1
|
Zhang Z, Zheng L, Chen Y, Chen Y, Hou J, Xiao C, Zhu X, Zhao SM, Xiong JW. AARS2 ameliorates myocardial ischemia via fine-tuning PKM2-mediated metabolism. eLife 2025; 13:RP99670. [PMID: 40371904 PMCID: PMC12080999 DOI: 10.7554/elife.99670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
AARS2, an alanyl-tRNA synthase, is essential for protein translation, but its function in mouse hearts is not fully addressed. Here, we found that cardiomyocyte-specific deletion of mouse AARS2 exhibited evident cardiomyopathy with impaired cardiac function, notable cardiac fibrosis, and cardiomyocyte apoptosis. Cardiomyocyte-specific AARS2 overexpression in mice improved cardiac function and reduced cardiac fibrosis after myocardial infarction (MI), without affecting cardiomyocyte proliferation and coronary angiogenesis. Mechanistically, AARS2 overexpression suppressed cardiomyocyte apoptosis and mitochondrial reactive oxide species production, and changed cellular metabolism from oxidative phosphorylation toward glycolysis in cardiomyocytes, thus leading to cardiomyocyte survival from ischemia and hypoxia stress. Ribo-Seq revealed that Aars2 overexpression increased pyruvate kinase M2 (PKM2) protein translation and the ratio of PKM2 dimers to tetramers that promote glycolysis. Additionally, PKM2 activator TEPP-46 reversed cardiomyocyte apoptosis and cardiac fibrosis caused by AARS2 deficiency. Thus, this study demonstrates that AARS2 plays an essential role in protecting cardiomyocytes from ischemic pressure via fine-tuning PKM2-mediated energy metabolism, and presents a novel cardiac protective AARS2-PKM2 signaling during the pathogenesis of MI.
Collapse
Affiliation(s)
- Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Yang Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Yuanyuan Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Junjie Hou
- School of Basic Medical Sciences and The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Chenglu Xiao
- School of Basic Medical Sciences and The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan UniversityShanghaiChina
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingChina
- School of Basic Medical Sciences and The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| |
Collapse
|
2
|
Varughese R, Rahman S. Endocrine Dysfunction in Primary Mitochondrial Diseases. Endocr Rev 2025; 46:376-396. [PMID: 39891580 PMCID: PMC12063101 DOI: 10.1210/endrev/bnaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Primary mitochondrial disorders (PMD) are genetic disorders affecting the structure or function of the mitochondrion. Mitochondrial functions are diverse, including energy production, ion homeostasis, reactive oxygen species regulation, antioxidant defense, and biosynthetic responsibilities, notably including steroidogenesis. Mitochondria provide the energy to drive intracellular production and extracellular secretion of all hormones. The understanding of the endocrine consequences of PMD is key to timely identification of both endocrine complications in PMD patients, and PMD presenting primarily with endocrine disease. This is a narrative review on the endocrine manifestations of PMD, underlying disease mechanisms, and current and emerging approaches to diagnosing and treating these complex disorders. Diabetes is the most frequent endocrine manifestation of PMD, but growth hormone deficiency, adrenal insufficiency, hypogonadism, and parathyroid dysfunction may occur. Despite the intricate involvement of the thyroid gland in metabolic regulation, there is little evidence for a causal relationship between thyroid dysfunction and PMD. In conclusion, endocrine dysfunction is observed in PMD with varying incidence depending on the specific mitochondrial disorder and the endocrine organ in question. Diagnosis of PMD in a patient with endocrine-presenting features requires a high level of clinical suspicion, particularly when apparently unrelated comorbidities co-exist. Similarly, endocrine pathology may be subtle in patients with known PMD, and thorough consideration must be given to ensure timely diagnosis and treatment. The scope for novel therapeutics for this group of devastating conditions is enormous; however, several challenges remain to be overcome before hopes of curative treatments can be brought into clinical practice.
Collapse
Affiliation(s)
- Rachel Varughese
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
3
|
Zhang ZL, Ren ST, Yang WJ, Xu XW, Zhao SM, Fang KF, Lin Y, Yuan YY, Zhang XJ, Chen YQ, Xu W. AARS2-catalyzed lactylation induces follicle development and premature ovarian insufficiency. Cell Death Discov 2025; 11:209. [PMID: 40301335 PMCID: PMC12041370 DOI: 10.1038/s41420-025-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Lactate, a metabolite which is elevated in various developmental and pathological processes, exerts its signal through alanyl tRNA synthetases (AARS)-catalyzed protein lactylation. Herein, we report that elevated lactate and gain-of-function mitochondrial AARS (AARS2) mutations-induced hyper-lactylation promotes premature ovarian insufficiency (POI). Serum lactate is elevated in POI patients. POI-driving AARS2 mutations gain lactyltransferase activity. AARS2 lactylates and inactivates carnitine palmitoyl transferase 2 (CPT2), resulting in FFA accumulation that activates peroxisome proliferator-activated receptor γ (PPARγ), and potentiates follicle-stimulating hormone (FSH) to initiate follicle development. These, in synergy with the anabolites accumulation effects of AARS2, promoted lactylation-induced PDHA1 inactivation promote granular cell (GC) proliferation and primordial follicle development. GC-specific AARS2 overexpression does not affect primordial follicle number but speed up follicle depletion. AARS2 ablation or lactylation-inhibiting β-alanine treatments can prevent folliculogenesis and POI traits in mouse. These findings reveal that lactate signal drives follicle development, and inhibiting lactate signal could treat/prevent POI.
Collapse
Affiliation(s)
- Zhi-Ling Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu-Ting Ren
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Wan-Jie Yang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Wen Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ke-Fei Fang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Jin Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun-Qin Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic and Development of Complex Phenotypes, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Fifth People's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Kandemirli SG, Al-Dasuqi K, Aslan B, Goldstein A, Alves CAPF. Overview of neuroimaging in primary mitochondrial disorders. Pediatr Radiol 2025; 55:765-791. [PMID: 39937244 DOI: 10.1007/s00247-025-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Advancements in understanding the clinical, biochemical, and genetic aspects of primary mitochondrial disorders, along with the identification of a broad range of phenotypes frequently involving the central nervous system, have opened a new and crucial area in neuroimaging. This expanding knowledge presents significant challenges for radiologists in clinical settings, as the neuroimaging features and their associated metabolic abnormalities become more complex. This review offers a comprehensive overview of the key neuroimaging features associated with the common primary mitochondrial disorders. It highlights both the classical imaging findings and the emerging diagnostic insights related to several previously identified causative genes for these diseases. The review also provides an in-depth description of the clinicoradiologic presentations and potential underlying mitochondrial defects, aiming to enhance diagnostic abilities of radiologists in identifying primary mitochondrial diseases in their clinical practice.
Collapse
Affiliation(s)
- Sedat Giray Kandemirli
- Duke University Hospital, 2301 Erwin Rd, Durham, NC, 27710, USA.
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Khalid Al-Dasuqi
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Sidra Medical and Research Center, Doha, Qatar
| | - Bulent Aslan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Ma Y, Liu Y, Xu M, Yin X, Hu C, Yang X, Ge W. Drosophila modeling to identify causative genes and reveal the underlying molecular mechanisms for primary ovarian insufficiency. J Mol Med (Berl) 2025; 103:239-253. [PMID: 39853375 DOI: 10.1007/s00109-025-02516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Primary ovarian insufficiency (POI) is a disease defined as a reduction in ovarian function under the age of 40 and represents the main cause of female infertility. In recent years, many genetic mutations associated with POI have been identified using high-throughput sequencing technology. However, one big challenge today is to determine the disease-causing gene associations through functional assessment. Here, we develop a Drosophila model to study the POI-associated genes and provide in vivo functional evidence to validate the POI-causing genes. We use two different Gal4 drivers, in combination with RNAi transgene, and systematically knockdown 51 genes associated with POI. We show that 22 and 17 genes are required for female fertility and ovarian development in somatic and germline cells, respectively. Moreover, we also focus on AlaRS-m, the Drosophila ortholog of the human AARS2 gene, for further functional characterization. Depletion of AlaRS-m in ovarian somatic cells leads to decreased female fertility and a reduction in ovary size, as well as egg chamber degeneration. We also provide evidence that AlaRS-m deficiency causes mitochondrial dysfunction, overproduction of ROS, and apoptotic cell death. Our findings demonstrate that Drosophila can be used as a platform to assess the functional significance of POI-associated genes identified in genomic studies and illustrate the molecular mechanism underlying the pathogenesis of POI. KEY MESSAGES: • One hundred fourteen genes associated with POI are identified, and 76 of them have Drosophila orthologs. • Twenty-two genes and 17 genes are required for female fertility when knocked down in the Drosophila ovarian somatic cells and germline cells, respectively. • AlaRS-m/AARS2 deficiency causes female fertility defects with egg chamber degeneration.
