1
|
Kitamura E, Imai N. Molecular and Cellular Neurobiology of Spreading Depolarization/Depression and Migraine: A Narrative Review. Int J Mol Sci 2024; 25:11163. [PMID: 39456943 PMCID: PMC11508361 DOI: 10.3390/ijms252011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is a prevalent neurological disorder, particularly among individuals aged 20-50 years, with significant social and economic impacts. Despite its high prevalence, the pathogenesis of migraine remains unclear. In this review, we provide a comprehensive overview of cortical spreading depolarization/depression (CSD) and its close association with migraine aura, focusing on its role in understanding migraine pathogenesis and therapeutic interventions. We discuss historical studies that have demonstrated the role of CSD in the visual phenomenon of migraine aura, along with modern imaging techniques confirming its propagation across the occipital cortex. Animal studies are examined to indicate that CSD is not exclusive to migraines; it also occurs in other neurological conditions. At the cellular level, we review how CSD is characterized by ionic changes and excitotoxicity, leading to neuronal and glial responses. We explore how CSD activates the trigeminal nervous system and upregulates the expression of calcitonin gene-related peptides (CGRP), thereby contributing to migraine pain. Factors such as genetics, obesity, and environmental conditions that influence the CSD threshold are discussed, suggesting potential therapeutic targets. Current treatments for migraine, including prophylactic agents and CGRP-targeting drugs, are evaluated in the context of their expected effects on suppressing CSD activity. Additionally, we highlight emerging therapies such as intranasal insulin-like growth factor 1 and vagus nerve stimulation, which have shown promise in reducing CSD susceptibility and frequency. By elucidating the molecular and cellular mechanisms of CSD, this review aims to enhance the understanding of migraine pathogenesis and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara 252-0329, Japan;
| | - Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
2
|
Shen Y, Jiang K, Liang H, Xiong Y, Song Z, Wang B, Zhu M, Qiu Y, Tan D, Wu C, Deng J, Wang Z, Hong D. Encephalitis-like episodes with cortical edema and enhancement in patients with neuronal intranuclear inclusion disease. Neurol Sci 2024; 45:4501-4511. [PMID: 38532189 DOI: 10.1007/s10072-024-07492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVES Neuronal intranuclear inclusion disease (NIID) exhibited significant clinical heterogeneities. However, the clinical features, radiographic changes, and prognosis of patients with encephalitis-like NIID have yet to be systematically elucidated. METHODS Clinical data including medical history, physical examination, and laboratory examinations were collected and analyzed. Skin and sural nerve biopsies were conducted on the patient. Repeat-primed PCR (RP-PCR) and fluorescence amplicon length PCR (AL-PCR) were used to detect the expansion of CGG repeat. We also reviewed the clinical and genetic data of NIID patients with cortical enhancement. RESULTS A 54-year-old woman presented with encephalitis-like NIID, characterized by severe headache and agitative psychiatric symptoms. The brain MRI showed cortical swelling in the temporo-occipital lobes and significant enhancement of the cortical surface and dura, but without hyperintensities along the corticomedullary junction on diffusion-weighted image (DWI). A biopsy of the sural nerve revealed a demyelinating pathological change. The intranuclear inclusions were detected in nerve and skin tissues using the p62 antibody and electron microscopy. RP-PCR and AL-PCR unveiled the pathogenic expansion of CGG repeats in the NOTCH2NLC gene. A review of the literature indicated that nine out of the 16 patients with cortical lesions and linear enhancement exhibited encephalitis-like NIID. CONCLUSION This study indicated that patients with encephalitis-like NIID typically exhibited headache and excitatory psychiatric symptoms, often accompanied by cortical edema and enhancement of posterior lobes, and responded well to glucocorticoid treatment. Furthermore, some patients may not exhibit hyperintensities along the corticomedullary junction on DWI, potentially leading to misdiagnosis.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Kaiyan Jiang
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Hanlin Liang
- Queen Mary College, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Ziwei Song
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bo Wang
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China
| | - Dandan Tan
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China.
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China.
| |
Collapse
|
3
|
Dreier JP, Lemale CL, Horst V, Major S, Kola V, Schoknecht K, Scheel M, Hartings JA, Vajkoczy P, Wolf S, Woitzik J, Hecht N. Similarities in the Electrographic Patterns of Delayed Cerebral Infarction and Brain Death After Aneurysmal and Traumatic Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01237-w. [PMID: 38396252 DOI: 10.1007/s12975-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl Schoknecht
- Medical Faculty, Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
5
|
Xiang Y, Li F, Song Z, Yi Z, Yang C, Xue J, Zhang Y. Two pediatric patients with hemiplegic migraine presenting as acute encephalopathy: case reports and a literature review. Front Pediatr 2023; 11:1214837. [PMID: 37576133 PMCID: PMC10419215 DOI: 10.3389/fped.2023.1214837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Hemiplegic migraine (HM) is a rare subtype of migraine. HM in children may be atypical in the initial stage of the disease, which could easily lead to misdiagnosis. Methods We report two cases of atypical hemiplegic migraine that onset as an acute encephalopathy. And a comprehensive search was performed using PubMed, Web of Science, and Scopus. We selected only papers that reported complete clinical information about the patients with CACNA1A or ATP1A2 gene mutation. Results Patient #1 showed a de novo mutation, c.674C>A (p. Pro225His), in exon 5 of the CACNA1A gene. And patient #2 showed a missense mutation (c.2143G>A, p. Gly715Arg) in exon 16 of the ATP1A2. Together with our two cases, a total of 160 patients (73 CACNA1A and 87 ATP1A2) were collected and summarized finally. Discussion Acute encephalopathy is the main manifestation of severe attacks of HM in children, which adds to the difficulty of diagnosis. Physicians should consider HM in the differential diagnosis of patients presenting with somnolence, coma, or convulsion without structural, epileptic, infectious, or inflammatory explanation. When similar clinical cases appear, gene detection is particularly important, which is conducive to early diagnosis and treatment. Early recognition and treatment of the disease can help improve the prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Kang EJ, Prager O, Lublinsky S, Oliveira-Ferreira AI, Reiffurth C, Major S, Müller DN, Friedman A, Dreier JP. Stroke-prone salt-sensitive spontaneously hypertensive rats show higher susceptibility to spreading depolarization (SD) and altered hemodynamic responses to SD. J Cereb Blood Flow Metab 2023; 43:210-230. [PMID: 36329390 PMCID: PMC9903222 DOI: 10.1177/0271678x221135085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.
Collapse
Affiliation(s)
- Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ofer Prager
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alon Friedman
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
7
|
Orihara A, Miyakoshi N, Sunami Y, Kimura H, Nakata Y, Komori T, Sone J, Takahashi K. A Case of Acute Reversible Encephalopathy with Neuronal Intranuclear Inclusion Disease Diagnosed by a Brain Biopsy: Inferring the Mechanism of Encephalopathy from Radiological and Histological Findings. Intern Med 2022. [PMID: 36288982 DOI: 10.2169/internalmedicine.0156-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
A 75-year-old man presented with headache and disturbance of consciousness. Magnetic resonance imaging revealed edema localized mainly in the cortex and linear contrast enhancement. A brain biopsy revealed numerous astrocytes with inclusion, and genetic testing demonstrated prolonged GGC repeats in NOTCH2NLC. The present case provided two novel insights into the mechanism underlying encephalopathy associated with neuronal intranuclear inclusion disease. First, the histological findings at a site with contrast enhancement on magnetic resonance imaging did not demonstrate any organic association, such as the presence of inflammation or ischemic changes. Second, the imaging and cerebrospinal fluid findings demonstrated increased cerebral blood flow and opening of the blood-brain barrier, indicating the cause of the cerebral swelling.
Collapse
Affiliation(s)
- Azusa Orihara
- Department of General Internal Medicine, Tokyo Metropolitan Tama Medical Center, Japan
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Natsuki Miyakoshi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Yoko Sunami
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Hideki Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Takashi Komori
- Department of Inspection, Tokyo Metropolitan Neurological Hospital, Japan
| | - Jun Sone
- Department of Neurology, Aichi Medical University, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| |
Collapse
|
8
|
Christensen RH, Gollion C, Amin FM, Moskowitz MA, Hadjikhani N, Ashina M. Imaging the inflammatory phenotype in migraine. J Headache Pain 2022; 23:60. [PMID: 35650524 PMCID: PMC9158262 DOI: 10.1186/s10194-022-01430-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Several preclinical and clinical lines of evidence suggest a role of neuroinflammation in migraine. Neuroimaging offers the possibility to investigate and localize neuroinflammation in vivo in patients with migraine, and to characterize specific inflammatory constituents, such as vascular permeability, and macrophage or microglia activity. Despite all imaging data accumulated on neuroinflammation across the past three decades, an overview of the imaging evidence of neuroinflammation in migraine is still missing.We conducted a systematic review in the Pubmed and Embase databases to evaluate existing imaging data on inflammation in migraine, and to identify gaps in the literature. We included 20 studies investigating migraine without aura (N = 4), migraine with aura (N = 8), both migraine with and without aura (N = 3), or hemiplegic migraine (N = 5).In migraine without aura, macrophage activation was not evident. In migraine with aura, imaging evidence suggested microglial and parameningeal inflammatory activity. Increased vascular permeability was mostly found in hemiplegic migraine, and was atypical in migraine with and without aura. Based on the weight of existing and emerging data, we show that most studies have concentrated on demonstrating increased vascular permeability as a marker of neuroinflammation, with tools that may not have been optimal. In the future, novel, more sensitive techniques, as well as imaging tracers delineating specific inflammatory pathways may further bridge the gap between preclinical and clinical findings.
