1
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Sedlák F, Kvasnička A, Marešová B, Brumarová R, Dobešová D, Dostálová K, Šrámková K, Pehr M, Šácha P, Friedecký D, Konvalinka J. Parallel Metabolomics and Lipidomics of a PSMA/GCPII Deficient Mouse Model Reveal Alteration of NAAG Levels and Brain Lipid Composition. ACS Chem Neurosci 2024; 15:1342-1355. [PMID: 38377674 PMCID: PMC10995945 DOI: 10.1021/acschemneuro.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
Collapse
Affiliation(s)
- František Sedlák
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
- First
Department of Internal Medicine - Hematology, Charles University General Hospital in Prague, Prague 110 01, Czechia
| | - Aleš Kvasnička
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Barbora Marešová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
| | - Radana Brumarová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Dana Dobešová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Kateřina Dostálová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Karolína Šrámková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - Martin Pehr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Third
Department of Medicine − Department of Endocrinology and Metabolism
of the first Faculty of Medicine and General University Hospital in
Prague, Charles University, Prague 110 01, Czechia
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - David Friedecký
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Jan Konvalinka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 8, Prague 128 00, Czechia
| |
Collapse
|
3
|
Becker I, Wang-Eckhardt L, Eckhardt M. NAAG synthetase deficiency has only low influence on pathogenesis in a Canavan disease mouse model. J Inherit Metab Dis 2024; 47:230-243. [PMID: 38011891 DOI: 10.1002/jimd.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Canavan disease (CD) is a leukodystrophy caused by mutations in the N-acetylaspartate (NAA) hydrolase aspartoacylase (ASPA). Inability to degrade NAA and its accumulation in the brain results in spongiform myelin degeneration. NAA is mainly synthesized by neurons, where it is also a precursor of the neuropeptide N-acetylaspartylglutamate (NAAG). Hydrolysis of this peptide by glutamate carboxypeptidases is an additional source of extracellular NAA besides the instant neuronal release of NAA. This study examines to what extent NAA released from NAAG contributes to NAA accumulation and pathogenesis in the brain of Aspanur7/nur7 mutant mice, an established model of CD. Towards this aim, Aspanur7/nur7 mice with additional deficiencies in NAAG synthetase genes Rimklb and/or Rimkla were generated. Loss of myelin in Aspanur7/nur7 mice was not significantly affected by Rimkla and Rimklb deficiency and there was also no obvious change in the extent of brain vacuolation. Astrogliosis was slightly reduced in the forebrain of Rimkla and Rimklb double deficient Aspanur7/nur7 mice. However, only minor improvements at the behavioral level were found. The brain NAA accumulation in CD mice was, however, not significantly reduced in the absence of NAAG synthesis. In summary, there was only a weak tendency towards reduced pathogenic symptoms in Aspanur7/nur7 mice deficient in NAAG synthesis. Therefore, we conclude that NAAG metabolism has little influence on NAA accumulation in Aspanur7/nur7 mice and development of pathological symptoms in CD.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Yang Y, Knol MJ, Wang R, Mishra A, Liu D, Luciano M, Teumer A, Armstrong N, Bis JC, Jhun MA, Li S, Adams HHH, Aziz NA, Bastin ME, Bourgey M, Brody JA, Frenzel S, Gottesman RF, Hosten N, Hou L, Kardia SLR, Lohner V, Marquis P, Maniega SM, Satizabal CL, Sorond FA, Valdés Hernández MC, van Duijn CM, Vernooij MW, Wittfeld K, Yang Q, Zhao W, Boerwinkle E, Levy D, Deary IJ, Jiang J, Mather KA, Mosley TH, Psaty BM, Sachdev PS, Smith JA, Sotoodehnia N, DeCarli CS, Breteler MMB, Ikram MA, Grabe HJ, Wardlaw J, Longstreth WT, Launer LJ, Seshadri S, Debette S, Fornage M. Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI. Brain 2023; 146:492-506. [PMID: 35943854 PMCID: PMC9924914 DOI: 10.1093/brain/awac290] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at ∼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co-localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specifically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood-brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood-brain barrier disruption.
