1
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
2
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
3
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
4
|
Abondio P, Bruno F, Bruni AC, Luiselli D. Rare Amyloid Precursor Protein Point Mutations Recapitulate Worldwide Migration and Admixture in Healthy Individuals: Implications for the Study of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232415871. [PMID: 36555510 PMCID: PMC9781461 DOI: 10.3390/ijms232415871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic discoveries related to Alzheimer's disease and other dementias have been performed using either large cohorts of affected subjects or multiple individuals from the same pedigree, therefore disregarding mutations in the context of healthy groups. Moreover, a large portion of studies so far have been performed on individuals of European ancestry, with a remarkable lack of epidemiological and genomic data from underrepresented populations. In the present study, 70 single-point mutations on the APP gene in a publicly available genetic dataset that included 2504 healthy individuals from 26 populations were scanned, and their distribution was analyzed. Furthermore, after gametic phase reconstruction, a pairwise comparison of the segments surrounding the mutations was performed to reveal patterns of haplotype sharing that could point to specific cross-population and cross-ancestry admixture events. Eight mutations were detected in the worldwide dataset, with several of them being specific for a single individual, population, or macroarea. Patterns of segment sharing reflected recent historical events of migration and admixture possibly linked to colonization campaigns. These observations reveal the population dynamics of the considered APP mutations in worldwide human groups and support the development of ancestry-informed screening practices for the improvement of precision and personalized approaches to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Francesco Bruno
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence:
| | - Amalia Cecilia Bruni
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
5
|
Bruno F, Laganà V, Di Lorenzo R, Bruni AC, Maletta R. Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10092288. [PMID: 36140389 PMCID: PMC9496333 DOI: 10.3390/biomedicines10092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although originally multi-ethnic in its structure, nowadays the Calabria region of southern Italy represents an area with low genetic heterogeneity and a high level of consanguinity that allows rare mutations to be maintained due to the founder effect. A complex research methodology—ranging from clinical activity to the genealogical reconstruction of families/populations across the centuries, the creation of databases, and molecular/genetic research—was modelled on the characteristics of the Calabrian population for more than three decades. This methodology allowed the identification of several novel genetic mutations or variants associated with neurodegenerative diseases. In addition, a higher prevalence of several hereditary neurodegenerative diseases has been reported in this population, such as Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, Niemann–Pick type C disease, spinocerebellar ataxia, Creutzfeldt–Jakob disease, and Gerstmann–Straussler–Scheinker disease. Here, we summarize and discuss the results of research data supporting the view that Calabria could be considered as a genetic isolate and could represent a model, a sort of outdoor laboratory—similar to very few places in the world—useful for the advancement of knowledge on neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Valentina Laganà
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| |
Collapse
|
6
|
Biffi A. Main features of hereditary cerebral amyloid angiopathies: A systematic review. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100124. [PMID: 36324420 PMCID: PMC9616336 DOI: 10.1016/j.cccb.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/04/2022]
Abstract
Cerebral Amyloid Angiopathy (CAA) is a major contributor to stroke risk, cognitive decline, as well as multiple neurobehavioral and neuropsychiatric disturbances. Most CAA cases are sporadic, but many hereditary forms exist and present as familial monogenic disorders with early-onset hemorrhagic stroke and dementia. Hereditary CAA is usually characterized by earlier age at onset and more severe course when compared to sporadic CAA. Most forms of hereditary CAA are caused by APP mutations, leading to accumulation of amyloid beta in vascular deposits within the small vessels of the central nervous system. Cognitive decline is a common manifestation of hereditary CAA, either due to recurrent hemorrhagic stroke events or as chronic progression of small vessel vasculopathy. Recent studies highlighted increased risk for behavioral and psychiatric disorders among individuals affect by sporadic CAA, thus warranting similarly focused future investigations for hereditary CAA.
The term Cerebral Amyloid Angiopathy (CAA) refers to a group of neurovascular disorders characterized by amyloid deposition within the walls of leptomeningeal and cortical blood vessels of the brain, with specific predilection for arterioles, and (less often) capillaries and veins. Most CAA cases in the general population are sporadic in nature, and represent primarily an age-related condition affecting individuals in the fifth decade of life and beyond. Sporadic CAA is caused by deposition of amyloid-β (Aβ), originating from proteolytic cleavage of the Amyloid Precursor Protein (APP), within the walls of cerebral small caliber vessels. However, hereditary forms of CAA have also been described, generally presenting as rare familial disorder with monogenic (predominantly autosomal dominant) inheritance patterns. Hereditary CAA forms tend to affect younger individuals, and their course and clinical progression is more severe. Studies to date primarily focused on the vascular manifestations of sporadic and hereditary CAA, chiefly symptomatic lobar Intracerebral Hemorrhage (ICH). However, in the past decade sporadic CAA has also been consistently linked to progressive neurocognitive, neurobehavioral, and neuropsychiatric symptoms. This systematic review focuses on the genetics, pathogenesis, neuroimaging, neuropathology, and clinical manifestations of hereditary CAA with specific emphasis on previously overlooked cognitive, behavioral, and psychiatric symptoms.