Collapse
Affiliation(s)
- Rune Häckert Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Cédric Gollion
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Moskowitz
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nouchine Hadjikhani
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
9
|
Genetic analyses identify pleiotropy and causality for blood proteins and highlight Wnt/β-catenin signalling in migraine. Nat Commun 2022; 13:2593. [PMID: 35546551 PMCID: PMC9095680 DOI: 10.1038/s41467-022-30184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Migraine is a common complex disorder with a significant polygenic SNP heritability (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2). Here we utilise genome-wide association study (GWAS) summary statistics to study pleiotropy between blood proteins and migraine under the polygenic model. We estimate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2 for 4625 blood protein GWASs and identify 325 unique proteins with a significant \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2 for use in subsequent genetic analyses. Pleiotropy analyses link 58 blood proteins to migraine risk at genome-wide, gene and/or single-nucleotide polymorphism levels—suggesting shared genetic influences or causal relationships. Notably, the identified proteins are largely distinct from migraine GWAS loci. We show that higher levels of DKK1 and PDGFB, and lower levels of FARS2, GSTA4 and CHIC2 proteins have a significant causal effect on migraine. The risk-increasing effect of DKK1 is particularly interesting—indicating a role for downregulation of β-catenin-dependent Wnt signalling in migraine risk, suggesting Wnt activators that restore Wnt/β-catenin signalling in brain could represent therapeutic tools against migraine. Understanding of the causes and treatment of migraine is incomplete. Here, the authors detect pleiotropic genetic effects and causal relationships between migraine and 58 proteins that are largely distinct from migraine-associated loci identified by GWAS.
Collapse
|
10
|
Dreier JP, Winkler MKL, Major S, Horst V, Lublinsky S, Kola V, Lemale CL, Kang EJ, Maslarova A, Salur I, Lückl J, Platz J, Jorks D, Oliveira-Ferreira AI, Schoknecht K, Reiffurth C, Milakara D, Wiesenthal D, Hecht N, Dengler NF, Liotta A, Wolf S, Kowoll CM, Schulte AP, Santos E, Güresir E, Unterberg AW, Sarrafzadeh A, Sakowitz OW, Vatter H, Reiner M, Brinker G, Dohmen C, Shelef I, Bohner G, Scheel M, Vajkoczy P, Hartings JA, Friedman A, Martus P, Woitzik J. Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study. Brain 2022; 145:1264-1284. [PMID: 35411920 DOI: 10.1093/brain/awab457] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (β = 0.474, P < 0.001), delayed median Glasgow Coma Score (β = -0.201, P = 0.005) and peak transcranial Doppler (β = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.
Collapse
Affiliation(s)
- Jens P Dreier
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Maren K L Winkler
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Robert Koch-Institute, Berlin, Germany
| | - Sebastian Major
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Svetlana Lublinsky
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel
| | - Vasilis Kola
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany.,Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Irmak Salur
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany.,Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Janos Lückl
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.,Department of Neurology, University of Szeged, Szeged, Hungary
| | - Johannes Platz
- Department of Neurosurgery, Herz-Neuro-Zentrum Bodensee, Kreuzlingen, Switzerland
| | - Devi Jorks
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Clienia Schlössli AG, Privatklinik für Psychiatrie und Psychotherapie, Oetwil am See, Switzerland
| | - Ana I Oliveira-Ferreira
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuro-Electronics Research Flanders, Leuven, Belgium.,VIB-KU, Leuven, Belgium.,Interuniversity Microelectronics Centre, Leuven, Belgium.,Laboratory of Neural Circuits, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karl Schoknecht
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Carl Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Clemens Reiffurth
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Research Campus STIMULATE, Otto-von-Guericke-University, Magdeburg, Germany
| | - Dirk Wiesenthal
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Univention GmbH, Bremen, Germany
| | - Nils Hecht
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nora F Dengler
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agustin Liotta
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anaesthesiology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - André P Schulte
- Department of Spinal Surgery, Krankenhaus der Augustinerinnen, Cologne, Germany
| | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Asita Sarrafzadeh
- Division of Neurosurgery, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Medical Centre, Geneva, Switzerland
| | - Oliver W Sakowitz
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Michael Reiner
- Medical Advisory Service of the Statutory Health Insurance of North Rhine, Germany
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Dohmen
- Department for Neurology and Neurological Intensive Care Medicine, LVR-Klinik Bonn, Bonn, Germany
| | - Ilan Shelef
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Institute of Radiology, Soroka University Medical Centre, Beer-Sheva, Israel
| | - Georg Bohner
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alon Friedman
- Department of Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Physiology & Cell Biology, Zlotowski Centre for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka University Medical Centre, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Johannes Woitzik
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
12
|
Parker E, Aboghazleh R, Mumby G, Veksler R, Ofer J, Newton J, Smith R, Kamintsky L, Jones CMA, O'Keeffe E, Kelly E, Doelle K, Roach I, Yang LT, Moradi P, Lin JM, Gleason AJ, Atkinson C, Bowen C, Brewer KD, Doherty CP, Campbell M, Clarke DB, van Hameren G, Kaufer D, Friedman A. Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain 2021; 145:2049-2063. [PMID: 34927674 PMCID: PMC9246711 DOI: 10.1093/brain/awab450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood–brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood–brain barrier dysfunction, transforming growth factor β (TGFβ) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood–brain barrier dysfunction. Treatment with a selective TGFβ receptor inhibitor prevented blood–brain barrier opening and reduced injury complications. Consistent with the rodent model, blood–brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood–brain barrier dysfunction, and pro-inflammatory TGFβ signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFβ signalling may be a novel strategy in treating mild traumatic brain injury.
