.1007/s10787-017-0402-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) pathology is characterized by the abnormal accumulation and aggregation of the pre-synaptic protein α-synuclein in the dopaminergic neurons as Lewy bodies (LBs). Curcumin, which plays a neuroprotective role in various animal models of PD, was found to directly modulate the aggregation of α-synuclein in in vitro as well as in in vivo studies. While curcumin has been shown to exhibit strong anti-oxidant and anti-inflammatory properties, there are a number of other possible mechanisms by which curcumin may alter α-synuclein aggregation which still remains obscure. Therefore, the present study was designed to understand such concealed mechanisms behind neuroprotective effects of curcumin. An animal model of PD was established by injecting lipopolysaccharide (LPS, 5 µg/5 µl PBS) into the substantia nigra (SN) of rats which was followed by curcumin administration (40 mg/kg b.wt (i.p.)) daily for a period of 21 days. Modulatory functions of curcumin were evident from the inhibition of astrocytic activation (GFAP) by immunofluorescence and NADPH oxidase complex activation by RT-PCR. Curcumin supplementation prevented the LPS-induced upregulation in the protein activity of transcription factor NFκB, proinflammatory cytokines (TNF-α, IL-1β, and IL-1α), inducible nitric oxide synthase (iNOS) as well as the regulating molecules of the intrinsic apoptotic pathway (Bax, Bcl-2, Caspase 3 and Caspase 9) by ELISA. Curcumin also resulted in significant improvement in the glutathione system (GSH, GSSG and redox ratio) and prevented iron deposition in the dopaminergic neurons as depicted from atomic absorption spectroscopy (AAS) and Prussian blue staining, respectively. Curcumin also prevented α-synuclein aggregates in the dopaminergic neurons as observed from gene as well as protein activity of α-synuclein using RT-PCR and IHC. Collectively, our results suggest that curcumin can be further pursued as a candidate drug in the molecules targeted therapy for PD and other related synucleopathies.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
19
|
Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, Kwon T, Jeong DK. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 2017; 8:66680-66698. [PMID: 29029547 PMCID: PMC5630447 DOI: 10.18632/oncotarget.19164] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
Curcumin is a natural polyphenol and essential curcuminoid derived from the rhizome of the medicinal plant Curcuma longa (L.) is universally acknowledged as “Wonder drug of life”. It is a vital consumable and restorative herb, commonly keened for several ailments such as cancer, arthritis, pain, bruises, gastrointestinal quandaries, swelling and much more. Despite its enormous curative potential, the poor aqueous solubility and consequently, minimal systemic bioavailability with rapid degradation are some of the major factors which restrict the utilization of curcumin at medical perspective. However, to improve its clinically relevant parameters, nanoformulation of curcumin is emerging as a novel substitute for their superior therapeutic modality. It enhances its aqueous solubility and targeted delivery to the tissue of interest that prompts to enhance the bioavailability, better drug conveyance, and more expeditious treatment. Subsequent investigations are endeavored to enhance the bio-distribution of native curcumin by modifying with felicitous nano-carriers for encapsulation. In this review, we specifically focus on the recent nanotechnology based implementations applied for overcoming the innate constraints of native curcumin and additionally the associated challenges which restrict its potential therapeutic applications both in vivo and in-vitro studies, as well as their detailed mechanism of action, have additionally been discussed.
