1
|
Thuppanattumadam Ananthasubramanian S, Arunachal G, Padmanabha H, Mahale RR. Adult-Onset EIF2B-Pathies: A Clinical, Imaging and Genetic Profiling with Literature Review. Can J Neurol Sci 2024:1-8. [PMID: 39450483 DOI: 10.1017/cjn.2024.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Vanishing white matter syndrome is one of the leukoencephalopathies caused by recessive mutations in gene EIF2B1-5. Adult-onset EIF2B-pathies (clinical onset after age 16 years) have been reported to be less common. OBJECTIVE Description of the clinical, imaging and genetic profile of adult-onset EIF2B-pathies and comparison of Indian cohort with Asian and European cohorts. METHODS Report of two cases of adult-onset EIF2B-pathies and a comprehensive review of genetically confirmed adult-onset EIF2B-pathies since 2001 from Indian, Asian and European cohorts. RESULTS Two patients were females, with median age at presentation of 25.5 years (24-27 years) and onset at 19 years (18-20 years). The median duration of symptoms was 6.5 years (6-7 years). Both had cerebellar ataxia, spasticity, cognitive impairment and bladder involvement. Brain magnetic resonance imaging (MRI) showed leukoencephalopathy with rarefaction in both patients and corpus callosum involvement in one patient. Genetics showed homozygous missense variant in the EIF2B3 gene in both patients. The Indian cohort of seven patients had similar clinical and radiological features and common variants in EIF2B3 (n = 4). The Asian cohort had 24 cases, and the European cohort had 61 cases with similar clinical features, radiological features and common variants in EIF2B5. CONCLUSION Adult-onset EIF2B-pathies have a distinct clinical profile of female predominance with cerebellar ataxia, spasticity and cognitive decline as the commonest triad of clinical manifestations and leukoencephalopathy with rarefaction on brain MRI. Variants in EIF2B5 were common in the Asian and European cohorts and EIF2B3 in the Indian cohort.
Collapse
Affiliation(s)
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Rohan Ramachandra Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| |
Collapse
|
2
|
Benzoni C, Moscatelli M, Farina L, Magri S, Ciano C, Scaioli V, Alverà S, Cammarata G, Bianchi-Marzoli S, Castellani M, Zito FM, Marotta G, Piacentini S, Villacara A, Mantegazza R, Gellera C, Durães J, Gouveia A, Matos A, do Carmo Macário M, Pareyson D, Taroni F, Di Bella D, Salsano E. Adult-onset leukodystrophy with vanishing white matter: a case series of 19 patients. J Neurol 2023; 270:4219-4234. [PMID: 37171481 DOI: 10.1007/s00415-023-11762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Leukodystrophy with vanishing white matter (LVWM) is an autosomal recessive disease with typical pediatric-onset caused by mutations in one of the five EIF2B genes. Adult-onset (AO) cases are rare. METHODS In this observational study, we reviewed clinical and laboratory information of the patients with AO-LVWM assessed at two referral centers in Italy and Portugal from Jan-2007 to Dec-2019. RESULTS We identified 18 patients (13 females) with AO-LVWM caused by EIF2B5 or EIF2B3 mutations. Age of neurological onset ranged from 16 to 60 years, with follow-ups occurring from 2 to 37 years. Crucial symptoms were cognitive and motor decline. In three patients, stroke-like events were the first manifestation; in another, bladder dysfunction remained the main complaint across decades. Brain MRI showed white matter (WM) rarefaction in all cases, except two. Diffusion-weighted imaging documented focal hyperintensity in the acute stage of stroke-like events. 1H-spectroscopy primarily showed N-acetyl-aspartate reduction; 18fluorodeoxyglucose-PET revealed predominant frontoparietal hypometabolism; evoked potential studies demonstrated normal-to-reduced amplitudes; neuro-ophthalmological assessment showed neuroretinal thinning, and b-wave reduction on full-field electroretinogram. Interestingly, we found an additional patient with LVWM-compatible phenotype and monoallelic variants in two distinct eIF2B genes, EIF2B1 and EIF2B2. CONCLUSIONS AO-LVWM presents varying clinical manifestations at onset, including stroke-like events. WM rarefaction is the most consistent diagnostic clue even in the latest onset cases. Spectroscopy and electrophysiological features are compatible with axon, rather than myelin, damage. Cerebral glucose metabolic abnormalities and retinal alterations can be present. LVWM might also be caused by a digenic inheritance affecting the eIF2B complex.
Collapse
Affiliation(s)
- Chiara Benzoni
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Marco Moscatelli
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Farina
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vidmer Scaioli
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Alverà
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, Istituto Auxologico Italiano IRCCS Capitanio Hospital, Milan, Italy
| | - Stefania Bianchi-Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, Istituto Auxologico Italiano IRCCS Capitanio Hospital, Milan, Italy
| | - Massimo Castellani
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felicia Margherita Zito
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sylvie Piacentini
- Unit of Neuropsychology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Renato Mantegazza
- Unit of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - João Durães
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Gouveia
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anabela Matos
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria do Carmo Macário
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ettore Salsano
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
3
|
Ren Y, Yu X, Chen B, Tang H, Niu S, Wang X, Pan H, Zhang Z. Genotypic and phenotypic characteristics of juvenile/adult onset vanishing white matter: a series of 14 Chinese patients. Neurol Sci 2022; 43:4961-4977. [DOI: 10.1007/s10072-022-06011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
4
|
Xu L, Zhong M, Yang Y, Wang M, An N, Xu X, Zhu Y, Li Z, Chen H, Zhao R, Zheng X. Adult-onset vanishing white matter in a patient with EIF2B3 variants misdiagnosed as multiple sclerosis. Neurol Sci 2021; 43:2659-2667. [PMID: 34755279 DOI: 10.1007/s10072-021-05710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vanishing white matter (VWM) is an autosomal recessive disorder characterized by childhood ataxia with central hypomyelination. Adult-onset VWM should be considered as a differential diagnosis for suspected cases of multiple sclerosis (MS). METHODS Targeted region sequencing (TRS) and Sanger sequencing validation were performed to identify and validate the likely pathogenic mutations in a family with VWM. RESULTS The main clinical manifestations of the proband included decreased vision and sleepiness accompanied by atrophy of the corpus callosum, affected inner rim of the corpus callosum, decreased apparent diffusion coefficient value or persistent hyperintensity-diffusion-weighted imaging, atrophied optic nerve, and no recordable visual evoked potentials. Due to the slow development and atypical VWM image features, MS was initially suspected. After prednisone was administered, the patient's condition did not improve significantly, and other diseases were considered. The TRS and Sanger sequencing identified compound heterozygous mutations of EIF2B3 in the proband; c.965C > G /p.Ala322Gly in exon 8 and c.130G > A/p.Glu44Lys in exon 2 were missense mutations inherited from the mother and father, respectively. The proband's oldest brother had the same compound heterozygous mutations but showed no symptoms. CONCLUSION This is the first report of adult-onset VWM in a Chinese family. Initially, MS was suspected, and genetic testing confirmed the diagnosis of VWM. This study may further broaden the clinical spectrum of EIF2B3, thus providing a foundation for further research on the pathogenesis and genetic therapy for VWM.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Yuyuan Yang
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Meng Wang
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Nina An
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Xin Xu
- Department of Neurology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Yufeng Zhu
- Department of Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Zengwen Li
- Department of Radiology, Gaomi Municipal Hospital, Gaomi, 261500, Shandong, China
| | - Huili Chen
- Department of Ophthalmology, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Renliang Zhao
- Department of Neurology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China.