Collapse
Affiliation(s)
- Yanbin Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Yuxin Liu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Man Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xinhuan Yin
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Chenyu Hu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Mao C, Qiu Y, Wang T, Jiang Y, Chu S, Jin W, Dong L, Gao J. Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy. J Mol Neurosci 2025; 75:11. [PMID: 39853526 DOI: 10.1007/s12031-024-02281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 01/30/2025]
Abstract
CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult. 23 CSF1R-L and 6 AARS2-L patients were enrolled from the Leukoencephalopathy Clinic, Peking Union Medical College Hospital in China. Detailed clinical information, neuroimaging manifestations, and genetic data were collected and analyzed. Demographically, female patients were more in AARS2-L than CSF1R-L. Clinically, cognitive impairment and emotion/personality change were common in both groups. Bulbar palsy, extrapyramidal symptoms, and hemiplegia/pyramidal impairment were more common in CSF1R-L, while ataxia was significantly more common in AARS2-L. Abnormal menstruation including infertility was significantly more in AARS2-L. Radiologically, similar features were found, including lateral ventricle-centered white matter lesions, involving corpus callosum, avoiding U fibers. The lesions showed persistent hyperintensity on DWI image and were not contrasted after gadolinium enhancement. In CSF1R-L, the lesions could be widespread confluent or patchy and spotted, extending to centrum semiovale and subcortical white matter occasionally, which was significantly different from AARS2-L. Besides, brain stem lesion caused by pyramidal degeneration, spotted or linear calcification and obviously brain atrophy were common in CSF1R-L. In AARS2-L, periventricular white matter rarefaction was significantly common. No genotype and phenotype association was found in these two diseases. Although similar, there were several clinical and radiological features helping differentiating the two distinct diseases.
Collapse
Affiliation(s)
- Chenhui Mao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Yuyue Qiu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Tianyi Wang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Yuhan Jiang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Shanshan Chu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Wei Jin
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Liling Dong
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Blaze J, Chen S, Heissel S, Alwaseem H, Landinez Macias MP, Peter C, Molina H, Storkebaum E, Turecki G, Goodarzi H, Akbarian S. Altered tRNA expression profile associated with codon-specific proteomic changes in the suicide brain. Mol Psychiatry 2025:10.1038/s41380-025-02891-8. [PMID: 39809846 DOI: 10.1038/s41380-025-02891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Suicide is a major public health concern, and the number of deaths by suicide has been increasing in recent years in the US. There are various biological risk factors for suicide, but causal molecular mechanisms remain unknown, suggesting that investigation of novel mechanisms and integrative approaches are necessary. Transfer (t)RNAs and their modifications, including cytosine methylation (m5C), have received little attention regarding their role in normal or diseased brain function, though they are dynamic mediators of protein synthesis. tRNA regulation is highly interconnected with proteomic and metabolomic outcomes, suggesting that investigating these multiple levels of molecular regulation together may elucidate more information on neural function and suicide risk. In the current study, we used an integrative 'omics' approach to probe tRNA dysregulation, including tRNA expression and tRNA m5C, proteomics, and amino acid metabolomics in prefrontal cortex from 98 subjects who died by suicide during an episode of major depressive disorder (MDD) and neurotypical controls. While no changes were detected in amino acid content, results showed increased tRNAGlyGCC expression in the suicide brain that is not driven by changes in m5C. Proteomics revealed increased expression of proteins with high glycine codon GGC content, demonstrating a strong association between isoacceptor-specific tRNA expression and proteomic outcomes in the suicide brain, which is in line with previous work linking tRNAGly with alterations in glycine-rich proteins in a translational rodent model of depression. Further, we confirmed using a rodent model that tRNAGlyGCC overexpression was sufficient to increase the expression of proteins with high glycine codon GGC content that were upregulated in the suicide brain. By characterizing the effects of MDD-suicide in human PFC tissue, we now begin to elucidate a novel molecular signature with downstream consequences for psychiatric outcomes.
Collapse
Affiliation(s)
- J Blaze
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - S Chen
- Department of Biochemistry and Biophysics, Department of Urology, Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - S Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - M P Landinez Macias
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - C Peter
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - E Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - G Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - H Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - S Akbarian
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Figuccia S, Izzo R, Legati A, Nasca A, Goffrini P, Ghezzi D, Ceccatelli Berti C. Investigation in yeast of novel variants in mitochondrial aminoacyl-tRNA synthetases WARS2, NARS2, and RARS2 genes associated with mitochondrial diseases. Hum Mol Genet 2024; 33:1630-1641. [PMID: 39230874 DOI: 10.1093/hmg/ddae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aminoacyl-transfer RiboNucleic Acid synthetases (ARSs) are essential enzymes that catalyze the attachment of each amino acid to their cognate tRNAs. Mitochondrial ARSs (mtARSs), which ensure protein synthesis within the mitochondria, are encoded by nuclear genes and imported into the organelle after translation in the cytosol. The extensive use of next generation sequencing (NGS) has resulted in an increasing number of variants in mtARS genes being identified and associated with mitochondrial diseases. The similarities between yeast and human mitochondrial translation machineries make yeast a good model to quickly and efficiently evaluate the effect of variants in mtARS genes. Genetic screening of patients with a clinical suspicion of mitochondrial disorders through a customized gene panel of known disease-genes, including all genes encoding mtARSs, led to the identification of missense variants in WARS2, NARS2 and RARS2. Most of them were classified as Variant of Uncertain Significance. We exploited yeast models to assess the functional consequences of the variants found in these genes encoding mitochondrial tryptophanyl-tRNA, asparaginyl-tRNA, and arginyl-tRNA synthetases, respectively. Mitochondrial phenotypes such as oxidative growth, oxygen consumption rate, Cox2 steady-state level and mitochondrial protein synthesis were analyzed in yeast strains deleted in MSW1, SLM5, and MSR1 (the yeast orthologues of WARS2, NARS2 and RARS2, respectively), and expressing the wild type or the mutant alleles. Pathogenicity was confirmed for most variants, leading to their reclassification as Likely Pathogenic. Moreover, the beneficial effects observed after asparagine and arginine supplementation in the growth medium suggest them as a potential therapeutic approach.
Collapse
Affiliation(s)
- Sonia Figuccia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Temolo 4, Milan 20126, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Temolo 4, Milan 20126, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Temolo 4, Milan 20126, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Temolo 4, Milan 20126, Italy
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, Milan 20122, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| |
Collapse
|
9
|
Schmitz AS, Raju J, Köhler W, Klebe S, Cheheb K, Reschke F, Biskup S, Haack TB, Roeben B, Kellner M, Rahner N, Bloch T, Lemke J, Bender B, Schöls L, Hengel H, Hayer SN. Novel variants in CSF1R associated with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). J Neurol 2024; 271:6025-6037. [PMID: 39031193 PMCID: PMC11377666 DOI: 10.1007/s00415-024-12557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
The CSF1R gene, located on chromosome 5, encodes a 108 kDa protein and plays a critical role in regulating myeloid cell function. Mutations in CSF1R have been identified as a cause of a rare white matter disease called adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP, also known as CSF1R-related leukoencephalopathy), characterized by progressive neurological dysfunction. This study aimed to broaden the genetic basis of ALSP by identifying novel CSF1R variants in patients with characteristic clinical and imaging features of ALSP. Genetic analysis was performed through whole-exome sequencing or panel analysis for leukodystrophy genes. Variant annotation and classification were conducted using computational tools, and the identified variants were categorized following the recommendations of the American College of Medical Genetics and Genomics (ACMG). To assess the evolutionary conservation of the novel variants within the CSF1R protein, amino acid sequences were compared across different species. The study identified six previously unreported CSF1R variants (c.2384G>T, c.2133_2919del, c.1837G>A, c.2304C>A, c.2517G>T, c.2642C>T) in seven patients with ALSP, contributing to the expanding knowledge of the genetic diversity underlying this rare disease. The analysis revealed considerable genetic and clinical heterogeneity among these patients. The findings emphasize the need for a comprehensive understanding of the genetic basis of rare diseases like ALSP and underscored the importance of genetic testing, even in cases with no family history of the disease. The study's contribution to the growing spectrum of ALSP genetics and phenotypes enhances our knowledge of this condition, which can be crucial for both diagnosis and potential future treatments.
Collapse
Affiliation(s)
- Anne S Schmitz
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Janani Raju
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Wolfgang Köhler
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Khaled Cheheb
- Department of Neurology, DRK Kamillus Klinik, Asbach, Germany
| | - Franziska Reschke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
- Humangenetik und Pränatal-Medizin MVZ GmbH, Eurofins, München, Germany
| | - Saskia Biskup
- CeGaT GmbH and Zentrum Für Humangenetik, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Roeben
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Melanie Kellner
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Nils Rahner
- Institut Für Klinische Genetik Und Tumorgenetik Bonn, Bonn, Germany
| | | | - Johannes Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Benjamin Bender
- Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Holger Hengel
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Stefanie N Hayer
- Hertie Institute for Clinical Brain Research, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
- Department of Neurology, University Hospital Tübingen, Tübingen, Germany.