Collapse
|
7
|
Abondio P, Sarno S, Giuliani C, Laganà V, Maletta R, Bernardi L, Bruno F, Colao R, Puccio G, Frangipane F, Borroni B, Van Broeckhoven C, Luiselli D, Bruni A. Amyloid Precursor Protein A713T Mutation in Calabrian Patients with Alzheimer's Disease: A Population Genomics Approach to Estimate Inheritance from a Common Ancestor. Biomedicines 2021; 10:biomedicines10010020. [PMID: 35052700 PMCID: PMC8773445 DOI: 10.3390/biomedicines10010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mutation A713T in the amyloid precursor protein (APP) has been linked to cases of Alzheimer’s disease (AD), cerebral amyloid angiopathy (CAA) and cerebrovascular disease. Despite its rarity, it has been observed in several families from the same geographical area, in the Calabria region in Southern Italy. Genotyping of 720,000 genome-wide SNPs with the HumanOmniExpress BeadChip was performed for six patients that were representative of apparently unrelated Calabrian families, as well as a Belgian subject of Italian descent (all with the same A713T mutation and disease). Their genomic structure and genetic relationships were analyzed. Demographic reconstruction and coalescent theory were applied to estimate the time of the most recent common ancestor (tMRCA) among patients. Results show that all A713T carriers fell into the genetic variability of Southern Italy and were not more closely related to each other than to any other healthy Calabrian individual. However, five out of seven patients shared a 1.7 Mbp-long DNA segment centered on the A713T mutation, making it possible to estimate a tMRCA for its common origin in the Calabrian region dating back over 1000 years. The analysis of affected individuals with methodologies based on human population genomics thus provides informative insights in support of clinical observations and biomedical research.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Molecular Anthropology, Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (C.G.)
- Correspondence: (P.A.); (A.B.)
| | - Stefania Sarno
- Laboratory of Molecular Anthropology, Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (C.G.)
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (C.G.)
| | - Valentina Laganà
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Raffaele Maletta
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Livia Bernardi
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Francesco Bruno
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Rosanna Colao
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Gianfranco Puccio
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Francesca Frangipane
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
| | - Barbara Borroni
- Department of Neurology, University of Brescia, 25121 Brescia, Italy;
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, Vlaams Instituut voor Biotechnologie, 2600 Antwerp, Belgium;
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Donata Luiselli
- Ancient DNA Laboratory, Department of Cultural Heritage, Ravenna Campus, University of Bologna, 48121 Ravenna, Italy;
| | - Amalia Bruni
- Regional Neurogenetic Center, Azianda Sanitaria Provinciale Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.); (L.B.); (F.B.); (R.C.); (G.P.); (F.F.)
- Correspondence: (P.A.); (A.B.)
| |
Collapse
|
8
|
Kalampokini S, Georgouli D, Patrikiou E, Provatas A, Valotassiou V, Georgoulias P, Spanaki C, Hadjigeorgiou GM, Xiromerisiou G. Τhe Greek Variant in APP Gene: The Phenotypic Spectrum of APP Mutations. Int J Mol Sci 2021; 22:ijms222212355. [PMID: 34830236 PMCID: PMC8622139 DOI: 10.3390/ijms222212355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/05/2022] Open
Abstract
Mutations in the gene encoding amyloid precursor protein (APP) cause autosomal dominant inherited Alzheimer’s disease (AD). We present a case of a 68-year-old female who presented with epileptic seizures, neuropsychiatric symptoms and progressive memory decline and was found to carry a novel APP variant, c.2062T>G pLeu688Val. A comprehensive literature review of all reported cases of AD due to APP mutations was performed in PubMed and Web of Science databases. We reviewed 98 studies with a total of 385 cases. The mean age of disease onset was 51.3 ± 8.3 (31–80 years). Mutations were most often located in exons 17 (80.8%) and 16 (12.2%). The most common symptoms were dementia, visuospatial symptoms, aphasia, epilepsy and psychiatric symptoms. Mutations in the β-amyloid region, and specifically exon 17, were associated with high pathogenicity and a younger age of disease onset. We describe the second reported APP mutation in the Greek population. APP mutations may act variably on disease expression and their phenotype is heterogeneous.
