1
|
Nakamura M, Yoshimi A, Mouri A, Tokura T, Kimura H, Kishi S, Miyauchi T, Iwamoto K, Ito M, Sato-Boku A, Ozaki N, Nabeshima T, Noda Y. Duloxetine attenuates pain in association with downregulation of platelet serotonin transporter in patients with burning mouth syndrome and atypical odontalgia. Hum Psychopharmacol 2022; 37:e2818. [PMID: 34541697 DOI: 10.1002/hup.2818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this study was evaluation of the association between severity of pain and expression of total or ubiquitinated serotonin transporter (SERT) protein in patients with burning mouth syndrome and atypical odontalgia (BMS/AO), who were treated by duloxetine. METHODS Patients with BMS/AO were assessed for severity of pain using the visual analog scale (VAS), and expression of total and ubiquitinated SERT protein in platelets before (baseline) and 12 weeks after duloxetine-treatment. RESULTS The expression of total and ubiquitinated SERT protein at baseline in all patients (n = 33) were higher and lower, respectively, compared to those in healthy controls. 12 weeks after duloxetine-treatment, there was no difference in the total SERT protein levels between patients (n = 21) and healthy controls. In the 16 patients who could be measured, mean VAS scores and total SERT protein levels were significantly decreased after the treatment, compared to those at baseline. There was tendency for a positive correlation between total SERT protein levels and VAS scores in these patients. CONCLUSIONS Our findings indicate that duloxetine relieves pain in association with downregulation of platelet SERT expression in patients with BMS/AO.
Collapse
Affiliation(s)
- Mariko Nakamura
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan.,Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan.,Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Science, Toyoake, Aichi, Japan
| | - Tatsuya Tokura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kishi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Miyauchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, KACHI Memorial Hospital, Toyohashi, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikiko Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Aiji Sato-Boku
- Department of Anesthesiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan.,Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| |
Collapse
|
2
|
Barakat A, Hamdy MM, Elbadr MM. Uses of fluoxetine in nociceptive pain management: A literature overview. Eur J Pharmacol 2018; 829:12-25. [PMID: 29608897 DOI: 10.1016/j.ejphar.2018.03.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
Fluoxetine is one of the top ten prescribed antidepressants. Other therapeutic applications were approved for fluoxetine including, anxiety disorders, bulimia nervosa, and premature ejaculation. However, the role of fluoxetine in nociceptive pain management is still unclear. In this review, we discuss an overview of five possible roles of fluoxetine in pain management: intrinsic antinociceptive effect, enhancement of acute opioid analgesia, attenuation of tolerance development to opioid analgesia, attenuation of dependence development and abstinence syndrome, and attenuation of opioid induced hyperalgesia. Conflicting data were reported about fluoxetine intrinsic anti-nociceptive effect in preclinical and clinical studies except for inflammatory pain. Similar controversy was described in preclinical and clinical studies which explored the possible enhancement of opioid analgesia by fluoxetine co-administration. However, fluoxetine was found to have a promising effect on opioid tolerance and dependence in animal and human studies. Regarding opioid induced hyperalgesia, no studies examined fluoxetine effects in this regard. Our literature review revealed that, the most likely beneficial use of fluoxetine in nociceptive pain management is for alleviation of inflammatory pain and attenuation of opioid tolerance and dependence. Non-steroidal anti-inflammatory and corticosteroids carry many adverse effects and toxicities. Effective alleviation of opioid tolerance and dependence represents a huge health burden and growing unmet medical need. Moreover, most agents used to attenuate these phenomena are either experimental or poorly tolerable drugs which limit their transitional value. Fluoxetine offers an effective, safe, and tolerable alternative for management of both inflammatory pain and opioid tolerance and dependence presently available to clinicians.