Collapse
Affiliation(s)
- Ellen Parker
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Refat Aboghazleh
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Griffin Mumby
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jillian Newton
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Rylan Smith
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Casey M A Jones
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Eoin Kelly
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Klara Doelle
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Isabelle Roach
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Lynn T Yang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pooyan Moradi
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Jessica M Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Allison J Gleason
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina Atkinson
- Department of Family Medicine, Dalhousie University, Halifax, NS, Canada
| | - Chris Bowen
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.,Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | - Kimberly D Brewer
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.,Biomedical Translational Imaging Centre (BIOTIC), Halifax, NS, Canada
| | - Colin P Doherty
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David B Clarke
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerben van Hameren
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute & Berkeley Stem Cell Center, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada.,Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 2021; 22:138. [PMID: 34794382 PMCID: PMC8600694 DOI: 10.1186/s10194-021-01353-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pain is generally concomitant with an inflammatory reaction at the site where the nociceptive fibers are activated. Rodent studies suggest that a sterile meningeal inflammatory signaling cascade may play a role in migraine headache as well. Experimental studies also suggest that a parenchymal inflammatory signaling cascade may report the non-homeostatic conditions in brain to the meninges to induce headache. However, how these signaling mechanisms function in patients is unclear and debated. Our aim is to discuss the role of inflammatory signaling in migraine pathophysiology in light of recent developments. Body Rodent studies suggest that a sterile meningeal inflammatory reaction can be initiated by release of peptides from active trigeminocervical C-fibers and stimulation of resident macrophages and dendritic/mast cells. This inflammatory reaction might be needed for sustained stimulation and sensitization of meningeal nociceptors after initial activation along with ganglionic and central mechanisms. Most migraines likely have cerebral origin as suggested by prodromal neurologic symptoms. Based on rodent studies, a parenchymal inflammatory signaling cascade has been proposed as a potential mechanism linking cortical spreading depolarization (CSD) to meningeal nociception. A recent PET/MRI study using a sensitive inflammation marker showed the presence of meningeal inflammatory activity in migraine with aura patients over the occipital cortex generating the visual aura. These studies also suggest the presence of a parenchymal inflammatory activity, supporting the experimental findings. In rodents, parenchymal inflammatory signaling has also been shown to be activated by migraine triggers such as sleep deprivation without requiring a CSD because of the resultant transcriptional changes, predisposing to inadequate synaptic energy supply during intense excitatory transmission. Thus, it may be hypothesized that neuronal stress created by either CSD or synaptic activity-energy mismatch could both initiate a parenchymal inflammatory signaling cascade, propagating to the meninges, where it is converted to a lasting headache with or without aura. Conclusion Experimental studies in animals and emerging imaging findings from patients warrant further research to gain deeper insight to the complex role of inflammatory signaling in headache generation in migraine.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Zeynep Kaya
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
14
|
Arca KN, VanderPluym JH, Halker Singh RB. Narrative review of neuroimaging in migraine with aura. Headache 2021; 61:1324-1333. [PMID: 34309848 DOI: 10.1111/head.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To improve the understanding of the role and utility of various neuroimaging modalities (clinical and research) for the evaluation of migraine aura (MA) and hemiplegic migraine during the ictal and interictal phases. BACKGROUND MA is defined by reversible neurologic symptoms and is considered a manifestation of a primary condition. As such, most patients with MA do not require imaging. However, if there are atypical features, change in symptom pattern, or it is a first-time presentation, neuroimaging may be used to evaluate for secondary conditions. Neuroimaging includes many modalities, and it is important to consider what information is being captured by these modalities (i.e., structural vs. functional). Imaging abnormalities may be noted both during (ictal) and between (interictal) MA attacks, and it is important for clinicians to be familiar with neuroimaging findings reported in migraine with aura (MWA) compared with other conditions. METHODS With the assistance of a medical librarian, we performed a review of the literature pertaining to MWA and neuroimaging in PubMed. Search terms included were magnetic resonance imaging, positron-emission tomography, single photon-emission computed tomography, functional magnetic resonance imaging, and migraine with aura. We hand-searched these references to inform our subsequent literature review. RESULTS Acute MA can be associated with several unique neuroimaging findings-reversible cortical diffusion restriction, cortical venous engorgement, and a "biphasic" transition from hypoperfusion to hyperperfusion. Imaging findings during MA tend to span more than one vascular territory. Between acute attacks, neuroimaging in people with MWA can resemble migraine without aura in terms of white matter abnormalities and "infarct-like lesions." Research imaging modalities such as volumetric analysis and functional imaging have demonstrated unique findings in migraine with aura. CONCLUSION Although migraine is a clinical diagnosis, understanding of neuroimaging findings in MWA can help clinicians interpret imaging findings and improve patient care.
Collapse
Affiliation(s)
- Karissa N Arca
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | |
Collapse
|
15
|
Cowan RP, Gross NB, Sweeney MD, Sagare AP, Montagne A, Arakaki X, Fonteh AN, Zlokovic BV, Pogoda JM, Harrington MG. Evidence that blood-CSF barrier transport, but not inflammatory biomarkers, change in migraine, while CSF sVCAM1 associates with migraine frequency and CSF fibrinogen. Headache 2021; 61:536-545. [PMID: 33724462 PMCID: PMC8023403 DOI: 10.1111/head.14088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/29/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Objective Our objective is to explore whether blood–cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. Background Reports of blood–brain barrier and blood–cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. Methods We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross‐sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2–14 per month, and CM. Blood and CSF biomarkers were determined using antibody‐based methods. Results Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF–blood quotients of albumin (Qalb: mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule‐1 (sVCAM‐1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2–14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase‐9, soluble platelet‐derived growth factor receptor β, tumor necrosis factor‐alpha, interferon‐gamma, interleukin (IL)‐6, IL‐8, IL‐10, or C‐reactive protein. Conclusions The higher Qalb and Qfib ratios may indicate that the transport of these blood‐derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis‐generating study of migraine pathophysiology is that sVCAM‐1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.
Collapse
Affiliation(s)
- Robert P Cowan
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Noah B Gross
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Alfred N Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael G Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.,Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Prolonged Hyperperfusion in a Child With ATP1A2 Defect-Related Hemiplegic Migraine. Can J Neurol Sci 2020; 47:687-688. [DOI: 10.1017/cjn.2020.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol 2020; 11:914. [PMID: 32848858 PMCID: PMC7424030 DOI: 10.3389/fphys.2020.00914] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) allows the brain to selectively import nutrients and energy critical to neuronal function while simultaneously excluding neurotoxic substances from the peripheral circulation. In contrast to the highly permeable vasculature present in most organs that reside outside of the central nervous system (CNS), the BBB exhibits a high transendothelial electrical resistance (TEER) along with a low rate of transcytosis and greatly restricted paracellular permeability. The property of low paracellular permeability is controlled by tight junction (TJ) protein complexes that seal the paracellular route between apposing brain microvascular endothelial cells. Although tight junction protein complexes are principal contributors to physical barrier properties, they are not static in nature. Rather, tight junction protein complexes are highly dynamic structures, where expression and/or localization of individual constituent proteins can be modified in response to pathophysiological stressors. These stressors induce modifications to tight junction protein complexes that involve de novo synthesis of new protein or discrete trafficking mechanisms. Such responsiveness of BBB tight junctions to diseases indicates that these protein complexes are critical for maintenance of CNS homeostasis. In fulfillment of this vital role, BBB tight junctions are also a major obstacle to therapeutic drug delivery to the brain. There is an opportunity to overcome this substantial obstacle and optimize neuropharmacology via acquisition of a detailed understanding of BBB tight junction structure, function, and regulation. In this review, we discuss physiological characteristics of tight junction protein complexes and how these properties regulate delivery of therapeutics to the CNS for treatment of neurological diseases. Specifically, we will discuss modulation of tight junction structure, function, and regulation both in the context of disease states and in the setting of pharmacotherapy. In particular, we will highlight how these properties can be potentially manipulated at the molecular level to increase CNS drug levels via paracellular transport to the brain.
Collapse
|
18
|
Liktor-Busa E, Blawn KT, Kellohen KL, Wiese BM, Verkhovsky V, Wahl J, Vivek A, Palomino SM, Davis TP, Vanderah TW, Largent-Milnes TM. Functional NHE1 expression is critical to blood brain barrier integrity and sumatriptan blood to brain uptake. PLoS One 2020; 15:e0227463. [PMID: 32469979 PMCID: PMC7259629 DOI: 10.1371/journal.pone.0227463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Disruption of blood-brain barrier integrity and dramatic failure of brain ion homeostasis including fluctuations of pH occurs during cortical spreading depression (CSD) events associated with several neurological disorders, including migraine with aura, traumatic brain injury and stroke. NHE1 is the primary regulator of pH in the central nervous system. The goal of the current study was to investigate the role of sodium-hydrogen exchanger type 1 (NHE1) in blood brain barrier (BBB) integrity during CSD events and the contributions of this antiporter on xenobiotic uptake. Using immortalized cell lines, pharmacologic inhibition and genetic knockdown of NHE1 mitigated the paracellular uptake of radiolabeled sucrose implicating functional NHE1 in BBB maintenance. In contrast, loss of functional NHE1 in endothelial cells facilitated uptake of the anti-migraine therapeutic, sumatriptan. In female rats, cortical KCl but not aCSF selectively reduced total expression of NHE1 in cortex and PAG but increased expression in trigeminal ganglia; no changes were seen in trigeminal nucleus caudalis. Thus, in vitro observations may have a significance in vivo to increase brain sumatriptan levels. Pharmacological inhibition of NHE1 prior to cortical manipulations enhanced the efficacy of sumatriptan at early time-points but induced facial sensitivity alone. Overall, our results suggest that dysregulation of NHE1 contributes to breaches in BBB integrity, drug penetrance, and the behavioral sensitivity to the antimigraine agent, sumatriptan.
Collapse
Affiliation(s)
- Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kiera T. Blawn
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kathryn L. Kellohen
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Vani Verkhovsky
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Jared Wahl
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Anjali Vivek
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Seph M. Palomino
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
19
|
Torres-Ferrús M, Ursitti F, Alpuente-Ruiz A, Brunello F, Chiappino D, de Vries T, Di Marco S, Ferlisi S, Guerritore L, Gonzalez-Garcia N, Gonzalez-Martinez A, Khutorov D, Kritsilis M, Kyrou A, Makeeva T, Minguez-Olaondo A, Pilati L, Serrien A, Tsurkalenko O, Van den Abbeele D, van Hoogstraten WS, Lampl C. From transformation to chronification of migraine: pathophysiological and clinical aspects. J Headache Pain 2020; 21:42. [PMID: 32349653 PMCID: PMC7189559 DOI: 10.1186/s10194-020-01111-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic migraine is a neurological disorder characterized by 15 or more headache days per month of which at least 8 days show typical migraine features. The process that describes the development from episodic migraine into chronic migraine is commonly referred to as migraine transformation or chronification. Ample studies have attempted to identify factors associated with migraine transformation from different perspectives. Understanding CM as a pathological brain state with trigeminovascular participation where biological changes occur, we have completed a comprehensive review on the clinical, epidemiological, genetic, molecular, structural, functional, physiological and preclinical evidence available.