| | - Xueping Zheng
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
5
|
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Accogli A, Brais B, Tampieri D, La Piana R. Long-Standing Psychiatric Features as the Only Clinical Presentation of Vanishing White Matter Disease. J Neuropsychiatry Clin Neurosci 2020; 31:276-279. [PMID: 31046592 DOI: 10.1176/appi.neuropsych.18110279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Andrea Accogli
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| | - Bernard Brais
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| | - Donatella Tampieri
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| | - Roberta La Piana
- The Departments of Neurology and Neurosurgery and Pediatrics, McGill University, Montreal (Accogli); DINOGMI-Università di Genova, Italy (Accogli); IRCCS Ospedale Policlinico San Martino, Genova, Italy (Accogli); the Laboratory of Neurogenetics of Motion, Montreal Neurological Institute, McGill University, Montreal (Brais, La Piana); the Department of Human Genetics, McGill University, Montreal (Brais); the Department of Diagnostic Radiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada (Tampieri); and the Department of Neuroradiology, Montreal Neurological Hospital and Institute, McGill University, Montreal (La Piana)
| |
Collapse
|
7
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Wei C, Qin Q, Chen F, Zhou A, Wang F, Zuo X, Chen R, Lyu J, Jia J. Adult-onset vanishing white matter disease with the EIF2B2 gene mutation presenting as menometrorrhagia. BMC Neurol 2019; 19:203. [PMID: 31438897 PMCID: PMC6704498 DOI: 10.1186/s12883-019-1429-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
Background Vanishing white matter disease (VWMD) is one of the most prevalent inherited leukoencephalopathies, which generally presents in childhood as a progressive disorder while less beginning in adulthood. The present report describes the clinical, neuroimaging, and genetic findings of a female patient with adult-onset VWMD. In addition, to provide a clearer delineation of the clinical and genetic characteristics of female adult-onset VWMD patients, 32 genetically confirmed female adult-onset EIF2B-mutated cases are summarized. Case presentation The patient described here suffered from long-term menometrorrhagia prior to manifesting progressive neurological impairments that included tremors, bilateral pyramidal tract injury, cerebellar ataxia, and dementia. To the best of our knowledge, this is the first female patient with adult-onset VWMD suffering from long-term menometrorrhagia attributed to the c.254 T > A and c.496A > G mutations in the EIF2B2 gene; the c.496A > G mutation has not been reported in previous studies. The patient also exhibited metabolic dysfunction. The present findings widen the spectrum of phenotypic heterogeneity observed in VWMD patients. Conclusions The present report summarizes 33 female patients with adult-onset VWMD to provide an overview of the clinical and genetic characteristics of this disorder and ovarioleukodystrophy. The mean age of clinical onset in female patients with adult-onset VWMD was 36.8 years and the neurological symptoms primarily included motor and cognitive dysfunction such as paraparesis, cerebellar ataxia, and executive deficits. In addition, ovarian failure occurred in all of these female patients and usually preceded the neurological symptoms. Furthermore, several patients also suffered from metabolic dysfunction. All 33 patients had mutations on EIF2B1–5, and of these, the c.338 G > A mutation in the EIF2B5 gene (p.Arg113His) was the most common. These findings suggest that clinicians should be aware of adult-onset forms of VWMD as well as its typical magnetic resonance imaging (MRI) and clinical characteristics although this pathology is usually recognized as a pediatric disorder. No curative treatment is presently available, and thus early recognition is important to prevent triggering events and to allow for genetic counseling. Electronic supplementary material The online version of this article (10.1186/s12883-019-1429-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cuibai Wei
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| | - Qi Qin
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Fei Chen
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Aihong Zhou
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Fen Wang
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xiumei Zuo
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jianping Jia
- Innovation center for neurological disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Geriatric Cognitive Disorders, Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
9
|
Bugiani M, Vuong C, Breur M, van der Knaap MS. Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol 2019; 28:408-421. [PMID: 29740943 DOI: 10.1111/bpa.12606] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.