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Jing S, Yao Q, Wu M, Li Y. Case Report: Lethal mitochondrial cardiomyopathy linked to a compound heterozygous variant of PARS2. Front Cardiovasc Med 2024; 11:1446055. [PMID: 39253392 PMCID: PMC11381293 DOI: 10.3389/fcvm.2024.1446055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Variants in the PARS2 gene have been previously associated with developmental and epileptic encephalopathy. PARS2 deficiency was characterized as a neurodevelopmental and neurodegenerative disorder with early-onset seizures and global developmental delay. Herein, we reported the first case with severe heart failure due to lethal mitochondrial cardiomyopathy with PARS2 compound heterozygous variants. Case presentation This patient demonstrated fatigue, chest tightness, and shortness of breath. An acute major illness had been identified at the initial evaluation, which was characterized by severe diaphoresis, dizziness, and fatigue. Blood-urine tandem mass spectrometry found multiple disorders in acid metabolism, characterized as increased homovanillic acid (130.39 mmol/L) and 2-hydroxyisovaleric acid (1.70 mmol/L), which are associated with myocardial injuries. Therefore, an inherited metabolic disorder was suspected and whole-exome sequencing was performed, revealing a novel compound heterozygous variant of c.953C>T and c.283G>A on PARS2. Echocardiography confirmed the findings from the MRI, which presented an increased left ventricular diameter at the end of the diastolic stage. The molecular structure of SYPM was established as AF-Q7L3T8-F1, and the identified mutant sites were located in the proline-tRNA ligase domain. However, the patient died due to severe heart failure. Conclusion This is the first case to reveal a novel compound heterozygous variant of PARS2-induced lethal cardiomyopathy with unreversed heart failure. Thus, this report enhances our understanding of mitochondrial tRNA function in maintaining heart function.
Collapse
Affiliation(s)
- Siyuan Jing
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyan Yao
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mei Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Nie L, Wang X, Wang S, Hong Z, Wang M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod Biol Endocrinol 2024; 22:94. [PMID: 39095891 PMCID: PMC11295921 DOI: 10.1186/s12958-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Linhang Nie
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Xiaojie Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Second Clinical Hospital of WuHan University, Wuhan, Hubei, P.R. China
| | - Songyuan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
12
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. A model organism pipeline provides insight into the clinical heterogeneity of TARS1 loss-of-function variants. HGG ADVANCES 2024; 5:100324. [PMID: 38956874 PMCID: PMC11284558 DOI: 10.1016/j.xhgg.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous systems, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense variants at conserved residues and studied these variants in Saccharomyces cerevisiae and Caenorhabditis elegans models. This revealed two loss-of-function variants, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R432H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Kira E Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Young N Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
De Michele G, Maione L, Cocozza S, Tranfa M, Pane C, Galatolo D, De Rosa A, De Michele G, Saccà F, Filla A. Ataxia and Hypogonadism: a Review of the Associated Genes and Syndromes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:688-701. [PMID: 36997834 DOI: 10.1007/s12311-023-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The association of hypogonadism and cerebellar ataxia was first recognized in 1908 by Gordon Holmes. Since the seminal description, several heterogeneous phenotypes have been reported, differing for age at onset, associated features, and gonadotropins levels. In the last decade, the genetic bases of these disorders are being progressively uncovered. Here, we review the diseases associating ataxia and hypogonadism and the corresponding causative genes. In the first part of this study, we focus on clinical syndromes and genes (RNF216, STUB1, PNPLA6, AARS2, SIL1, SETX) predominantly associated with ataxia and hypogonadism as cardinal features. In the second part, we mention clinical syndromes and genes (POLR3A, CLPP, ERAL1, HARS, HSD17B4, LARS2, TWNK, POLG, ATM, WFS1, PMM2, FMR1) linked to complex phenotypes that include, among other features, ataxia and hypogonadism. We propose a diagnostic algorithm for patients with ataxia and hypogonadism, and we discuss the possible common etiopathogenetic mechanisms.
Collapse
Affiliation(s)
- Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Luigi Maione
- Department of Endocrinology and Reproductive Diseases, Paris-Saclay University, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicetre, Paris, France
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Daniele Galatolo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Anna De Rosa
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
14
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
15
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
16
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. Predictive modeling provides insight into the clinical heterogeneity associated with TARS1 loss-of-function mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586600. [PMID: 38585737 PMCID: PMC10996635 DOI: 10.1101/2024.03.25.586600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous system, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense mutations predicted to cause a loss-of-function effect and studied these variants in yeast and worm models. This revealed two loss-of-function mutations, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R433H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R. Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Kira E. Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young N. Park
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Guy M. Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A. Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Podmanicky O, Gao F, Munro B, Jennings MJ, Boczonadi V, Hathazi D, Mueller JS, Horvath R. Mitochondrial aminoacyl-tRNA synthetases trigger unique compensatory mechanisms in neurons. Hum Mol Genet 2024; 33:435-447. [PMID: 37975900 PMCID: PMC10877469 DOI: 10.1093/hmg/ddad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Mitochondrial aminoacyl-tRNA synthetase (mt-ARS) mutations cause severe, progressive, and often lethal diseases with highly heterogeneous and tissue-specific clinical manifestations. This study investigates the molecular mechanisms triggered by three different mt-ARS defects caused by biallelic mutations in AARS2, EARS2, and RARS2, using an in vitro model of human neuronal cells. We report distinct molecular mechanisms of mitochondrial dysfunction among the mt-ARS defects studied. Our findings highlight the ability of proliferating neuronal progenitor cells (iNPCs) to compensate for mitochondrial translation defects and maintain balanced levels of oxidative phosphorylation (OXPHOS) components, which becomes more challenging in mature neurons. Mutant iNPCs exhibit unique compensatory mechanisms, involving specific branches of the integrated stress response, which may be gene-specific or related to the severity of the mitochondrial translation defect. RNA sequencing revealed distinct transcriptomic profiles showing dysregulation of neuronal differentiation and protein translation. This study provides valuable insights into the tissue-specific compensatory mechanisms potentially underlying the phenotypes of patients with mt-ARS defects. Our novel in vitro model may more accurately represent the neurological presentation of patients and offer an improved platform for future investigations and therapeutic development.
Collapse
Affiliation(s)
- Oliver Podmanicky
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Fei Gao
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Benjamin Munro
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Matthew J Jennings
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
- Department of Neurology, Columbia University, 630 West 168 St, New York, NY 10032, United States
| | - Veronika Boczonadi
- Biosciences Institute, International Centre for Life, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Juliane S Mueller
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
- Dubowitz Neuromuscular Centre, Department of Neuropathology, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| |
Collapse
|
18
|
Hu X, Guo R, Hao C, Hao L. Novel mutation in PARS2 revealed highly variable phenotype of developmental and epileptic encephalopathy-75. Gene 2024; 894:147985. [PMID: 37956963 DOI: 10.1016/j.gene.2023.147985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Biallelic variants in mitochondrial prolyl-tRNA synthetase 2 (PARS2) are associated with developmental and epileptic encephalopathy-75 (DEE75), which is characterized by global developmental delay, seizures and brain imaging anomalies. To date, fewer than 20 patients with PARS2 mutation have been reported in previous literature, and only ten of them had detailed phenotype information. MATERIALS AND METHODS In our study, we performed whole exome sequencing for three intellectual disability patients from one family. RESULTS Two novel missense PARS2 variants, c.467C>G (p. Pro156Arg) and c.1183G>C (p. Asp395His), were identified. All of our patients displayed profound intellectual disability and absent speech, while other features, including seizures, cardiomyopathy, short stature and brain MRI, varied greatly in this family. This is also the first report of ovarian dysfunction in association with PARS2 mutations. CONCLUSIONS We reported three patients with the longest lifespan in reported cases so far, and our results provided an opportunity to study DEE75 prognosis and symptoms in adulthood. Our results further extended the clinical and genetic spectra of PARS2 gene mutation.