Collapse
Affiliation(s)
- Ahmed Barakat
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - Mostafa M Hamdy
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohamed M Elbadr
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
3
|
Galeotti N. Hypericum perforatum (St John's wort) beyond depression: A therapeutic perspective for pain conditions. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:136-146. [PMID: 28216196 DOI: 10.1016/j.jep.2017.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. (Hypericaceae), popularly called St. John's wort (SJW), has a rich historical background being one of the oldest used and most extensively investigated medicinal herbs. Many bioactivities and applications of SJW are listed in popular and in scientific literature, including antibacterial, antiviral, anti-inflammatory. In the last three decades many studies focused on the antidepressant activity of SJW extracts. However, several studies in recent years also described the antinociceptive and analgesic properties of SJW that validate the traditional uses of the plant in pain conditions. AIM OF THE REVIEW This review provides up-to-date information on the traditional uses, pre-clinical and clinical evidence on the pain relieving activity of SJW and its active ingredients, and focuses on the possible exploitation of this plant for the management of pain. MATERIALS AND METHODS Historical ethnobotanical publications from 1597 were reviewed for finding local and traditional uses. The relevant data on the preclinical and clinical effects of SJW were searched using various databases such as PubMed, Science Direct, Scopus, and Google Scholar. Plant taxonomy was validated by the database Plantlist.org. RESULTS Preclinical animal studies demonstrated the ability of low doses of SJW dry extracts (0.3% hypericins; 3-5% hyperforins) to induce antinociception, to relieve from acute and chronic hyperalgesic states and to augment opioid analgesia. Clinical studies (homeopathic remedies, dry extracts) highlighted dental pain conditions as a promising SJW application. In vivo and in vitro studies showed that the main components responsible for the pain relieving activity are hyperforin and hypericin. SJW analgesia appears at low doses (5-100mg/kg), minimizing the risk of herbal-drug interactions produced by hyperforin, a potent inducer of CYP enzymes. CONCLUSION Preclinical studies indicate a potential use of SJW in medical pain management. However, clinical research in this field is still scarce and the few studies available on chronic pain produced negative results. Prospective randomized controlled clinical trials performed at low doses are needed to validate its potential efficacy in humans.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
4
|
Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats. Neuroscience 2013; 252:396-409. [DOI: 10.1016/j.neuroscience.2013.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 01/13/2023]
|
5
|
A COMPARATIVE STUDY OF ANALGESIC ACTIVITY OF FLUOXETINE WITH IBUPROFEN AND PENTAZOCINE IN RODENT MODELS. ACTA ACUST UNITED AC 2013. [DOI: 10.14260/jemds/1128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Martins I, de Vries M, Teixeira-Pinto A, Fadel J, Wilson S, Westerink B, Tavares I. Noradrenaline increases pain facilitation from the brain during inflammatory pain. Neuropharmacology 2013; 71:299-307. [DOI: 10.1016/j.neuropharm.2013.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/18/2013] [Accepted: 04/04/2013] [Indexed: 01/08/2023]
|
7
|
Saghaei E, Moini Zanjani T, Sabetkasaei M, Naseri K. Enhancement of Antinociception by Co-administrations of Nefopam, Morphine, and Nimesulide in a Rat Model of Neuropathic Pain. Korean J Pain 2012; 25:7-15. [PMID: 22259710 PMCID: PMC3259142 DOI: 10.3344/kjp.2012.25.1.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/18/2011] [Accepted: 11/20/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neuropathic pain is a chronic pain due to disorder in the peripheral or central nervous system with different pathophysiological mechanisms. Current treatments are not effective. Analgesic drugs combined can reduce pain intensity and side effects. Here, we studied the analgesic effect of nimesulide, nefopam, and morphine with different mechanisms of action alone and in combination with other drugs in chronic constriction injury (CCI) model of neuropathic pain. Methods Male Wistar rats (n = 8) weighing 150-200 g were divided into 3 different groups: 1- Saline-treated CCI group, 2- Saline-treated sham group, and 3- Drug-treated CCI groups. Nimesulide (1.25, 2.5, and 5 mg/kg), nefopam (10, 20, and 30 mg/kg), and morphine (1, 3, and 5 mg/kg) were injected 30 minutes before surgery and continued daily to day 14 post-ligation. In the combination strategy, a nonanalgesic dose of drugs was used in combination such as nefopam + morphine, nefopam + nimesulide, and nimesulide + morphine. Von Frey filaments for mechanical allodynia and acetone test for cold allodynia were, respectively, used as pain behavioral tests. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post injury. Results Nefopam (30 mg/kg) and nimesulide (5 mg/kg) blocked mechanical and thermal allodynia; the analgesic effects of morphine (5 mg/kg) lasted for 7 days. Allodynia was completely inhibited in combination with nonanalgesic doses of nefopam (10 mg/kg), nimesulide (1.25 mg/kg), and morphine (3 mg/kg). Conclusions It seems that analgesic drugs used in combination, could effectively reduce pain behavior with reduced adverse effects.