Collapse
Affiliation(s)
- Stefania Kalampokini
- Medical School, University of Cyprus, Nicosia, Cyprus and Department of Neurology, General Hospital of Nicosia, Nicosia 2029, Cyprus;
- Correspondence: ; Tel.: +357-22603911; Fax: +357-22603467
| | - Despoina Georgouli
- Department of Neurology, University Hospital of Larissa, 41334 Larissa, Greece; (D.G.); (A.P.); (G.X.)
| | - Eleni Patrikiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41223 Larisa, Greece;
| | - Antonios Provatas
- Department of Neurology, University Hospital of Larissa, 41334 Larissa, Greece; (D.G.); (A.P.); (G.X.)
| | - Varvara Valotassiou
- Nuclear Medicine Laboratory, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.V.); (P.G.)
| | - Panagiotis Georgoulias
- Nuclear Medicine Laboratory, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.V.); (P.G.)
| | - Cleanthe Spanaki
- Department of Neurology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Georgios M. Hadjigeorgiou
- Medical School, University of Cyprus, Nicosia, Cyprus and Department of Neurology, General Hospital of Nicosia, Nicosia 2029, Cyprus;
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, 41334 Larissa, Greece; (D.G.); (A.P.); (G.X.)
| |
Collapse
|
9
|
Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021; 13:59. [PMID: 33853652 PMCID: PMC8048219 DOI: 10.1186/s13073-021-00878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open avenues for effective personalized therapies.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| |
Collapse
|
10
|
Hoogmartens J, Cacace R, Van Broeckhoven C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12155. [PMID: 33665345 PMCID: PMC7896636 DOI: 10.1002/dad2.12155] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Rita Cacace
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
11
|
Sarno S, Petrilli R, Abondio P, De Giovanni A, Boattini A, Sazzini M, De Fanti S, Cilli E, Ciani G, Gentilini D, Pettener D, Romeo G, Giuliani C, Luiselli D. Genetic history of Calabrian Greeks reveals ancient events and long term isolation in the Aspromonte area of Southern Italy. Sci Rep 2021; 11:3045. [PMID: 33542324 PMCID: PMC7862261 DOI: 10.1038/s41598-021-82591-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Calabrian Greeks are an enigmatic population that have preserved and evolved a unique variety of language, Greco, survived in the isolated Aspromonte mountain area of Southern Italy. To understand their genetic ancestry and explore possible effects of geographic and cultural isolation, we genome-wide genotyped a large set of South Italian samples including both communities that still speak Greco nowadays and those that lost the use of this language earlier in time. Comparisons with modern and ancient populations highlighted ancient, long-lasting genetic links with Eastern Mediterranean and Caucasian/Near-Eastern groups as ancestral sources of Southern Italians. Our results suggest that the Aspromonte communities might be interpreted as genetically drifted remnants that departed from such ancient genetic background as a consequence of long-term isolation. Specific patterns of population structuring and higher levels of genetic drift were indeed observed in these populations, reflecting geographic isolation amplified by cultural differences in the groups that still conserve the Greco language. Isolation and drift also affected the current genetic differentiation at specific gene pathways, prompting for future genome-wide association studies aimed at exploring trait-related loci that have drifted up in frequency in these isolated groups.
Collapse
Affiliation(s)
- Stefania Sarno
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rosalba Petrilli
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Abondio
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Andrea De Giovanni
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Graziella Ciani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy ,Italian Auxologic Institute IRCCS, Cusano Milanino, Milan, Italy
| | - Davide Pettener
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- grid.412311.4Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, Bologna, Italy ,European School of Genetic Medicine, Bologna, Italy
| | - Cristina Giuliani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
12
|
Bruni AC, Bernardi L, Gabelli C. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Res Rev 2020; 64:101126. [PMID: 32683041 DOI: 10.1016/j.arr.2020.101126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age related neurodegenerative disorder causing severe disability and important socio-economic burden, but with no cure available to date. To disentangle this puzzling disease genetic studies represented an important way for the comprehension of pathogenic mechanisms. Abnormal processing and accumulation of amyloid-β peptide (Aβ) has been considered the main cause and trigger factor of the disease. The amyloid cascade theory has fallen into crisis because the failure of several anti-amyloid drugs trials and because of the simple equation AD = abnormal Aβ deposition is not always the case. We now know that multiple neurodegenerative diseases share common pathogenic mechanisms leading to accumulation of misfolded protein species. Genome Wide Association studies (GWAS) led to the identification of large numbers of DNA common variants (SNPs) distributed on different chromosomes and modulating the Alzheimer's risk. GWAS genes fall into several common pathways such as immune system and neuroinflammation, lipid metabolism, synaptic dysfunction and endocytosis, all of them addressing to novel routes for different pathogenic mechanisms. Other hints could be derived from epidemiological and experimental studies showing some lifestyles may have a major role in the pathogenesis of many age-associated diseases by modifying cell metabolism, proteostasis and microglia mediated neuroinflammation.
