1
|
Nikiema WA, Ouédraogo M, Ouédraogo WP, Fofana S, Ouédraogo BHA, Delma TE, Amadé B, Abdoulaye GM, Sawadogo AS, Ouédraogo R, Semde R. Systematic Review of Chemical Compounds with Immunomodulatory Action Isolated from African Medicinal Plants. Molecules 2024; 29:2010. [PMID: 38731500 PMCID: PMC11085867 DOI: 10.3390/molecules29092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.
Collapse
Affiliation(s)
- Wendwaoga Arsène Nikiema
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Moussa Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Windbedma Prisca Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Souleymane Fofana
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Institut des Sciences de la Santé, Université NAZI Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Boris Honoré Amadou Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Talwendpanga Edwige Delma
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Belem Amadé
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Gambo Moustapha Abdoulaye
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Aimé Serge Sawadogo
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Raogo Ouédraogo
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Rasmané Semde
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| |
Collapse
|
2
|
Triantafyllakou I, Clemente N, Khetavat RK, Dianzani U, Tselios T. Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG 35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol Pharm 2022; 19:3795-3805. [PMID: 36098508 DOI: 10.1021/acs.molpharmaceut.2c00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.
Collapse
Affiliation(s)
- Iro Triantafyllakou
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece.,Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nausicaa Clemente
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ravi Kumar Khetavat
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion Patras, Greece
| |
Collapse
|
3
|
Mechanistic Insights from the Review and Evaluation of Ayurvedic Herbal Medicines for the Prevention and Management of COVID-19 Patients. J Herb Med 2022; 32:100554. [PMID: 35251909 PMCID: PMC8885324 DOI: 10.1016/j.hermed.2022.100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022]
Abstract
Introduction The need for specific therapeutics against infectious diseases is made very important at this moment by the COVID-19 pandemic caused by SARS-COV-2. Vaccines containing live attenuated or heat-inactivated pathogens elicit robust immune responses, but their safety is sometimes not assured. Subunit vaccines consisting of the most potent antigenic protein or carbohydrates of the pathogen are safer but often induce a weak immune response. Traditional Ayurveda medicines have a long history of safety and may act as immuno-modulators or vaccine adjuvants. They can reduce the amount of vaccine booster doses required to elicit an immune response against any pathogen. The main objective of this review is a mechanistic evaluation of the antiviral potential of Ayurveda herbal compositions for their ability to increase cytokine expression and enhance NK cell activity, activate CD4/ CD8 + T cells, and increase the formation of IL-2 and IFNγ against SARS-CoV-2 infection. Methods Various peer-reviewed publications, books, monographs, and reputed search engines were reviewed in depth. Information available from the Ayurvedic Pharmacopoeia and in recent in silico analyses were compared in order to understand the mechanism of action of herbal components against SARS-CoV-2. Results It was found in various molecular docking and molecular dynamics studies that many bioactive natural components of Ayurvedic medicines could prevent viral entry or multiplication within a human host. Conclusion Ayurvedic herbal medicines can be used either independently as therapeutics or as a complement to the modern-day recombinant vaccines with immediate effect. Ayurveda-based adjuvant therapy can also efficiently manage the secondary symptoms of COVID 19 patients.
Collapse
|
4
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|
5
|
Roces CB, Christensen D, Perrie Y. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics. Drug Deliv Transl Res 2021; 10:582-593. [PMID: 31919746 PMCID: PMC7228990 DOI: 10.1007/s13346-019-00699-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the formulation of nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is commonly employed due to its Food and Drug Administration and European Medicines Agency approval for human use, its ability to encapsulate a variety of moieties, its biocompatibility and biodegradability and its ability to offer a range of controlled release profiles. Common methods for the production of PLGA particles often adopt harsh solvents, surfactants/stabilisers and in general are multi-step and time-consuming processes. This limits the translation of these drug delivery systems from bench to bedside. To address this, we have applied microfluidic processes to develop a scale-independent platform for the manufacture, purification and monitoring of nanoparticles. Thereby, the influence of various microfluidic parameters on the physicochemical characteristics of the empty and the protein-loaded PLGA particles was evaluated in combination with the copolymer employed (PLGA 85:15, 75:25 or 50:50) and the type of protein loaded. Using this rapid production process, emulsifying/stabilising agents (such as polyvinyl alcohol) are not required. We also incorporate in-line purification systems and at-line particle size monitoring. Our results demonstrate the microfluidic control parameters that can be adopted to control particle size and the impact of PLGA copolymer type on the characteristics of the produced particles. With these nanoparticles, protein encapsulation efficiency varies from 8 to 50% and is controlled by the copolymer of choice and the production parameters employed; higher flow rates, combined with medium flow rate ratios (3:1), should be adopted to promote higher protein loading (% wt/wt). In conclusion, herein, we outline the process controls for the fabrication of PLGA polymeric nanoparticles incorporating proteins in a rapid and scalable manufacturing process. Scale-independent production of polymer nanoparticles.