Collapse
Affiliation(s)
- M. Torres-Ferrús
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d’Hebron, Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute (VHIR), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F. Ursitti
- Headache Center, Child Neurology Unit, Bambino Gesu’ Children’s Hospital, Rome, Italy
| | - A. Alpuente-Ruiz
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d’Hebron, Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute (VHIR), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F. Brunello
- Juvenile Headache Centre, Department of Woman’s and Child’s Health, University Hospital of Padua, Padua, Italy
| | - D. Chiappino
- Department of Internal medicine, Sant’Andrea Hospital, University of Rome, Sapienza, Italy
| | - T. de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S. Di Marco
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - S. Ferlisi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - L. Guerritore
- Department of Internal medicine, Sant’Andrea Hospital, University of Rome, Sapienza, Italy
| | - N. Gonzalez-Garcia
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - A. Gonzalez-Martinez
- Neurology Department, Hospital Universitario de La Princesa & Instituto de Investigación Sanitaria de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - D. Khutorov
- Department of Clinical Neurology and Sleep Medicine, The Nikiforov Russian Center of Emergency and Radiation Medicine of EMERCOM of Russia, Saint-Petersburg, Russia
| | | | - A. Kyrou
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland University Hospital of Psychiatry, Bern, Switzerland
| | - T. Makeeva
- Headache Unit, Department of Neurology, Medical center “New Medical Technologies”, Voronezh, Russia
| | - A. Minguez-Olaondo
- Department of Neurology, Universitary Hospital of Donostia, San Sebastian, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Neurology, Hospital Quironsalud Donostia, San Sebastian, Spain
| | - L. Pilati
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
| | - A. Serrien
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - O. Tsurkalenko
- Department of Neurology and Neurosurgery, State Institution “Dnipropetrovsk medical akademy MOH Ukraine”, Dnipro, Ukraine
| | | | - W. S. van Hoogstraten
- Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - C. Lampl
- Headache Medical Center Linz, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - On behalf of School of Advanced Studies of European Headache Federation (EHF-SAS)
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitari Vall d’Hebron, Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute (VHIR), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Headache Center, Child Neurology Unit, Bambino Gesu’ Children’s Hospital, Rome, Italy
- Juvenile Headache Centre, Department of Woman’s and Child’s Health, University Hospital of Padua, Padua, Italy
- Department of Internal medicine, Sant’Andrea Hospital, University of Rome, Sapienza, Italy
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Policlinico Paolo Giaccone Hospital, University of Palermo, Palermo, Italy
- Headache and Craniofacial Pain Unit, Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Neurology Department, Hospital Universitario de La Princesa & Instituto de Investigación Sanitaria de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Clinical Neurology and Sleep Medicine, The Nikiforov Russian Center of Emergency and Radiation Medicine of EMERCOM of Russia, Saint-Petersburg, Russia
- Grevena General Hospital, Grevena, Greece
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland University Hospital of Psychiatry, Bern, Switzerland
- Headache Unit, Department of Neurology, Medical center “New Medical Technologies”, Voronezh, Russia
- Department of Neurology, Universitary Hospital of Donostia, San Sebastian, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Neurology, Hospital Quironsalud Donostia, San Sebastian, Spain
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurology and Neurosurgery, State Institution “Dnipropetrovsk medical akademy MOH Ukraine”, Dnipro, Ukraine
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Headache Medical Center Linz, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| |
Collapse
|
20
|
Peng KP, Chen SP, Gudmundsson LS. Headache highlights 2019: Junior editors’ choice. CEPHALALGIA REPORTS 2020. [DOI: 10.1177/2515816320903292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kuan-Po Peng
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Brain Research Center and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Pin Chen
- Brain Research Center and School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans, Taiwan General Hospital, Taipei, Taiwan
| | - Larus S Gudmundsson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
21
|
Abnormal neurovascular coupling as a cause of excess cerebral vasodilation in familial migraine. Cardiovasc Res 2019; 116:2009-2020. [DOI: 10.1093/cvr/cvz306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Aims
Acute migraine attack in familial hemiplegic migraine type 2 (FHM2) patients is characterized by sequential hypo- and hyperperfusion. FHM2 is associated with mutations in the Na, K-ATPase α2 isoform. Heterozygous mice bearing one of these mutations (α2+/G301R mice) were shown to have elevated cerebrovascular tone and, thus, hypoperfusion that might lead to elevated concentrations of local metabolites. We hypothesize that these α2+/G301R mice also have increased cerebrovascular hyperaemic responses to these local metabolites leading to hyperperfusion in the affected part of the brain.
Methods and results
Neurovascular coupling was compared in α2+/G301R and matching wild-type (WT) mice using Laser Speckle Contrast Imaging. In brain slices, parenchymal arteriole diameter and intracellular calcium changes in neuronal tissue, astrocytic endfeet, and smooth muscle cells in response to neuronal excitation were assessed. Wall tension and smooth muscle membrane potential were measured in isolated middle cerebral arteries. Quantitative polymerase chain reaction, western blot, and immunohistochemistry were used to assess the molecular background underlying the functional changes. Whisker stimulation induced larger increase in blood perfusion, i.e. hyperaemic response, of the somatosensory cortex of α2+/G301R than WT mice. Neuronal excitation was associated with larger parenchymal arteriole dilation in brain slices from α2+/G301R than WT mice. These hyperaemic responses in vivo and ex vivo were inhibited by BaCl2, suggesting involvement of inward-rectifying K+ channels (Kir). Relaxation to elevated bath K+ was larger in arteries from α2+/G301R compared to WT mice. This difference was endothelium-dependent. Endothelial Kir2.1 channel expression was higher in arteries from α2+/G301R mice. No sex difference in functional responses and Kir2.1 expression was found.
Conclusion
This study suggests that an abnormally high cerebrovascular hyperaemic response in α2+/G301R mice is a result of increased endothelial Kir2.1 channel expression. This may be initiated by vasospasm-induced accumulation of local metabolites and underlie the hyperperfusion seen in FHM2 patients during migraine attack.