Collapse
Affiliation(s)
- Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy.
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Carlo Gabelli
- Regional Brain Aging Centre, Azienda Ospedale Università Di Padova, Padova Italy
| |
Collapse
|
13
|
Coppola C, Saracino D, Oliva M, Puoti G, Lus G, Le Ber I, Pariente J, Tessitore A, Benussi L, Ghidoni R, Carrara M, Ricci M, Redaelli V, Tiraboschi P, Caroppo P, Giaccone G, Bonavita S, Rossi G. The Rise of the GRN C157KfsX97 Mutation in Southern Italy: Going Back to the Fall of the Western Roman Empire. J Alzheimers Dis 2020; 78:387-394. [PMID: 33016921 DOI: 10.3233/jad-200924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) designates a group of neurodegenerative diseases with remarkable clinical, pathological, and genetic heterogeneity. Mutations in progranulin gene (GRN) are among the most common causes of familial FTLD. The GRN C157KfsX97 mutation is the most frequent mutation occurring in Southern Italy and has been already described in a previous work. OBJECTIVE In this study, we reported on additional cases carrying the same mutation and performed a genetic study on the whole cohort, aiming at demonstrating the existence of a founder effect and estimating the age of this mutation. METHODS/RESULTS Based on the haplotype sharing analysis, a founder effect was highly probable, while the age of the mutation, estimated by means of DMLE+ software, resulted in a range between 52 and 82 generations, with the highest frequency at about 62 generations, 1,550 years ago. CONCLUSION This is the first study that reports the age estimation of the most recent common ancestor for the GRN C157KfsX97 mutation recurring in Southern Italy. Mutation dating in a geographically restricted population may be useful in order to plan genetic counseling and screening programs in the field of public health.
Collapse
Affiliation(s)
- Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Dario Saracino
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France and Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Mariano Oliva
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France and Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Matteo Carrara
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Martina Ricci
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Redaelli
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Caroppo
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giacomina Rossi
- Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
14
|
Perrone F, Bjerke M, Hens E, Sieben A, Timmers M, De Roeck A, Vandenberghe R, Sleegers K, Martin JJ, De Deyn PP, Engelborghs S, van der Zee J, Van Broeckhoven C, Cacace R. Amyloid-β 1-43 cerebrospinal fluid levels and the interpretation of APP, PSEN1 and PSEN2 mutations. ALZHEIMERS RESEARCH & THERAPY 2020; 12:108. [PMID: 32917274 PMCID: PMC7488767 DOI: 10.1186/s13195-020-00676-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
Background Alzheimer’s disease (AD) mutations in amyloid precursor protein (APP) and presenilins (PSENs) could potentially lead to the production of longer amyloidogenic Aβ peptides. Amongst these, Aβ1–43 is more prone to aggregation and has higher toxic properties than the long-known Aβ1–42. However, a direct effect on Aβ1–43 in biomaterials of individuals carrying genetic mutations in the known AD genes is yet to be determined. Methods N = 1431 AD patients (n = 280 early-onset (EO) and n = 1151 late-onset (LO) AD) and 809 control individuals were genetically screened for APP and PSENs. For the first time, Aβ1–43 levels were analysed in cerebrospinal fluid (CSF) of 38 individuals carrying pathogenic or unclear rare mutations or the common PSEN1 p.E318G variant and compared with Aβ1–42 and Aβ1–40 CSF levels. The soluble sAPPα and sAPPβ species were also measured for the first time in mutation carriers. Results A known pathogenic mutation was identified in 5.7% of EOAD patients (4.6% PSEN1, 1.07% APP) and in 0.3% of LOAD patients. Furthermore, 12 known variants with unclear pathogenicity and 11 novel were identified. Pathogenic and unclear mutation carriers showed a significant reduction in CSF Aβ1–43 levels compared to controls (p = 0.037; < 0.001). CSF Aβ1–43 levels positively correlated with CSF Aβ1–42 in both pathogenic and unclear carriers and controls (all p < 0.001). The p.E318G carriers showed reduced Aβ1–43 levels (p < 0.001), though genetic association with AD was not detected. sAPPα and sAPPβ CSF levels were significantly reduced in the group of unclear (p = 0.006; 0.005) and p.E318G carriers (p = 0.004; 0.039), suggesting their possible involvement in AD. Finally, using Aβ1–43 and Aβ1–42 levels, we could re-classify as “likely pathogenic” 3 of the unclear mutations. Conclusion This is the first time that Aβ1–43 levels were analysed in CSF of AD patients with genetic mutations in the AD causal genes. The observed reduction of Aβ1–43 in APP and PSENs carriers highlights the pathogenic role of longer Aβ peptides in AD pathogenesis. Alterations in Aβ1–43 could prove useful in understanding the pathogenicity of unclear APP and PSENs variants, a critical step towards a more efficient genetic counselling.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Maria Bjerke