Collapse
Affiliation(s)
- Marianna Bugiani
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Vuong
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Departments of Pathology, Child Neurology, and Functional Genomics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Esmer C, Blanco Hernández G, Saavedra Alanís V, Reyes Vaca JG, Bravo Oro A. [Association between homozygous c.318A>GT mutation in exon 2 of the EIF2B5 gene and the infantile form of vanishing white matter leukoencephalopathy]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2018; 74:364-369. [PMID: 29382480 DOI: 10.1016/j.bmhimx.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Vanishing white matter disease is one of the most frequent leukodystrophies in childhood with an autosomal recessive inheritance. A mutation in one of the genes encoding the five subunits of the eukaryotic initiation factor 2 (EIF2B5) is present in 90% of the cases. The diagnosis can be accomplished by the clinical and neuroradiological findings and molecular tests. CASE REPORT We describe a thirteen-month-old male with previous normal neurodevelopment, who was hospitalized for vomiting, hyperthermia and irritability. On examination, cephalic perimeter and cranial pairs were normal. Hypotonia, increased muscle stretching reflexes, generalized white matter hypodensity on cranial tomography were found. Fifteen days after discharge, he suffered minor head trauma presenting drowsiness and focal seizures. Magnetic resonance showed generalized hypointensity of white matter. Vanishing white matter disease was suspected, and confirmed by sequencing of the EIF2B5 gene, revealing a homozygous c.318A> T mutation in exon 2. Subsequently, visual acuity was lost and cognitive and motor deterioration was evident. The patient died at six years of age due to severe pneumonia. CONCLUSIONS This case contributes to the knowledge of the mutational spectrum present in Mexican patients and allows to extend the phenotype associated to this mutation.
Collapse
Affiliation(s)
- Carmen Esmer
- Departamento de Genética, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Gabriela Blanco Hernández
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Víctor Saavedra Alanís
- Departamento de Biología Molecular, Facultad de Medicina de la Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Jorge Guillermo Reyes Vaca
- Departamento de Radiología e Imagen, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México
| | - Antonio Bravo Oro
- Departamento de Neuropediatría, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
11
|
Lowther C, Merico D, Costain G, Waserman J, Boyd K, Noor A, Speevak M, Stavropoulos DJ, Wei J, Lionel AC, Marshall CR, Scherer SW, Bassett AS. Impact of IQ on the diagnostic yield of chromosomal microarray in a community sample of adults with schizophrenia. Genome Med 2017; 9:105. [PMID: 29187259 PMCID: PMC5708103 DOI: 10.1186/s13073-017-0488-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
Background Schizophrenia is a severe psychiatric disorder associated with IQ deficits. Rare copy number variations (CNVs) have been established to play an important role in the etiology of schizophrenia. Several of the large rare CNVs associated with schizophrenia have been shown to negatively affect IQ in population-based controls where no major neuropsychiatric disorder is reported. The aim of this study was to examine the diagnostic yield of microarray testing and the functional impact of genome-wide rare CNVs in a community ascertained cohort of adults with schizophrenia and low (< 85) or average (≥ 85) IQ. Methods We recruited 546 adults of European ancestry with schizophrenia from six community psychiatric clinics in Canada. Each individual was assigned to the low or average IQ group based on standardized tests and/or educational attainment. We used rigorous methods to detect genome-wide rare CNVs from high-resolution microarray data. We compared the burden of rare CNVs classified as pathogenic or as a variant of unknown significance (VUS) between each of the IQ groups and the genome-wide burden and functional impact of rare CNVs after excluding individuals with a pathogenic CNV. Results There were 39/546 (7.1%; 95% confidence interval [CI] = 5.2–9.7%) schizophrenia participants with at least one pathogenic CNV detected, significantly more of whom were from the low IQ group (odds ratio [OR] = 5.01 [2.28–11.03], p = 0.0001). Secondary analyses revealed that individuals with schizophrenia and average IQ had the lowest yield of pathogenic CNVs (n = 9/325; 2.8%), followed by those with borderline intellectual functioning (n = 9/130; 6.9%), non-verbal learning disability (n = 6/29; 20.7%), and co-morbid intellectual disability (n = 15/62; 24.2%). There was no significant difference in the burden of rare CNVs classified as a VUS between any of the IQ subgroups. There was a significantly (p=0.002) increased burden of rare genic duplications in individuals with schizophrenia and low IQ that persisted after excluding individuals with a pathogenic CNV. Conclusions Using high-resolution microarrays we were able to demonstrate for the first time that the burden of pathogenic CNVs in schizophrenia differs significantly between IQ subgroups. The results of this study have implications for clinical practice and may help inform future rare variant studies of schizophrenia using next-generation sequencing technologies. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0488-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chelsea Lowther
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, 33 Russell Street, Room 1100, Toronto, ON, Canada, M5S 2S1.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Daniele Merico
- Deep Genomics Inc, Toronto, ON, Canada.,The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, 33 Russell Street, Room 1100, Toronto, ON, Canada, M5S 2S1.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Kerry Boyd
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Abdul Noor
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marsha Speevak
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - John Wei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anath C Lionel
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, 33 Russell Street, Room 1100, Toronto, ON, Canada, M5S 2S1. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Cambell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Labauge P, Ayrignac X, Carra-Dallière C, Menjot de Champfleur N. Leucodistrofie dell’adulto. Neurologia 2016. [DOI: 10.1016/s1634-7072(15)76144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Nannucci S, Donnini I, Pantoni L. Inherited leukoencephalopathies with clinical onset in middle and old age. J Neurol Sci 2014; 347:1-13. [PMID: 25307983 DOI: 10.1016/j.jns.2014.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 01/30/2023]
Abstract
The currently widespread use of neuroimaging has led neurologists to often face the problem of the differential diagnosis of white matter diseases. There are various forms of leukoencephalopathies (vascular, inflammatory and immunomediated, infectious, metabolic, neoplastic) and sometimes white matter lesions are expression of a genetic disease. While many inherited leukoencephalopathies fall in the child neurologist's interest, others may have a delayed or even a typical onset in the middle or old age. This field is rapidly growing and, in the last few years, many new inherited white matter diseases have been described and genetically defined. A non-delayed recognition of middle and old age inherited leukoencephalopathies appears important to avoid unnecessary tests and therapies in the patient and to possibly anticipate the diagnosis in relatives. The aim of this review is to provide a guide to direct the diagnostic process when facing a patient with a suspicion of an inherited form of leukoencephalopathy and with clinical onset in middle or old age. Based on a MEDLINE search from 1990 to 2013, we identified 24 middle and old age onset inherited leukoencephalopathies and reviewed in this relation the most recent findings focusing on their differential diagnosis. We provide summary tables to use as a check list of clinical and neuroimaging findings that are most commonly associated with these forms of leukoencephalopathies. When present, we reported specific characteristics of single diseases. Several genetic diseases may be suspected in patients with middle or old age and white matter abnormalities. In only few instances, pathognomonic clinical or associated neuroimaging features help identifying a specific disease. Therefore, a comprehensive knowledge of the characteristics of these inherited white matter diseases appears important to improve the diagnostic work-up, optimize the choice of genetic tests, increase the number of diagnosed patients, and stimulate the research interest in this field.