Collapse
Affiliation(s)
- Elham Saghaei
- Department of Pharmacology & Neuroscience Research Center, Shahid Beheshti Medical University, Tehran, Iran
| | | | | | | |
Collapse
|
8
|
Ozdemir E, Bagcivan I, Gursoy S, Altun A, Durmus N. Effects of fluoxetine and LY 365265 on tolerance to the analgesic effect of morphine in rats. ACTA ACUST UNITED AC 2011; 98:205-13. [DOI: 10.1556/aphysiol.98.2011.2.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Bahremand A, Payandemehr B, Rahimian R, Ziai P, Pourmand N, Loloee S, Ebrahimi A, Ghasemi A, Fakhfouri G, Ghasemi M, Dehpour AR. The role of 5-HT(3) receptors in the additive anticonvulsant effects of citalopram and morphine on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 2011; 21:122-7. [PMID: 21531632 DOI: 10.1016/j.yebeh.2011.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
Citalopram, a selective serotonin reuptake inhibitor (SSRI), is frequently used in the treatment of major depressive disorders. In addition to its antidepressant features, citalopram shows some anticonvulsive properties at lower doses, whereas higher doses, ingested in cases of suicide, have been associated with seizures. Moreover, some reports support the enhancing effect of morphine on different responses of SSRIs such as analgesic and anticonvulsant properties. Although the exact mechanisms of these additive effects are not yet fully understood, 5-HT(3) receptor has recently been shown to play an important role in the central effects of SSRIs and morphine. In this regard, we used a model of clonic seizures induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether morphine and citalopram exhibit additive anticonvulsant effects and, if so, whether this effect is mediated through modulation of 5-HT(3) receptors. In our study, citalopram at lower doses (0.5 and 1 mg/kg, ip) significantly increased the seizure threshold (P<0.01) and at a higher dose (50 mg/kg) had proconvulsive effects. Moreover, morphine at low and noneffective doses had additive effects on the anticonvulsive properties of citalopram. This additive effect was prevented by pretreatment with low and noneffective doses of tropisetron (a 5-HT(3) receptor antagonist) and augmented by 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT(3) receptor agonist). Moreover, low doses of morphine (0.1 and 0.5 mg/kg) alone or in combination with potent doses of 5-HT(3) receptor agonist or antagonist could not alter the proconvulsive properties of citalopram at higher dose (50 mg/kg), ruling out the contribution of 5-HT(3) to this effect. In summary, our findings demonstrate that 5-HT(3) receptor mediates the additive anticonvulsant properties of morphine and low-dose citalopram. This could constitute a new approach to augmenting the efficacy and curtailing the adverse effects of citalopram.
Collapse
Affiliation(s)
- Arash Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hache G, Coudore F, Gardier AM, Guiard BP. Monoaminergic Antidepressants in the Relief of Pain: Potential Therapeutic Utility of Triple Reuptake Inhibitors (TRIs). Pharmaceuticals (Basel) 2011. [PMCID: PMC4053958 DOI: 10.3390/ph4020285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Over 75% of depressed patients suffer from painful symptoms predicting a greater severity and a less favorable outcome of depression. Imaging, anatomical and functional studies have demonstrated the existence of common brain structures, neuronal pathways and neurotransmitters in depression and pain. In particular, the ascending serotonergic and noradrenergic pathways originating from the raphe nuclei and the locus coeruleus; respectively, send projections to the limbic system. Such pathways control many of the psychological functions that are disturbed in depression and in the perception of pain. On the other hand, the descending pathways, from monoaminergic nuclei to the spinal cord, are specifically implicated in the inhibition of nociception providing rationale for the use of serotonin (5-HT) and/or norepinephrine (NE) reuptake inhibitors (SSRIs, NRIs, SNRIs), in the relief of pain. Compelling evidence suggests that dopamine (DA) is also involved in the pathophysiology and treatment of depression. Indeed, recent insights have demonstrated a central role for DA in analgesia through an action at both the spinal and suprasinal levels including brain regions such as the periaqueductal grey (PAG), the thalamus, the basal ganglia and the limbic system. In this context, dopaminergic antidepressants (i.e., containing dopaminergic activity), such as bupropion, nomifensine and more recently triple reuptake inhibitors (TRIs), might represent new promising therapeutic tools in the treatment of painful symptoms with depression. Nevertheless, whether the addition of the dopaminergic component produces more robust effects than single- or dual-acting agents, has yet to be demonstrated. This article reviews the main pathways regulating pain transmission in relation with the monoaminergic systems. It then focuses on the current knowledge regarding the in vivo pharmacological properties and mechanism of action of monoaminergic antidepressants including SSRIs, NRIs, SNRIs and TRIs. Finally, a synthesis of the preclinical studies supporting the efficacy of these antidepressants in analgesia is also addressed in order to highlight the relative contribution of 5-HT, NE and DA to nociception.