- Institute Born-Bunge, Antwerp, Belgium.,Reference Centre for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurochemistry and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisabeth Hens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Edegem, Belgium.,Department of Neurology, University Hospital Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anne Sieben
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Maarten Timmers
- Reference Centre for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Louvain, Belgium.,Laboratory of Cognitive Neurology, Department of Neurology, University Hospitals Leuven, Louvain, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Peter P De Deyn
- Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Centre for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
15
|
Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin Neurophysiol 2020; 131:1287-1310. [DOI: 10.1016/j.clinph.2020.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|
16
|
D’Argenio V, Sarnataro D. New Insights into the Molecular Bases of Familial Alzheimer's Disease. J Pers Med 2020; 10:jpm10020026. [PMID: 32325882 PMCID: PMC7354425 DOI: 10.3390/jpm10020026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Like several neurodegenerative disorders, such as Prion and Parkinson diseases, Alzheimer's disease (AD) is characterized by spreading mechanism of aggregated proteins in the brain in a typical "prion-like" manner. Recent genetic studies have identified in four genes associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of folding of the derived amyloid beta peptide (A). Accumulation and aggregation of A in the brain can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading to the pathological features of AD. However, mutations in these four genes account for a small of the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to the identification of additional AD candidate genes. Here, we review an update of well-established, highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of their correlated biochemical cascade will provide several potential targets for treatment of AD and aging-related disorders.
Collapse
Affiliation(s)
- Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate scarl, via G. Salvatore 486, 80145 Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, via di val Cannuta 247, 00166 Rome, Italy
- Correspondence: (V.D.); (D.S.); Tel.: +39-081-3737909 (V.D.); +39-081-7464575 (D.S.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, via S. Pansini 5, 80131 Naples, Italy
- Correspondence: (V.D.); (D.S.); Tel.: +39-081-3737909 (V.D.); +39-081-7464575 (D.S.)
| |
Collapse
|
17
|
The Amyloid-Tau-Neuroinflammation Axis in the Context of Cerebral Amyloid Angiopathy. Int J Mol Sci 2019; 20:ijms20246319. [PMID: 31847365 PMCID: PMC6941131 DOI: 10.3390/ijms20246319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with the accumulation of Aβ, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis has been associated with an active immune response and perivascular deposition of hyperphosphorylated tau. Despite the fact that in Alzheimer’s disease (AD) a major focus of research has been the understanding of the connection between parenchymal amyloid plaques, tau aggregates in the form of neurofibrillary tangles (NFTs), and immune activation, the contribution of tau and neuroinflammation to neurodegeneration associated with CAA remains understudied. In this review, we discussed the existing evidence regarding the amyloid diversity in CAA and its relation to tau pathology and immune response, as well as the possible contribution of molecular and cellular mechanisms, previously associated with parenchymal amyloid in AD and AD-related dementias, to the pathogenesis of CAA. The detailed understanding of the “amyloid-tau-neuroinflammation” axis in the context of CAA could open the opportunity to develop therapeutic interventions for dementias associated with CAA that are currently being proposed for AD and AD-related dementias.