Collapse
Affiliation(s)
- Serena Nannucci
- NEUROFARBA Department, Neuroscience section, University of Florence, Florence, Italy
| | - Ida Donnini
- NEUROFARBA Department, Neuroscience section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| |
Collapse
|
14
|
Klingelhoefer L, Misbahuddin A, Jawad T, Mellers J, Jarosz J, Weeks R, Ray Chaudhuri K. Vanishing white matter disease presenting as opsoclonus myoclonus syndrome in childhood--a case report and review of the literature. Pediatr Neurol 2014; 51:157-64. [PMID: 24938145 DOI: 10.1016/j.pediatrneurol.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vanishing white matter disease is caused by mutations of the eukaryotic translation initiation factor 2B (EIF2B) and is a prevalent cause of inherited childhood leukoencephalopathy. Infantile and early childhood onset forms are associated with chronic progressive neurological signs, with episodes of rapid, neurological, and poor prognosis, with death in few months or years. In contrast, onset in late childhood and adult onset is rare and is associated with long-term survival because of milder signs and slow progression. PATIENT DESCRIPTION We present a patient with a genetically proven vanishing white matter disease, typical brain MRI, presenting with opsoclonus myoclonus in early childhood and a delayed development of adult multifocal dystonia and schizoaffective disorder with continued survival. In addition we have also reviewed the relevant literature based on 42 previous articles summarizing clinical details of 318 individuals with vanishing white matter disease (single case reports to case series). In 283, genetic mutation of EIF2B was confirmed with the onset of vanishing white matter disease reported as antenatal (seven), infantile (eight), early childhood (107), between infantile and early childhood (20), late childhood (25), between early and late childhood (three), adult (68), and between late childhood and adult (21). CONCLUSIONS Various movement disorders have been described with vanishing white matter disease either at presentation (mimicking an opsoclonus myoclonus syndrome) or in adulthood (dystonia and myoclonus) with continuing survival. Relatively preserved cognition is a novel presentation and is reported in this article along with a comprehensive literature review.
Collapse
Affiliation(s)
- Lisa Klingelhoefer
- Department of Neurology, National Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College, London, United Kingdom; Department of Neurology, Technical University Dresden, Dresden, Germany.
| | | | - Tania Jawad
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - John Mellers
- Department of Neuropsychiatry, Maudsley Hospital, London, United Kingdom
| | - Jozef Jarosz
- Department of Neuroradiology, King's College Hospital, London, United Kingdom
| | - Robert Weeks
- Department of Neurology, King's College Hospital, London, United Kingdom
| | - Kallol Ray Chaudhuri
- Department of Neurology, National Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College, London, United Kingdom
| |
Collapse
|
15
|
|
16
|
Prange H, Weber T. [Vanishing white matter disease: a stress-related leukodystrophy]. DER NERVENARZT 2012; 82:1330-4. [PMID: 21503715 DOI: 10.1007/s00115-011-3284-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Shimada S, Miya K, Oda N, Watanabe Y, Kumada T, Sugawara M, Shimojima K, Yamamoto T. An unmasked mutation of EIF2B2 due to submicroscopic deletion of 14q24.3 in a patient with vanishing white matter disease. Am J Med Genet A 2012; 158A:1771-7. [PMID: 22678813 DOI: 10.1002/ajmg.a.35431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/29/2012] [Indexed: 12/21/2022]
Abstract
Leukodystrophy with vanishing white matter (VWM) is a neurodegenerative disorder with autosomal recessive traits that is caused by alteration of the eukaryotic translation initiation factor-2B (EIF2B). An 11-month-old patient with distinctive features began to exhibit progressive developmental deterioration associated with intractable epilepsy, which was triggered by recurrent acute infectious diseases. Brain magnetic resonance imaging (MRI) revealed abnormal white matter intensity. Chromosomal microarray testing identified a submicroscopic deletion at 14q24.3 that included EIF2B2, the gene encoding one of the subunits of EIF2B. Because the patient's clinical findings were distinctive for VWM, compound heterozygous mutations of EIF2B2 were suspected, and subsequent sequencing analysis of the remaining allele unmasked the existence of a novel missense mutation of EIF2B2 (V85W). Some distinctive features including small palpebral fissures, bushy eyebrows, ear abnormalities, small upturned nose, downturned corners of the mouth, and micrognathia may be the common features of the patients with 14q24.3 deletions.