Collapse
Affiliation(s)
- Guillaume Hache
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 011-331-46-83-53-61
| | | | | | | |
Collapse
|
11
|
Banks ML, Rice KC, Negus SS. Antinociceptive interactions between Mu-opioid receptor agonists and the serotonin uptake inhibitor clomipramine in rhesus monkeys: role of Mu agonist efficacy. J Pharmacol Exp Ther 2010; 335:497-505. [PMID: 20675432 DOI: 10.1124/jpet.110.169276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mu-opioid agonists are effective analgesics but have undesirable effects such as sedation and abuse liability that limit their clinical effectiveness. Serotonergic systems also modulate nociception, and serotonin uptake inhibitors may be useful as adjuncts to enhance analgesic effects and/or attenuate undesirable effects of mu agonists. This study examined the effects of the serotonin uptake inhibitor clomipramine on behavioral effects produced in rhesus monkeys by mu agonists with varying efficacy at mu receptors (nalbuphine < morphine < methadone). Clomipramine and each mu agonist were studied alone and in fixed-proportion mixtures in assays of schedule-controlled responding, thermal nociception, and capsaicin-induced thermal allodynia. In the assay of schedule-controlled responding, all mu agonists dose-dependently decreased response rates. Clomipramine was inactive alone and did not alter the effects of mu agonists. In the assay of thermal nociception, all mu agonists produced dose-dependent antinociception. Clomipramine was inactive alone but produced a proportion-dependent enhancement of the antinociceptive effects of nalbuphine > morphine > methadone. In the assay of capsaicin-induced allodynia, nalbuphine produced dose-dependent antiallodynia. Clomipramine alone was inactive, but as in the assay of thermal nociception, it produced a proportion-dependent enhancement in the effects of nalbuphine. These findings suggest that serotonin uptake inhibitors can selectively enhance the antinociceptive effects of mu agonists in nonhuman primates. These effects of serotonin uptake inhibitors may depend on the proportion of the serotonin uptake inhibitor and the efficacy of the mu agonist. The greatest enhancement was observed with intermediate proportions of clomipramine in combination with the low-efficacy mu agonist nalbuphine.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980613, Richmond, VA 23298, USA
| | | | | |
Collapse
|
12
|
Nayebi AM, Rezazadeh H, Parsa Y. Effect of fluoxetine on tolerance to the analgesic effect of morphine in mice with skin cancer. Pharmacol Rep 2009; 61:453-8. [DOI: 10.1016/s1734-1140(09)70086-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 04/20/2009] [Indexed: 01/23/2023]
|
13
|
Uchida S, Hirai K, Hatanaka J, Hanato J, Umegaki K, Yamada S. Antinociceptive effects of St. John's wort, Harpagophytum procumbens extract and Grape seed proanthocyanidins extract in mice. Biol Pharm Bull 2008; 31:240-5. [PMID: 18239280 DOI: 10.1248/bpb.31.240] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypericum perforatum extract (St. John's wort, SJW), Harpagophytum procumbens extract (HPE) and Grape seed proanthocyanidin extract (GSPE) have a broad spectrum of biological activities including antidepressant, anti-inflammatory or anti-oxidant effects. The aim of this study was to clarify antinociceptive properties of SJW, HPE and GSPE in mice with mechanisms that might potentially underlie these activities. Also, the effects of these herbal extracts on the antinociception and plasma and brain concentrations of morphine were examined. Oral pretreatment with SJW (100-1000 mg/kg) and HPE (30-300 mg/kg) attenuated significantly times of licking/biting both first and second phases of formalin injection in mice in the dose-dependent manner, and GSPE (10-300 mg/kg) suppressed second phase. Naloxone (5 mg/kg, s.c.) significantly attenuated antinociceptive effect of HPE but not SJW and GSPE. Formalin injection resulted in significant increase in the content of nitrites/nitrates (NO(x)) in mouse spinal cord. The rise of spinal NO(x) content by formalin was significantly attenuated by HPE and SJW. The pretreatment with SJW significantly potentiated an antinociceptive effect of morphine (0.3 mg/kg, s.c.), although concentrations of morphine in plasma and brain were not significantly changed by these herbal extracts. In conclusion, the present study has shown that SJW, HPE and GSPE exert significant antinociceptive effects in the formalin test of mice. In addition, opioidergic system seems to be involved in the antinociceptive effect of HPE but not SJW and GSPE. Furthermore, SJW potentiates morphine-induced antinociception possibly by pharmacodynamic interaction.