Collapse
Affiliation(s)
- Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, PR China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, PR China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, PR China
| | - Lijuan Hao
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, PR China.
| |
Collapse
|
19
|
Jaunmuktane Z. Neuropathology of white matter disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:3-20. [PMID: 39322386 DOI: 10.1016/b978-0-323-99209-1.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The hallmark neuropathologic feature of all leukodystrophies is depletion or alteration of the white matter of the central nervous system; however increasing genetic discoveries highlight the genetic heterogeneity of white matter disorders. These discoveries have significantly helped to advance the understanding of the complexity of molecular mechanisms involved in the biogenesis and maintenance of healthy white matter. Accordingly, genetic discoveries and functional studies have enabled us to firmly establish that multiple distinct structural defects can lead to white matter pathology. Leukodystrophies can develop not only due to defects in proteins essential for myelin biogenesis and maintenance or oligodendrocyte function, but also due to mutations encoding myriad of proteins involved in the function of neurons, astrocytes, microglial cells as well as blood vessels. To a variable extent, some leukodystrophies also show gray matter, peripheral nervous system, or multisystem involvement. Depending on the genetic defect and its role in the formation or maintenance of the white matter, leukodystrophies can present either in early childhood or adulthood. In this chapter, the classification of leukodystrophies will be discussed from the cellular defect point of view, followed by a description of known neuropathologic alterations for all leukodystrophies.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
20
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
21
|
Sharifian-Dorche M, La Piana R. General approach to treatment of genetic leukoencephalopathies in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:335-354. [PMID: 39322388 DOI: 10.1016/b978-0-323-99209-1.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Despite the enormous advancements seen in recent years, curative therapies for patients with genetic leukoencephalopathies are available for only a relatively small number of disorders. Therefore, symptomatic treatment and preventive management of the multiple clinical manifestations of patients with genetic leukoencephalopathies are critical in their care. The goals of the symptomatic treatment are to improve patients' quality of life, increase their survival, and reduce the impact on medical resources and related expenses. The coordinated work of a multidisciplinary team, including all specialists involved in the care of these patients, is the gold standard approach to manage and treat their complex and evolving clinical picture. Along with a multidisciplinary team, the relationship and close collaboration with the patient and their caregivers are essential. Their insight into the disease manifestations and management of the different issues should be integrated with the assessments of the multidisciplinary team to prevent clinical complications and preserve the quality of life of patients and their caregivers. Genetic leukoencephalopathies are very heterogeneous in terms of age of onset, clinical features, and disease course. However, many clinical features and problems are shared by most forms. Consequently, common therapeutic strategies apply to the majority of these diseases. This chapter presents the symptomatic approach for shared core clinical features presented by patients with genetic leukoencephalopathies divided by systems and, for each system, the specificities of some genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Maryam Sharifian-Dorche
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Roberta La Piana
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Engelen M, van der Knaap MS, Wolf NI. Amino-acyl tRNA synthetases associated with leukodystrophy. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:253-261. [PMID: 39322382 DOI: 10.1016/b978-0-323-99209-1.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Amino-acyl tRNA synthetases (ARSs) are enzymes that catalyze the amino-acylation reaction of a specific amino acid and its cognate tRNA and are divided into type 1 (cytosolic) and type 2 (mitochondrial). In this chapter leukodystrophies caused by tRNA synthetase deficiencies are reviewed.
Collapse
Affiliation(s)
- Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
24
|
Zhang J, Zhou XY, Wang A, Lai YH, Zhang XF, Liu XT, Wang Z, Liu YD, Tang SY, Chen SL. Novel Tu translation elongation factor, mitochondrial (TUFM) homozygous variant in a consanguineous family with premature ovarian insufficiency. Clin Genet 2023; 104:516-527. [PMID: 37461298 DOI: 10.1111/cge.14403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/03/2023]
Abstract
Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by cessation of menstruation occurring before the age of 40 years. The genetic causes of idiopathic POI remain unclear. Here we recruited a POI patient from a consanguineous family to screen for potential pathogenic variants associated with POI. Genetic variants of the pedigree were screened using whole-exome sequencing analysis and validated through direct Sanger sequencing. A homozygous variant in TUFM (c.524G>C: p.Gly175Ala) was identified in this family. TUFM (Tu translation elongation factor, mitochondrial) is a nuclear-encoded mitochondrial protein translation elongation factor that plays a critical role in maintaining normal mitochondrial function. The variant position was highly conserved among species and predicted to be disease causing. Our in vitro functional studies demonstrated that this variant causes decreased TUFM protein expression, leading to mitochondrial dysfunction and impaired autophagy activation. Moreover, we found that mice with targeted Tufm variant recapitulated the phenotypes of human POI. Thus, this is the first report of a homozygous pathogenic TUFM variant in POI. Our findings highlighted the essential role of mitochondrial genes in folliculogenesis and ovarian function maintenance.
Collapse
Affiliation(s)
- Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Hui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Tong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Yan Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Tyynismaa H. Disease models of mitochondrial aminoacyl-tRNA synthetase defects. J Inherit Metab Dis 2023; 46:817-823. [PMID: 37410890 DOI: 10.1002/jimd.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mtARS) are enzymes critical for the first step of mitochondrial protein synthesis by charging mitochondrial tRNAs with their cognate amino acids. Pathogenic variants in all 19 nuclear mtARS genes are now recognized as causing recessive mitochondrial diseases. Most mtARS disorders affect the nervous system, but the phenotypes range from multisystem diseases to tissue-specific manifestations. However, the mechanisms behind the tissue specificities are poorly understood, and challenges remain in obtaining accurate disease models for developing and testing treatments. Here, some of the currently existing disease models that have increased our understanding of mtARS defects are discussed.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Kong LY, Wu YZ, Cheng RQ, Wang PH, Peng BW. Role of Mutations of Mitochondrial Aminoacyl-tRNA Synthetases Genes on Epileptogenesis. Mol Neurobiol 2023; 60:5482-5492. [PMID: 37316759 DOI: 10.1007/s12035-023-03429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Mitochondria are the structures in cells that are responsible for producing energy. They contain a specific translation unit for synthesizing mitochondria-encoded respiratory chain components: the mitochondrial DNA (mt DNA). Recently, a growing number of syndromes associated with the dysfunction of mt DNA translation have been reported. However, the functions of these diseases still need to be precise and thus attract much attention. Mitochondrial tRNAs (mt tRNAs) are encoded by mt DNA; they are the primary cause of mitochondrial dysfunction and are associated with a wide range of pathologies. Previous research has shown the role of mt tRNAs in the epileptic mechanism. This review will focus on the function of mt tRNA and the role of mitochondrial aminoacyl-tRNA synthetase (mt aaRS) in order to summarize some common relevant mutant genes of mt aaRS that cause epilepsy and the specific symptoms of the disease they cause.
Collapse
Affiliation(s)
- Ling-Yue Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yi-Ze Wu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Run-Qi Cheng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Pei-Han Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
27
|
Bakhshalizadeh S, Hock DH, Siddall NA, Kline BL, Sreenivasan R, Bell KM, Casagranda F, Kamalanathan S, Sahoo J, Narayanan N, Naik D, Suryadevara V, Compton AG, Amarasekera SSC, Kapoor R, Jaillard S, Simpson A, Robevska G, van den Bergen J, Pachernegg S, Ayers KL, Thorburn DR, Stroud DA, Hime GR, Sinclair AH, Tucker EJ. Deficiency of the mitochondrial ribosomal subunit, MRPL50, causes autosomal recessive syndromic premature ovarian insufficiency. Hum Genet 2023; 142:879-907. [PMID: 37148394 PMCID: PMC10329598 DOI: 10.1007/s00439-023-02563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | | | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katrina M Bell
- Department of Bioinformatics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Varun Suryadevara
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033, Rennes, France
| | - Andrea Simpson
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
- College of Health and Human Services, Charles Darwin University, Darwin, NT, Australia
| | | | | | - Svenja Pachernegg
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
28
|
Kazakova E, Téllez-Martínez JA, Flores-Lagunes L, Sosa-Ortiz AL, Carillo-Sánchez K, Molina-Garay C, González-Domínguez CA, Jimenez-Olivares M, Fernandez-Valverde F, Vargas-Cañas ES, Vázquez-Memije ME, Garcia-Latorre EA, Martínez-Duncker I, Alaez-Verson C. Uterus infantilis: a novel phenotype associated with AARS2 new genetic variants. A case report. Front Neurol 2023; 14:878446. [PMID: 37456626 PMCID: PMC10343430 DOI: 10.3389/fneur.2023.878446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2023] [Indexed: 07/18/2023] Open
Abstract
Objectives To report the first Mexican case with two novel AARS2 mutations causing primary ovarian failure, uterus infantilis, and early-onset dementia secondary to leukoencephalopathy. Methods Detailed clinical, clinimetric, neuroimaging features, muscle biopsy with biochemical assays of the main oxidative phosphorylation complexes activities, and molecular studies were performed on samples from a Mexican female. Results We present a 41-year-old female patient with learning difficulties since childhood and primary amenorrhea who developed severe cognitive, motor, and behavioral impairment in early adulthood. Neuroimaging studies revealed frontal leukoencephalopathy with hypometabolism at the fronto-cerebellar cortex and caudate nucleus. Uterus infantilis was detected on ultrasound study. Clinical exome sequencing identified two novel variants, NM_020745:c.2864G>A (p.W955*) and NM_020745:c.1036C>A (p.P346T, p.P346Wfs*18), in AARS2. Histopathological and biochemical studies on muscle biopsy revealed mitochondrial disorder with cytochrome C oxidase (COX) deficiency. Conclusions Several adult-onset cases of leukoencephalopathy and ovarian failure associated with AARS2 variants have been reported. To our best knowledge, none of them showed uterus infantilis. Here we enlarge the genetic and phenotypic spectrum of AARS2-related dementia with leukoencephalopathy and ovarian failure and contribute with detailed clinical, clinometric, neuroimaging, and molecular studies to disease and novel molecular variants characterization.