Collapse
Affiliation(s)
- Shino Shimada
- Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Koga S, Sekiguchi Y, Kanai K, Mutoh M, Kuwabara S. [Case of adult onset vanishing white matter disease developed after minor head trauma]. Rinsho Shinkeigaku 2012; 52:561-566. [PMID: 22975854 DOI: 10.5692/clinicalneurol.52.561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A 20-year-old previously healthy man presented with prolonged consciousness alteration and severe hypertonia in the extremities after minor head trauma. Laboratory blood tests and cerebrospial fluid (CSF) tests were unremarkable except for an elevated CSF glycine concentratons. Brain MRI revealed hypoplasia of corpus callosum, enlargement of lateral cerebral ventricle and high signal intensity in the bilateral white matter on T(2) weighted images. On fluid attenuated inversion recovery images, the signal intensity resembled that of CSF in the central areas of T(2) alterations, surrounded by a rim of hyperintensity. These characteristic history and the results of brain MRI and CSF, the diagnosis of vanishing white matter disease (VWMD) was made. VWMD is a rare autosomal recessive leukoencephalopathy which typically begins during infancy or early childhood with a chronic progressive neurological deterioration with cerebellar ataxia and spasticity. Recently, milder variants of the disease with adult onset have been reported. VWMD should be included in the differential diagnosis of leucoencephalopathy in young adults.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neurology, Graduate School of Medicine, Chiba University
| | | | | | | | | |
Collapse
|
19
|
Liu R, van der Lei HD, Wang X, Wortham NC, Tang H, van Berkel CG, Mufunde TA, Huang W, van der Knaap MS, Scheper GC, Proud CG. Severity of vanishing white matter disease does not correlate with deficits in eIF2B activity or the integrity of eIF2B complexes. Hum Mutat 2011; 32:1036-45. [DOI: 10.1002/humu.21535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/02/2011] [Indexed: 01/28/2023]
|
20
|
Abstract
Vanishing white matter (VWM) is one of the most prevalent inherited childhood leukoencephalopathies, but this may affect people of all ages, including neonates and adults. It is a progressive disorder clinically dominated by cerebellar ataxia and in which minor stress conditions, such as fever or mild trauma, provoke major episodes of neurologic deterioration. Typical pathological findings include increasing white matter rarefaction and cystic degeneration, oligodendrocytosis with highly characteristic foamy oligodendrocytes, meager astrogliosis with dysmorphic astrocytes, and loss of oligodendrocytes by apoptosis. Vanishing white matter is caused by mutations in any of the genes encoding the 5 subunits of the eukaryotic translation initiation factor 2B (eIF2B), EIF2B1 through EIF2B5. eIF2B is a ubiquitously expressed protein complex that plays a crucial role in regulating the rate of protein synthesis. Vanishing white matter mutations reduce the activity of eIF2B and impair its function to couple protein synthesis to the cellular demands in basal conditions and during stress. Reduced eIF2B activity leads to sustained improper activation of the unfolded protein response, resulting in concomitant expression of proliferation, prosurvival, and proapoptotic downstream effectors. Consequently, VWM cells are constitutively predisposed and hyperreactive to stress. In view of the fact that VWM genes are housekeeping genes, it is surprising that the disease is primarily a leukoencephalopathy. The pathophysiology of selective glial vulnerability in VWM remains poorly understood.
Collapse
|
21
|
Labauge P, Boespflug-Tanguy O. Maladies démyélinisantes d’origine génétique. Presse Med 2010; 39:363-70. [DOI: 10.1016/j.lpm.2009.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/11/2009] [Accepted: 11/19/2009] [Indexed: 11/25/2022] Open
|
22
|
Abstract
BACKGROUND The leukodystrophies are a heterogeneous group of diseases, which primarily affect white matter. Symptomatic patients are frequently misdiagnosed and the leukodystrophies are collectively under recognized. However, with ongoing research and increased availability of neuroimaging, our understanding of these diseases is increasing at a steady rate. Recent advances in the diagnosis and treatment of certain forms of leukodystrophy should prompt increased awareness of these diseases in clinical practice. REVIEW SUMMARY The clinical features, pathophysiology, and therapeutic approach to these diseases are described. Particular emphasis is placed on genetic and pathophysiologic mechanisms, imaging patterns, screening of other family members and, where available, treatment options and resources. CONCLUSIONS With more widespread use of neuroimaging, both pediatric and adult neurologists will increasingly be confronted with white matter disorders. Neurologists should have an approach to the recognition, diagnosis, and management of white matter diseases in general and the leukodystrophies in specific.
Collapse
|
23
|
Protein synthesis and its control in neuronal cells with a focus on vanishing white matter disease. Biochem Soc Trans 2009; 37:1298-310. [DOI: 10.1042/bst0371298] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein synthesis (also termed mRNA translation) is a key step in the expression of a cell's genetic information, in which the information contained within the coding region of the mRNA is used to direct the synthesis of the new protein, a process that is catalysed by the ribosome. Protein synthesis must be tightly controlled, to ensure the right proteins are made in the right amounts at the right time, and must be accurate, to avoid errors that could lead to the production of defective and potentially damaging proteins. In addition to the ribosome, protein synthesis also requires proteins termed translation factors, which mediate specific steps of the process. The first major stage of mRNA translation is termed ‘initiation’ and involves the recruitment of the ribosome to the mRNA and the identification of the correct start codon to commence translation. In eukaryotic cells, this process requires a set of eIFs (eukaryotic initiation factors). During the second main stage of translation, ‘elongation’, the ribosome traverses the coding region of the mRNA, assembling the new polypeptide: this process requires eEFs (eukaryotic elongation factors). Control of eEF2 is important in certain neurological processes. It is now clear that defects in eIFs or in their control can give rise to a number of diseases. This paper provides an overview of translation initiation and its control mechanisms, particularly those examined in neuronal cells. A major focus concerns an inherited neurological condition termed VHM (vanishing white matter) or CACH (childhood ataxia with central nervous system hypomyelination). VWM/CACH is caused by mutations in the translation initiation factor, eIF2B, a component of the basal translational machinery in all cells.