Collapse
Affiliation(s)
- Meeta Gera
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmi University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Do Luong Huynh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Gangwon-do, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Taeho Kwon
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
20
|
Investigation on Curcumin nanocomposite for wound dressing. Int J Biol Macromol 2017; 98:366-378. [DOI: 10.1016/j.ijbiomac.2017.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 01/22/2023]
|
21
|
Synthesis of Curcuminoids and Evaluation of Their Cytotoxic and Antioxidant Properties. Molecules 2017; 22:molecules22040633. [PMID: 28420097 PMCID: PMC6154528 DOI: 10.3390/molecules22040633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 01/06/2023] Open
Abstract
Curcumin (1) and ten derivatives (2–11) were synthesized and evaluated as cytotoxic and antioxidant agents. The results of primary screening by Sulforhodamine B assay against five human cancer cell lines (U-251 MG, glioblastoma; PC-3, human prostatic; HCT-15, human colorectal; K562, human chronic myelogenous leukemia; and SKLU-1, non-small cell lung cancer) allowed us to calculate the half maximal inhibitory concentration (IC50) values for the more active compounds against HCT-15 and K562 cell lines. Compounds 2 and 10 were the most active against both cell lines and were more active than curcumin itself. Thiobarbituric acid reactive substances (TBARS) assay showed that 7 has potent activity; even stronger than curcumin, α-tocopherol, and quercetin.
Collapse
|
22
|
Marković ZM, Kepić DP, Matijašević DM, Pavlović VB, Jovanović SP, Stanković NK, Milivojević DD, Spitalsky Z, Holclajtner-Antunović ID, Bajuk-Bogdanović DV, Nikšić MP, Todorović Marković BM. Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Adv 2017. [DOI: 10.1039/c7ra05027e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibacterial curcumin/graphene nanomesh hybrids are synthesized and tested.
Collapse
Affiliation(s)
- Z. M. Marković
- Polymer Institute
- Slovak Academy of Sciences
- 84541 Bratislava
- Slovakia
| | - D. P. Kepić
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - D. M. Matijašević
- Faculty of Agriculture
- University of Belgrade
- 11080 Belgrade-Zemun
- Serbia
| | - V. B. Pavlović
- Faculty of Agriculture
- University of Belgrade
- 11080 Belgrade-Zemun
- Serbia
| | - S. P. Jovanović
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - N. K. Stanković
- The School of Electrical Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - D. D. Milivojević
- Vinča Institute of Nuclear Sciences
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - Z. Spitalsky
- Polymer Institute
- Slovak Academy of Sciences
- 84541 Bratislava
- Slovakia
| | | | | | - M. P. Nikšić
- Faculty of Agriculture
- University of Belgrade
- 11080 Belgrade-Zemun
- Serbia
| | | |
Collapse
|
23
|
Anticancer Curcumin: Natural Analogues and Structure-Activity Relationship. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00010-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Diarylheptanoid-rich extract of grey and black alder barks: an effective dietary antioxidant in mayonnaise. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0017-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Curcumin modulates oxidative stress and genotoxicity induced by a type II fluorinated pyrethroid, beta-cyfluthrin. Food Chem Toxicol 2016; 97:168-176. [DOI: 10.1016/j.fct.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
|
26
|
Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage. Life Sci 2016; 160:2-11. [PMID: 27436544 DOI: 10.1016/j.lfs.2016.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 01/27/2023]
Abstract
AIM Ionizing radiation interacts with biological systems through the generation of free radicals, which induce oxidative stress. Aluminium (Al) can negatively impact human health by direct interaction with antioxidant enzymes. Ellagic acid (EA) and Ferulic acid (FA) are plant polyphenolic compounds, have gained attention due to their multiple biological activities. To date, no studies investigating the antioxidant effect of EA/FA in a model involving both γ radiation and aluminium chloride (AlCl3) have been reported. Herein, we investigated the protective effect of EA and FA against oxidative stress induced by γ radiation and AlCl3 in rats. METHODS Rats were divided into thirteen groups: a negative control group, 3 positive control groups (γ-irradiated, AlCl3-treated and γ-irradiated+AlCl3-treated) and 9 groups (3 γ-irradiated, 3 AlCl3-treated and 3 γ-irradiated+AlCl3-treated) treated with EA and/or FA. Liver function and lipid profile were assessed. Levels of lipid peroxidation, protein oxidation and endogenous antioxidants as well as the concentrations of copper, iron and zinc were estimated in liver tissue homogenate. Furthermore, liver tissue sections were histologically examined. RESULTS Oral administration of EA and/or FA resulted in 1) amelioration of AlCl3 and/or γ-radiation-induced hepatic function impairment, dyslipidemia and hepatic histological alterations; 2) reduction in liver MDA and PCC levels; 3) elevation of liver CAT, GPx and SOD activity as well as GSH level; 4) elevation in liver Cu concentrations which was accompanied by a reduction in Fe and Zn concentrations. CONCLUSIONS Oral administration of EA and/or FA may be useful for ameliorating γ radiation and/or AlCl3-induced oxidative damage.