Collapse
|
18
|
Mastromoro G, Gambardella S, Marchionni E, Campopiano R, Traversa A, Di Bonaventura C, Pizzuti A. Unusual Segregation of APP Mutations in Monogenic Alzheimer Disease. NEURODEGENER DIS 2019; 19:96-100. [PMID: 31578030 DOI: 10.1159/000502906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022] Open
Abstract
APP gene mutations causing Alzheimer disease (AD) segregate in an autosomal dominant pattern. We report on a 40-year-old woman with a severe cognitive decline starting at 36 years, while her affected relatives presented symptoms onset in the 6th decade. The proband carried an APP missense variant in homozygous state (NM_000484.4: c.2032G>A; NP_000475.1: p.Asp678Asn; rs63750064) and showed a more severe clinical picture than the other AD relatives, as regards the age of onset and the rate of disease progression. This mutation behaves as a semi-dominant trait. The very rare chance of studying APP mutations in the homozygous state demonstrates they are not always dominant and other segregation models are possible.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy,
| | | | - Enrica Marchionni
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Alice Traversa
- Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratory of Clinical Genomics, San Giovanni Rotondo, Italy
| | - Carlo Di Bonaventura
- Neurology Unit, Department of Neurosciences, Mental Health, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy.,Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratory of Clinical Genomics, San Giovanni Rotondo, Italy
| |
Collapse
|
19
|
Yang C, Song Y, Chen Z, Yuan X, Chen X, Ding G, Guan Y, McGrath M, Song C, Tong Y, Wang H. A Nonsense Mutation in COL4A4 Gene Causing Isolated Hematuria in Either Heterozygous or Homozygous State. Front Genet 2019; 10:628. [PMID: 31312213 PMCID: PMC6614519 DOI: 10.3389/fgene.2019.00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 01/15/2023] Open
Abstract
Alport syndrome (AS) is a hereditary nephropathy characterized by glomerular basement membrane lesions. AS shows a relatively rare entity with autosomal dominant gene mutation (accounts for less than 5% of AS cases) and is widely believed to be a consequence of heterozygous variants in the COL4A3 and COL4A4 genes. Until now, there have been no reports of homozygous variants in genes in AS patients, and it is scarce to detect both homozygous and heterozygous variants in a single AS pedigree. We performed genetic analysis by exome sequencing (exome-seq) in a Chinese family with AS and found four individuals harboring the COL4A4 c.4599T > G variant, a novel COL4A4 nonsense mutation that gains stop codon and results in a truncated protein. The proband and her two siblings were determined to be heterozygous, whereas their mother was homozygous. The proband satisfied the criteria for the diagnosis of AS, which included clinical manifestations of microscopic hematuria and proteinuria, and pathological features of the glomerular basement membrane (GBM), including irregular thickening and splitting. However, the other three individuals who were homozygous or heterozygous for the variant exhibited mild clinical features with isolated microscopic hematuria. In summary, we identified a novel pathogenic variant in either the heterozygous or homozygous state of the COL4A4 gene in a Chinese family with AS. Our results also suggest that the severity of clinical manifestations may not be entirely attributed to by the COL4A4 genetic variant itself in patients.
Collapse
Affiliation(s)
- Cheng Yang
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Song
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Yuan
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinhua Chen
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Ding
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Guan
- Ultrastructure Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yongqing Tong
- Department of Laboratory Science, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiming Wang
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Homozygosity for the A431E mutation in PSEN1 presenting with a relatively aggressive phenotype. Neurosci Lett 2019; 699:195-198. [PMID: 30716424 DOI: 10.1016/j.neulet.2019.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We report a 35 year-old male with childhood learning disability and early onset dementia who is homozygous for the A431E variant in the PSEN1 gene. Presenilin1 mutations are associated with autosomal dominant Alzheimer's dementia with young and somewhat stereotyped onset. Such variants may cause Alzheimer's dementia through aberrant processing of amyloid precursor protein through effects on γ-secretase activity. γ-secretase is involved in the cleavage of many proteins critical to normal function, including brain development. Therefore, manifestations in persons without normal Presenilin1 function is of interest. METHODS Clinical evaluation including family history, examination, brain MRI, and genetic analysis. RESULTS Our patient had mild developmental delay, chronic nighttime behavioral disturbance, and onset of progressive cognitive deficits at age 33. Clinical evaluation demonstrated spastic paraparesis and pseudobulbar affect. Brain MRI revealed cerebral atrophy disproportionate to age. Chronic microhemorrhages within bilateral occipital, temporal, and right frontal lobes were seen. Sanger sequencing confirmed homozygosity for the A431E variant in PSEN1, which is a known pathogenic variant causing autosomal dominant Alzheimer's dementia. CONCLUSIONS Our report demonstrates that homozygosity for pathogenic Presenilin1 variants is compatible with life, though may cause a more aggressive phenotype with younger age of onset and possibly REM behavior disorder.