Collapse
Affiliation(s)
- Yunju Yang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ruiqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Nicola Armstrong
- Mathematics and Statistics, Curtin University, 6845 Perth, Australia
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
| | - Min A Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Nasir Ahmad Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, McGill University, Montréal, Quebec, Canada H3A 0G1
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, Quebec, Canada H3A 0G1
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17475, Germany
| | - Rebecca F Gottesman
- Stroke Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
| | - Norbert Hosten
- Department of Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Valerie Lohner
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, Montréal, Quebec, Canada H3A 0G1
- Department for Human Genetics, McGill University Genome Centre, McGill University, Montréal, Quebec, Canada H3A 0G1
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02115, USA
| | - Farzaneh A Sorond
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria C Valdés Hernández
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, OX3 7LF, UK
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17475, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Rostock, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA 01701, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Thomas H Mosley
- The Memory Impairment Neurodegenerative Dementia (MIND) Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, University of New South Wales, Randwick, NSW 2031, Australia
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 02115, USA
| | - Charles S DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA 95816, USA
| | - Monique M B Breteler
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald 17475, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Rostock, Germany
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - W T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
- Department of Neurology, University of Washington, Seattle, WA 98104, USA
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229, USA
- The Framingham Heart Study, Framingham, MA 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02115, USA
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, F-33000 Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA 02115, USA
- CHU de Bordeaux, Department of Neurology, F-33000 Bordeaux, France
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Jiménez-Espinoza C, Marcano Serrano F, González-Mora JL. N-Acetylaspartyl-Glutamate Metabolism in the Cingulated Cortices as a Biomarker of the Etiology in ASD: A 1H-MRS Model. Molecules 2021; 26:675. [PMID: 33525414 PMCID: PMC7866086 DOI: 10.3390/molecules26030675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
As brain functional resonance magnetic studies show an aberrant trajectory of neurodevelopment, it is reasonable to predict that the degree of neurochemical abnormalities indexed by magnetic resonance spectroscopy (1H-MRS) might also change according to the developmental stages and brain regions in autism spectrum disorders (ASDs). Since specific N-Acetyl-aspartate (NAA) changes in children's metabolism have been found in the anterior cingulate cortex (ACC) but not in the posterior cingulate cortex (PCC), we analyzed whether the metabolites of ASD youths change between the cingulate cortices using 1H-MRS. l-glutamate (Glu) and l-Acetyl-aspartate (NAA) are products from the N-Acetyl-aspartyl-glutamate (NAAG) metabolism in a reaction that requires the participation of neurons, oligodendrocytes, and astrocytes. This altered tri-cellular metabolism has been described in several neurological diseases, but not in ASD. Compared to the typical development (TD) group, the ASD group had an abnormal pattern of metabolites in the ACC, with a significant increase of glutamate (12.10 ± 3.92 mM; p = 0.02); additionally, N-Acetyl-aspartyl-glutamate significantly decreased (0.41 ± 0.27 mM; p = 0.02) within ASD metabolism abnormalities in the ACC, which may allow the development of new therapeutic possibilities.
Collapse
Affiliation(s)
- Carmen Jiménez-Espinoza
- Laboratory Neurochemistry & Neuroimages, Department of Basic Medical Sciences, Faculty of Health Sciences, Physiology Section, University of La Laguna, 38200 Tenerife, Spain; (F.M.S.); (J.L.G.-M.)
| | - Francisco Marcano Serrano
- Laboratory Neurochemistry & Neuroimages, Department of Basic Medical Sciences, Faculty of Health Sciences, Physiology Section, University of La Laguna, 38200 Tenerife, Spain; (F.M.S.); (J.L.G.-M.)
- Magnetic Resonance Service for Biomedical Research (SRMIB), IMETISA, Canary University Hospital, 38320 Tenerife, Spain
| | - José Luis González-Mora
- Laboratory Neurochemistry & Neuroimages, Department of Basic Medical Sciences, Faculty of Health Sciences, Physiology Section, University of La Laguna, 38200 Tenerife, Spain; (F.M.S.); (J.L.G.-M.)
- Magnetic Resonance Service for Biomedical Research (SRMIB), IMETISA, Canary University Hospital, 38320 Tenerife, Spain
| |
Collapse
|
6
|
Sanches EF, Van de Looij Y, Toulotte A, da Silva AR, Romero J, Sizonenko SV. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats. Front Neurol 2018; 9:480. [PMID: 29988536 PMCID: PMC6026645 DOI: 10.3389/fneur.2018.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI) in very immature rats. Methods: Female pregnant Wistar rats were divided into swimming (SW) or sedentary (SE) groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3), rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI), the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified. Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests. Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost-benefits. HIGHLIGHTS- Prematurity is a major cause of neurodevelopmental impairments; - Swimming during pregnancy reduces brain damage after HI injury; - Pregnancy is an important but underestimated preventive window.