Collapse
|
27
|
Liao JH, Huang YS, Lin YC, Huang FY, Wu SH, Wu TH. Anticataractogenesis Mechanisms of Curcumin and a Comparison of Its Degradation Products: An in Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2080-2086. [PMID: 26905955 DOI: 10.1021/acs.jafc.6b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Curcumin (Cur) exhibits anticataractogenesis activity. This study aimed to compare the activities of Cur with those of its degradation products in a series of in vitro lens protein turbidity assays. The results show that Cur (200 μM) ameliorates selenite-induced crystallin aggregation, and the mean OD value was 0.10 ± 0.02 (p < 0.05), which was significantly different from controls (0.15 ± 0.01) after incubating for 3 days. However, Cur did not significantly inhibit calcium-induced proteolysis after incubating for 3 days. Such results were supported by isothermal titration calorimetry observation that Cur binds with selenite but not with calcium. Presence of Cur and the degradation products examined (ferulic acid, cinnamic acid, vanillin, and vanillic acid) indicates significantly protective activities on lens γ-crystallins after UVC exposure for 3 h. Among the compounds examined, only ferulic acid exhibited a significant inhibitory effect against UVB-induced turbidity with a mean OD of 0.32 ± 0.01 (p < 0.05), which was significantly different from controls (0.49 ± 0.02). The previously reported anticataract effects of Cur may stem not only from Cur but also from its degradation products through various cataractogenesis mechanisms in vitro.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
| | - Yi-Shiang Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei 110, Taiwan
| | - Yu-Ching Lin
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
| | - Fu-Yung Huang
- Department of Chemistry, National Cheng Kung University , Tainan 701, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
| | - Tzu-Hua Wu
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei 110, Taiwan
| |
Collapse
|
28
|
Kamada K, Namikawa T, Senatore S, Matthews C, Lenne PF, Maury O, Andraud C, Ponce-Vargas M, Le Guennic B, Jacquemin D, Agbo P, An DD, Gauny SS, Liu X, Abergel RJ, Fages F, D'Aléo A. Boron Difluoride Curcuminoid Fluorophores with Enhanced Two-Photon Excited Fluorescence Emission and Versatile Living-Cell Imaging Properties. Chemistry 2016; 22:5219-32. [DOI: 10.1002/chem.201504903] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kenji Kamada
- IFMRI; National Institute of Advanced Industrial Science and Technology, Ikeda; Osaka 563-8577 Japan
- Department of Chemistry; School of Science and Technology; Kwansei Gakuin University, Sanda; Hyogo 669-1337 Japan
| | - Tomotaka Namikawa
- Department of Chemistry; School of Science and Technology; Kwansei Gakuin University, Sanda; Hyogo 669-1337 Japan
| | - Sébastien Senatore
- Aix Marseille Université, CNRS; Institutde Biologie du Développement de Marseille, UMR7288; 13288 Marseille 9 France
| | - Cédric Matthews
- Aix Marseille Université, CNRS; Institutde Biologie du Développement de Marseille, UMR7288; 13288 Marseille 9 France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS; Institutde Biologie du Développement de Marseille, UMR7288; 13288 Marseille 9 France
| | - Olivier Maury
- Université Lyon 1; ENS Lyon, CNRS, UMR 5182, 69364; Lyon France
| | - Chantal Andraud
- Université Lyon 1; ENS Lyon, CNRS, UMR 5182, 69364; Lyon France
| | - Miguel Ponce-Vargas
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Boris Le Guennic
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR CNRS 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
- Institut Universitaire de France; 1 Rue Descartes 75005 Paris Cedex 05 France
| | - Peter Agbo
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Dahlia D. An
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Stacey S. Gauny
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Xin Liu
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Rebecca J. Abergel
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Frédéric Fages