Collapse
|
21
|
Terrin A, Mainardi F, Zanchin G, Maggioni F. Sports, physical activity and headache in the classical age: historical descriptions from the first sports textbook, "De arte gymnastica", by Girolamo Mercuriale. Neurol Sci 2018; 40:1507-1517. [PMID: 30483994 DOI: 10.1007/s10072-018-3657-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/20/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The relationship between physical activity, sports and headache presents a growing interest, testified by numerous papers recently published. The correlation between headache and sporting activities or physical exercise dates back to the classical age. We aim at promoting the development of more studies focused on the relationship between headache and physical activity. METHODS We analysed the book "De arte gymnastica", written by Girolamo Mercuriale (Forlì, Italy, 1530-1606), and considered the first "sports medical textbook". We discuss these classical literature findings in the light of the International Classification of Headache Disorders, 3rd edition. RESULTS The Author's work derives from the systematic revision of Greek, Roman and Arabic literatures about the matter. Despite some references to inveterate headaches or cold-related pains, Mercuriale does not gather specific clinical characterisations of different types of headache. However, interestingly, he reports detailed descriptions of how the same sport, or the same physical activity, could cause or give relief from head pain, depending on the precise way of practising. Mercuriale summarises 18 sports or physical activities that can give relief from headache; conversely, running or heavy activities, such as boxing, appear among the 12 contraindicated sports for people suffering from headache. CONCLUSIONS "De arte gymnastica", by Girolamo Mercuriale, is the first textbook on sports medicine. Headache if often cited along the treatise: different sports and physical activities, or various ways of practising the same action could produce opposite effects for people suffering from headache.
Collapse
Affiliation(s)
- Alberto Terrin
- Headache Centre. Department of Neuroscience, University of Padova, Padua, Italy. .,Department of Neurosciences, Neurological Clinic, University of Padova, Via Giustiniani 5, 35128, Padua, Italy.
| | | | - Giorgio Zanchin
- Headache Centre. Department of Neuroscience, University of Padova, Padua, Italy
| | - Ferdinando Maggioni
- Headache Centre. Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
22
|
Perrone F, Cacace R, Van Mossevelde S, Van den Bossche T, De Deyn PP, Cras P, Engelborghs S, van der Zee J, Van Broeckhoven C. Genetic screening in early-onset dementia patients with unclear phenotype: relevance for clinical diagnosis. Neurobiol Aging 2018; 69:292.e7-292.e14. [DOI: 10.1016/j.neurobiolaging.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/08/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
|
23
|
Hunter S, Brayne C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatry 2018; 23:81-93. [PMID: 29112196 DOI: 10.1038/mp.2017.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
Many models of disease progression in Alzheimer's disease (AD) have been proposed to help guide experimental design and aid the interpretation of results. Models focussing on the genetic evidence include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two decades. However, the ACH has never been fully accepted and has not yet delivered on its therapeutic promise. We review the ACH, PSH and AMA in relation to levels of APP proteolytic fragments reported from AD-associated mutations in APP. Different APP mutations have diverse effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three disease pathways that can differ between familial and sporadic AD and two pathways associated with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the effects of mutations in APP as the APP proteolytic system has not been investigated systematically. The confounding effects of sequence homology, complexity of competing cleavages and antibody cross reactivities all illustrate limitations in our understanding of the roles these fragments and the APP proteolytic system as a whole in normal aging and disease play. Current experimental design should be refined to generate clearer evidence, addressing both aging and complex disorders with standardised reporting formats. A more flexible theoretical framework capable of accommodating the complexity of the APP proteolytic system is required to integrate available evidence.
Collapse
Affiliation(s)
- S Hunter
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - C Brayne
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
24
|
Lombardi G, Berti V, Tedde A, Bagnoli S, Piaceri I, Polito C, Lucidi G, Ferrari C, Ginestroni A, Moretti M, Pupi A, Nacmias B, Sorbi S. Low Florbetapir PET Uptake and Normal Aβ1-42 Cerebrospinal Fluid in an APP Ala713Thr Mutation Carrier. J Alzheimers Dis 2017; 57:697-703. [DOI: 10.3233/jad-161170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Valentina Berti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Andrea Tedde
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Polito
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Giulia Lucidi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Don Gnocchi, Florence, Italy
| | | | | | | | - Alberto Pupi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Don Gnocchi, Florence, Italy
| |
Collapse
|
25
|
Lanoiselée HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S, Richard AC, Pasquier F, Rollin-Sillaire A, Martinaud O, Quillard-Muraine M, de la Sayette V, Boutoleau-Bretonniere C, Etcharry-Bouyx F, Chauviré V, Sarazin M, le Ber I, Epelbaum S, Jonveaux T, Rouaud O, Ceccaldi M, Félician O, Godefroy O, Formaglio M, Croisile B, Auriacombe S, Chamard L, Vincent JL, Sauvée M, Marelli-Tosi C, Gabelle A, Ozsancak C, Pariente J, Paquet C, Hannequin D, Campion D. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14:e1002270. [PMID: 28350801 PMCID: PMC5370101 DOI: 10.1371/journal.pmed.1002270] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series. METHODS AND FINDINGS We report here a novel update (2012-2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers-total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42-in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification. CONCLUSIONS Our findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants.