Collapse
|
24
|
Labauge P, Horzinski L, Ayrignac X, Blanc P, Vukusic S, Rodriguez D, Mauguiere F, Peter L, Goizet C, Bouhour F, Denier C, Confavreux C, Obadia M, Blanc F, de Sèze J, Fogli A, Boespflug-Tanguy O. Natural history of adult-onset eIF2B-related disorders: a multi-centric survey of 16 cases. Brain 2009; 132:2161-9. [PMID: 19625339 DOI: 10.1093/brain/awp171] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in one of the five eukaryotic initiation factor 2B genes (EIF2B1-5) were first described in childhood ataxia with cerebral hypomyelination--vanishing white matter syndrome. The syndrome is characterized by (i) cerebellar and pyramidal signs in children aged 2-5 years; (ii) extensive cavitating leucoencephalopathy; and (iii) episodes of rapid deterioration following stress. Since then a broad clinical spectrum from congenital to adult-onset forms has been reported, leading to the concept of eIF2B-related disorders. Our aim was to describe clinical and brain magnetic resonance imaging characteristics, genetic findings and natural history of patients with adult-onset eIF2B-related disorders (after age 16). The inclusion criteria were based on the presence of eIF2B mutations and a disease onset after the age of 16 years. One patient with an asymptomatic diagnosis (age 16 years) was also included. Clinical and magnetic resonance findings were retrospectively recorded in all patients. All patients were examined to assess clinical evolution, using functional, pyramidal, cerebellar and cognitive scales. This multi-centric study included 16 patients from 14 families. A sex ratio imbalance was noted (male/female = 3/13). The mean age of onset was 31.1 years (range 16-62). Initial symptoms were neurologic (n = 11), psychiatric (n = 2) and ovarian failure (n = 2). Onset of the symptoms was linked to a precipitating factor in 13% of cases that included minor head trauma and delivery. During follow-up (mean: 11.2 years, range 2-22 years) 12.5% of the patients died. Of the 14 survivors, 62% showed a decline in their cognitive functions, and 79% were severely handicapped or bedridden. One case remained asymptomatic. Stress worsened clinical symptoms in 38% of the patients. Magnetic resonance imaging findings consist of constant cerebral atrophy, extensive cystic leucoencephalopathy (81%), corpus callosum (69%) and cerebellar (38%) T2-weighted hyperintensities. All families except one showed mutations in the EIF2B5 gene. The recurrent p.Arg113His-eIF2Bepsilon mutation was found in 79% of the 14 eIF2B-mutated families, mainly at a homozygous state. The family with a mutation in EIF2B2 had the relatively prevalent p.Glu213Gly mutation. eIF2B-related disorder is probably underestimated as an adult-onset inherited leucoencephalopathy. In this late-onset form, presentation ranges from neurologic symptoms to psychiatric manifestations or primary ovarian failure. Cerebral atrophy is constant, whereas the typical vanishing of the white matter can be absent. Functional and/or cognitive prognosis remains severe. Molecular diagnosis is facilitated for these forms by the screening of the two recurrent p.Arg113His-eIF2Bepsilon and p.Glu213Gly-eIF2Bbeta mutations, positive in 86% of cases.
Collapse
Affiliation(s)
- Pierre Labauge
- CHU Nîmes, Service de neurologie, Hôpital Caremeau, place du Professeur-Debré, 30029 Nîmes cedex 4, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Genetica e malattie della sostanza bianca. Neurologia 2009. [DOI: 10.1016/s1634-7072(09)70510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Intra-familial phenotypic heterogeneity in adult onset vanishing white matter disease. Clin Neurol Neurosurg 2008; 110:1068-71. [DOI: 10.1016/j.clineuro.2008.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 05/19/2008] [Accepted: 08/02/2008] [Indexed: 11/18/2022]
|
27
|
The ovarioleukodystrophy. Clin Neurol Neurosurg 2008; 110:1035-7. [PMID: 18678442 DOI: 10.1016/j.clineuro.2008.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/12/2008] [Accepted: 06/14/2008] [Indexed: 11/20/2022]
Abstract
The "ovarioleukodystrophies" comprise a group of rare leukodystrophies associated with primary or premature ovarian failure. Some of the patients have a variant of "vanishing white matter disease" with mutations in subunits of eukaryotic initiation factor 2B (EIF2B). A 32-year-old woman who developed neurological signs related to an extensive leukoencephalopathy on magnetic resonance imaging (MRI) in the context of amenorrhea since the age of 18 years was found to be homozygous for a mutation in the EIF2B5 gene: c.338G>A/p.Arg113His. She had a progressive disease with development of tetraparesia in less than 6 years. Our observation confirms that ovarian failure in the context of a leukodystrophy warrants mutational analysis of the genes encoding the subunits of EIF2B.
Collapse
|
28
|
Vanderver A, Hathout Y, Maletkovic J, Gordon ES, Mintz M, Timmons M, Hoffman EP, Horzinski L, Niel F, Fogli A, Boespflug-Tanguy O, Schiffmann R. Sensitivity and specificity of decreased CSF asialotransferrin for eIF2B-related disorder. Neurology 2008; 70:2226-32. [PMID: 18519871 DOI: 10.1212/01.wnl.0000313857.54398.0e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This is a study estimating diagnostic accuracy of CSF asialotransferrin to transferrin ratio measurement in eIF2B related disorders by using clinical evaluation and EIF2B mutation analysis as the reference standard. eIF2B-related disorder is a relatively common leukodystrophy with broad phenotypic variation that is caused by mutations in any of the five EIF2B genes. There is a need for a simple and clinically valid screening tool for physicians evaluating patients with an unclassified leukodystrophy. METHODS CSF two-dimensional gel (2DG) electrophoresis analyses to measure asialotransferrin to transferrin ratios were performed in 60 subjects including 6 patients with documented EIF2B gene mutations, patients with other types of leukodystrophy, and patients with no leukodystrophy. RESULTS All six patients with mutation proven eIF2B-related disease showed low to nearly undetectable amounts of asialotransferrin in their CSF when compared to 54 unaffected controls by CSF 2DG analyses in this study. eIF2B-like patients, with clinically similar presentations but no mutations in EIF2B1-5, were distinguished from patients with mutations in EIF2B1-5 by this biomarker. Patients with mutations in EIF2B1-5 had asialotransferrin/transferrin ratio levels significantly different from the group as a whole (p < 0.001). Using 8% asialotransferrin/transferrin ratio as a cutoff, this biomarker has a 100% sensitivity (95% CI = 52-100%) and 94% specificity (95% CI = 84-99%). CONCLUSION Decreased asialotransferrin/transferrin ratio in the CSF of patients with eIF2B-related disorder is highly sensitive and specific. This rapid (<48 hours) and inexpensive diagnostic tool for eIF2B-related disorders has the potential to identify patients with likely eIF2B-related disorder for mutation analysis.