- Aix Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy; Case 913 13288 Marseille France
| | - Anthony D'Aléo
- Aix Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy; Case 913 13288 Marseille France
| |
Collapse
|
29
|
Zheng B, Yang L, Wen C, Huang X, Xu C, Lee KH, Xu J. Curcumin analog L3 alleviates diabetic atherosclerosis by multiple effects. Eur J Pharmacol 2016; 775:22-34. [PMID: 26852952 DOI: 10.1016/j.ejphar.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
Abstract
L3, an analog of curcumin, is a compound isolated from a traditional Chinese medicine Turmeric. In this paper, we aims to explore the efficacy of L3 on diabetic atherosclerosis and the related mechanism. The effect of L3 was studied on glucose and lipid metabolism, antioxidant status, atherosclerosis-related indexes and pathological changes of main organs in the mice model of diabetes induced by streptozotocin and high-fat diet. The results showed that L3 treatment could meliorate dyslipidemia and hyperglycemia, reduce oxidative stress, enhance the activity of antioxidases, increase the nitric oxide level in plasma and aortic arch, decrease the production of reactive oxygen species in pancreas and lectin-like oxidized low-density lipoprotein receptor-1 expression in aortic arch, and meliorate the fatty and atherosclerotic degeneration in aortic arch, thereby preventing the development of diabetes and its complications. These results suggested that L3 can alleviate the diabetic atherosclerosis by multiple effects. This study provided scientific basis for the further research and clinical application of L3.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China; Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liu Yang
- Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China; Department of Medical Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Caixia Wen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China
| | - Xiuwang Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China
| | - Chenxia Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China; Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kuan-Han Lee
- School of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China.
| |
Collapse
|
30
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
31
|
Fawzy IM, Youssef KM, Ismail NS, Gullbo J, Abouzid KA. Design, synthesis and biological evaluation of Novel Curcumin Analogs with anticipated anticancer activity. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2015. [DOI: 10.1016/j.fjps.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a chronic, progressive neurodegenerative disease that manifests clinically as a slow global decline in cognitive function, including deterioration of memory, reasoning, abstraction, language and emotional stability, culminating in a patient with end-stage disease, totally dependent on custodial care. With a global ageing population, it is predicted that there will be a marked increase in the number of people diagnosed with AD in the coming decades, making this a significant challenge to socio-economic policy and aged care. Global estimates put a direct cost for treating and caring for people with dementia at $US604 billion, an estimate that is expected to increase markedly. According to recent global statistics, there are 35.6 million dementia sufferers, the number of which is predicted to double every 20 years, unless strategies are implemented to reduce this burden. Currently, there is no cure for AD; while current therapies may temporarily ameliorate symptoms, death usually occurs approximately 8 years after diagnosis. A greater understanding of AD pathophysiology is paramount, and attention is now being directed to the discovery of biomarkers that may not only facilitate pre-symptomatic diagnosis, but also provide an insight into aberrant biochemical pathways that may reveal potential therapeutic targets, including nutritional ones. AD pathogenesis develops over many years before clinical symptoms appear, providing the opportunity to develop therapy that could slow or stop disease progression well before any clinical manifestation develops.