Collapse
Affiliation(s)
- Eduardo F Sanches
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Yohan Van de Looij
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Audrey Toulotte
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Analina R da Silva
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacqueline Romero
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
9
|
Hoshino H, Kubota M. Canavan disease: clinical features and recent advances in research. Pediatr Int 2014; 56:477-83. [PMID: 24977939 DOI: 10.1111/ped.12422] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
Abstract
Canavan disease (CD) is a genetic neurodegenerative leukodystrophy that results in the spongy degeneration of white matter in the brain. CD is characterized by mutations in the gene encoding aspartoacylase (ASPA), the substrate enzyme that hydrolyzes N-acetylaspartic acid (NAA) to acetate and aspartate. Elevated NAA and subsequent deficiency in acetate associated with this disease cause progressive neurological symptoms, such as macrocephaly, visuocognitive dysfunction, and psychomotor delay. The prevalence of CD is higher among Ashkenazi Jewish people, and several types of mutations have been reported in the gene coding ASPA. Highly elevated NAA is more specific to CD than other leukodystrophies, and an examination of urinary NAA concentration is useful for diagnosing CD. Many researchers are now examining the mechanisms responsible for white matter degeneration or dysmyelination in CD using mouse models, and several persuasive hypotheses have been suggested for the pathophysiology of CD. One is that NAA serves as a water pump; consequently, a disorder in NAA catabolism leads to astrocytic edema. Another hypothesis is that the hydrolyzation of NAA in oligodendrocytes is essential for myelin synthesis through the supply of acetate. Although there is currently no curative therapy for CD, dietary supplements are candidates that may retard the progression of the symptoms associated with CD. Furthermore, gene therapies using viral vectors have been investigated using rat models. These therapies have been found to be tolerable with no severe long-term adverse effects, reduce the elevated NAA in the brain, and may be applied to humans in the future.
Collapse
Affiliation(s)
- Hideki Hoshino
- Department of Pediatrics, University of Tokyo, Tokyo, Japan; Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
10
|
Abstract
NAAG (N-acetylaspartylglutamate) is an abundant neuropeptide in the vertebrate nervous system. It is released from synaptic terminals in a calcium-dependent manner and has been shown to act as an agonist at the type II metabotropic glutamate receptor mGluR3. It has been proposed that NAAG may also be released from axons. So far, however, it has remained unclear how NAAG is transported into synaptic or other vesicles before it is secreted. In the present study, we demonstrate that uptake of NAAG and the related peptide NAAG2 (N-acetylaspartylglutamylglutamate) into vesicles depends on the sialic acid transporter sialin (SLC17A5). This was demonstrated using cell lines expressing a cell surface variant of sialin and by functional reconstitution of sialin in liposomes. NAAG uptake into sialin-containing proteoliposomes was detectable in the presence of an active H+-ATPase or valinomycin, indicating that transport is driven by membrane potential rather than H+ gradient. We also show that sialin is most probably the major and possibly only vesicular transporter for NAAG and NAAG2, because ATP-dependent transport of both peptides was not detectable in vesicles isolated from sialin-deficient mice.
Collapse
|
11
|
The role of metabolomics in neurological disease. J Neuroimmunol 2012; 248:48-52. [DOI: 10.1016/j.jneuroim.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
|
12
|
|
13
|
Takanashi JI, Saito S, Aoki I, Barkovich AJ, Ito Y, Inoue K. Increased N-acetylaspartate in model mouse of pelizaeus-merzbacher disease. J Magn Reson Imaging 2011; 35:418-25. [DOI: 10.1002/jmri.22817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Lodder-Gadaczek J, Becker I, Gieselmann V, Wang-Eckhardt L, Eckhardt M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. J Biol Chem 2011; 286:16693-706. [PMID: 21454531 DOI: 10.1074/jbc.m111.230136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. NAAG is an agonist at group II metabotropic glutamate receptors. In addition to its role as a neuropeptide, a number of functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump. We recently identified a NAAG synthetase (now renamed NAAG synthetase I, NAAGS-I), encoded by the ribosomal modification protein rimK-like family member B (Rimklb) gene, as a member of the ATP-grasp protein family. We show here that a structurally related protein, encoded by the ribosomal modification protein rimK-like family member A (Rimkla) gene, is another NAAG synthetase (NAAGS-II), which in addition, synthesizes the N-acetylated tripeptide N-acetylaspartylglutamylglutamate (NAAG(2)). In contrast, NAAG(2) synthetase activity was undetectable in cells expressing NAAGS-I. Furthermore, we demonstrate by mass spectrometry the presence of NAAG(2) in murine brain tissue and sciatic nerves. The highest concentrations of both, NAAG(2) and NAAG, were found in sciatic nerves, spinal cord, and the brain stem, in accordance with the expression level of NAAGS-II. To our knowledge the presence of NAAG(2) in the vertebrate nervous system has not been described before. The physiological role of NAAG(2), e.g. whether it acts as a neurotransmitter, remains to be determined.