Collapse
|
22
|
Frederiksen SD, Haanes KA, Warfvinge K, Edvinsson L. Perivascular neurotransmitters: Regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab 2019; 39:610-632. [PMID: 29251523 PMCID: PMC6446417 DOI: 10.1177/0271678x17747188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone. These findings support a role for the vasculature in primary headache disorders. Moreover, neuronal hyperexcitability and other abnormalities have been observed in primary headaches and related to changes in hemodynamic factors. In particular, this relates to migraine aura and spreading depression. During headache attacks, ganglia such as trigeminal and sphenopalatine (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Kempuraj D, Mentor S, Thangavel R, Ahmed ME, Selvakumar GP, Raikwar SP, Dubova I, Zaheer S, Iyer SS, Zaheer A. Mast Cells in Stress, Pain, Blood-Brain Barrier, Neuroinflammation and Alzheimer's Disease. Front Cell Neurosci 2019; 13:54. [PMID: 30837843 PMCID: PMC6389675 DOI: 10.3389/fncel.2019.00054] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cell activation plays an important role in stress-mediated disease pathogenesis. Chronic stress cause or exacerbate aging and age-dependent neurodegenerative diseases. The severity of inflammatory diseases is worsened by the stress. Mast cell activation-dependent inflammatory mediators augment stress associated pain and neuroinflammation. Stress is the second most common trigger of headache due to mast cell activation. Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disease that affects more women than men and woman's increased susceptibility to chronic stress could increase the risk for AD. Modern life-related stress, social stress, isolation stress, restraint stress, early life stress are associated with an increased level of neurotoxic beta amyloid (Aβ) peptide. Stress increases cognitive dysfunction, generates amyloid precursor protein (APP), hyperphosphorylated tau, neurofibrillary tangles (NFTs), and amyloid plaques (APs) in the brain. Stress-induced Aβ persists for years and generates APs even several years after the stress exposure. Stress activates hypothalamic-pituitary adrenal (HPA) axis and releases corticotropin-releasing hormone (CRH) from hypothalamus and in peripheral system, which increases the formation of Aβ, tau hyperphosphorylation, and blood-brain barrier (BBB) disruption in the brain. Mast cells are implicated in nociception and pain. Mast cells are the source and target of CRH and other neuropeptides that mediate neuroinflammation. Microglia express receptor for CRH that mediate neurodegeneration in AD. However, the exact mechanisms of how stress-mediated mast cell activation contribute to the pathogenesis of AD remains elusive. This mini-review highlights the possible role of stress and mast cell activation in neuroinflammation, BBB, and tight junction disruption and AD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shireen Mentor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Mohammad E. Ahmed
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans’ Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
24
|
Multimodal imaging findings during severe attacks of familial hemiplegic migraine type 2. J Neurol Sci 2018; 392:22-27. [DOI: 10.1016/j.jns.2018.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/09/2018] [Accepted: 06/23/2018] [Indexed: 11/24/2022]
|
25
|
Sadeghian H, Lacoste B, Qin T, Toussay X, Rosa R, Oka F, Chung DY, Takizawa T, Gu C, Ayata C. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann Neurol 2018; 84:409-423. [PMID: 30014540 PMCID: PMC6153037 DOI: 10.1002/ana.25298] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Cortical spreading depolarizations (CSDs) are intense and ubiquitous depolarization waves relevant for the pathophysiology of migraine and brain injury. CSDs disrupt the blood-brain barrier (BBB), but the mechanisms are unknown. METHODS A total of six CSDs were evoked over 1 hour by topical application of 300 mM of KCl or optogenetically with 470 nm (blue) LED over the right hemisphere in anesthetized mice (C57BL/6 J wild type, Thy1-ChR2-YFP line 18, and cav-1-/- ). BBB disruption was assessed by Evans blue (2% EB, 3 ml/kg, intra-arterial) or dextran (200 mg/kg, fluorescein, 70,000 MW, intra-arterial) extravasation in parietotemporal cortex at 3 to 24 hours after CSD. Endothelial cell ultrastructure was examined using transmission electron microscopy 0 to 24 hours after the same CSD protocol in order to assess vesicular trafficking, endothelial tight junctions, and pericyte integrity. Mice were treated with vehicle, isoform nonselective rho-associated kinase (ROCK) inhibitor fasudil (10 mg/kg, intraperitoneally 30 minutes before CSD), or ROCK-2 selective inhibitor KD025 (200 mg/kg, per oral twice-daily for 5 doses before CSD). RESULTS We show that CSD-induced BBB opening to water and large molecules is mediated by increased endothelial transcytosis starting between 3 and 6 hours and lasting approximately 24 hours. Endothelial tight junctions, pericytes, and basement membrane remain preserved after CSDs. Moreover, we show that CSD-induced BBB disruption is exclusively caveolin-1-dependent and requires rho-kinase 2 activity. Importantly, hyperoxia failed to prevent CSD-induced BBB breakdown, suggesting that the latter is independent of tissue hypoxia. INTERPRETATION Our data elucidate the mechanisms by which CSDs lead to transient BBB disruption, with diagnostic and therapeutic implications for migraine and brain injury.
Collapse
Affiliation(s)
- Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Baptiste Lacoste
- The Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xavier Toussay
- The Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
| | - Roberto Rosa
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fumiaki Oka
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Y Chung
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
26
|
Pellerin A, Marois C, Mezouar N, Mokhtari K, Leclercq D, Law-ye B. Neuronal injuries evidenced by transient cortical magnetic resonance enhancement in hemiplegic migraine: A case report. Cephalalgia 2018; 39:323-325. [DOI: 10.1177/0333102418794481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Magnetic resonance imaging abnormalities in hemiplegic migraine have been described previously but were limited to a cortical thickening and biphasic alternation of hypoperfusion and hyperperfusion. Our report reveals possible blood-brain barrier disruption during migraine. Case We present the first demonstrated case of regressive diffuse hemispheric cortical enhancement in sporadic hemiplegic migraine, with histological correlation revealing neuronal lesions similar to ischemic lesions. This is probably due to the severity of the attack as indicated by the left hemiplegia and transient altered consciousness in our 43-year-old male patient. Conclusion Cortical contrast enhancement on 3D T1 images may suggest migraine severity and be predictive of neuronal loss.
Collapse
Affiliation(s)
- Arnaud Pellerin
- APHP, Pitié-Salpêtrière Hospital, Department of Neuroradiology, Paris, France
| | - Clémence Marois
- APHP, Pitié-Salpêtrière Hospital, Department of Neurology Intensive Care Unit, Paris, France
| | - Nicolas Mezouar
- APHP, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France
| | - Karima Mokhtari
- APHP, Pitié-Salpêtrière Hospital, Department of Neuropathology, Paris, France
| | - Delphine Leclercq
- APHP, Pitié-Salpêtrière Hospital, Department of Neuroradiology, Paris, France
| | - Bruno Law-ye
- APHP, Pitié-Salpêtrière Hospital, Department of Neuroradiology, Paris, France
| |
Collapse
|
27
|
Abstract
Background Glutamate has been implicated in migraine pathogenesis, and is elevated in the plasma, cerebrospinal fluid, and saliva in migraineurs. However, no comparison of glutamate levels among chronic migraine, episodic migraine and controls has been reported. The aim is to compare salivary glutamate levels of individuals with chronic migraine with those of individuals with episodic migraine and healthy controls. Methods We investigated salivary glutamate level of 46 women with chronic migraine, 50 women with episodic migraine, and 19 healthy controls via enzyme linked immunosorbent assay. Results The salivary glutamate level of the chronic migraine group (median and interquartile range, 20.47 [15.27–30.15] pmol/mg total protein) was significantly higher than those of the episodic migraine (16.17 [12.81–20.15] pmol/mg total protein, p = 0.008) and control (12.18 [9.40–16.24] pmol/mg total protein, p = 0.001) groups. The salivary glutamate level of the episodic migraine group was marginally elevated from that of the control group (post hoc p = 0.016). Thresholds of 16.58 and 17.94 pmol/mg total protein optimize the sensitivity and specificity to differentiate chronic migraine participants from healthy controls and episodic migraine participants, respectively. Conclusions Salivary glutamate level was elevated in chronic migraine participants. These data suggest that salivary glutamate level could be an indicator of CM
Collapse
|
28
|
Unekawa M, Ikeda K, Tomita Y, Kawakami K, Suzuki N. Enhanced susceptibility to cortical spreading depression in two types of Na +,K +-ATPase α2 subunit-deficient mice as a model of familial hemiplegic migraine 2. Cephalalgia 2017; 38:1515-1524. [PMID: 29041816 DOI: 10.1177/0333102417738249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Patients with familial hemiplegic migraine type 2 (FHM2) have a mutated ATP1A2 gene (encoding Na+,K+-ATPase α2 subunit) and show prolonged migraine aura. Cortical spreading depression (CSD), which involves mass depolarization of neurons and astrocytes that propagates slowly through the gray matter, is profoundly related to aura. Methods In two types of Atp1a2-defective heterozygous mice, Atp1a2tm1Kwk (C-KO) and Atp1a2tm2Kwk (N-KO), the sensitivity and responsiveness to CSD were examined under urethane anesthesia. Results In both cases, heterozygotes exhibited a low threshold for induction of CSD, faster propagation rate, slower recovery from DC deflection, and profound suppression of the electroencephalogram, compared to wild-type mice. A high dose of KCl elicited repeated CSDs for a longer period, with a tendency for a greater frequency of CSD occurrence in heterozygotes. The difference of every endpoint was slightly greater in N-KO than C-KO. Change of regional cerebral blood flow in response to CSD showed no significant difference. Conclusion Heterozygotes of Atp1a2-defective mice simulating FHM2 demonstrated high susceptibility to CSD rather than cortical vasoreactivity, and these effects may differ depending upon the knockout strategy for the gene disruption. These results suggest that patients with FHM2 may exhibit high susceptibility to CSD, resulting in migraine.
Collapse
Affiliation(s)
- Miyuki Unekawa
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ikeda
- 2 Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,3 Division of Biology, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Yutaka Tomita
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoshi Kawakami
- 3 Division of Biology, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Norihiro Suzuki
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Lochhead JJ, Ronaldson PT, Davis TP. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS JOURNAL 2017; 19:910-920. [PMID: 28353217 DOI: 10.1208/s12248-017-0076-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.