Collapse
Affiliation(s)
- Ekaterina Kazakova
- Centro de Diagnóstico en Metabolismo Energético y Medicina Mitocondrial, Mexico City, Mexico
| | - José Alberto Téllez-Martínez
- Clínica de Cognición, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Leonardo Flores-Lagunes
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ana Luisa Sosa-Ortiz
- Clínica de Cognición, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Karol Carillo-Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Carolina Molina-Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Carlos Alberto González-Domínguez
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos, Mexico
| | - Marco Jimenez-Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Francisca Fernandez-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Edwin Steven Vargas-Cañas
- Clínica de Nervio y Músculo, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | | | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos, Mexico
| | - Carmen Alaez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
29
|
Wu C, Wang M, Wang X, Li W, Li S, Chen B, Niu S, Tai H, Pan H, Zhang Z. The genetic and phenotypic spectra of adult genetic leukoencephalopathies in a cohort of 309 patients. Brain 2023; 146:2364-2376. [PMID: 36380532 PMCID: PMC10232248 DOI: 10.1093/brain/awac426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 08/12/2023] Open
Abstract
Genetic leukoencephalopathies (gLEs) are a highly heterogeneous group of rare genetic disorders. The spectrum of gLEs varies among patients of different ages. Distinct from the relatively more abundant studies of gLEs in children, only a few studies that explore the spectrum of adult gLEs have been published, and it should be noted that the majority of these excluded certain gLEs. Thus, to date, no large study has been designed and conducted to characterize the genetic and phenotypic spectra of gLEs in adult patients. We recruited a consecutive series of 309 adult patients clinically suspected of gLEs from Beijing Tiantan Hospital between January 2014 and December 2021. Whole-exome sequencing, mitochondrial DNA sequencing and repeat analysis of NOTCH2NLC, FMR1, DMPK and ZNF9 were performed for patients. We describe the genetic and phenotypic spectra of the set of patients with a genetically confirmed diagnosis and summarize their clinical and radiological characteristics. A total of 201 patients (65%) were genetically diagnosed, while 108 patients (35%) remained undiagnosed. The most frequent diseases were leukoencephalopathies related to NOTCH3 (25%), NOTCH2NLC (19%), ABCD1 (9%), CSF1R (7%) and HTRA1 (5%). Based on a previously proposed pathological classification, the gLEs in our cohort were divided into leukovasculopathies (35%), leuko-axonopathies (31%), myelin disorders (21%), microgliopathies (7%) and astrocytopathies (6%). Patients with NOTCH3 mutations accounted for 70% of the leukovasculopathies, followed by HTRA1 (13%) and COL4A1/2 (9%). The leuko-axonopathies contained the richest variety of associated genes, of which NOTCH2NLC comprised 62%. Among myelin disorders, demyelinating leukoencephalopathies (61%)-mainly adrenoleukodystrophy and Krabbe disease-accounted for the majority, while hypomyelinating leukoencephalopathies (2%) were rare. CSF1R was the only mutated gene detected in microgliopathy patients. Leukoencephalopathy with vanishing white matter disease due to mutations in EIF2B2-5 accounted for half of the astrocytopathies. We characterized the genetic and phenotypic spectra of adult gLEs in a large Chinese cohort. The most frequently mutated genes were NOTCH3, NOTCH2NLC, ABCD1, CSF1R and HTRA1.
Collapse
Affiliation(s)
- Chujun Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Mengwen Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 350005 Fuzhou, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shaowu Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
- China National Clinical Research Centre for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| |
Collapse
|
30
|
Zhang X, Li J, Zhang Y, Gao M, Peng T, Tian T. AARS2-Related Leukodystrophy: a Case Report and Literature Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:59-69. [PMID: 35084689 DOI: 10.1007/s12311-022-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Mutations in the alanyl-transfer RNA synthase 2 (AARS2) represent a heterogenous group of autosomal recessive leukodystrophy characterized by cognitive decline, ataxia, spasticity, and Parkinsonism. AARS2-related leukodystrophy (AARS2-L) is extremely rare. To date, only 45 genetically confirmed cases, explaining the frequent diagnostic delay. Here, we report a 21-year-old male presented with unsteady gait and weakness in the bilateral lower extremities. Examination revealed dysarthria, cerebellar ataxia, paraparesis, and Parkinsonism with generalized hyperreflexia. MRI findings showed extensive white matter lesions in bilateral frontoparietal lobes, immediate periventricular regions, and corpus callosum. Focused exome sequencing revealed compound heterozygous mutations in the AARS2 gene confirming the diagnosis of AARS2-L; two heterogeneous missense mutations (c.452 T > C, p. M151T; c. 2557C > T, p. R853W) appeared together for the first time. We also reviewed phenotypic spectra of AARS2-related leukodystrophies from a total of 45 reported cases.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Li
- Department of Neurology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Yanyan Zhang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meina Gao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Peng
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Tian Tian
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
31
|
Del Greco C, Antonellis A. The Role of Nuclear-Encoded Mitochondrial tRNA Charging Enzymes in Human Inherited Disease. Genes (Basel) 2022; 13:2319. [PMID: 36553587 PMCID: PMC9777667 DOI: 10.3390/genes13122319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are highly conserved essential enzymes that charge tRNA with cognate amino acids-the first step of protein synthesis. Of the 37 nuclear-encoded human ARS genes, 17 encode enzymes are exclusively targeted to the mitochondria (mt-ARSs). Mutations in nuclear mt-ARS genes are associated with rare, recessive human diseases with a broad range of clinical phenotypes. While the hypothesized disease mechanism is a loss-of-function effect, there is significant clinical heterogeneity among patients that have mutations in different mt-ARS genes and also among patients that have mutations in the same mt-ARS gene. This observation suggests that additional factors are involved in disease etiology. In this review, we present our current understanding of diseases caused by mutations in the genes encoding mt-ARSs and propose explanations for the observed clinical heterogeneity.