Collapse
Affiliation(s)
- Julia Lodder-Gadaczek
- Institute of Biochemistry and Molecular Biology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
15
|
Becker I, Lodder J, Gieselmann V, Eckhardt M. Molecular characterization of N-acetylaspartylglutamate synthetase. J Biol Chem 2010; 285:29156-64. [PMID: 20643647 DOI: 10.1074/jbc.m110.111765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
16
|
Mochel F, Boildieu N, Barritault J, Sarret C, Eymard-Pierre E, Seguin F, Schiffmann R, Boespflug-Tanguy O. Elevated CSF N-acetylaspartylglutamate suggests specific molecular diagnostic abnormalities in patients with white matter diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1112-7. [PMID: 20637281 DOI: 10.1016/j.bbadis.2010.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND In order to identify biomarkers useful for the diagnosis of genetic white matter disorders we compared the metabolic profile of patients with leukodystrophies with a hypomyelinating or a non-hypomyelinating MRI pattern. METHODS We used a non-a priori method of in vitro ¹H-NMR spectroscopy on CSF samples of 74 patients with leukodystrophies. RESULTS We found an elevation of CSF N-acetylaspartylglutamate (NAAG) in patients with Pelizaeus-Merzbacher disease (PMD)-PLP1 gene, Pelizaeus-Merzbacher-like disease-GJC2 gene and Canavan disease-ASPA gene. In the PMD group, NAAG was significantly elevated in the CSF of all patients with PLP1 duplication (19/19) but was strictly normal in 6 out of 7 patients with PLP1 point mutations. Additionally, we previously reported increased CSF NAAG in patients with SLC17A5 mutations. CONCLUSIONS Elevated CSF NAAG is a biomarker that suggests specific molecular diagnostic abnormalities in patients with white matter diseases. Our findings also point to unique pathological functions of the overexpressed PLP in PMD patients with duplication of this gene.
Collapse
Affiliation(s)
- Fanny Mochel
- APHP, Department of Genetics, Hôpital de La Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomas AG, Rojas CJ, Hill JR, Shaw M, Slusher BS. Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition. Anal Biochem 2010; 404:94-6. [PMID: 20434427 DOI: 10.1016/j.ab.2010.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/20/2010] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
Abstract
We report the characterization of two methods for the analysis of N-acetyl-aspartyl-glutamate (NAAG) in biological fluids. In the first method, NAAG concentrations were calculated based on differences between glutamate concentrations before and after NAAG hydrolysis with exogenous glutamate carboxypeptidase II (GCP II) using high-performance liquid chromatography (HPLC) followed by fluorescence detection. In the second method, NAAG levels were quantified directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analyses of NAAG levels in human cerebrospinal fluid samples using either method gave similar results within experimental error, confirming the validity of the two independent measurements. These methods will be useful in future clinical trials to assess drug-induced GCP II inhibition in biological matrices.
Collapse
Affiliation(s)
- Ajit G Thomas
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
18
|
Mochel F, Engelke UFH, Barritault J, Yang B, McNeill NH, Thompson JN, Vanderver A, Wolf NI, Willemsen MA, Verheijen FW, Seguin F, Wevers RA, Schiffmann R. Elevated CSF N-acetylaspartylglutamate in patients with free sialic acid storage diseases. Neurology 2010; 74:302-5. [PMID: 20101035 DOI: 10.1212/wnl.0b013e3181cbcdc4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate body fluids of patients with undiagnosed leukodystrophies using in vitro (1)H-NMR spectroscopy (H-NMRS). METHODS We conducted a cross-sectional study using high-resolution in vitro H-NMRS on CSF and urine samples. RESULTS We found a significant increase of free sialic acid in CSF or urine in 6 of 41 patients presenting with hypomyelination of unknown etiology. Molecular genetic testing revealed pathogenic mutations in the SLC17A5 gene in all 6 patients. H-NMRS revealed an increase of N-acetylaspartylglutamate in the CSF of all patients with SLC17A5 mutation (range 13-114 micromol/L, reference <12 micromol/L). CONCLUSION In patients with undiagnosed leukodystrophies, increased free sialic acid in CSF or urine is a marker for free sialic acid storage disorder and facilitates the identification of the underlying genetic defect. Because increase of N-acetylaspartylglutamate in CSF has been observed in other hypomyelinating disorders, it can be viewed as a marker of a subgroup of hypomyelinating disorders.