Collapse
Affiliation(s)
- Carla B Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland.
| |
Collapse
|
6
|
Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021; 12:660932. [PMID: 33936096 PMCID: PMC8081181 DOI: 10.3389/fimmu.2021.660932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Skyla A. Duncan
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Lula Smith
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
7
|
Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother 2020; 133:110959. [PMID: 33197758 DOI: 10.1016/j.biopha.2020.110959] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
A well-functioning immune system of the host body plays pivotal role in the maintenance of ordinary physiological and immunological functions as well as internal environment. Balanced immunity enhances defense mechanism against infection, diseases and unwanted pathogens to avoid hypersensitivity reactions and immune related diseases. The ideal immune responses are the results of corrective interaction between the innate immune cells and acquired components of the immune system. Recently, the interest towards the immune system increased as significant target of toxicity due to exposure of chemicals, drugs and environmental pollutants. Numerous factors are involved in altering the immune responses of the host such as sex, age, stress, malnutrition, alcohol, genetic variability, life styles, environmental-pollutants and chemotherapy exposure. Immunomodulation is any modification of immune responses, often involved induction, amplification, attenuation or inhibition of immune responses. Several synthetic or traditional medicines are available in the market which promptly have many serious adverse effects and create pathogenic resistance. Phytochemicals are naturally occurring molecules, which significantly play an imperative role in modulating favorable immune responses. The present review emphasizes on the risk factors associated with alterations in immune responses, and immunomodulatory activity of phytochemicals specifically, glycosides, alkaloids, phenolic acids, flavonoids, saponins, tannins and sterols and sterolins.
Collapse
|
8
|
Stephens LM, Varga SM. Nanoparticle vaccines against respiratory syncytial virus. Future Virol 2020; 15:763-778. [PMID: 33343684 PMCID: PMC7737143 DOI: 10.2217/fvl-2020-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory disease in infants, the elderly and immunocompromised individuals. Despite the global burden, there is no licensed vaccine for RSV. Recent advances in the use of nanoparticle technology have provided new opportunities to address some of the limitations of conventional vaccines. Precise control over particle size and surface properties enhance antigen stability and prolong antigen release. Particle size can also be modified to target specific antigen-presenting cells in order to induce specific types of effector T-cell responses. Numerous nanoparticle-based vaccines are currently being evaluated for RSV including inorganic, polymeric and virus-like particle-based formulations. Here, we review the potential advantages of using different nanoparticle formulations in a vaccine for RSV, and discuss many examples of safe, and effective vaccines currently in both preclinical and clinical stages of testing.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Johnson L, Duschl A, Himly M. Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines (Basel) 2020; 8:vaccines8020237. [PMID: 32443671 PMCID: PMC7349961 DOI: 10.3390/vaccines8020237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.
Collapse
|
10
|
Verma R, Sahu R, Singh DD, Egbo TE. A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Semin Cell Dev Biol 2019; 96:44-52. [PMID: 30986568 DOI: 10.1016/j.semcdb.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The latest breakthrough towards the adequate and decisive methods of gene editing tools provided by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR Associated System), has been repurposed into a tool for genetically engineering eukaryotic cells and now considered as the major innovation in gene-related disorders. Nanotechnology has provided an alternate way to overcome the conventional problems where methods to deliver therapeutic agents have failed. The use of nanotechnology has the potential to safe-side the CRISPR/Cas9 components delivery by using customized polymeric nanoparticles for safety and efficacy. The pairing of two (CRISPR/Cas9 and nanotechnology) has the potential for opening new avenues in therapeutic use. In this review, we will discuss the most recent advances in developing nanoparticle-based CRISPR/Cas9 gene editing cargo delivery with a focus on several polymeric nanoparticles including fabrication proposals to combat microbial infections.