Collapse
Affiliation(s)
- Christina Del Greco
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Tucker EJ, Baker MJ, Hock DH, Warren JT, Jaillard S, Bell KM, Sreenivasan R, Bakhshalizadeh S, Hanna CA, Caruana NJ, Wortmann SB, Rahman S, Pitceathly RDS, Donadieu J, Alimi A, Launay V, Coppo P, Christin-Maitre S, Robevska G, van den Bergen J, Kline BL, Ayers KL, Stewart PN, Stroud DA, Stojanovski D, Sinclair AH. Premature Ovarian Insufficiency in CLPB Deficiency: Transcriptomic, Proteomic and Phenotypic Insights. J Clin Endocrinol Metab 2022; 107:3328-3340. [PMID: 36074910 PMCID: PMC9693831 DOI: 10.1210/clinem/dgac528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premature ovarian insufficiency (POI) is a common form of female infertility that usually presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimize comorbidity and improve health outcomes. OBJECTIVE We aimed to determine the genetic cause of syndromic POI, intellectual disability, neutropenia, and cataracts. METHODS We performed whole-exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq, and quantitative proteomics, as well as clinical update of previously reported patients with variants in the caseinolytic peptidase B (CLPB) gene. RESULTS We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts, and neutropenia that is often fatal in childhood; however, there is likely a reporting bias toward severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common postpubertal ailment. CONCLUSION A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of postpubertal female individuals with CLPB deficiency. Patients with CLPB deficiency should be referred to pediatric gynecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimize associated comorbidities.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Megan J Baker
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Chloe A Hanna
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Gynaecology, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg 5020, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen 6524, The Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Jean Donadieu
- Sorbonne Université, Service d’Hémato-oncologie Pédiatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Paris 75006, France
- Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Paris 75006, France
- Centre de Référence des Neutropénies Chroniques, AP-HP, Hôpital Trousseau, Paris 75006, France
| | - Aurelia Alimi
- Sorbonne Université, Service d’Hémato-oncologie Pédiatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Paris 75006, France
- Registre Français des Neutropénies Congénitales, Hôpital Trousseau, Paris 75006, France
- Centre de Référence des Neutropénies Chroniques, AP-HP, Hôpital Trousseau, Paris 75006, France
| | - Vincent Launay
- Hematologie, Centre Hospitalier de St Brieuc, Paris 22027, France
| | - Paul Coppo
- Sorbonne Université, Service d’hématologie Hôpital Saint-Antoine, AP-HP, Paris75006, France
| | - Sophie Christin-Maitre
- Sorbonne Université, Service d’Endocrinologie, diabétologie et médecine de la reproduction Hôpital Saint-Antoine, AP-HP, Paris75006, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Phoebe N Stewart
- Department of Paediatrics, The Royal Hobart Hospital, Tasmania 7000, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
33
|
Kline BL, Jaillard S, Bell KM, Bakhshalizadeh S, Robevska G, van den Bergen J, Dulon J, Ayers KL, Christodoulou J, Tchan MC, Touraine P, Sinclair AH, Tucker EJ. Integral Role of the Mitochondrial Ribosome in Supporting Ovarian Function: MRPS7 Variants in Syndromic Premature Ovarian Insufficiency. Genes (Basel) 2022; 13:2113. [PMID: 36421788 PMCID: PMC9690861 DOI: 10.3390/genes13112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial ribosome is critical to mitochondrial protein synthesis. Defects in both the large and small subunits of the mitochondrial ribosome can cause human disease, including, but not limited to, cardiomyopathy, hypoglycaemia, neurological dysfunction, sensorineural hearing loss and premature ovarian insufficiency (POI). POI is a common cause of infertility, characterised by elevated follicle-stimulating hormone and amenorrhea in women under the age of 40. Here we describe a patient with POI, sensorineural hearing loss and Hashimoto's disease. The co-occurrence of POI with sensorineural hearing loss indicates Perrault syndrome. Whole exome sequencing identified two compound heterozygous variants in mitochondrial ribosomal protein 7 (MRPS7), c.373A>T/p.(Lys125*) and c.536G>A/p.(Arg179His). Both novel variants are predicted to be pathogenic via in-silico algorithms. Variants in MRPS7 have been described only once in the literature and were identified in sisters, one of whom presented with congenital sensorineural hearing loss and POI, consistent with our patient phenotype. The other affected sister had a more severe disease course and died in early adolescence due to liver and renal failure before the reproductive phenotype was known. This second independent report validates that variants in MRPS7 are a cause of syndromic POI/Perrault syndrome. We present this case and review the current evidence supporting the integral role of the mitochondrial ribosome in supporting ovarian function.
Collapse
Affiliation(s)
- Brianna L. Kline
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, F-35000 Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, 75231 Paris, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michel C. Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, 75231 Paris, France
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
34
|
Tiivoja E, Reinson K, Muru K, Rähn K, Muhu K, Mauring L, Kahre T, Pajusalu S, Õunap K. The prevalence of inherited metabolic disorders in Estonian population over 30 years: A significant increase during study period. JIMD Rep 2022; 63:604-613. [PMID: 36341167 PMCID: PMC9626666 DOI: 10.1002/jmd2.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited metabolic disorders (IMD) are a group of hereditary diseases wherein the impairment of a biochemical pathway is intrinsic to the pathophysiology of the disease. Estonia's small population and nationwide digitalised healthcare system make it possible to perform an epidemiological study that covers the whole population. A study was performed in Tartu University Hospital, which is the only tertiary care unit in Estonia for diagnosing patients with IMD, to define the prevalence and live birth prevalence of IMDs and the effectiveness of new diagnostic methods on the diagnosis of IMD. During the retrospective study period from 1990 to 2017, 333 patients were diagnosed with IMD. Statistical analysis showed a significant increase in IMD diagnoses per year from 0.47 to 2.51 cases per 100 000 persons (p < 0.0001) during the study period. Live birth prevalence of IMD in Estonia was calculated to be 41.52 cases per 100 000 live births. The most frequently diagnosed IMD groups were disorders of amino acid metabolism, disorders of complex molecule degradation, mitochondrial disorders, and disorders of tetrapyrrole metabolism. Phenylketonuria was the most frequently diagnosed disorder of all IMD (21.6%). Our results correlated well with data from other developed countries and, along with high birth prevalence, add confidence in the effectiveness of our diagnostic yield. Implementation of new diagnostic methods during study period may largely account for the significant increase in the number of IMD diagnoses per year. We conclude that the implementation of new diagnostic methods continues to be important and contributes to better diagnosis of rare diseases.
Collapse
Affiliation(s)
- Elis Tiivoja
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kristi Rähn
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kristina Muhu
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
| | - Laura Mauring
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Eye ClinicTartu University HospitalTartuEstonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Laboratory Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Laboratory Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| |
Collapse
|
35
|
Turvey AK, Horvath GA, Cavalcanti ARO. Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 2022; 13:1029218. [PMID: 36330207 PMCID: PMC9623071 DOI: 10.3389/fphys.2022.1029218] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.
Collapse
Affiliation(s)
- Alexandra K. Turvey
- Department of Biology, Pomona College, Claremont, CA, United States
- *Correspondence: Alexandra K. Turvey,
| | - Gabriella A. Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Vancouver, BC, Canada
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Gait Apraxia with Exaggerated Upper Limb Movements as Presentation of AARS2 Related Leukoencephalopathy. Tremor Other Hyperkinet Mov (N Y) 2022; 12:24. [PMID: 35975211 PMCID: PMC9354553 DOI: 10.5334/tohm.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
A 55-year-old male presented with apraxia of gait with exaggerated upper limb movement with relative preservation of cognition and mild spasticity of limbs. His investigations reveal posterior-predominant leukodystrophy in brain magnetic resonance imaging (MRI) and compound heterozygous mutations in mitochondrial alanyl-transfer RNA synthetase 2 (AARS2) by next generation sequencing. His asymptomatic brother also has MRI changes with subtle mild pyramidal signs. AARS2 mutation is a rare cause of mitochondrial encephalopathy which may give rise to leukodystrophy with premature ovarian failure, infantile cardiomyopathy, lung hypoplasia and myopathy. Gait apraxia as primary presenting feature of this rare variant of mitochondrial encephalomyopathy is hitherto un-reported.
Collapse
|
37
|
Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022; 27:3204-3213. [PMID: 35505091 PMCID: PMC9630165 DOI: 10.1038/s41380-022-01585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Transfer (t)RNAs are 70-90 nucleotide small RNAs highly regulated by 43 different types of epitranscriptomic modifications and requiring aminoacylation ('charging') for mRNA decoding and protein synthesis. Smaller cleavage products of mature tRNAs, or tRNA fragments, have been linked to a broad variety of noncanonical functions, including translational inhibition and modulation of the immune response. Traditionally, knowledge about tRNA regulation in brain is derived from phenotypic exploration of monogenic neurodevelopmental and neurodegenerative diseases associated with rare mutations in tRNA modification genes. More recent studies point to the previously unrecognized potential of the tRNA regulome to affect memory, synaptic plasticity, and affective states. For example, in mature cortical neurons, cytosine methylation sensitivity of the glycine tRNA family (tRNAGly) is coupled to glycine biosynthesis and codon-specific alterations in ribosomal translation together with robust changes in cognition and depression-related behaviors. In this Review, we will discuss the emerging knowledge of the neuronal tRNA landscape, with a focus on epitranscriptomic tRNA modifications and downstream molecular pathways affected by alterations in tRNA expression, charging levels, and cleavage while mechanistically linking these pathways to neuropsychiatric disease and provide insight into future areas of study for this field.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Fan Y, Han J, Yang Y, Chen T. Novel mitochondrial alanyl-tRNA synthetase 2 (AARS2) heterozygous mutations in a Chinese patient with adult-onset leukoencephalopathy. BMC Neurol 2022; 22:214. [PMID: 35676634 PMCID: PMC9175470 DOI: 10.1186/s12883-022-02720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Missense mutations in the mitochondrial alanyl-tRNA synthetase 2 (AARS2) gene are clinically associated with infantile mitochondrial cardiomyopathy or adult-onset leukoencephalopathy with early ovarian failure. To date, approximately 40 cases have been reported related to AARS2 mutations, while its genetic and phenotypic spectrum remains to be defined. CASE PRESENTATION We identified a 24-year-old Chinese female patient with adult-onset leukoencephalopathy carrying novel compound heterozygous pathogenic mutations in the AARS2 gene (c.718C > T and c.1040 + 1G > A) using a whole-exome sequencing approach. CONCLUSIONS Our findings further extend the mutational spectrum of AARS2-related leukoencephalopathy and highlight the importance of the whole-exome sequencing in precisely diagnosing adult-onset leukoencephalopathies.
Collapse
Affiliation(s)
- Yan Fan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yanyan Yang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China.