Collapse
Affiliation(s)
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
30
|
Islam MA, Alam F, Wong KK. Comorbid association of antiphospholipid antibodies and migraine: A systematic review and meta-analysis. Autoimmun Rev 2017; 16:512-522. [PMID: 28279839 DOI: 10.1016/j.autrev.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Antiphospholipid antibodies (aPLs) namely anticardiolipin (aCL) antibody, anti-β2-glycoprotein I (β2GPI) antibody and lupus anticoagulant (LA) are autoantibodies produced against anionic phospholipids and proteins on plasma membranes. Migraine is a primary headache disorder which has growing evidences of autoimmune-mediated pathogenesis and previous studies suggested the presence of aPLs in migraine patients. AIMS The aim of this study was to evaluate the comorbid association between aPLs (aCL, anti-β2GPI and LA) and migraine compared to healthy controls. METHODS Studies were searched through PubMed, ISI Web of Science and Google Scholar databases without restricting the languages and year (up to October 2016) and were selected based on the inclusion criteria. Two authors independently extracted data from the included studies. All analyses were conducted by using random effects model to calculate the odds ratio (OR) and 95% confidence interval (CI). Quality assessment was carried out by using the modified Newcastle-Ottawa Scale (NOS). Publication bias was evaluated via visualization of funnel plots, Begg's and Egger's tests. RESULTS The database searches produced 1995 articles, 13 of which were selected (912 migraineurs and 822 healthy controls). 8.59%, 15.21% and 4.11% of the migraineurs exhibited aCL, anti-β2GPI and LA which was 4.83, 1.63 and 3.03 times higher, respectively, than healthy controls. A significant presence of aCL (OR: 3.55, 95% CI: 1.59-7.95; p=0.002) or anti-β2GPI antibodies (OR: 2.02, 95% CI: 1.20-3.42; p=0.008) was observed in migraine patients, however, LA was not significantly associated (OR: 2.02, 95% CI: 0.50-8.37; p=0.320). Majority of the studies (n=10 of 13) demonstrated NOS score of 7 or above and no significant publication bias was observed. CONCLUSION Migraine might be an autoimmune-associated neurologic disorder. The presence of aCL or anti-β2GPI antibodies was significant in migraine patients compared to healthy controls, suggesting an involvement of these autoantibodies in migraine attack.
Collapse
Affiliation(s)
- Md Asiful Islam
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Fahmida Alam
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
31
|
Familial Hemiplegic Migraine with Severe Attacks: A New Report with ATP1A2 Mutation. Case Rep Neurol Med 2016; 2016:3464285. [PMID: 27818813 PMCID: PMC5081966 DOI: 10.1155/2016/3464285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Introduction. Familial hemiplegic migraine (FHM) is a rare disorder characterized by migraine attacks with motor weakness during the aura phase. Mutations in CACNA1A, ATP1A2, SCN1A, and PRRT2 genes have been described. Methods. To describe a mutation in ATP1A2 gene in a FHM case with especially severe and prolonged symptomatology. Results. 22-year-old woman was admitted due to migraine-type headache and sudden onset of right-sided weakness and aphasia; she had similar episodes in her childhood. Her mother was diagnosed with hemiplegic migraine without genetic confirmation. She presented with fever, decreased consciousness, left gaze preference, mixed aphasia, right facial palsy, right hemiplegia, and left crural paresis. Computed tomography (CT) showed no lesion and CT perfusion study evidenced oligohemia in left hemisphere. A normal brain magnetic resonance (MR) was obtained. Impaired consciousness and dysphasia began to improve three days after admission and mild dysphasia and right hemiparesis lasted for 10 days. No recurrences were reported during a follow-up of two years. We identified a variant in heterozygous state in ATP1A2 gene (p.Thr364Met), pathogenic according to different prediction algorithms (SIFT, PolyPhen2, MutationTaster, and Condel). Conclusion. Prolonged and severe attacks with diffuse hypoperfusion in a FHM seemed to be specially related to ATP1A2 mutations, and p.T364M should be considered.
Collapse
|
32
|
Cha YH, Millett D, Kane M, Jen J, Baloh R. Adult-Onset Hemiplegic Migraine with Cortical Enhancement and Oedema. Cephalalgia 2016; 27:1166-70. [PMID: 17645764 DOI: 10.1111/j.1468-2982.2007.01369.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present genetically identical twin patients who experienced late-onset migraine with visual and somatosensory auras and later developed hemiplegic migraines associated with severe cortical oedema and enhancement. Both positron emission tomography and electroencephalography showed an increase in activity contralateral to the hemiplegic side. Brain biopsy during the attack showed reactive astrogliosis and microgliosis. Mutations in CACNA1A, ATP1A2, SLC1A3 and NOTCH3 were ruled out by sequencing. This report shows the clinical and genetic evaluation of a severe form of familial hemiplegic migraine as well as the evolution of the imaging changes.
Collapse
Affiliation(s)
- Y-H Cha
- Department of Neurology, University of California-Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
33
|
Dreier JP. Is the blood–brain barrier differentially affected by different variants of migraine? Brain 2016; 139:1872-4. [DOI: 10.1093/brain/aww112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Schankin CJ, Maniyar FH, Seo Y, Kori S, Eller M, Chou DE, Blecha J, Murphy ST, Hawkins RA, Sprenger T, VanBrocklin HF, Goadsby PJ. Ictal lack of binding to brain parenchyma suggests integrity of the blood-brain barrier for 11C-dihydroergotamine during glyceryl trinitrate-induced migraine. Brain 2016; 139:1994-2001. [PMID: 27234268 PMCID: PMC4939703 DOI: 10.1093/brain/aww096] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
See Dreier (doi:
10.1093/aww112
) for a scientific commentary on this article.
For many decades a breakdown of the blood–brain barrier has been postulated to occur in migraine. Hypothetically this would facilitate access of medications, such as dihydroergotamine or triptans, to the brain despite physical properties otherwise restricting their entry. We studied the permeability of the blood–brain barrier in six migraineurs and six control subjects at rest and during acute glyceryl trinitrate-induced migraine attacks using positron emission tomography with the novel radioligand
11
C-dihydroergotamine, which is chemically identical to pharmacologically active dihydroergotamine. The influx rate constant
K
i
, average dynamic image and time activity curve were assessed using arterial blood sampling and served as measures for receptor binding and thus blood–brain barrier penetration. At rest, there was binding of
11
C-dihydroergotamine in the choroid plexus, pituitary gland, and venous sinuses as expected from the pharmacology of dihydroergotamine. However, there was no binding to the brain parenchyma, including the hippocampus, the area with the highest density of the highest-affinity dihydroergotamine receptors, and the raphe nuclei, a postulated brainstem site of action during migraine, suggesting that dihydroergotamine is not able to cross the blood–brain barrier. This binding pattern was identical in migraineurs during glyceryl trinitrate-induced migraine attacks as well as in matched control subjects. We conclude that
11
C-dihydroergotamine is unable to cross the blood–brain barrier interictally or ictally demonstrating that the blood–brain barrier remains tight for dihydroergotamine during acute glyceryl trinitrate-induced migraine attacks.
Collapse
Affiliation(s)
- Christoph J Schankin
- 1 Headache Group, Department of Neurology, University of California San Francisco, San Francisco, CA, USA 3 Department of Neurology, University Hospital Bern - Inselspital, University of Bern, Bern, Switzerland 4 Headache Group, NIHR-Wellcome Trust, King's Clinical Research Facility, King's College London, London, UK
| | - Farooq H Maniyar
- 1 Headache Group, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Youngho Seo
- 2 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael Eller
- 1 Headache Group, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Denise E Chou
- 6 Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Joseph Blecha
- 2 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Stephanie T Murphy
- 2 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Randall A Hawkins
- 2 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Till Sprenger
- 7 Department of Neurology, DKD Helios Klinik, Wiesbaden, Germany
| | - Henry F VanBrocklin
- 2 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peter J Goadsby
- 1 Headache Group, Department of Neurology, University of California San Francisco, San Francisco, CA, USA 4 Headache Group, NIHR-Wellcome Trust, King's Clinical Research Facility, King's College London, London, UK
| |
Collapse
|
35
|
Abstract
Background Hypoxia causes secondary headaches such as high-altitude headache (HAH) and headache due to acute mountain sickness. These secondary headaches mimic primary headaches such as migraine, which suggests a common link. We review and discuss the possible role of hypoxia in migraine and cluster headache. Methods This narrative review investigates the current level of knowledge on the relation of hypoxia in migraine and cluster headache based on epidemiological and experimental studies. Findings Epidemiological studies suggest that living in high-altitude areas increases the risk of migraine and especially migraine with aura. Human provocation models show that hypoxia provokes migraine with and without aura, whereas cluster headache has not been reliably induced by hypoxia. Possible pathophysiological mechanisms include hypoxia-induced release of nitric oxide and calcitonin gene-related peptide, cortical spreading depression and leakage of the blood-brain barrier. Conclusion There is a possible link between hypoxia and migraine and maybe cluster headache, but the exact mechanism is currently unknown. Provocation models of hypoxia have yielded interesting results suggesting a novel approach to study in depth the mechanism underlying hypoxia and primary headaches.