Collapse
Affiliation(s)
- Richa Verma
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 303002, India
| | - Timothy E Egbo
- Department of Biological Sciences, College of Science Technology Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
11
|
Malik A, Gupta M, Mani R, Bhatnagar R. Single-dose Ag85B-ESAT6-loaded poly(lactic- co-glycolic acid) nanoparticles confer protective immunity against tuberculosis. Int J Nanomedicine 2019; 14:3129-3143. [PMID: 31118627 PMCID: PMC6501725 DOI: 10.2147/ijn.s172391] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacillus Calmette-Guérin, the attenuated strain of Mycobacterium bovis, remains the only available vaccine against tuberculosis (TB). However, its ineffectiveness in adults against pulmonary TB and varied protective efficacy (0-80%) speak to an urgent need for the development of an improved and efficient TB vaccine. In this milieu, poly(lactic-co-glycolic acid) (PLGA), is a preferential candidate, due to such properties as biocompatibility, targeted delivery, sustained antigen release, and atoxic by-products. METHODS In this study, we formulated PLGA nanoparticles (NPs) encapsulating the bivalent H1 antigen, a fusion of Mycobacterium tuberculosis (Mtb) Ag85B and ESAT6 proteins, and investigated its role in immunomodulation and protection against Mtb challenge. Using the classical water-oil-water solvent-evaporation method, H1-NPs were prepared, with encapsulation efficiency of 86.1%±3.2%. These spherical NPs were ~244.4±32.6 nm in diameter, with a negatively charged surface (ζ-potential -4±0.6 mV). RESULTS Under physiological conditions, NPs degraded slowly and the encapsulated H1 antigen was released over a period of weeks. As a proof-of-concept vaccine candidate, H1 NPs were efficiently internalized by the THP-1 human macrophages. Six weeks after a single-dose vaccination, H1 NP-immunized C57BL/6J mice showed significant increase in the production of total serum IgG (P<0.0001) and its isotypes compared to H1 alone, IgG2a being the predominant one, followed by IgG1. Further, the cytokine-release profile of antigen-stimulated splenocyteculture supernatant indicated a strong TH1-biased immunoresponse in H1 NP-vaccinated mice, with ~6.03- and ~2.8-fold increase in IFNγ and TNFα cytokine levels, and ~twofold and 1.6 fold increase in IL4 and IL10 cytokines, respectively, compared to H1 alone-immunized mice. In protection studies, H1 NP-vaccinated mice displayed significant reductions in lung and spleen bacillary load (P<0.05) at 5-week post-Mtb H37Rv challenge and prolonged survival, with a mean survival time of 177 days, compared to H1 alone-vaccinated mice (mean survival time 80 days). CONCLUSION Altogether, our findings highlight the significance of the H1-PLGA nanoformulation in terms of providing long-term protection in mice with a single dose.
Collapse
Affiliation(s)
- Anshu Malik
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India,
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India,
| | - Rajesh Mani
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India,
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India,
| |
Collapse
|
12
|
Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. Interactions Between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy. Front Oncol 2018; 8:404. [PMID: 30319969 PMCID: PMC6167641 DOI: 10.3389/fonc.2018.00404] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the primary antigen-presenting cells and play key roles in the orchestration of the innate and adaptive immune system. Targeting DCs by nanotechnology stands as a promising strategy for cancer immunotherapy. The physicochemical properties of nanoparticles (NPs) influence their interactions with DCs, thus altering the immune outcome of DCs by changing their functions in the processes of maturation, homing, antigen processing and antigen presentation. In this review, we summarize the recent progress in targeting DCs using NPs as a drug delivery carrier in cancer immunotherapy, the recognition of NPs by DCs, and the ways the physicochemical properties of NPs affect DCs' functions. Finally, the molecular pathways in DCs that are affected by NPs are also discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Yan Xin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China.,School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| |
Collapse
|
13
|
Interaction of engineered nanomaterials with the immune system: Health-related safety and possible benefits. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
15
|
Liptrott NJ, Giardiello M, McDonald TO, Rannard SP, Owen A. Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems. J Nanobiotechnology 2018; 16:22. [PMID: 29544545 PMCID: PMC5853089 DOI: 10.1186/s12951-018-0349-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. Results Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. Conclusions Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety. Electronic supplementary material The online version of this article (10.1186/s12951-018-0349-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, 70 Pembroke Place, Block H, First Floor, Liverpool, L69 3GF, UK. .,European Nanomedicine Characterisation Laboratory, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK.
| | - Marco Giardiello
- Department of Chemistry, The University of Liverpool, Liverpool, UK
| | - Tom O McDonald
- Department of Chemistry, The University of Liverpool, Liverpool, UK
| | - Steve P Rannard
- Department of Chemistry, The University of Liverpool, Liverpool, UK.,European Nanomedicine Characterisation Laboratory, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, 70 Pembroke Place, Block H, First Floor, Liverpool, L69 3GF, UK.,European Nanomedicine Characterisation Laboratory, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018; 17:217-227. [PMID: 29382248 PMCID: PMC6330895 DOI: 10.1080/14760584.2018.1435279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. AREAS COVERED This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. EXPERT COMMENTARY The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.
Collapse
Affiliation(s)
- Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Richa Verma
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Joseph U. Igietseme
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, USA
| | - Skyla Duncan
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
17
|
Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:303-320. [DOI: 10.1007/978-981-13-0950-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E. A Poly(Lactic- co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8 + T Cells Essential for the Protection against Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:684. [PMID: 28659922 PMCID: PMC5468442 DOI: 10.3389/fimmu.2017.00684] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation of more than one chimeric multi-epitope peptides from different immunogenic L. infantum proteins in a proper biocompatible delivery system with the right adjuvant is considered as an improved promising approach for the development of a vaccine against VL.