Collapse
Affiliation(s)
- Shinya Uchida
- Department of Pharmacokinetics and Pharmacodynamics and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Carlini VP, Gaydou RC, Schiöth HB, de Barioglio SR. Selective serotonin reuptake inhibitor (fluoxetine) decreases the effects of ghrelin on memory retention and food intake. ACTA ACUST UNITED AC 2007; 140:65-73. [PMID: 17189653 DOI: 10.1016/j.regpep.2006.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/23/2006] [Accepted: 11/10/2006] [Indexed: 11/23/2022]
Abstract
Ghrelin (Ghr) is an appetite stimulating hormone that is produced peripherally, by the stomach, and centrally as well. Previous investigations show that Ghr increases food intake and memory retention in rats, and that extra-hypothalamic structures, such as the hippocampus, participate in these effects. In the present work we analyzed the effect on food intake and memory retention induced by Ghr after serotonin (5-HT) availability modification at the serotoninergic synapses. Animals only treated with a selective serotonin reuptake inhibitor (SSRI), fluoxetine (FLU) 5 mg/kg or clomipramine (CLO) 2.5 and 5 mg/kg, showed a significant reduction in both food intake and memory retention. On the contrary, Ghr administration induces a significant increase in food intake and a dose-dependent increase in short and long term memory retention. When the animals were treated with FLU prior to Ghr injection, the food intake induced, as well as the expression of short and long term memory retention, was decreased. In conclusion, evidence presented in this paper suggests that the effects of Ghr on both feeding and memory retention in extra-hypothalamic structures such as the hippocampus, could depend on the availability of 5-HT.
Collapse
Affiliation(s)
- Valeria P Carlini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | | | | | | |
Collapse
|
15
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
16
|
Pedersen LH, Nielsen AN, Blackburn-Munro G. Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology (Berl) 2005; 182:551-61. [PMID: 16133135 DOI: 10.1007/s00213-005-0120-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Neuropathic pain is characterised by hyperexcitability within nociceptive pathways that manifests behaviourally as allodynia and hyperalgesia and remains difficult to treat with standard analgesics. However, antidepressants have shown reasonable preclinical and clinical anti-nociceptive efficacy against signs and symptoms of neuropathic pain. OBJECTIVES To ascertain whether inhibition of serotonin (5-HT) and/or noradrenaline (NA) and/or dopamine (DA) re-uptake preferentially mediates superior anti-nociception in preclinical pain models. METHODS The 5-HT re-uptake inhibitor fluoxetine (3-30 mg/kg), the NA re-uptake inhibitor reboxetine (3-30 mg/kg), the dual 5-HT and NA re-uptake inhibitor venlafaxine (3-100 mg/kg) and the dual DA and NA re-uptake inhibitor bupropion (3-30 mg/kg) were tested after intraperitoneal administration in rat models of acute, persistent and neuropathic pain. RESULTS Reboxetine and venlafaxine dose-dependently attenuated second-phase flinching in the formalin test; fluoxetine attenuated flinching only at the highest dose tested, whereas bupropion was ineffective. In the chronic constriction injury (CCI) and spinal nerve ligation models of neuropathic pain, hindpaw mechanical allodynia was significantly attenuated by fluoxetine and particularly by bupropion. Reboxetine and venlafaxine were completely ineffective. In contrast, reboxetine and venlafaxine reversed thermal hyperalgesia in CCI rats, whereas bupropion and fluoxetine were either minimally effective or ineffective. Fluoxetine, reboxetine and venlafaxine transiently increased the tail-flick latency in uninjured animals. Anti-nociceptive doses of drugs had no effect on motor function. CONCLUSIONS Combined re-uptake inhibition of 5-HT and NA appears to confer a greater degree of anti-nociception in animal models of experimental pain than single mechanism of action inhibitors. The selective attenuation of mechanical allodynia by bupropion suggests that the additional re-uptake of DA may further augment 5-HT/NA re-uptake mediated anti-nociception after nerve injury.