Collapse
Affiliation(s)
- F Mochel
- INSERM UMR S975, Hôpital de La Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kohlschütter A, Bley A, Brockmann K, Gärtner J, Krägeloh-Mann I, Rolfs A, Schöls L. Leukodystrophies and other genetic metabolic leukoencephalopathies in children and adults. Brain Dev 2010; 32:82-9. [PMID: 19427149 DOI: 10.1016/j.braindev.2009.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 11/17/2022]
Abstract
Abnormalities of CNS white matter are frequently detected in patients with neurological disorders when MRI studies are performed. Among the many causes of such abnormalities, a large group of rare genetic diseases poses considerable diagnostic problems. Here we present a compilation of genetic leukoencephalopathies to consider when one is confronted with white matter disease of possibly genetic origin. The table contains essentials such as age at onset of symptoms, clinical and MRI characteristics, basic defect, and useful diagnostic studies. The table serves as a diagnostic check list.
Collapse
|
20
|
Engelke UFH, Tassini M, Hayek J, de Vries M, Bilos A, Vivi A, Valensin G, Buoni S, Zannolli R, Brussel W, Kremer B, Salomons GS, Veendrick-Meekes MJBM, Kluijtmans LAJ, Morava E, Wevers RA. Guanidinoacetate methyltransferase (GAMT) deficiency diagnosed by proton NMR spectroscopy of body fluids. NMR IN BIOMEDICINE 2009; 22:538-544. [PMID: 19288536 DOI: 10.1002/nbm.1367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In patients with guanidinoacetate methyltransferase (GAMT) deficiency several parameters may point towards the diagnosis of GAMT deficiency. These include the low levels of creatine and creatinine in urine, the high concentration of guanidinoacetic acid (GAA) in urine and the low levels of creatine and creatinine in the cerebrospinal fluid (CSF). In this study, body fluids from 10 GAMT deficient patients were analysed using (1)H NMR spectroscopy. The urine 1D (1)H NMR spectra of all the patients showed a doublet resonance at 3.98 ppm (pH 2.50) derived from GAA present in high concentration. For this compound, a good recovery and good correlation was found between an LC-MS/MS method and (1)H NMR spectroscopy. In CSF NMR spectra of these patients, the singlet resonances of creatine and creatinine (3.05 and 3.13 ppm, respectively) were absent (normally always present in (1)H NMR spectra of CSF). Due to overlap by other resonances, the doublet of GAA could not be observed. Our data demonstrate that (1)H NMR spectroscopy of urine and CSF can be used to diagnose patients with GAMT deficiency.