Collapse
|
33
|
Li ZY, Ding LL, Li JM, Xu BL, Yang L, Bi KS, Wang ZT. ¹H-NMR and MS based metabolomics study of the intervention effect of curcumin on hyperlipidemia mice induced by high-fat diet. PLoS One 2015; 10:e0120950. [PMID: 25786031 PMCID: PMC4364983 DOI: 10.1371/journal.pone.0120950] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/30/2015] [Indexed: 12/24/2022] Open
Abstract
Curcumin, a principle bioactive component of Curcuma longa L, is well known for its anti-hyperlipidemia effect. However, no holistic metabolic information of curcumin on hyperlipidemia models has been revealed, which may provide us an insight into the underlying mechanism. In the present work, NMR and MS based metabolomics was conducted to investigate the intervention effect of curcumin on hyperlipidemia mice induced by high-fat diet (HFD) feeding for 12 weeks. The HFD induced animals were orally administered with curcumin (40, 80 mg/kg) or lovastatin (30 mg/kg, positive control) once a day during the inducing period. Serum biochemistry assay of TC, TG, LDL-c, and HDL-c was conducted and proved that treatment of curcumin or lovastatin can significantly improve the lipid profiles. Subsequently, metabolomics analysis was carried out for urine samples. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) was employed to investigate the anti-hyperlipidemia effect of curcumin and to detect related potential biomarkers. Totally, 35 biomarkers were identified, including 31 by NMR and nine by MS (five by both). It turned out that curcumin treatment can partially recover the metabolism disorders induced by HFD, with the following metabolic pathways involved: TCA cycle, glycolysis and gluconeogenesis, synthesis of ketone bodies and cholesterol, ketogenesis of branched chain amino acid, choline metabolism, and fatty acid metabolism. Besides, NMR and MS based metabolomics proved to be powerful tools in investigating pharmacodynamics effect of natural products and underlying mechanisms.
Collapse
Affiliation(s)
- Ze-Yun Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Li-Li Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jin-Mei Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bao-Li Xu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Kai-Shun Bi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
- * E-mail: (KSB); (ZTW)
| | - Zheng-Tao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- * E-mail: (KSB); (ZTW)
| |
Collapse
|
34
|
Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J. Mitochondria as a Target in the Therapeutic Properties of Curcumin. Arch Pharm (Weinheim) 2014; 347:873-84. [DOI: 10.1002/ardp.201400266] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/02/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Joyce Trujillo
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| | | | - Cecilia Zazueta
- Department of Cardiovascular Medicine; Instituto Nacional de Cardiología Ignacio Chávez; México D.F. Mexico
| | | | - Yolanda Irasema Chirino
- Unidad de Biomedicina; Facultad de Estudios Superiores Iztacala; UNAM; Estado de México Mexico
| | - José Pedraza-Chaverrí
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| |
Collapse
|
35
|
Structure-Function Elucidation of Antioxidative and Prooxidative Activities of the Polyphenolic Compound Curcumin. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/396708] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenolic compounds have been very well known for their antioxidant properties, owing to their unique ability to act as free radical scavengers which, in turn, is an outstanding attribute of their unique biochemical structure. Recent accumulating lines of evidence inculcate sustainable interest and curiosity towards the chemoprotective nature of the natural polyphenolic compound curcumin (diferuloylmethane) against oxidative stress-mediated disorders. Curcumin is naturally found as a constituent of dietary spices called turmeric, extracted from the plant Curcuma longa. However, like every phenolic antioxidant, curcumin possesses a concentration and medium dependent anti- and pro-oxidant behaviour. A detailed study of the structure-function analysis and the understanding of the mode of action of curcumin as well as its chemical analogues is thus essential to understand the selective biochemical consequences of curcumin. Moreover, the presence of transition metal ions, route of administration, and localized tissue are also the vital decisive factors to determine curcumin behaviour. With this viewpoint, this paper sheds lights on the medium dependent prooxidative and antioxidative attributes of curcumin. Further, with respect to emergence of nanocarriers, a brief discussion focusing on the biochemical effect exertion of curcumin chiefly due to targeted and slow release has also been added towards the end.