Collapse
Affiliation(s)
- Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Olga Kammona
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | | | - Costas Kiparissides
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece.,Laboratory of Chemical Engineering B, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
19
|
Himly M, Mills-Goodlet R, Geppert M, Duschl A. Nanomaterials in the Context of Type 2 Immune Responses-Fears and Potentials. Front Immunol 2017; 8:471. [PMID: 28487697 PMCID: PMC5403887 DOI: 10.3389/fimmu.2017.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
The type 2 immune response is an adaptive immune program involved in defense against parasites, detoxification, and wound healing, but is predominantly known for its pathophysiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses directly, but have the potential to modulate ongoing reactions in various ways, including the delivery of substances aiming at providing a therapeutic benefit. We review, here, the state of knowledge concerning the interaction of NPs with type 2 immune responses and highlight their potential as a multifunctional platform for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Himly
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
20
|
Vaccine Adjuvant Nanotechnologies. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7151801 DOI: 10.1016/b978-0-323-39981-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The increasing sophistication of vaccine adjuvant design has been driven by improved understanding of the importance of nanoscale features of adjuvants to their immunological function. Newly available advanced nanomanufacturing techniques now allow very precise control of adjuvant particle size, shape, texture, and surface chemistry. Novel adjuvant concepts include self-assembling particles and targeted immune delivery. These individual concepts can be combined to create a single integrated vaccine nanoparticle-combining antigen, adjuvants, and DC-targeting elements. In the process, the concept of an adjuvant has broadened to include not only immune-stimulatory substances but also any design features that enhance the immune response against the relevant vaccine antigen. The modern definition of an adjuvant includes not only classical immune stimulators but also any aspects of particle size, shape, and surface chemistry that enhance vaccine immunogenicity. It even includes purely physical processes such as texturing of particle surfaces to maximize immunogenicity. Looking forward, adjuvants will increasingly be seen not as separate add-on items but as wholly integrated elements of a complete vaccine delivery package. Hence, vaccine systems will increasingly approach the complexity and sophistication of pathogens themselves, incorporating highly specific particle properties, contents, and behaviors, all designed to maximize immune system recognition and drive the immune response in the specific direction that affords maximal protection.
Collapse
|
21
|
Wang Y, Wang Y, Kang N, Liu Y, Shan W, Bi S, Ren L, Zhuang G. Construction and Immunological Evaluation of CpG-Au@HBc Virus-Like Nanoparticles as a Potential Vaccine. NANOSCALE RESEARCH LETTERS 2016; 11:338. [PMID: 27435343 PMCID: PMC4951386 DOI: 10.1186/s11671-016-1554-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Different types of vaccines have been developed to elicit active immunization to treat various diseases, while suffer from limitation of efficacy. Herein, a novel immunostimulatory nanocomposite (CpG-Au@HBc VLP) was rationally designed by self-assembling engineered virus-like particles encapsulating CpG-gold nanoparticle conjugates through electrostatic interactions. The monodispersed and uniformly sized CpG-Au@HBc VLP showed increased CD4(+), CD8(+) T cell numbers and stronger secretion of cytokine interferon-gamma than HBc VLPs adjuvanted with conventional Freund's adjuvant. Furthermore, the use of Au nanoparticles also generated enhanced immunogenicity of CpG and VLPs on both humoral and cellular immune pathways, as followed from increased expressions of total HBc-specific antibody titer, CD4(+) T cells, CD8(+) T cells, cytokine interleukin-4, and interferon-gamma. These findings demonstrated that CpG-Au@HBc VLP nanocomposite could induce robust cellular and humoral immune response, which could be a potential vaccine for future prophylactic and therapeutic application.
Collapse
Affiliation(s)
- Yarun Wang
- />Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Yue Wang
- />Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Ning Kang
- />Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Yongliang Liu
- />Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Wenjun Shan
- />Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Shengli Bi
- />National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Changbai Road 155, Changping District, Beijing, 102206 People’s Republic of China
| | - Lei Ren
- />Department of Biomaterials and Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
- />State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 People’s Republic of China
- />Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Guohong Zhuang
- />Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
22
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
23
|
Srivastava KD, Siefert A, Fahmy TM, Caplan MJ, Li XM, Sampson HA. Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. J Allergy Clin Immunol 2016; 138:536-543.e4. [DOI: 10.1016/j.jaci.2016.01.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/14/2015] [Accepted: 01/21/2016] [Indexed: 01/25/2023]
|
24
|
David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine (Lond) 2016; 11:1447-64. [PMID: 27171671 DOI: 10.2217/nnm-2016-0017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user.