Collapse
Affiliation(s)
- Udo F H Engelke
- Laboratory of Pediatrics and Neurology, Nijmegen Medical Center, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li X, Li J, Peng XQ, Spiller K, Gardner EL, Xi ZX. Metabotropic glutamate receptor 7 modulates the rewarding effects of cocaine in rats: involvement of a ventral pallidal GABAergic mechanism. Neuropsychopharmacology 2009; 34:1783-96. [PMID: 19158667 PMCID: PMC3739975 DOI: 10.1038/npp.2008.236] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.p.) dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration under both fixed-ratio and progressive-ratio reinforcement conditions, but failed to alter either basal or cocaine-enhanced locomotion or oral sucrose self-administration, suggesting a specific inhibition of cocaine reward. Microinjections of AMN082 (1-5 microg/microl per side) into the nucleus accumbens (NAc) or ventral pallidum (VP), but not dorsal striatum, also inhibited cocaine self-administration in a dose-dependent manner. Intra-NAc or intra-VP co-administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP, 5 microg/microl per side), a selective mGluR7 allosteric antagonist, significantly blocked AMN082's action, suggesting an effect mediated by mGluR7 in these brain regions. In vivo microdialysis demonstrated that cocaine (10 mg/kg, i.p.) priming significantly elevated extracellular DA in the NAc or VP, while decreasing extracellular GABA in VP (but not in NAc). AMN082 pretreatment selectively blocked cocaine-induced changes in extracellular GABA, but not in DA, in both naive rats and cocaine self-administration rats. These data suggest: (1) mGluR7 is critically involved in cocaine's acute reinforcement; (2) GABA-, but not DA-, dependent mechanisms in the ventral striatopallidal pathway appear to underlie AMN082's actions; and (3) AMN082 or other mGluR7-selective agonists may be useful in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Xia Li
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jie Li
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Xiao-Qing Peng
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Krista Spiller
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
22
|
Kolodziejczyk K, Hamilton NB, Wade A, Káradóttir R, Attwell D. The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brain 2009; 132:1496-508. [PMID: 19383832 PMCID: PMC2685922 DOI: 10.1093/brain/awp087] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Elevations of the levels of N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) are associated with myelin loss in the leucodystrophies Canavan's disease and Pelizaeus-Merzbacher-like disease. NAAG and NAA can activate and antagonize neuronal N-methyl-D-aspartate (NMDA) receptors, and also act on group II metabotropic glutamate receptors. Oligodendrocytes and their precursors have recently been shown to express NMDA receptors, and activation of these receptors in ischaemia leads to the death of oligodendrocyte precursors and the loss of myelin. This raises the possibility that the failure to develop myelin, or demyelination, occurring in the leucodystrophies could reflect an action of NAAG or NAA on oligodendrocyte NMDA receptors. However, since the putative subunit composition of NMDA receptors on oligodendrocytes differs from that of neuronal NMDA receptors, the effects of NAAG and NAA on them are unknown. We show that NAAG, but not NAA, evokes an inward membrane current in cerebellar white matter oligodendrocytes, which is reduced by NMDA receptor block (but not by block of metabotropic glutamate receptors). The size of the current evoked by NAAG, relative to that evoked by NMDA, was much smaller in oligodendrocytes than in neurons, and NAAG induced a rise in [Ca2+]i in neurons but not in oligodendrocytes. These differences in the effect of NAAG on oligodendrocytes and neurons may reflect the aforementioned difference in receptor subunit composition. In addition, as a major part of the response in oligodendrocytes was blocked by tetrodotoxin (TTX), much of the NAAG-evoked current in oligodendrocytes is a secondary consequence of activating neuronal NMDA receptors. Six hours exposure to 1 mM NAAG did not lead to the death of cells in the white matter. We conclude that an action of NAAG on oligodendrocyte NMDA receptors is unlikely to be a major contributor to white matter damage in the leucodystrophies.
Collapse
|
23
|
Sartori S, Burlina AB, Salviati L, Trevisson E, Toldo I, Laverda AM, Burlina AP. Increased level of N-acetylaspartylglutamate (NAAG) in the CSF of a patient with Pelizaeus-Merzbacher-like disease due to mutation in the GJA12 gene. Eur J Paediatr Neurol 2008; 12:348-50. [PMID: 17881259 DOI: 10.1016/j.ejpn.2007.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 07/10/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Autosomal recessive Pelizaeus-Merzbacher-like disease 1 (PMLD1) is a hypomyelinating disorder of the central nervous system (CNS) with virtually identical phenotype to Pelizaeus-Merzbacher disease (PMD). PMLD1 is caused by mutations in GJA12 gene, PMD is due to mutations in PLP1 gene. Elevated levels of N-acetylaspartylglutamate (NAAG), the most abundant peptide neuromodulator in the human brain, have been recently reported in cerebral spinal fluid (CSF) of patients with PMD. Using capillary electrophoresis, we analyzed for the first time, the CSF from a girl with PMLD1 and detected high concentrations of NAAG. This finding confirms the hypothesis that NAAG may be involved in myelination-related processes and can be considered as a useful diagnostic marker not only for patients with the PLP1 related disorder, but also in those with Pelizaeus-Merzbacher like hypomyelinating disease due to other defined genetic causes, such as PMLD1.