Collapse
Affiliation(s)
- Louise H Pedersen
- Department of Pharmacology, NeuroSearch A/S, 93 Pederstrupvej, 2750, Ballerup, Denmark
| | | | | |
Collapse
|
17
|
Oliva JM, Urigüen L, Pérez-Rial S, Manzanares J. Time course of opioid and cannabinoid gene transcription alterations induced by repeated administration with fluoxetine in the rat brain. Neuropharmacology 2005; 49:618-26. [PMID: 15936043 DOI: 10.1016/j.neuropharm.2005.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/05/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
This study examined the time course effects (8, 16 and 31 days) of fluoxetine administration (1 mg/kg, p.o./day) on serotonin transporter (5-HTT), opioid, tyrosine hydroxylase (TH) and cannabinoid CB1 receptor gene expressions in selected regions of the rat brain. Treatment with fluoxetine progressively decreased (35-55%) 5-HTT gene expression in dorsal raphe nucleus at 8, 16 and 31 days. The results revealed that fluoxetine administration decreased (30%) proenkephalin gene expression in nucleus accumbens shell (AcbS) and caudate-putamen (CPu) (31 days) but was without effect in nucleus accumbens core AcbC. A pronounced and time related decrease (25-65%) in prodynorphin gene expression was detected in AcbC, AcbS, CPu, hypothalamic supraoptic and paraventricular nuclei at all time points as well as in proopiomelanocortin gene expression (20-30%) in the arcuate nucleus (ARC) of the hypothalamus. On days 16 and 31, tyrosine hydroxylase gene expression in ventral tegmental area and substantia nigra and cannabinoid CB1 receptor gene expression in the CPu decreased (approximately 45-50% from vehicle). In conclusion, fluoxetine by inhibiting the reuptake of serotonin produced pronounced and time related alterations in genes involved in the regulation of emotional behaviour, suggesting that these neuroplastic changes may be involved, at least in part, in the clinical efficacy of this drug in neuropsychiatric disorders.
Collapse
Affiliation(s)
- José M Oliva
- Servicio de Psiquiatría y Unidad de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Bomholt SF, Mikkelsen JD, Blackburn-Munro G. Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent and neuropathic pain. Neuropharmacology 2005; 48:252-63. [PMID: 15695164 DOI: 10.1016/j.neuropharm.2004.09.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 07/05/2004] [Accepted: 09/16/2004] [Indexed: 11/28/2022]
Abstract
The effects of acute, systemic administration of amitriptyline, duloxetine and mirtazapine (antidepressant drugs that variously affect extracellular noradrenaline and serotonin levels) and the selective serotonin reuptake inhibitor (SSRI) citalopram were compared in rat models of experimental pain. None of the drugs (all 3-30 mg/kg, i.p.) affected acute nociceptive responses as measured in the tail flick test. In the hot plate test, duloxetine and mirtazapine significantly increased (P<0.05) the nociceptive response latency, whereas amitriptyline and citalopram were ineffective. In the formalin test, duloxetine and citalopram significantly attenuated, whereas amitriptyline and mirtazapine increased, second phase flinching behaviour (all P<0.05). However, amitriptyline and mirtazapine reduced second phase licking behaviour. In the chronic constriction injury model of neuropathic pain, thermal hyperalgesia of the injured hindpaw was significantly attenuated by all four drugs (P<0.05); only amitriptyline and duloxetine fully reversed thermal hypersensitivity. None of the drugs tested attenuated mechanical allodynia. In contrast amitriptyline, duloxetine and mirtazapine significantly reduced mechanical hyperalgesia (P<0.05); citalopram was ineffective. No drug-related effects on motor performance in the rotarod test were observed. These results (a) highlight the difficulty in correlating antinociceptive effects of drugs from different antidepressant classes across a range of animal pain models and (b) suggest that antidepressants that variously affect both noradrenaline and serotonin levels have more potent and efficacious antinociceptive effects than SSRIs (as exemplified by citalopram), against a range of pain-like behaviours in an animal model of neuropathic pain.
Collapse
Affiliation(s)
- Signe F Bomholt
- Department of Pharmacology, NeuroSearch A/S, 93 Pederstrupvej, DK-2750, Ballerup, Denmark.
| | | | | |
Collapse
|
19
|
Vartazarmian R, Malik S, Baker GB, Boksa P. Long-term effects of fluoxetine or vehicle administration during pregnancy on behavioral outcomes in guinea pig offspring. Psychopharmacology (Berl) 2005; 178:328-38. [PMID: 15365684 DOI: 10.1007/s00213-004-2003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/26/2004] [Indexed: 11/30/2022]
Abstract
RATIONALE Assessment of the benefits versus risks associated with antidepressant use during pregnancy must include an analysis of possible drug effects on fetal development. Human studies indicate that prenatal fluoxetine exposure is associated with adverse neonatal outcomes. Animal modeling may provide useful information concerning possible long-term effects of prenatal fluoxetine exposure. Limitations in previous such studies using rat models may be overcome using a guinea pig model in which fluoxetine is delivered by osmotic pump throughout pregnancy. METHODS Initial experiments measured the half-life of fluoxetine and dosing required to achieve human therapeutic blood levels in the guinea pig. In subsequent experiments, guinea pigs received fluoxetine or vehicle via osmotic pump or no treatment throughout pregnancy. Outcome measures included: pregnancy characteristics, weight gain, and, in offspring as adults, pain threshold, acoustic startle responses and prepulse inhibition. RESULTS There was no effect of treatment group on gestation length, number of live-births or still-births, maternal or offspring weight gain, and acoustic startle responses. In adult offspring, pain threshold was decreased by vehicle treatment during gestation. Prenatal fluoxetine increased pain threshold, relative to vehicle controls. Prepulse inhibition of startle was increased in adult offspring treated prenatally with either vehicle or fluoxetine compared to no treatment. CONCLUSIONS The guinea pig provides a practicable and clinically relevant model of prenatal fluoxetine exposure. Adult guinea pigs exposed to fluoxetine prenatally showed increased thermal pain thresholds but no change in prepulse inhibition, indicating selective long-term effects of prenatal fluoxetine on serotonin-modulated behaviors. Further studies on long-term effects of prenatal fluoxetine on nociception are warranted.