Collapse
Affiliation(s)
- Christopher Aw David
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Andrew Owen
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
25
|
Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol 2016; 161:1579-89. [DOI: 10.1007/s00705-016-2812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|
26
|
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016; 12:1056-69. [PMID: 26752261 PMCID: PMC4962933 DOI: 10.1080/21645515.2015.1117714] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Collapse
Affiliation(s)
- A L Silva
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - P C Soema
- b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - B Slütter
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.,c Cluster BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - F Ossendorp
- d Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - W Jiskoot
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| |
Collapse
|
27
|
Liu J, Pradhan P, Roy K. Synthetic Polymeric Nanoparticles for Immunomodulation. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
29
|
Dudek I, Skoda M, Jarosz A, Szukiewicz D. The Molecular Influence of Graphene and Graphene Oxide on the Immune System Under In Vitro and In Vivo Conditions. Arch Immunol Ther Exp (Warsz) 2015; 64:195-215. [PMID: 26502273 DOI: 10.1007/s00005-015-0369-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Graphene and graphene oxide (GO), due to their physicochemical properties and biocompatibility, can be used as an innovative biomedical material in biodetection, drug distribution in the body, treating neoplasms, regenerative medicine, and in implant surgery. Research on the biomedical use of graphene and GO that has been carried out until now is very promising and shows that carbon nanomaterials present high biocompatibility. However, the intolerance of the immune system to graphene nanomaterials, however low, may in consequence make it impossible to use them in medicine. This paper shows the specific mechanism of the molecular influence of graphene and GO on macrophages and lymphocytes under in vitro and in vivo conditions and their practical application in medicine. Under in vitro conditions graphene and GO cause an increased production of pro-inflammatory cytokines, mainly IL-1, IL-6, IL-10 and TNF-α, as a result of the activation of Toll-like receptors in macrophages. Graphene activates apoptosis in macrophages through the TGFbr/Smad/Bcl-2 pathway and also through JNK kinases that are stimulated by an increase of ROS in the cell or through a signal received by Smad proteins. Under in vivo conditions, graphene nanomaterials induce the development of the local inflammatory reaction and the development of granulomas in parenchymal organs. However, there is a huge discrepancy between the results obtained by different research groups, which requires a detailed analysis. In this work we decided to collect and analyze existing research and tried to explain the discrepancies. Understanding the precise mechanism of how this nanomaterial influences immune system cells allows estimating the potential influence of grapheme and GO on the human body.
Collapse
Affiliation(s)
- Ilona Dudek
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Marta Skoda
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Anna Jarosz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| |
Collapse
|
30
|
Angsantikul P, Thamphiwatana S, Gao W, Zhang L. Cell Membrane-Coated Nanoparticles As an Emerging Antibacterial Vaccine Platform. Vaccines (Basel) 2015; 3:814-28. [PMID: 26457720 PMCID: PMC4693220 DOI: 10.3390/vaccines3040814] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/07/2023] Open
Abstract
Nanoparticles have demonstrated unique advantages in enhancing immunotherapy potency and have drawn increasing interest in developing safe and effective vaccine formulations. Recent technological advancement has led to the discovery and development of cell membrane-coated nanoparticles, which combine the rich functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials. This new class of biomimetic nanoparticles has inspired novel vaccine design strategies with strong potential for modulating antibacterial immunity. This article will review recent progress on using cell membrane-coated nanoparticles for antibacterial vaccination. Specifically, two major development strategies will be discussed, namely (i) vaccination against virulence factors through bacterial toxin sequestration; and (ii) vaccination against pathogens through mimicking bacterial antigen presentation.
Collapse
Affiliation(s)
- Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Soracha Thamphiwatana
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
31
|
Patel JM, Vartabedian VF, Bozeman EN, Caoyonan BE, Srivatsan S, Pack CD, Dey P, D'Souza MJ, Yang L, Selvaraj P. Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth. Biomaterials 2015; 74:231-44. [PMID: 26461116 DOI: 10.1016/j.biomaterials.2015.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/19/2015] [Accepted: 09/23/2015] [Indexed: 02/05/2023]
Abstract
Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity.
Collapse
Affiliation(s)
- Jaina M Patel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vincent F Vartabedian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erica N Bozeman
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brianne E Caoyonan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjay Srivatsan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Pack
- Metaclipse Therapeutics Corporation, 3175 Presidential Drive, Atlanta, GA 30340, USA
| | - Paulami Dey
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials 2015; 53:574-82. [PMID: 25890753 DOI: 10.1016/j.biomaterials.2015.02.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/04/2023]
Abstract
Phagocytes are important players in host exposure to nanomaterials. Macrophages in particular are believed to be among the "first responders" and primary cell types that uptake and process nanoparticles, mediating host biological responses by subsequent interactions with inflammatory signaling pathways and immune cells. However, variations in local microenvironmental cues can significantly change the functional and phenotype of these cells, impacting nanoparticle uptake and overall physiological response. Herein we focus on describing the response of specific RAW 264.7 macrophage phenotypes (M1, INF-gamma/LPS induced and M2, IL-4 induced) to Stöber silica nanoparticle exposure in vitro and how this response might correlate with macrophage response to nanoparticles in vivo. It was observed that variations in macrophage phenotype produce significant differences in macrophage morphology, silica nanoparticle uptake and toxicity. High uptake was observed in M1, versus low uptake in M2 cells. M2 cells also displayed more susceptibility to concentration dependent proliferative effects, suggesting potential M1 involvement in in vivo uptake. Nanoparticles accumulated within liver and spleen tissues, with high association with macrophages within these tissues and an overall Th1 response in vivo. Both in vitro and in vivo studies are consistent in demonstrating that silica nanoparticles exhibit high macrophage sequestration, particularly those with Th1/M1 phenotype and in clearance organs. This sequestration and phenotypic response should be a primary consideration when designing new Stöber silica nanoparticle systems, as it might affect the overall efficacy.