Collapse
Affiliation(s)
- Josefine Britze
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
36
|
Loewendorf AI, Matynia A, Saribekyan H, Gross N, Csete M, Harrington M. Roads Less Traveled: Sexual Dimorphism and Mast Cell Contributions to Migraine Pathology. Front Immunol 2016; 7:140. [PMID: 27148260 PMCID: PMC4836167 DOI: 10.3389/fimmu.2016.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
Migraine is a common, little understood, and debilitating disease. It is much more prominent in women than in men (~2/3 are women) but the reasons for female preponderance are not clear. Migraineurs frequently experience severe comorbidities, such as allergies, depression, irritable bowel syndrome, and others; many of the comorbidities are more common in females. Current treatments for migraine are not gender specific, and rarely are migraine and its comorbidities considered and treated by the same specialist. Thus, migraine treatments represent a huge unmet medical need, which will only be addressed with greater understanding of its underlying pathophysiology. We discuss the current knowledge about sex differences in migraine and its comorbidities, and focus on the potential role of mast cells (MCs) in both. Sex-based differences in pain recognition and drug responses, fluid balance, and the blood–brain barrier are recognized but their impact on migraine is not well studied. Furthermore, MCs are well recognized for their prominent role in allergies but much less is known about their contributions to pain pathways in general and migraine specifically. MC-neuron bidirectional communication uniquely positions these cells as potential initiators and/or perpetuators of pain. MCs can secrete nociceptor sensitizing and activating agents, such as serotonin, prostaglandins, histamine, and proteolytic enzymes that can also activate the pain-mediating transient receptor potential vanilloid channels. MCs express receptors for both estrogen and progesterone that induce degranulation upon binding. Furthermore, environmental estrogens, such as Bisphenol A, activate MCs in preclinical models but their impact on pain pathways or migraine is understudied. We hope that this discussion will encourage scientists and physicians alike to bridge the knowledge gaps linking sex, MCs, and migraine to develop better, more comprehensive treatments for migraine patients.
Collapse
Affiliation(s)
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Noah Gross
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | - Marie Csete
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | | |
Collapse
|
37
|
Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, Saper J, Cady R, Chon Y, Dietrich J, Lenz R. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15:382-90. [PMID: 26879279 DOI: 10.1016/s1474-4422(16)00019-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND The calcitonin gene-related peptide (CGRP) pathway is a promising target for preventive therapies in patients with migraine. We assessed the safety and efficacy of AMG 334, a fully human monoclonal antibody against the CGRP receptor, for migraine prevention. METHODS In this multicentre, randomised, double-blind, placebo-controlled, phase 2 trial, patients aged 18-60 years with 4 to 14 migraine days per month were enrolled at 59 headache and clinical research centres in North America and Europe, and randomly assigned in a 3:2:2:2 ratio to monthly subcutaneous placebo, AMG 334 7 mg, AMG 334 21 mg, or AMG 334 70 mg using a sponsor-generated randomisation sequence centrally executed by an interactive voice response or interactive web response system. Study site personnel, patients, and the sponsor study personnel were masked to the treatment assignment. The primary endpoint was the change in monthly migraine days from baseline to the last 4 weeks of the 12-week double-blind treatment phase. The primary endpoint was calculated using the least squares mean at each timepoint from a generalised linear mixed-effect model for repeated measures. Safety endpoints were adverse events, clinical laboratory values, vital signs, and anti-AMG 334 antibodies. The study is registered with ClinicalTrials.gov, number NCT01952574. An open-label extension phase of up to 256 weeks is ongoing and will assess the long-term safety of AMG 334. FINDINGS From Aug 6, 2013, to June 30, 2014, 483 patients were randomly assigned to placebo (n=160), AMG 334 7 mg (n=108), AMG 334 21 mg (n=108), or AMG 334 70 mg (n=107). The mean change in monthly migraine days at week 12 was -3·4 (SE 0·4) days with AMG 334 70 mg versus -2·3 (0·3) days with placebo (difference -1·1 days [95% CI -2·1 to -0·2], p=0·021). The mean reductions in monthly migraine days with the 7 mg (-2·2 [SE 0·4]) and the 21 mg (-2·4 [0·4]) doses were not significantly different from that with placebo. Adverse events were recorded in 82 (54%) patients who received placebo, 54 (50%) patients in the AMG 334 7 mg group, 54 (51%) patients in the AMG 334 21 mg group, and 57 (54%) patients in the AMG 334 70 mg group. The most frequently reported adverse events were nasopharyngitis, fatigue, and headache. Serious adverse events were reported for one patient in the AMG 334 7 mg group (ruptured ovarian cyst) and one patient in the AMG 334 70 mg group (migraine and vertigo); these events were judged to be unrelated to AMG 334 treatment. Nine (3%) of 317 patients had neutralising antibodies. No apparent association was recorded between patients with positive anti-AMG 334 antibodies and adverse events. No clinically significant vital signs, laboratory, or electrocardiogram findings were recorded. INTERPRETATION These results suggest that AMG 334 70 mg might be a potential therapy for migraine prevention in patients with episodic migraine and support further investigation of AMG 334 in larger phase 3 trials. FUNDING Amgen.
Collapse
Affiliation(s)
- Hong Sun
- Department of Global Development, Amgen, Thousand Oaks, CA, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Peter J Goadsby
- Department of Neurology NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joel Saper
- Michigan Head Pain and Neurological Institute, Ann Arbor, MI, USA
| | - Roger Cady
- Clinvest Research, Banyan Group, Headache Care Center, Springfield, MO, USA
| | - Yun Chon
- Department of Biostatistics, Amgen, Thousand Oaks, CA, USA
| | - Julie Dietrich
- Department of Global Development, Amgen, Thousand Oaks, CA, USA
| | - Robert Lenz
- Department of Global Development, Amgen, Thousand Oaks, CA, USA.
| |
Collapse
|
38
|
Sun FJ, Wei YJ, Li S, Guo W, Chen X, Liu SY, He JJ, Yin Q, Yang H, Zhang CQ. Elevated Expression of VEGF-C and Its Receptors, VEGFR-2 and VEGFR-3, in Patients with Mesial Temporal Lobe Epilepsy. J Mol Neurosci 2016; 59:241-50. [DOI: 10.1007/s12031-016-0714-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
|
39
|
Abstract
The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
Collapse
Affiliation(s)
- Jens P Dreier
- Department of Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany.
| | - Clemens Reiffurth
- Department of Experimental Neurology, Charité University Medicine Berlin, 10117 Berlin, Germany; Center for Stroke Research, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
40
|
DosSantos MF, Holanda-Afonso RC, Lima RL, DaSilva AF, Moura-Neto V. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci 2014; 8:302. [PMID: 25339863 PMCID: PMC4189386 DOI: 10.3389/fncel.2014.00302] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
The function of the blood-brain barrier (BBB) related to chronic pain has been explored for its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as opioid analgesics (e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including substance P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier and blood-nerve barrier, and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Universidade Federal do Rio de Janeiro – Campus MacaéRio de Janeiro, Brazil
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Rosenilde C. Holanda-Afonso
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rodrigo L. Lima
- Departamento de Ortodontia e Odontopediatria, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Brazil
| |
Collapse
|
41
|
Sugrue G, Bolster F, Crosbie I, Kavanagh E. Hemiplegic migraine: neuroimaging findings during a hemiplegic migraine attack. Headache 2014; 54:716-8. [PMID: 24512003 DOI: 10.1111/head.12298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gavin Sugrue
- Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
42
|
Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N. Epileptic focus and alteration of metabolism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:209-43. [PMID: 25078504 DOI: 10.1016/b978-0-12-418693-4.00009-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common neurologic disorders affecting a substantial part of the population worldwide. Epileptic seizures represent the situation of increased neuronal activity associated with the enhanced demands for sufficient energy supply. For that purpose, very efficient regulatory mechanisms have to operate to ensure that cerebral blood flow, delivery of oxygen, and nutrients are continuously adapted to the local metabolic needs. The sophisticated regulation has to function in concert at several levels (systemic, tissue, cellular, and subcellular). Particularly, mitochondria play a key role not only in the energy production, but they are also central to many other processes including those leading to neuronal death. Impairment of any of the involved pathways can result in serious functional alterations, neurodegeneration, and potentially in epileptogenesis. The present review will address some of the important issues concerning vascular and metabolic changes in pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Jakub Otáhal
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Jaroslava Folbergrová
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Richard Kovacs
- Institute for Neurophysiology, Charité-Medical University Berlin, Berlin, Germany
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Nicola Maggio
- Department of Neurology, The Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
43
|
Radu BM, Bramanti P, Osculati F, Flonta ML, Radu M, Bertini G, Fabene PF. Neurovascular unit in chronic pain. Mediators Inflamm 2013; 2013:648268. [PMID: 23840097 PMCID: PMC3687484 DOI: 10.1155/2013/648268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Maria-Luisa Flonta
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mihai Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania
| | - Giuseppe Bertini
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Francesco Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
44
|
Tuka B, Helyes Z, Markovics A, Bagoly T, Szolcsányi J, Szabó N, Tóth E, Kincses ZT, Vécsei L, Tajti J. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia 2013; 33:1085-95. [PMID: 23598374 DOI: 10.1177/0333102413483931] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies on migraineurs and our own animal experiments have revealed that pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) has an important role in activation of the trigeminovascular system. The aim of this study was to determine the PACAP-38-like immunoreactivity (LI) in the plasma of healthy subjects, and parallel with the calcitonin gene-related peptide (CGRP)-LI in migraine patients in the ictal and interictal periods. METHODS A total of 87 migraineurs and 40 healthy control volunteers were enrolled in the examination. Blood samples were collected from the cubital veins in both periods in 21 patients, and in either the ictal or the interictal period in the remaining 66 patients, and were analysed by radioimmunoassay. RESULTS A significantly lower PACAP-38-LI was measured in the interictal plasma of the migraineurs as compared with the healthy control group ( P < 0.011). In contrast, elevated peptide levels were detected in the ictal period relative to the attack-free period in the 21 migraineurs ( P PACAP-38 < 0.001; P CGRP < 0.035) and PACAP-38-LI in the overall population of migraineurs ( P < 0.009). A negative correlation was observed between the interictal PACAP-38-LI and the disease duration. CONCLUSION This is the first study that has provided evidence of a clear association between migraine phases (ictal and interictal) and plasma PACAP-38-LI alterations.