Collapse
Affiliation(s)
- Stefano Sartori
- Department of Pediatrics, University of Padua, Via Giustiniani, 3, 35128 Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Engelke UFH, Sass JO, Van Coster RN, Gerlo E, Olbrich H, Krywawych S, Calvin J, Hart C, Omran H, Wevers RA. NMR spectroscopy of aminoacylase 1 deficiency, a novel inborn error of metabolism. NMR IN BIOMEDICINE 2008; 21:138-47. [PMID: 17516490 DOI: 10.1002/nbm.1170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aminoacylase 1 deficiency is a novel inborn error of metabolism. The clinical significance of the deficiency is under discussion, as well as the possible consequences of the defect for brain metabolism and function. This study includes the five originally published cases as well as three novel ones. NMR spectroscopy of urine, serum and cerebrospinal fluid has been used to study these patients. A typical profile with 11 accumulating N-acetylated amino acids was observed in urine from the patients. The concentration of most of the accumulating metabolites is typically 100-500 micromol/mmol creatinine. Two additional minor N-acetylated metabolites remain unidentified. The concentrations of the accumulating metabolites are <20 micromol/L in serum from the patients. Interestingly we found no evidence of an increased concentration of N-acetylated amino acids in the cerebrospinal fluid from one patient. Our data define aminoacylase 1 deficiency at the metabolite level providing a specific urinary profile of accumulating N-acetylated amino acids.
Collapse
Affiliation(s)
- Udo F H Engelke
- Radboud University Nijmegen Medical Center, Laboratory of Pediatrics and Neurology, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mochel F, Barritault J, Boldieu N, Eugène M, Sedel F, Durr A, Seguin F. Apports de la spectroscopie par résonance magnétique nucléaire des fluides dans l’étude de maladies métaboliques et neurodégénératives. Rev Neurol (Paris) 2007; 163:960-5. [DOI: 10.1016/s0035-3787(07)92640-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Pacheco Otalora LF, Moffett JR, Garrido-Sanabria ER. Selective vulnerability of hippocampal NAAGergic neurons in experimental temporal lobe epilepsy. Brain Res 2007; 1144:219-30. [PMID: 17346683 DOI: 10.1016/j.brainres.2007.01.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
The dipeptide N-acetylaspartylglutamate (NAAG) has been recently implicated in numerous neurological disorders. NAAG binds and stimulates group II metabotropic glutamate receptors producing a down-modulation of synaptic glutamate release. In the present immunohistochemical study, we compare the distribution of NAAG-containing (NAAGergic) neurons between the hippocampus of control and chronic epileptic rats obtained with the pilocarpine model of temporal lobe epilepsy. In the hippocampal formation, NAAGergic neurons comprise a subpopulation of GABAergic neurons. Examination by light microscopy revealed a significant reduction of NAAG-immunoreactive neurons in CA3 stratum oriens (35.8%) and CA1 stratum oriens (78.87%), stratum pyramidale (40%), and stratum radiatum (56.6%). Similar loss of NAAGergic neurons was observed in the subiculum characterized by 71.82% and 77.53% reduction in the stratum oriens and radiatum, respectively, when compared with controls. NAAGergic neurons in CA2 and dentate gyrus were apparently resistant to seizure-related cell loss but appeared more complex and exhibited numerous NAAG-positive puncta. Our findings indicate a selective vulnerability of NAAGergic neurons in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Luis F Pacheco Otalora
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, 80 Fort Brown, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
27
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1017] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
28
|
Blumkin L, Lev D, Watemberg N, Lerman-Sagie T. Hypomyelinating leukoencephalopathy with paroxysmal tonic upgaze and absence of psychomotor development. Mov Disord 2007; 22:226-30. [PMID: 17149740 DOI: 10.1002/mds.21277] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypomyelinating leukoencephalopathies are characterized by a substantial and permanent deficit in myelin deposition in the brain. Although our knowledge and understanding of the etiology of white matter diseases has progressively increased, many cases with this disorder remain undiagnosed, despite extensive evaluations. Recently, new disease entities have been defined by combining magnetic resonance imaging pattern recognition and clinical features. We describe a 1-year-old Ashkenazi Jewish girl with a hypomyelinating leukoencephalopathy, who presented in the neonatal period with episodes of sustained paroxysmal tonic upward gaze, roving eye movements, pendular nystagmus, and severe hypotonia, with the later appearance of pyramidal and extrapyramidal signs and no development. In addition, she has dysmorphic signs. This clinical picture is not consistent with any of the previously described hypomyelinating leukoencephalopathies and may represent a new entity.