Collapse
|
36
|
Bairwa K, Grover J, Kania M, Jachak SM. Recent developments in chemistry and biology of curcumin analogues. RSC Adv 2014. [DOI: 10.1039/c4ra00227j] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
pH Dependence of reactive sites of curcumin possessing antioxidant activity and free radical scavenging ability studied using the electrochemical and ESR techniques: Polyaniline used as a source of the free radical. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Helal MHM, Ahmed NS, Elwessaly MS, Ammar YA. Synthesis, characterization, and antioxidant and bleomycin-dependent DNA damage evaluation of curcumin analogs. Arch Pharm (Weinheim) 2013; 347:123-33. [PMID: 24293401 DOI: 10.1002/ardp.201300203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 11/09/2022]
Abstract
In an attempt to find a new class of antioxidant agents, a series of pyrazole, pyridopyrazoltriazine, pyrazolotriazine, isoxazole, and pyridine-containing products were prepared, starting with curcumin and appropriate chemical reagents. Thus, curcumin 1 undergoes coupling reaction with diazonium salts 2-5 to afford the corresponding 4-arylazo derivatives 6-9. Heating of 6 and/or 7 in acetic acid furnished the corresponding pyrazolotriazines 10 and 11. Also, pyrazole and isoxazole derivatives were obtained upon treatment of 10 with hydrazines or hydroxylamine hydrochloride. Furthermore, multicomponent reaction of 10 with malononitrile/CH3 COONH4 or phenacylpyridinium iodide/CH3 COONH4 produced the corresponding bispyridines 16 and 17, respectively. Furthermore, condensation of 10 with guanidine nitrate or thiourea gave the corresponding pyrimidines 18 and 19, respectively. Finally, other curcumin derivatives were obtained on condensation of 1 with isatins and pyrazole-4-aldehyde. The newly synthesized compounds were evaluated as antioxidant agents. The results showed clearly that most of the compounds exhibited good activities, except for compounds 9 and 12. Compounds 1, 3, 15, and 23 exhibited high protection against DNA damage induced by the bleomycine-iron complex.
Collapse
Affiliation(s)
- Mohamed H M Helal
- Faculty of Arts and Science, Department of Chemistry, Northern Border University, Rafha, Saudi Arabia; Faculty of Science, Department of Chemistry, Al-Azhar University, Nasr City, Cairo, Egypt
| | | | | | | |
Collapse
|
40
|
Bhullar KS, Jha A, Youssef D, Rupasinghe HPV. Curcumin and its carbocyclic analogs: structure-activity in relation to antioxidant and selected biological properties. Molecules 2013; 18:5389-404. [PMID: 23666006 PMCID: PMC6270194 DOI: 10.3390/molecules18055389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 11/16/2022] Open
Abstract
Curcumin is the major phenolic compound present in turmeric (Curcuma longa L.). Curcumin and 15 novel analogs were investigated for their antioxidant and selected biological activities. Strong relationships between the structure and evaluated activity revealed that the compounds with specific functional groups and carbon skeleton had specific biological profiles. Among the compounds tested, the derivatives (E)-2-(3,4-dimethoxybenzylidene)-5-((E)-3-(3,4-dimethoxyphenyl)acryloyl)cyclopentanone (3e), and (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)-cyclopentanone (3d) and the parent compound curcumin exhibited the strongest free radical scavenging and antioxidant capacity. Concerning the other biological activities studied the compound (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxy-phenyl)-acryloyl)cyclopentanone (3d) was the most potent angiotensin converting enzyme (ACE) inhibitor, while the derivatives (E)-2-(4-hydroxybenzylidene)-6-((E)-3-(4-hydroxyphenyl)acryloyl)cyclohexanone (2b), (E)-2-(3,4-dimethoxybenzylidene)-6-((E)-3-(3,4-dimethoxyphenyl)acryloyl)cyclohexanone (2e) and (E)-2-(3,4-dimethoxybenzylidene)-5-((E)-3-(3,4-dimethoxyphenyl)acryloyl)cyclopentanone (3e) exhibited strong tyrosinase inhibition. Moreover, (E)-2-(3,4-dimethoxybenzylidene)-6-((E)-3-(3,4-dimethoxyphenyl)-acryloyl)cyclohexanone (2e) was also found to be the strongest human HIV-1 protease inhibitor in vitro among the tested compounds. Cytotoxicity studies using normal human lung cells revealed that the novel curcumin as well as its carbocyclic analogs are not toxic.