Collapse
|
33
|
Yang E, Qian W, Cao Z, Wang L, Bozeman EN, Ward C, Yang B, Selvaraj P, Lipowska M, Wang YA, Mao H, Yang L. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery. Am J Cancer Res 2015; 5:43-61. [PMID: 25553097 PMCID: PMC4265747 DOI: 10.7150/thno.10350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/18/2014] [Indexed: 12/23/2022] Open
Abstract
Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.
Collapse
|
34
|
Arthanari S, Mani G, Peng MM, Jang HT. Chitosan-HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:517-23. [PMID: 25472756 DOI: 10.3109/21691401.2014.966193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this research was to develop a suitable and alternate adjuvant for the tetanus toxoid (TT) vaccine that induces long term immunity after a single-dose immunization. In our study, the preformulation studies were carried out by using different ratios (7/3, 8/2, and 9/1) of chitosan-hydroxypropyl methylcellulose (HPMC)-blended empty microspheres. Moreover, TT was stabilized with heparin (at heparin concentrations of 1%, 2%, 3%, and 4% w/v) and encapsulated in ideal chitosan - HPMC (CHBMS) microspheres, by the water-in-oil-in-water (W/O/W) multiple emulsion method. The vaccine entrapment and the in vitro release efficiency of the CHBMS was evaluated for a period of 90 days. The release of antigens from the microspheres was determined by ELISA. Antigen integrity was investigated by SDS-PAGE. From the optimization studies, it was found that a chitosan/HPMC ratio of 8/2 produced a good yield, with microspheres that were spherical, regular and uniformly-sized. In the CHBMS, a heparin concentration of 3% w/v resulted in well-sustained antigen delivery for a period of 90 days. It was found that the characteristics of initial release could be observed in 2 days, followed by a constant release, and an almost 100% complete release in 90 days. From the in vitro release characteristics, the ideal batch of CHBMS (3% w/v heparin) was evaluated for in vivo studies by the antibody induction method. The antibody levels were measured for different combinations for the period of 9 months, and finally, with a second booster dose after 1 year. In conclusion, it was observed that CHBMS (combination-1) resulted in the antibody level of 4.5 IU/mL of guinea pig serum, and the level was 3.5 IU/mL for the Central Research Institute's alum-adsorbed tetanus toxoid (CRITT) (combination 2), after 1 year, with a second booster dose. This novel approach of using CHBMS may have potential advantages for single-step immunization with vaccines.
Collapse
Affiliation(s)
- Saravanakumar Arthanari
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| | - Ganesh Mani
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| | - Mei Mei Peng
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| | - Hyun Tae Jang
- a Department of Chemical Engineering , Hanseo University , Seosan, Chungcheongnam-do , South Korea
| |
Collapse
|
35
|
Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 2014; 10:2761-74. [PMID: 25483497 PMCID: PMC4977448 DOI: 10.4161/hv.29589] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/15/2014] [Indexed: 02/07/2023] Open
Abstract
Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials' physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants.