Collapse
Affiliation(s)
- Lubov Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
29
|
Wolf NI, Cundall M, Rutland P, Rosser E, Surtees R, Benton S, Chong WK, Malcolm S, Ebinger F, Bitner-Glindzicz M, Woodward KJ. Frameshift mutation in GJA12 leading to nystagmus, spastic ataxia and CNS dys-/demyelination. Neurogenetics 2006; 8:39-44. [PMID: 16969684 DOI: 10.1007/s10048-006-0062-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Mutations in GJA12 have been shown to cause Pelizaeus-Merzbacher-like disease (PMLD). We present two additional patients from one family carrying a homozygous frameshift mutation in GJA12. Both presented initially with nystagmus. The older girl developed ataxia first, then progressive spastic ataxia. The younger boy suffered from severe sensory neuropathy. Magnetic resonance imaging (MRI) of both children showed progressive demyelination in addition to dysmyelination, and also characteristic brainstem abnormalities. In children with nystagmus, ataxia and dysmyelination, mutation analysis of GJA12 should be considered early, especially if inheritance is autosomal recessive.
Collapse
Affiliation(s)
- Nicole I Wolf
- Clinical and Molecular Genetics Unit, Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The leukodystrophies comprise an ever-expanding group of rare central nervous system disorders with defined clinical, pathological, and genetic characteristics. The broader term, leukoencephalopathy, is applied to all brain white matter diseases, whether their molecular cause is known. Magnetic resonance imaging has helped to elucidate new forms of leukodystrophy as well as to permit longitudinal studies of disease progression. The white matter abnormality may appear similar in different forms of leukodystrophy so that in most cases, further studies such as magnetic resonance spectroscopy, tissue biopsies, enzyme studies, and molecular DNA analyses are needed to pinpoint the specific diagnosis. The primary inherited leukoencephalopathies include dysmyelinating, hypomyelinative, and vacuolating forms. Metabolic and vascular causes account for most of the secondary forms, but other inherited syndromes are recognized that have their onset in childhood or adult life and are characterized by distinctive clinical and neuropathologic features. This review discusses some of the mechanisms that have been proposed to explain deficiencies of myelin and the molecular genetic bases underlying these disorders.
Collapse
Affiliation(s)
- Gilles Lyon
- Department of Child Neurology, University of Louvain School of Medicine, Brussels, Belgium
| | | | | |
Collapse
|
31
|
Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B. Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem 2005; 38:997-1008. [PMID: 16139832 DOI: 10.1016/j.clinbiochem.2005.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/11/2005] [Accepted: 08/04/2005] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To set up a novel simple, sensitive, and reliable ion-pairing HPLC method for the synchronous separation of several purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis and screening of inborn errors of metabolism (IEM). DESIGN AND METHODS The separation was set up using a Hypersil C-18, 5-microm particle size, 250 x 4.6 mm column, and a step gradient using two buffers and tetrabutylammonium hydroxide as the pairing reagent. A highly sensitive diode array UV detector was set up at a wavelength between 200 and 300 nm that revealed purines and pyrimidines at 260 nm and other compounds at 206 nm. RESULTS Compounds were determined in the plasma of 15 healthy adults, in the urine of 50 healthy subjects (1-3 years, 4-6 years, 8-10 years, 12-18 years, 25-35 years), and in 10 non-pathological amniotic fluid samples. To assess the validity of the chemical diagnosis of IEM, plasma and urine samples were analyzed in patients affected by Canavan disease (n = 10; mean age 4.6 +/- 2.3). Low plasma levels of N-acetylaspartate (16.96 +/- 19.57 micromol/L plasma; not detectable in healthy adults) and dramatically high urinary N-acetylaspartate concentrations (1872.03 +/- 631.86 micromol/mmol creatinine; 450 times higher than that which was observed in age-matched controls) were recorded. Neither N-acetylglutamate nor N-acetylaspartylglutamate could be detected in the plasma or urine of controls or patients with Canavan disease. CONCLUSIONS The results demonstrate the suitability of the present ion-pairing HPLC separation with UV detection of cytosine, cytidine, creatinine, uracil, uridine, beta-pseudouridine, adenine, 3-methyladenine, hypoxanthine, xanthine, xanthosine, inosine, guanosine, ascorbic acid, thymine, thymidine, uric acid, 1-methyluric acid, orotic acid, N-acetylaspartate, N-acetylglutamate, N-acetylaspartylglutamate, malonic acid, methylmalonic acid, GSH, and GSSG as a reliable method for the prenatal and neonatal chemical diagnosis and screening of IEM using biological fluids.
Collapse
Affiliation(s)
- Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|