Collapse
Affiliation(s)
- Khushwant S. Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada
| | - Dani Youssef
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada
- Département des Science, Université Sainte Anne, Church Point, Nova Scotia, B0W 1M0, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| |
Collapse
|
41
|
Ali I, Haque A, Saleem K, Hsieh MF. Curcumin-I Knoevenagel's condensates and their Schiff's bases as anticancer agents: synthesis, pharmacological and simulation studies. Bioorg Med Chem 2013; 21:3808-20. [PMID: 23643901 DOI: 10.1016/j.bmc.2013.04.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/15/2022]
Abstract
Pyrazolealdehydes (4a-d), Knoevenagel's condensates (5a-d) and Schiff's bases (6a-d) of curcumin-I were synthesized, purified and characterized. Hemolysis assays, cell line activities, DNA bindings and docking studies were carried out. These compounds were lesser hemolytic than standard drug doxorubicin. Minimum cell viability (MCF-7; wild) observed was 59% (1.0 μg/mL) whereas the DNA binding constants ranged from 1.4×10(3) to 8.1×10(5) M(-1). The docking energies varied from -7.30 to -13.4 kcal/mol. It has been observed that DNA-compound adducts were stabilized by three governing forces (Van der Wall's, H-bonding and electrostatic attractions). It has also been observed that compounds 4a-d preferred to enter minor groove while 5a-d and 6a-d interacted with major grooves of DNA. The anticancer activities of the reported compounds might be due to their interactions with DNA. These results indicated the bright future of the reported compounds as anticancer agents.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| | | | | | | |
Collapse
|
42
|
Ge HX, Chen L, Zhang J, Kou JP, Yu BY. Inhibitory effect of curcumin analogs on tissue factor procoagulant activity and their preliminary structure–activity relationships. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0330-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Potato juice fermented with Lactobacillus casei as a probiotic functional beverage. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0171-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
44
|
Girish C, Pradhan SC. Hepatoprotective activities of picroliv, curcumin, and ellagic acid compared to silymarin on carbon-tetrachloride-induced liver toxicity in mice. J Pharmacol Pharmacother 2012; 3:149-55. [PMID: 22629090 PMCID: PMC3356956 DOI: 10.4103/0976-500x.95515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: To evaluate the hepatoprotective activity of active phytochemicals, picroliv, curcumin, and ellagic acid in comparison to silymarin in the mice model of carbon tetrachloride (CCl4) induced liver toxicity. In addition, attempts were made to elucidate their possible mechanism(s) of action. Materials and Methods: Oxidative stress was induced in Swiss albino mice by a single injection (s.c.) of CCl4, 1 ml/kg body weight, diluted with arachis oil at a 1:1 ratio. The phytochemicals were administered once a day for 7& days (p.o.) as pretreatment at two dose levels (50 and 100 mg/kg/day). Results: CCl4-induced hepatotoxicity was manifested by an increase in the activities of liver enzymes (alanine transaminase, P < 0.001, aspartate transaminase, P < 0.001 and alkaline phosphatase, P < 0.001), malondialdehyde (MDA, P < 0.001)) levels and a decrease in activity of reduced glutathione (P < 0.001) and catalase in liver tissues. The histopathological examination of liver sections revealed centrizonal necrosis, fatty changes, and inflammatory reactions. The pretreatment with picroliv, curcumin, and ellagic acid normalized serum aminotransferase activities (P < 0.001), decreased levels of MDA (P < 0.001), improved the antioxidant status, and normalized the hepatic histo-architecture. The restoration of phenobarbitone-induced sleeping time also suggested the normalization of liver cytochrome P450 enzymes. Conclusion: This study supports the use of these active phytochemicals against toxic liver injury, which may act by preventing lipid peroxidation, augmenting the antioxidant defense system or by regenerating the hepatocytes.