Collapse
Affiliation(s)
- A Vanderver
- Children's National Medical Center, Children's Research Institute, Center for Genetic Medicine, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dreha-Kulaczewski SF, Dechent P, Finsterbusch J, Brockmann K, Gärtner J, Frahm J, Hanefeld FA. Early reduction of total N-acetyl-aspartate-compounds in patients with classical vanishing white matter disease. A long-term follow-up MRS study. Pediatr Res 2008; 63:444-9. [PMID: 18356755 DOI: 10.1203/01.pdr.0000304934.90198.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuropathology of vanishing white matter (VWM) disease is characterized by a loss of white matter (WM). Although recent histopathological studies suggest a primary glial dysfunction, the purpose of this work was to assess the extent of axonal involvement in VWM using long-term follow-up proton MR spectroscopy. White and gray matter of nine children with genetically proven VWM and late infancy/early childhood onset were investigated with short-echo time, single-voxel proton MR spectroscopy over up to 8 years starting as early as less than 2 years after the onset of symptoms (5 patients). Total N-acetyl-aspartate (-51% from normal control), creatine and phosphocreatine (-47%), and myo-inositol (-49%) were reduced in WM at early disease stages. Choline-containing compounds were less severely decreased (-31%). Follow-up investigations revealed progressive reduction of all metabolites in WM. In gray matter, no distinct changes were detected at early stages. Later total N-acetyl-aspartate decreased slightly (-22%). Assuming the metabolite alterations to primarily reflect changes in cellular composition, the observed pattern indicates early axonal involvement or loss as well as relatively enhanced turnover of myelin. These early stages are followed by a complete cellular loss in cerebral WM.
Collapse
|
30
|
Horzinski L, Gonthier C, Rodriguez D, Scherer C, Boespflug-Tanguy O, Fogli A. Exon deletion in the non-catalytic domain of eIF2Bepsilon due to a splice site mutation leads to infantile forms of CACH/VWM with severe decrease of eIF2B GEF activity. Ann Hum Genet 2008; 72:410-5. [PMID: 18294360 DOI: 10.1111/j.1469-1809.2007.00427.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CACH/VWM syndrome is an autosomal recessive leukodystrophy characterized by a broad spectrum of clinical presentations and by diffuse cavitary degeneration of the white matter on MRI. Mutations responsible for this disorder are missense or frameshift mutations occurring in the five genes (EIF2B1-5) that encode the translation eukaryotic initiation factor eIF2B. We found that a patient with infantile CACH/VWM carries a mutation in the acceptor splice site of EIF2B5 exon 6. In lymphoblastoid cells of the patient, we detected an abnormal EIF2B5 transcript in which exon 6 was absent, however, the predicted protein product lacking part of the non-catalytic domain encoded by exon 6 was not detected. The eIF2B GEF activity was severely decreased. These data support the importance of the non-catalytic domain of the eIF2Bepsilon subunit in the eIF2B complex formation and activity.
Collapse
Affiliation(s)
- L Horzinski
- INSERM UMR384, Faculté de Médecine, 28 place Henri Dunant, F-63003 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
31
|
Maletkovic J, Schiffmann R, Gorospe JR, Gordon ES, Mintz M, Hoffman EP, Alper G, Lynch DR, Singhal BS, Harding C, Amartino H, Brown CM, Chan A, Renaud D, Geraghty M, Jensen L, Senbil N, Kadom N, Nazarian J, Yuanjian Feng, Zuyi Wang, Hartka T, Morizono H, Vanderver A. Genetic and clinical heterogeneity in eIF2B-related disorder. J Child Neurol 2008; 23:205-15. [PMID: 18263758 DOI: 10.1177/0883073807308705] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eukaryotic initiation factor 2B (eIF2B)-related disorders are heritable white matter disorders with a variable clinical phenotype (including vanishing white matter disease and ovarioleukodystrophy) and an equally heterogeneous genotype. We report 9 novel mutations in the EIF2B genes in our subject population, increasing the number of known mutations to more than 120. Using homology modeling, we have analyzed the impact of novel mutations on the 5 subunits of the eIF2B protein. Although recurrent mutations have been found at CpG dinucleotides in the EIF2B genes, the high incidence of private or low frequency mutations increases the challenge of providing rapid genetic confirmation of this disorder, and limits the application of EIF2B screening in cases of undiagnosed leukodystrophy.
Collapse
Affiliation(s)
- Jelena Maletkovic
- Children's National Medical Center, Children's Research Institute, Center for Genetic Medicine, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Labauge P, Fogli A, Niel F, Rodriguez D, Boespflug-Tanguy O. Le syndrome CACH/VWM et les leucodystrophies liées à des mutations EIF2B. Rev Neurol (Paris) 2007; 163:793-9. [PMID: 17878805 DOI: 10.1016/s0035-3787(07)91461-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new leukoencephalopathy, the CACH syndrome (Childhood Ataxia with Central nervous system Hypomyelination) or VWM (Vanishing White Matter) was identified on clinical and MRI criteria. Classically, this disease is characterized by (1) an onset between 2 and 5 years of age, with a cerebello-spastic syndrome exacerbated by episodes of fever or head trauma leading to death after 5 to 10 years of disease evolution, (2) a diffuse involvement of the white matter on cerebral MRI with a CSF-like signal intensity (cavitation), (3) a recessive autosomal mode of inheritance, (4) neuropathologic findings consistent with a cavitating orthochromatic leukodystrophy with increased number of oligodendrocytes with sometimes "foamy" aspect. A total of 148 cases have been reported so far. This disease is linked to mutations in the five EIF2B genes encoding the five subunits of the eukaryotic initiation factor 2B (eIF2B), involved in the protein synthesis and its regulation under cellular stresses. Clinical symptoms are variable, from fatale infantile forms (Cree leukoencephalopathy) and congenital forms associated with extra-neurological affections, to juvenile and adult forms (ovarioleukodystrophy) characterized by cognitive and behaviour dysfunctions and by a slow progression of the disease, leading to the term of eIF2B-related leukoencephalopathies. Prevalence of these remains unknown. Diagnosis lays on the detection of EIF2B mutations, affecting predominantly the EIF2B5 gene. A decrease in the intrinsic activity of the eIF2B factor (the guanine exchange activity, GEF) in lymphoblasts from patients seems to have a diagnostic value. The patho-physiology of the disease would involve a deficiency in astrocytes maturation leading to an increased susceptibility of the white matter to cellular stress. No specific treatment exists except the "prevention" of cellular stress. Corticosteroids sometimes proved to be useful in acute phases. Prognosis seems to correlate with the age of onset, the earliest forms being more severe.