Collapse
Affiliation(s)
- Raphael Vartazarmian
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, 6875 LaSalle Boulevard, Verdun, QC, Canada, H4H 1R3
| | | | | | | |
Collapse
|
20
|
Girard P, Pansart Y, Gillardin JM. Nefopam potentiates morphine antinociception in allodynia and hyperalgesia in the rat. Pharmacol Biochem Behav 2004; 77:695-703. [PMID: 15099914 DOI: 10.1016/j.pbb.2004.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/15/2004] [Accepted: 01/19/2004] [Indexed: 11/16/2022]
Abstract
The objective of this study was to resolve discrepancies regarding the possible antinociceptive synergy between morphine and nefopam in animal models of pain. Firstly, we have examined the antinociceptive activity of nefopam, a nonopioid antinociceptive compound that inhibits monoamine reuptake, in pain models of allodynia and hyperalgesia induced by carrageenan injection, or skin and muscle incision of the rat hind paw. Single subcutaneous administration of nefopam at 30 mg/kg blocked carrageenan- and incision-induced thermal hyperalgesia, and weakly but significantly diminished carrageenan-induced tactile allodynia. A weaker dose of nefopam (10 mg/kg) only reduced carrageenan-induced tactile allodynia and incision-induced thermal hyperalgesia. Secondly, we assessed the usefulness of the coadministration of nefopam with morphine. Combination of a nonanalgesic dose of nefopam (10 mg/kg) with a nonanalgesic dose of morphine (0.3 or 1.0 mg/kg) completely inhibited carrageenan- or incision-induced thermal hyperalgesia, respectively. In carrageenan-induced tactile allodynia, coadministration of weak analgesic doses of nefopam (10 and 30 mg/kg) with a nonanalgesic dose (1 mg/kg) or moderately analgesic dose (3 mg/kg) of morphine significantly reduced or reversed allodynia, respectively. In conclusion, coadministration of nefopam with morphine enhances the analgesic potency of morphine, indicating a morphine sparing effect of nefopam.
Collapse
Affiliation(s)
- Philippe Girard
- Laboratoires Biocodex, Service de Pharmacologie, Zac de Mercières, 60200 Compiègne, France.
| | | | | |
Collapse
|
21
|
Nayebi ARM, Rezazadeh H. Involvement of serotoninergic mechanism in analgesia by castration and flutamide, a testosterone antagonist, in the rat formalin test. Pharmacol Biochem Behav 2004; 77:9-14. [PMID: 14724036 DOI: 10.1016/j.pbb.2003.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have suggested that testosterone has a role in nociception. Recently, we have shown that castration and flutamide, a testosterone antagonist, induce analgesia in the late phase of formalin test, which is related to increase of 5-HT levels in the dorsal horn of the lumbar spinal cord. The aim of the present study was to investigate the effect of fluoxetine, a selective serotonin reuptake inhibitor, on castration and flutamide-induced analgesia in order to further explore the role of 5-HT systems in such analgesia. Four weeks after castration, there was an analgesia in the late phase of formalin test, and this was potentiated by acute (0.32 mg kg(-1) ip) treatment of fluoxetine. Furthermore, coadministration of fluoxetine (0.32 mg kg(-1) ip) and flutamide (10 mg kg(-1) ip) produced more antinociceptive effect than those animals receiving fluoxetine and flutamide alone. The analgesic effect of fluoxetine (0.32 mg kg(-1) ip) and flutamide (10 mg kg(-1) ip) was abolished by pretreatment with 5,7-DHT (100 microg/rat it) and naloxone (2 mg kg(-1) ip). In summary, our data suggest that fluoxetine and flutamide have antinociceptive effects in tonic inflammatory pain through functional alteration of serotonergic systems, and their effects are potentiated by coadministration. The possible role of opioidergic system in their antinociceptive effect cannot be neglected.