Collapse
Affiliation(s)
- Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology of China; Beijing, PR China
- Center for Inflammation and Epigenetics; Houston Methodist Research Institute; Houston, TX USA
| | - Rongfu Wang
- Center for Inflammation and Epigenetics; Houston Methodist Research Institute; Houston, TX USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology of China; Beijing, PR China
| |
Collapse
|
36
|
Liptrott NJ, Kendall E, Nieves DJ, Farrell J, Rannard S, Fernig DG, Owen A. Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a ‘mixed matrix’. Nanomedicine (Lond) 2014; 9:2467-79. [DOI: 10.2217/nnm.14.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: To investigate interactions of gold nanoparticles with primary human lymphocytes and determine if the addition of a self-assembled monolayer of ‘mixed-matrix’ ligands influenced these interactions. Materials & methods: The effect of gold nanoparticles was measured by exposure to peripheral blood mononuclear cells (PBMCs) from healthy volunteers with subsequent examination of cell proliferation, cytokine secretion and CD4+ T-cell activation relative to controls. Results: Capped and as-synthesized gold nanoparticles augmented PBMC proliferation in response to phytohemagglutinin and this effect was greater for as-synthesized than for capped gold nanoparticles. Release of IL-10 and IFN-γ from PBMCs was increased and the effect was again more marked for as-synthesized than capped gold nanoparticles. Conclusion: This method provides an ex vivo approach for studying the interaction of nanoparticles with the human immune system. Further research is required to determine the specific mechanisms for reduction of immune activation seen here which could then be used to design a truly ‘stealth’ nanoparticle. Original submitted 11 October 2013; Revised submitted 30 January 2014
Collapse
Affiliation(s)
- Neill J Liptrott
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Emily Kendall
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Daniel J Nieves
- Department of Structural & Chemical Biology, Institute of Integrative Biology, University of Liverpool, UK
| | - John Farrell
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, UK
| | - David G Fernig
- Department of Structural & Chemical Biology, Institute of Integrative Biology, University of Liverpool, UK
| | - Andrew Owen
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| |
Collapse
|
37
|
Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS NANO 2014; 8:2148-60. [PMID: 24559284 PMCID: PMC3990004 DOI: 10.1021/nn405033r] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Targeted immune tolerance is a coveted therapy for the treatment of a variety of autoimmune diseases, as current treatment options often involve nonspecific immunosuppression. Intravenous (iv) infusion of apoptotic syngeneic splenocytes linked with peptide or protein autoantigens using ethylene carbodiimide (ECDI) has been demonstrated to be an effective method for inducing peripheral, antigen-specific tolerance for treatment of autoimmune disease. Here, we show the ability of biodegradable poly(lactic-co-glycolic acid) (PLG) nanoparticles to function as a safe, cost-effective, and highly efficient alternative to cellular carriers for the induction of antigen-specific T cell tolerance. We describe the formulation of tolerogenic PLG particles and demonstrate that administration of myelin antigen-coupled particles both prevented and treated relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE), a CD4 T cell-mediated mouse model of multiple sclerosis (MS). PLG particles made on-site with surfactant modifications surpass the efficacy of commercially available particles in their ability to couple peptide and to prevent disease induction. Most importantly, myelin antigen-coupled PLG nanoparticles are able to significantly ameliorate ongoing disease and subsequent relapses when administered at onset or at peak of acute disease, and minimize epitope spreading when administered during disease remission. Therapeutic treatment results in significantly reduced CNS infiltration of encephalitogenic Th1 (IFN-γ) and Th17 (IL-17a) cells as well as inflammatory monocytes/macrophages. Together, these data describe a platform for antigen display that is safe, low-cost, and highly effective at inducing antigen-specific T cell tolerance. The development of such a platform carries broad implications for the treatment of a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Zoe Hunter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Derrick P. McCarthy
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Woon Teck Yap
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher T. Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Daniel R. Getts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Address correspondence to
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- Address correspondence to
| |
Collapse
|
38
|
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB, Renukaradhya GJ. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomedicine 2014; 9:679-94. [PMID: 24493925 PMCID: PMC3908835 DOI: 10.2147/ijn.s56127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.
Collapse
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Yun Wu
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Ly James Lee
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| |
Collapse
|
39
|
|
40
|
Immunomodulation and T helper TH₁/TH₂ response polarization by CeO₂ and TiO₂ nanoparticles. PLoS One 2013; 8:e62816. [PMID: 23667525 PMCID: PMC3648566 DOI: 10.1371/journal.pone.0062816] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/26/2013] [Indexed: 01/12/2023] Open
Abstract
Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies.
Collapse
|
41
|
Zaman M, Good MF, Toth I. Nanovaccines and their mode of action. Methods 2013; 60:226-31. [DOI: 10.1016/j.ymeth.2013.04.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
|
42
|
Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One 2013; 8:e61885. [PMID: 23637922 PMCID: PMC3639271 DOI: 10.1371/journal.pone.0061885] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/14/2013] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA)--an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.
Collapse
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Samer Singh
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
43
|
Santos DM, Carneiro MW, de Moura TR, Soto M, Luz NF, Prates DB, Irache JM, Brodskyn C, Barral A, Barral-Netto M, Espuelas S, Borges VM, de Oliveira CI. PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:985-95. [PMID: 23603355 DOI: 10.1016/j.nano.2013.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1β and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. FROM THE CLINICAL EDITOR In this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.