Collapse
Affiliation(s)
- C Girish
- Department of Pharmacology, Pondicherry Institute of Medical Sciences, Kalapet, Puducherry, India
| | | |
Collapse
|
45
|
Bayomi SM, El-Kashef HA, El-Ashmawy MB, Nasr MNA, El-Sherbeny MA, Badria FA, Abou-zeid LA, Ghaly MA, Abdel-Aziz NI. Synthesis and biological evaluation of new curcumin derivatives as antioxidant and antitumor agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0116-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
46
|
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angew Chem Int Ed Engl 2012; 51:5308-32. [PMID: 22566109 DOI: 10.1002/anie.201107724] [Citation(s) in RCA: 583] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Indexed: 12/13/2022]
Abstract
Turmeric is traditionally used as a spice and coloring in foods. It is an important ingredient in curry and gives curry powder its characteristic yellow color. As a consequence of its intense yellow color, turmeric, or curcumin (food additive E100), is used as a food coloring (e.g. mustard). Turmeric contains the curcuminoids curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Recently, the health properties (neuroprotection, chemo-, and cancer prevention) of curcuminoids have gained increasing attention. Curcuminoids induce endogenous antioxidant defense mechanisms in the organism and have anti-inflammatory activity. Curcuminoids influence gene expression as well as epigenetic mechanisms. Synthetic curcumin analogues also exhibit biological activity. This Review describes the development of curcumin from a "traditional" spice and food coloring to a "modern" biological regulator.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Abteilung Lebensmittelwissenschaft, Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
| | | | | | | | | | | |
Collapse
|
47
|
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin - vom Molekül zur biologischen Wirkung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107724] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Rajesh J, Gubendran A, Rajagopal G, Athappan P. Synthesis, spectra and DNA interactions of certain mononuclear transition metal(II) complexes of macrocyclic tetraaza diacetyl curcumin ligand. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Sneharani AH, Singh SA, Srinivas P, Rao AGA. Inhibition of lipoxygenase-1 by tetrahydrocurcumin. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1541-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Abstract
This review chronicles the exploration of the curcumin in terms of development of analogues for the anticancer activity over the last century. Curcumin is a natural phytochemical obtained from dried root and rhizome of Turmeric (Curcuma Longa). It has been shown to interfere with multiple cell signaling pathways, including apoptosis (activation of caspases and downregulation of antiapoptotic gene products), proliferation (HER-2, EGFR, and AP-1), angiogenesis (VEGF), and inflammation (NF-kappaB, TNF, IL-6, IL-1, COX-2, and 5-LOX). In the last decade it has been much explored and various synthetic analogues have been prepared and evaluated for various pharmacological activities. Most of the analogues have shown very good anticancer activity in various models and various cell lines. However, some analogues have also shown antioxidant, anti-HIV, antimutagenic, antiangiogenic, antimalarial, antitubercular, antiandrogenic, COX inhibitory activities. Few analogues have shown very potent results and may be considered as clinical candidates for the development of future anticancer agent. This review contains 728 curcumin analogues and covers the literature from 1815 to mid 2009 and 93 references are cited.
Collapse
Affiliation(s)
- Dinesh Kumar Agrawal
- Agra Public Institute of Technology and Computer Education, Department of Pharmacy, Artoni, Agra, India.
| | | |
Collapse
|