Collapse
Affiliation(s)
- Ali Reza Mohajjel Nayebi
- Department of Pharmacology, Faculty of Pharmacy, Tabrize University of Medical Sciences, 51664, Tabriz, Iran.
| | | |
Collapse
|
22
|
Lötsch J, Skarke C, Liefhold J, Geisslinger G. Genetic Predictors of the Clinical Response to Opioid Analgesics. Clin Pharmacokinet 2004; 43:983-1013. [PMID: 15530129 DOI: 10.2165/00003088-200443140-00003] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review uses a candidate gene approach to identify possible pharmacogenetic modulators of opioid therapy, and discusses these modulators together with demonstrated genetic causes for the variability in clinical effects of opioids. Genetically caused inactivity of cytochrome P450 (CYP) 2D6 renders codeine ineffective (lack of morphine formation), slightly decreases the efficacy of tramadol (lack of formation of the active O-desmethyl-tramadol) and slightly decreases the clearance of methadone. MDR1 mutations often demonstrate pharmacogenetic consequences, and since opioids are among the P-glycoprotein substrates, opioid pharmacology may be affected by MDR1 mutations. The single nucleotide polymorphism A118G of the mu opioid receptor gene has been associated with decreased potency of morphine and morphine-6-glucuronide, and with decreased analgesic effects and higher alfentanil dose demands in carriers of the mutated G118 allele. Genetic causes may also trigger or modify drug interactions, which in turn can alter the clinical response to opioid therapy. For example, by inhibiting CYP2D6, paroxetine increases the steady-state plasma concentrations of (R)-methadone in extensive but not in poor metabolisers of debrisoquine/sparteine. So far, the clinical consequences of the pharmacogenetics of opioids are limited to codeine, which should not be administered to poor metabolisers of debrisoquine/sparteine. Genetically precipitated drug interactions might render a standard opioid dose toxic and should, therefore, be taken into consideration. Mutations affecting opioid receptors and pain perception/processing are of interest for the study of opioid actions, but with modern practice of on-demand administration of opioids their utility may be limited to explaining why some patients need higher opioid doses; however, the adverse effects profile may be modified by these mutations. Nonetheless, at a limited level, pharmacogenetics can be expected to facilitate individualised opioid therapy.
Collapse
Affiliation(s)
- Jörn Lötsch
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | | | | | | |
Collapse
|
23
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids and compounds derived from them, including further products of oxidation, condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2001 to June 2002 is reviewed, with 581 references cited.
Collapse
|
24
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
25
|
Kaur G, Kulkarni SK. Evidence for serotonergic modulation of progesterone-induced hyperphagia, depression and algesia in female mice. Brain Res 2002; 943:206-15. [PMID: 12101043 DOI: 10.1016/s0006-8993(02)02624-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The acute administration of the neurosteroid precursor, progesterone (10 mg/kg, s.c.) produced significant hyperphagia in female mice as observed at 0.5-, 1-, 2- and 3-h time intervals. At this dose progesterone also produced significant increase in immobility period duration in Porsolt's forced swim test and nociceptive response in hot-plate and tail-flick tests. Treatment with direct (quipazine, 5 mg/kg, i.p.) and indirect (fluoxetine, 10 mg/kg, i.p.) acting serotonergic agents per se produced significant hypophagia, decrease in immobility period and induced analgesic effect in hot-plate and tail-flick test. Further, treatment with both fluoxetine (10 mg/kg, i.p.) and quipazine (5 mg/kg, i.p.) significantly reversed progesterone-induced hyperphagia, depression and algesia in the female mice. Pretreatment with seganserin, a 5-HT(2) receptor antagonist (2 mg/kg, i.p.) significantly reversed fluoxetine and quipazine-induced antidepressant and analgesic effects. Seganserin reversed quipazine-induced hypophagia but in a replicate study it failed to reverse fluoxetine-induced hypophagia. Further, seganserin, 2 mg/kg, i.p., significantly reversed the suppressive effect of fluoxetine and quipazine on progesterone-induced hyperphagia, depression and algesia in hot-plate test. Seganserin also reversed the suppressive effect of fluoxetine and quipazine on progesterone-induced algesia in hot-plate test. These data suggest that the modulation of progesterone-induced effects by these serotonergic agents possibly involve 5-HT(2) receptor mechanisms. Further, the study underscores the use of serotonergic agents for the treatment of eating and affective disorders caused by the regular changes or disturbances of ovarian steroid levels in females.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
| | | |
Collapse
|