Collapse
Affiliation(s)
- Diego M Santos
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol 2012; 12:658-64. [DOI: 10.1097/aci.0b013e3283588c57] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Huntimer L, Wilson Welder JH, Ross K, Carrillo-Conde B, Pruisner L, Wang C, Narasimhan B, Wannemuehler MJ, Ramer-Tait AE. Single immunization with a suboptimal antigen dose encapsulated into polyanhydride microparticles promotes high titer and avid antibody responses. J Biomed Mater Res B Appl Biomater 2012; 101:91-8. [DOI: 10.1002/jbm.b.32820] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022]
|
46
|
Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C, Bouvet M, Kruse C, Grotjahn D, Ichim T, Minev B. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomedicine 2012; 7:1475-87. [PMID: 22619507 PMCID: PMC3356185 DOI: 10.2147/ijn.s29506] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of −15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund’s adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL responses in vivo.
Collapse
Affiliation(s)
- Wenxue Ma
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fredriksen B, Sævareid K, McAuley L, Lane M, Bøgwald J, Dalmo R. Early immune responses in Atlantic salmon (Salmo salar L.) after immunization with PLGA nanoparticles loaded with a model antigen and β-glucan. Vaccine 2011; 29:8338-49. [DOI: 10.1016/j.vaccine.2011.08.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/13/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
48
|
Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63:943-55. [PMID: 21679733 DOI: 10.1016/j.addr.2011.05.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/18/2010] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Development of safe and effective cancer vaccine formulation is a primary focus in the field of cancer immunotherapy. The recognition of the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity has led to the development of several strategies that target vaccine antigens to DCs as an attempt for developing potent, specific and lasting anti-tumor T cell responses. The main objective of this review is to provide an overview on the application of poly (d,l-lactic-co-glycolic acid) nanoparticles (PLGA-NPs) as cancer vaccine delivery system and highlight their potential in the development of future therapeutic cancer vaccines. PLGA-NPs containing antigens along with immunostimulatory molecules (adjuvants) can not only target antigen actively to DCs, but also provide immune activation and rescue impaired DCs from tumor-induced immuosupression.
Collapse
|
49
|
Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A. Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res 2011; 28:2288-301. [PMID: 21560020 DOI: 10.1007/s11095-011-0459-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/26/2011] [Indexed: 12/11/2022]
Abstract
PURPOSE Mannosylation of vaccines is a promising strategy to selectively target vaccine antigens to the mannose receptor expressed on dendritic cells (DCs). The purpose of this study was to investigate the effect of mannan (MN) chemically conjugated to poly(D, L-lactide-co-glycolic acid) (PLGA) nanoparticles (NPs) on antigen-specific T-cell responses elicited by a model antigen (ovalbumin, OVA) loaded in PLGA-NPs. METHODS In vitro T-cell proliferation assay was done to assess the ability of DCs treated with OVA-NPs (±MN decoration) to induce antigen-specific T-cell activation. The efficacy of this vaccination strategy was further evaluated in vivo, where T-cell proliferation was performed to evaluate activation of T-cell responses in lymph nodes and spleens isolated from the vaccinated mice. RESULTS Our results demonstrate that MN-decorated antigen-loaded PLGA-NPs simultaneously enhanced antigen-specific CD4+ and CD8+ T-cell responses compared to non-decorated NPs. CONCLUSIONS MN decoration of PLGA-NPs is a promising strategy for enhancing antigen-specific T-cell responses.
Collapse
Affiliation(s)
- Samar Hamdy
- Faculty of Pharmacy and Pharmaceutical Sciences 3133 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
50
|
Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 2011; 32:4052-7. [PMID: 21377204 DOI: 10.1016/j.biomaterials.2011.02.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
Although oral vaccination has numerous advantages over the commonly used parenteral route, degradation of vaccine and its low uptake in the lymphoid tissue of the gastrointestinal (GI) tract still impede their development. In this study, the model antigen ovalbumin (OVA) and the immunostimulant monophosphoryl lipid A (MPLA) were incorporated in polymeric nanoparticles based on poly(D,L-lactide-co-glycolide) (PLGA). These polymeric carriers were orally administered to BALB/c mice (Bagg albino, inbred strain of mouse) and the resulting time-dependent systemic and mucosal immune responses towards OVA were assessed by measuring the OVA-specific IgG and IgA titers using an enzyme-linked immunosorbent assay (ELISA). PLGA nanoparticles were spherical in shape, around 320 nm in size, negatively charged (around -20 mV) and had an OVA and MPLA payload of 9.6% and 0.86%, respectively. A single immunization with formulation containing (OVA + MPLA) incorporated in PLGA nanoparticles induced a stronger IgG immune response than that induced by OVA in PBS solution or OVA incorporated into PLGA nanoparticles. Moreover, significantly higher IgA titers were generated by administration of (OVA + MPLA)/PLGA nanoparticles compared to IgA stimulated by control formulations, proving the capability of inducing a mucosal immunity. These findings demonstrate that co-delivery of OVA and MPLA in PLGA nanoparticles promotes both systemic and mucosal immune responses and represents therefore a suitable strategy for oral vaccination.
Collapse
Affiliation(s)
- Federica Sarti
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 52, Josef Möller Haus, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|