Collapse
Affiliation(s)
- P Labauge
- Service de Neurologie, CHU de Montpellier-Nîmes, Hôpital Caremeau, 30029 Nîmes Cedex.
| | | | | | | | | |
Collapse
|
33
|
Lucas M, Suarez R, Marcos A, Solano F, Venegas A, Garcia-Sanchez MI, Ortiz L, Izquierdo G. Arg113His mutation of vanishing white matter is not present in multiple sclerosis. Mult Scler 2007; 13:424-7. [PMID: 17439913 DOI: 10.1177/1352458506070248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vanishing white matter (VWM) is a childhood leukoencephalopathy with central hypomyelination, white matter rarefaction, and cystic degeneration. Adult onset, variable phenotype, and high frequency characterize Arg113His mutation caused by G338A polymorphism associated with VWM. A patient with trauma-associated onset, and clinical features compatible with multiple sclerosis (MS), was homozygous for G338A mutation of eukaryotic translation initiation factor (eIF2B5). The authors checked a cohort of 101 MS patients, including 19 with head/neck trauma-associated onset, and failed to find the mutation, described above, in MS chromosomes. Our report does not exclude the presence in MS chromosomes of other mutations in the eIF2B gene family. Multiple Sclerosis 2007; 13: 424-427. http://msj.sagepub.com
Collapse
Affiliation(s)
- M Lucas
- Molecular Biology Service, Virgen Macarena University Hospital, Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
BACKGROUND Young-onset dementia is best defined as dementia presenting at age less than 65 years. And, while cognitive impairment in the elderly is dominated by dementia of the Alzheimer type, young-onset dementia has a vast differential diagnosis. REVIEW SUMMARY This article reviews an extensive differential diagnosis for young-onset dementia by utilizing different clues in the historical records and laboratory findings to aid with diagnosis. Laboratory testing should be completed in at least 2 stages. In the first stage, referred to as the first "wave," we suggest more routine testing, particularly for treatable causes of dementia. The second "wave," which we also outline, emphasizes more esoteric testing that may require referral to a tertiary care medical facility. The manuscript is divided into 2 parts, with part 1 focusing on clues from the historical data, while part 2 focuses on laboratory abnormalities. CONCLUSION Unlike dementia presenting in the elderly, the differential diagnosis in young-onset dementia is vast. A thorough historical review of the symptoms, with special emphasis on the pattern of cognitive impairment, temporal profile of the disease, detailed family history, and extensive but coordinated laboratory and ancillary testing, may yield subtle clues to the diagnosis.
Collapse
Affiliation(s)
- Basil Ridha
- Dementia Research Center, Institute of Neurology and Neurosurgery, Queen Square, London, UK
| | | |
Collapse
|
36
|
Abstract
Vanishing white matter disease (VWM) is one of the most prevalent inherited childhood leucoencephalopathies. The classical phenotype is characterised by early childhood onset of chronic neurological deterioration, dominated by cerebellar ataxia. VWM is unusual because of its clinically evident sensitivity to febrile infections, minor head trauma, and acute fright, which may cause rapid neurological deterioration and unexplained coma. Most patients die a few years after onset. The phenotypic variation is extremely wide, including antenatal onset and early demise and adult-onset, slowly progressive disease. MRI findings are diagnostic in almost all patients and are indicative of vanishing of the cerebral white matter. The basic defect of this striking disease resides in either one of the five subunits of eukaryotic translation initiation factor eIF2B. eIF2B is essential in all cells of the body for protein synthesis and its regulation under different stress conditions. Although the defect is in housekeeping genes, oligodendrocytes and astrocytes are predominantly affected, whereas other cell types are surprisingly spared. Recently, undue activation of the unfolded-protein response has emerged as important in the pathophysiology of VWM, but the selective vulnerability of glia for defects in eIF2B is poorly understood.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics and Child Neurology, VU University Medical Center, Amsterdam, Netherlands.
| | | | | |
Collapse
|
37
|
Abstract
eIF2B (eukaryotic initiation factor 2B) is a GEF (guanine nucleotide-exchange factor) that plays, with its substrate eIF2, a key regulatory role in the translation initiation phase of protein synthesis. The importance of correct control of eIF2 and eIF2B for normal physiology is underlined by the recent involvement of the five genes that encode the five eIF2B subunits in a severe autosomal recessive neurodegenerative disease, described in young children as CACH (childhood ataxia with central nervous system hypomyelination)/VWM (leukoencephalopathy with vanishing white matter) syndrome. The syndrome is characterized by episodes of rapid deterioration during febrile illnesses or following head trauma and symmetrical demyelination of the brain white matter with cavitation aspects, leading to a progressive vanishing of the white matter replaced by CSF (cerebrospinal fluid). However, a wide clinical spectrum has been observed in the 148 patients presently reported, from congenital forms with rapid death to adult-onset forms with slow mental decline and progressive motor dysfunction, sometimes associated with congenital eye abnormalities or ovariodysgenesis. So far, 77 different mutations in each of the five EIF2B genes (EIF2B1–5), encoding subunits eIF2Bα–ϵ, have been found, with two-thirds affecting the eIF2Bϵ subunit. The correlation found between the level of GEF activity of eIF2B in the mutated white blood cells and the age at disease onset suggests a direct role of the abnormal translation control in the pathophysiology of the disease.
Collapse
|
38
|
Pronk JC, van Kollenburg B, Scheper GC, van der Knaap MS. Vanishing white matter disease: A review with focus on its genetics. ACTA ACUST UNITED AC 2006; 12:123-8. [PMID: 16807905 DOI: 10.1002/mrdd.20104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive brain disorder, most often with a childhood onset. Magnetic resonance imaging and spectroscopy indicate that, with time, increasing amounts of cerebral white matter vanish and are replaced by fluid. Autopsy confirms white matter rarefaction and cystic degeneration. The process of localization and identification of the first two genes related to VWM, EIF2B5 and EIF2B2, was facilitated by two founder effects in the Dutch population. EIF2B5 and EIF2B2 encode the epsilon and beta subunits of translation initiation factor eIF2B. Soon it was shown that mutations in all five eIF2B subunit genes can cause VWM. EIF2B is essential for the initiation of translation of RNA into protein and is involved in regulation of the process, especially under stress conditions, which may explain the sensitivity to stress conditions observed in VWM patients. The pathophysiology of the disease is still poorly understood.
Collapse
Affiliation(s)
- Jan C Pronk
- Department of Human Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
|