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
39
|
Ferrer I. The Primary Microglial Leukodystrophies: A Review. Int J Mol Sci 2022; 23:ijms23116341. [PMID: 35683020 PMCID: PMC9181167 DOI: 10.3390/ijms23116341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary microglial leukodystrophy or leukoencephalopathy are disorders in which a genetic defect linked to microglia causes cerebral white matter damage. Pigmented orthochromatic leukodystrophy, adult-onset orthochromatic leukodystrophy associated with pigmented macrophages, hereditary diffuse leukoencephalopathy with (axonal) spheroids, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) are different terms apparently used to designate the same disease. However, ALSP linked to dominantly inherited mutations in CSF1R (colony stimulating factor receptor 1) cause CSF-1R-related leukoencephalopathy (CRP). Yet, recessive ALSP with ovarian failure linked to AARS2 (alanyl-transfer (t)RNA synthase 2) mutations (LKENP) is a mitochondrial disease and not a primary microglial leukoencephalopathy. Polycystic membranous lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL; Nasu–Hakola disease: NHD) is a systemic disease affecting bones, cerebral white matter, selected grey nuclei, and adipose tissue The disease is caused by mutations of one of the two genes TYROBP or TREM2, identified as PLOSL1 and PLOSL2, respectively. TYROBP associates with receptors expressed in NK cells, B and T lymphocytes, dendritic cells, monocytes, macrophages, and microglia. TREM2 encodes the protein TREM2 (triggering receptor expressed on myeloid cells 2), which forms a receptor signalling complex with TYROBP in macrophages and dendritic cells. Rather than pure microglial leukoencephalopathy, NHD can be considered a multisystemic “immunological” disease.
Collapse
Affiliation(s)
- Isidro Ferrer
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Department of Pathology and Experimental Therapeutics, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
40
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Costei C, Barbarosie M, Bernard G, Brais B, La Piana R. Adult Hereditary White Matter Diseases With Psychiatric Presentation: Clinical Pointers and MRI Algorithm to Guide the Diagnostic Process. J Neuropsychiatry Clin Neurosci 2022; 33:180-193. [PMID: 33951919 DOI: 10.1176/appi.neuropsych.20110294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The investigators aimed to provide clinical and MRI guidelines for determining when genetic workup should be considered in order to exclude hereditary leukoencephalopathies in affected patients with a psychiatric presentation. METHODS A systematic literature review was conducted, and clinical cases are provided. Given the central role of MRI pattern recognition in the diagnosis of white matter disorders, the investigators adapted an MRI algorithm that guides the interpretation of MRI findings and thus directs further investigations, such as genetic testing. RESULTS Twelve genetic leukoencephalopathies that can present with psychiatric symptoms were identified. As examples of presentations that can occur in clinical practice, five clinical vignettes from patients assessed at a referral center for adult genetic leukoencephalopathies are provided. CONCLUSIONS Features such as drug-resistant symptoms, presence of long-standing somatic features, trigger events, consanguinity, and positive family history should orient the clinician toward diagnostic workup to exclude the presence of a genetic white matter disorder. The identification of MRI white matter abnormalities, especially when presenting a specific pattern of involvement, should prompt genetic testing for known forms of genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Catalina Costei
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Michaela Barbarosie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| |
Collapse
|
42
|
Turkyilmaz A, Alavanda C, Ates EA, Geckinli BB, Polat H, Gokcu M, Karakaya T, Cebi AH, Soylemez MA, Guney Aİ, Ata P, Arman A. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet 2022; 39:695-710. [PMID: 35066699 PMCID: PMC8995228 DOI: 10.1007/s10815-022-02408-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a heterogeneous disorder characterized by the cessation of menstrual cycles before the age of 40 years due to the depletion or dysfunction of the ovarian follicles. POI is a highly heterogeneous disease in terms of etiology. The aim of this study is to reveal the genetic etiology in POI patients. METHODS A total of 35 patients (mean age: 27.2 years) from 28 different families diagnosed with POI were included in the study. Karyotype, FMR1 premutation analysis, single nucleotide polymorphism (SNP) array, and whole-exome sequencing (WES) were conducted to determine the genetic etiology of patients. RESULTS A total of 35 patients with POI were first evaluated by karyotype analysis, and chromosomal anomaly was detected in three (8.5%) and FMR1 premutation was detected in six patients (17%) from two different families. A total of 29 patients without FMR1 premutation were included in the SNP array analysis, and one patient had a 337-kb deletion in the chromosome 6q26 region including PARK2 gene, which was thought to be associated with POI. Twenty-nine cases included in SNP array analysis were evaluated simultaneously with WES analysis, and genetic variant was detected in 55.1% (16/29). CONCLUSION In the present study, rare novel variants were identified in genes known to be associated with POI, which contribute to the mutation spectrum. The effects of detected novel genes and variations on different pathways such as gonadal development, meiosis and DNA repair, or metabolism need to be investigated by experimental studies. Molecular etiology allows accurate genetic counseling to the patient and family as well as fertility planning.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Ceren Alavanda
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- grid.414850.c0000 0004 0642 8921Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Bilgen Bilge Geckinli
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Hamza Polat
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mehmet Gokcu
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Taner Karakaya
- Department of Medical Genetics, Isparta City Hospital, Isparta, Turkey
| | - Alper Han Cebi
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ali Soylemez
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet İlter Guney
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Pinar Ata
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Arman
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
43
|
Papapetropoulos S, Pontius A, Finger E, Karrenbauer V, Lynch DS, Brennan M, Zappia S, Koehler W, Schoels L, Hayer SN, Konno T, Ikeuchi T, Lund T, Orthmann-Murphy J, Eichler F, Wszolek ZK. Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia: Review of Clinical Manifestations as Foundations for Therapeutic Development. Front Neurol 2022; 12:788168. [PMID: 35185751 PMCID: PMC8850408 DOI: 10.3389/fneur.2021.788168] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
A comprehensive review of published literature was conducted to elucidate the genetics, neuropathology, imaging findings, prevalence, clinical course, diagnosis/clinical evaluation, potential biomarkers, and current and proposed treatments for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rare, debilitating, and life-threatening neurodegenerative disorder for which disease-modifying therapies are not currently available. Details on potential efficacy endpoints for future interventional clinical trials in patients with ALSP and data related to the burden of the disease on patients and caregivers were also reviewed. The information in this position paper lays a foundation to establish an effective clinical rationale and address the clinical gaps for creation of a robust strategy to develop therapeutic agents for ALSP, as well as design future clinical trials, that have clinically meaningful and convergent endpoints.
Collapse
Affiliation(s)
- Spyros Papapetropoulos
- Vigil Neuroscience, Inc, Cambridge, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Elizabeth Finger
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Virginija Karrenbauer
- Neurology Medical Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - David S. Lynch
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | | | | | - Ludger Schoels
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University Hospital Tuebingen, Tuebingen, Germany
- German Research Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Stefanie N. Hayer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University Hospital Tuebingen, Tuebingen, Germany
- German Research Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Troy Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | | | | | | |
Collapse
|
44
|
Parra SP, Heckers SH, Wilcox WR, Mcknight CD, Jinnah HA. The emerging neurological spectrum of AARS2-associated disorders. Parkinsonism Relat Disord 2021; 93:50-54. [PMID: 34784527 DOI: 10.1016/j.parkreldis.2021.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The AARS2 gene encodes a mitochondrial alanyl-transfer RNA synthetase. Defects in this gene have been linked with autosomal recessive inheritance of a variety of different clinical phenotypes. CASE A 13 year-old boy developed behavioral and psychiatric problems following a mild head injury. At age 21 he developed tremor, parkinsonism, and eye nystagmus. MRI revealed white matter changes consistent with a leukoencephalopathy. Genetic studies revealed two pathogenic mutations in the AARS2 gene (c.647dupG and c.595C > T). LITERATURE REVIEW Only 47 cases of AARS2-associated disorders have been reported, with equal numbers of males and females, and age at onset ranging from infancy to 44 years. The most common clinical problems include movement disorders (71%), cognitive impairment (67%), corticospinal signs (64%), behavioral or psychiatric features (46%), and eye signs (34%). Imaging evidence suggestive of leukoencephalopathy is common, but not invariant. Premature ovarian failure is frequent in females, but not universal. CONCLUSIONS Defects in the AARS2 gene are a rare cause for a variety of movement disorders, often associated with brain imaging evidence suggestive of leukoencephalopathy.