Collapse
Affiliation(s)
- Bernadett Tuka
- Department of Neurology, Faculty of Medicine, University of Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pelzer N, Stam AH, Haan J, Ferrari MD, Terwindt GM. Familial and sporadic hemiplegic migraine: diagnosis and treatment. Curr Treat Options Neurol 2013. [PMID: 23203776 DOI: 10.1007/s11940-012-0208-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Hemiplegic migraine (HM) is a rare subtype of migraine with aura, characterized by transient hemiparesis during attacks. Diagnosis is based on the International Classification of Headache Disorders criteria (ICHD-II). Two types of HM are recognized: familial (FHM) and sporadic hemiplegic migraine (SHM). HM is genetically heterogeneous. Three genes have been identified (CACNA1A, ATP1A2, and SCN1A) but more, so far unknown genes, are involved. Clinically, attacks of the 3 subtypes cannot be distinguished. The diagnosis can be confirmed but not ruled out by genetic testing, because in some HM patients other, not yet identified, genes are involved. The presence of additional symptoms (such as chronic ataxia or epilepsy) may increase the likelihood of identifying a mutation. Additional diagnostics like imaging, CSF analysis, or an EEG are mainly performed to exclude other causes of focal neurological symptoms associated with headache. Conventional cerebral angiography is contraindicated in HM because this may provoke an attack. Because HM is a rare condition, no clinical treatment trials are available in this specific subgroup of migraine patients. Thus, the treatment of HM is based on empirical data, personal experience of the treating neurologist, and involves a trial-and-error strategy. Acetaminophen and NSAIDs often are the first choice in acute treatment. Although controversial in HM, triptans can be prescribed when headaches are not relieved sufficiently with common analgesics. An effective treatment for the severe and often prolonged aura symptoms is more warranted, but currently no such acute treatment is available. Prophylactic treatment can be considered when attack frequency exceeds 2 attacks per month, or when severe attacks pose a great burden that requires reduction of severity and frequency. In no strictly preferred order, flunarizine, sodium valproate, lamotrigine, verapamil, and acetazolamide can be tried. While less evidence is available for prophylactic treatment with topiramate, candesartan, and pizotifen, these drugs can also be considered. The use of propranolol in HM is more controversial, but evidence of adverse effects is insufficient to contraindicate beta-blockers.
Collapse
Affiliation(s)
- Nadine Pelzer
- Department of Neurology, Leiden University Medical Center, P.O. Box 9600, 2300, RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Charles A. The evolution of a migraine attack - a review of recent evidence. Headache 2012; 53:413-9. [PMID: 23278169 DOI: 10.1111/head.12026] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 01/07/2023]
Abstract
A migraine attack is an extraordinarily complex brain event that takes place over hours to days. This review focuses on recent human studies that shed light on the evolution of a migraine attack. It begins with a constellation of premonitory symptoms that are associated with activation of the hypothalamus and may involve the neurotransmitter dopamine. Even in the premonitory phase, patients experience sensitivity to sensory stimuli, indicating that central sensitization is a primary phenomenon. The migraine attack progresses to a phase that in some patients includes aura, which involves changes in cortical function, blood flow, and neurovascular coupling. The aura phase overlaps with the headache phase, which is associated with further changes in blood flow and function of the brainstem, thalamus, hypothalamus, and cortex. Serotonin receptors, nitric oxide, calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and prostanoids are demonstrated specific chemical mediators of migraine based on therapeutic and triggered migraine studies. A number of migraine symptoms persist beyond resolution of headache into a postdromal phase, accompanied by persistent blood flow changes in several brain regions. Although these phases of migraine have substantial temporal, neurochemical, and anatomical overlap, each represents an important window onto the pathophysiology of migraine as well as a target for therapeutic intervention. A comprehensive approach to migraine requires an understanding of the entire range of mechanisms and resultant symptoms that occur throughout the evolution of an attack.
Collapse
Affiliation(s)
- Andrew Charles
- Headache Research and Treatment Program, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Asghar SJ, Milesi-Hallé A, Kaushik C, Glasier C, Sharp GB. Variable manifestations of familial hemiplegic migraine associated with reversible cerebral edema in children. Pediatr Neurol 2012; 47:201-4. [PMID: 22883286 DOI: 10.1016/j.pediatrneurol.2012.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/09/2012] [Indexed: 11/16/2022]
Abstract
Three children with familial hemiplegic migraine presented with right-sided weakness, speech difficulty, altered mental status, and gait abnormalities. These persistent aura signs were accompanied by left-sided slowing and cerebral dysfunction, documented by electroencephalograms. Cranial magnetic resonance imaging revealed cortical edema restricted to the left cerebral hemisphere. Follow-up electroencephalogram and imaging studies produced normal results 1-4 months afterward. However, cognitive changes persisted. Genetic testing demonstrated variable results: one child manifested a CACNA1A mutation compatible with familial hemiplegic migraine type 1, whereas another demonstrated an ATP1A2 sequence alteration. No known mutations were evident in the third child, with minor head trauma thought to precipitate the familial hemiplegic migraine. These findings demonstrate the variable clinical and genetic heterogeneity of childhood familial hemiplegic migraine.
Collapse
Affiliation(s)
- Sheila J Asghar
- Section of Pediatric Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | |
Collapse
|
48
|
Stanimirovic DB, Friedman A. Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 2012; 32:1207-21. [PMID: 22395208 PMCID: PMC3390807 DOI: 10.1038/jcbfm.2012.25] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathophysiology of the neurovascular unit (NVU) is commonly seen in neurological diseases. The typical features of NVU pathophysiology include tissue hypoxia, inflammatory and angiogenic activation, as well as initiation of complex molecular interactions between cellular (brain endothelial cells, astroctyes, pericytes, inflammatory cells, and neurons) and acellular (basal lamina) components of the NVU, jointly resulting in increased blood-brain barrier permeability, brain edema, neurovascular uncoupling, and neuronal dysfunction and damage. The evidence of important role of the brain vascular compartment in disease pathogenesis has elicited the debate whether the primary vascular events may be a cause of the neurological disease, as opposed to a mere participant recruited by a primary neuronal origin of pathology? Whereas some hereditary and acquired cerebral angiopathies could be considered a primary cause of neurological symptoms of the disease, the epidemiological studies showing a high degree of comorbidity among vascular disease and dementias, including Alzheimer's disease, as well as migraine and epilepsy, suggested that primary vascular pathology may be etiological factor causing neuronal dysfunction or degeneration in these diseases. This review focuses on recent hypotheses and evidence, suggesting that pathophysiology of the NVU may be initiating trigger for neuronal pathology and subsequent neurological manifestations of the disease.
Collapse
Affiliation(s)
- Danica B Stanimirovic
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada.
| | | |
Collapse
|
49
|
Bøttger P, Doğanlı C, Lykke-Hartmann K. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 2011; 36:855-71. [PMID: 22067897 DOI: 10.1016/j.neubiorev.2011.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium-potassium pump (Na(+)/K(+)-ATPase). Intriguingly, patients with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na(+)/K(+)-ATPases, and we discuss their relevance to the complex patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific α-isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models have broad potentials for future research concerning migraine and dystonia-related diseases, which will contribute towards understanding the, yet unknown, pathophysiologies.
Collapse
Affiliation(s)
- Pernille Bøttger
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Denmark; Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
50
|
Russell MB, Ducros A. Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 2011; 10:457-70. [DOI: 10.1016/s1474-4422(11)70048-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|