Collapse
Affiliation(s)
- Sahyli Perez Parra
- Jean & Paul Amos PD & Movement Disorders Program Department of Neurology, Emory University, USA
| | - Stephan H Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, USA
| | | | | | - H A Jinnah
- Jean & Paul Amos PD & Movement Disorders Program Department of Neurology, Emory University, USA.
| |
Collapse
|
45
|
Okamoto N, Miya F, Tsunoda T, Kanemura Y, Saitoh S, Kato M, Yanagi K, Kaname T, Kosaki K. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 2021; 43:2765-2774. [PMID: 34585293 DOI: 10.1007/s10072-021-05626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Helman G, Mendes MI, Nicita F, Darbelli L, Sherbini O, Moore T, Derksen A, Amy Pizzino, Carrozzo R, Torraco A, Catteruccia M, Aiello C, Goffrini P, Figuccia S, Smith DEC, Hadzsiev K, Hahn A, Biskup S, Brösse I, Kotzaeridou U, Gauck D, Grebe TA, Elmslie F, Stals K, Gupta R, Bertini E, Thiffault I, Taft RJ, Schiffmann R, Brandl U, Haack TB, Salomons GS, Simons C, Bernard G, van der Knaap MS, Vanderver A, Husain RA. Expanded phenotype of AARS1-related white matter disease. Genet Med 2021; 23:2352-2359. [PMID: 34446925 DOI: 10.1038/s41436-021-01286-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.
Collapse
Affiliation(s)
- Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Francesco Nicita
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lama Darbelli
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Travis Moore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alexa Derksen
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Amy Pizzino
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosalba Carrozzo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Torraco
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Aiello
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sonia Figuccia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University, Giessen, Germany
| | - Saskia Biskup
- Praxis fuer Humangenetik and CeGaT GmbH, Tuebingen, Germany
| | - Ines Brösse
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Frances Elmslie
- South West Thames Regional Genetics Service, St George's University Hospital, London, UK
| | - Karen Stals
- Molecular Genetics Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Rajat Gupta
- Department of Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Enrico Bertini
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabelle Thiffault
- Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | - Ulrich Brandl
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Ralf A Husain
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
47
|
Blaze J, Navickas A, Phillips HL, Heissel S, Plaza-Jennings A, Miglani S, Asgharian H, Foo M, Katanski CD, Watkins CP, Pennington ZT, Javidfar B, Espeso-Gil S, Rostandy B, Alwaseem H, Hahn CG, Molina H, Cai DJ, Pan T, Yao WD, Goodarzi H, Haghighi F, Akbarian S. Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun 2021; 12:4913. [PMID: 34389722 PMCID: PMC8363735 DOI: 10.1038/s41467-021-24969-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.
Collapse
Affiliation(s)
- J Blaze
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - A Navickas
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H L Phillips
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - S Heissel
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - A Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Miglani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H Asgharian
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - M Foo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Z T Pennington
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Javidfar
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Espeso-Gil
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Rostandy
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - C G Hahn
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - D J Cai
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - W D Yao
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - H Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - F Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|
48
|
Case report: 'AARS2 leukodystrophy'. Mol Genet Metab Rep 2021; 28:100782. [PMID: 34285876 PMCID: PMC8280508 DOI: 10.1016/j.ymgmr.2021.100782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background Mitochondrial alanyl-tRNA synthetase 2 gene (AARS2) related disease is a rare genetic disorder affecting mitochondrial metabolism, leading to severe cardiac disease in infants or progressive leukodystrophy in young adults. The disease is considered ultra-rare with only 39 cases of AARS2-leukodystrophy previously reported. Case presentation We present the case of a young man of consanguineous heritage suffering from cognitive decline and progressive spasticity as well as weakness of the proximal musculature. Utilizing MRI and whole genome sequencing, the patient was diagnosed with a homozygous AARS2 missense variant (NM_020745.3:c.650C > T; p.(Pro217Leu)) and a homozygous CAPN3 variant (NM_000070.2: c.1469G > A; p.(Arg490Gln)), both variants have previously been identified in patients suffering from AARS2 related leukodystrophy and limb-girdle muscular dystrophy, respectively. Conclusions This case report presents a case of homozygous AARS2 leukodystrophy and serves to highlight the importance of whole genome sequencing in diagnosing rare neurological diseases as well as to add to the awareness of adult onset leukodystrophies.
Collapse
Key Words
- AARS2
- AARS2, Mitochondrial alanyl-tRNA synthetase 2 gene
- AARS2-L, Mitochondrial alanyl-tRNA synthetase 2 gene leukodystrophy
- ADLs, activities of daily living
- ALSP, Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia
- Adult onset leukodystrophies
- CSF, Cerebrospinal fluid
- CSF1R, Colony stimulating factor-1 receptor
- Case report
- DARS2, Deficiency of aspartyl-tRNA
- EARS2, Deficiency of glutamate-tRNA synthetase
- HDLS, Hereditary Diffuse Leukodystrophy with axonal Spheroids
- IEM, Inborn errors of metabolism
- Inborn errors of metabolism
- LGMD R1, Limb-girdle muscular dystrophy R1 calpain3-related
- Limb-girdle muscular dystrophy
- MMSE, Mini-Mental State Examination
- Mt-aaRS, Mitochondrial aminoacyl-tRNA synthetase
- Whole genome sequencing
- mtDNA, Mitochondrial DNA
Collapse
|
49
|
Roosendaal SD, van de Brug T, Alves CAPF, Blaser S, Vanderver A, Wolf NI, van der Knaap MS. Imaging Patterns Characterizing Mitochondrial Leukodystrophies. AJNR Am J Neuroradiol 2021; 42:1334-1340. [PMID: 34255734 PMCID: PMC8324261 DOI: 10.3174/ajnr.a7097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Achieving a specific diagnosis in leukodystrophies is often difficult due to clinical and genetic heterogeneity. Mitochondrial defects cause 5%-10% of leukodystrophies. Our objective was to define MR imaging features commonly shared by mitochondrial leukodystrophies and to distinguish MR imaging patterns related to specific genetic defects. MATERIALS AND METHODS One hundred thirty-two patients with a mitochondrial leukodystrophy with known genetic defects were identified in the data base of the Amsterdam Leukodystrophy Center. Numerous anatomic structures were systematically assessed on brain MR imaging. Additionally, lesion characteristics were scored. Statistical group analysis was performed for 57 MR imaging features by hierarchic testing on clustered genetic subgroups. RESULTS MR imaging features indicative of mitochondrial disease that were frequently found included white matter rarefaction (n = 50 patients), well-delineated cysts (n = 20 patients), T2 hyperintensity of the middle blade of the corpus callosum (n = 85 patients), and symmetric abnormalities in deep gray matter structures (n = 42 patients). Several disorders or clusters of disorders had characteristic features. The combination of T2 hyperintensity in the brain stem, middle cerebellar peduncles, and thalami was associated with complex 2 deficiency. Predominantly periventricular localization of T2 hyperintensities and cystic lesions with a distinct border was associated with defects in complexes 3 and 4. T2-hyperintense signal of the cerebellar cortex was specifically associated with variants in the gene NUBPL. T2 hyperintensities predominantly affecting the directly subcortical cerebral white matter, globus pallidus, and substantia nigra were associated with Kearns-Sayre syndrome. CONCLUSIONS In a large group of patients with a mitochondrial leukodystrophy, general MR imaging features suggestive of mitochondrial disease were found. Additionally, we identified several MR imaging patterns correlating with specific genotypes. Recognition of these patterns facilitates the diagnosis in future patients.
Collapse
Affiliation(s)
| | - T van de Brug
- Epidemiology and Biostatistics (T.v.d.B.), Amsterdam UMC, Amsterdam, the Netherlands
| | | | - S Blaser
- Division of Neuroradiology (S.B.), Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - A Vanderver
- Department of Radiology and Division of Neurology (A.V.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - N I Wolf
- Department of Pediatric Neurology (M.S.v.d.K, N.I.W.), Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M S van der Knaap
- Department of Pediatric Neurology (M.S.v.d.K, N.I.W.), Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| |
Collapse
|
50
|
von Jonquieres G, Rae CD, Housley GD. Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies. Front Cell Neurosci 2021; 15:661857. [PMID: 34239416 PMCID: PMC8258421 DOI: 10.3389/fncel.2021.661857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System (CNS) homeostasis and function rely on intercellular synchronization of metabolic pathways. Developmental and neurochemical imbalances arising from mutations are frequently associated with devastating and often intractable neurological dysfunction. In the absence of pharmacological treatment options, but with knowledge of the genetic cause underlying the pathophysiology, gene therapy holds promise for disease control. Consideration of leukodystrophies provide a case in point; we review cell type – specific expression pattern of the disease – causing genes and reflect on genetic and cellular treatment approaches including ex vivo hematopoietic stem cell gene therapies and in vivo approaches using adeno-associated virus (AAV) vectors. We link recent advances in vectorology to glial targeting directed towards gene therapies for specific leukodystrophies and related developmental or neurometabolic disorders affecting the CNS white matter and frame strategies for therapy development in future.
Collapse
Affiliation(s)
- Georg von Jonquieres
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|