Collapse
Affiliation(s)
- Hélène-Marie Lanoiselée
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
- Department of Neurology, Orleans Regional Hospital, Orleans, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne Rovelet-Lecrux
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Morgane Lacour
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Rousseau
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne-Claire Richard
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Florence Pasquier
- Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France
- Inserm UMR-S 1171, Université Lille Nord de France, Lille, France
| | - Adeline Rollin-Sillaire
- Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France
- Inserm UMR-S 1171, Université Lille Nord de France, Lille, France
| | - Olivier Martinaud
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | - Valérie Chauviré
- Department of Neurology, Angers University Hospital, Angers, France
| | - Marie Sarazin
- Department of Neurology, Saint Anne University Hospital, Paris, France
| | - Isabelle le Ber
- CNR-MAJ, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; and ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC-P6 UMR S 1127 - Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- CNR-MAJ, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; and ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC-P6 UMR S 1127 - Hôpital Pitié-Salpêtrière, Paris, France
| | - Thérèse Jonveaux
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Olivier Rouaud
- Department of Neurology, Dijon University Hospital, Dijon, France
| | - Mathieu Ceccaldi
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; AP-HM, Service de Neurologie et Neuropsychologie, CHU Timone, Marseille, France
| | - Olivier Félician
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; AP-HM, Service de Neurologie et Neuropsychologie, CHU Timone, Marseille, France
| | - Olivier Godefroy
- Department of Neurology, Amiens University Hospital Center, Amiens, France
| | - Maite Formaglio
- Department of Neurology and CMRR Lyon University Hospital, Lyon, France
| | - Bernard Croisile
- Department of Neurology and CMRR Lyon University Hospital, Lyon, France
| | - Sophie Auriacombe
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Ludivine Chamard
- Department of Neurology, Besançon University Hospital, Besançon, France
| | | | - Mathilde Sauvée
- Department of Neurology, Grenoble University Hospital, Grenoble, France
| | | | - Audrey Gabelle
- Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Canan Ozsancak
- Department of Neurology, Orleans Regional Hospital, Orleans, France
| | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Claire Paquet
- CMRR Paris Nord AP-HP, Hôpital Lariboisière, INSERM, U942, Université Paris Diderot, Sorbonne Paris Cité, UMRS 942, Paris, France
| | - Didier Hannequin
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Dominique Campion
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
- Department of Research, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- * E-mail:
| | | |
Collapse
|
26
|
Bocchetta M, Mega A, Bernardi L, Di Maria E, Benussi L, Binetti G, Borroni B, Colao R, Di Fede G, Fostinelli S, Galimberti D, Gennarelli M, Ghidoni R, Piaceri I, Pievani M, Porteri C, Redaelli V, Rossi G, Suardi S, Babiloni C, Scarpini E, Tagliavini F, Padovani A, Nacmias B, Sorbi S, Frisoni GB, Bruni AC. Genetic Counseling and Testing for Alzheimer's Disease and Frontotemporal Lobar Degeneration: An Italian Consensus Protocol. J Alzheimers Dis 2016; 51:277-91. [PMID: 26901402 DOI: 10.3233/jad-150849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic testing of familial Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is attracting interest thanks to innovative primary prevention clinical trials and increased request for information by at-risk individuals. However, ethical, social, and psychological implications are paramount and genetic testing must be supported by structured genetic counseling. In Italy, practice parameters and guidelines for genetic counseling in dementia are not available. OBJECTIVE To develop a nationally harmonized protocol for genetic counseling and testing of familial AD and FTLD. METHODS Activities were carried out in the context of the Italian Dominantly Inherited Alzheimer's and Frontotemporal Network (IT-DIAfN) project, a national network of centers of excellence with expertise in managing patients with familial AD and FTLD. A survey of the literature on genetic counseling protocols and guidelines was conducted. Local protocols for genetic counseling were surveyed. Differences and commonalities among protocols were identified and discussed among project partners. Consensus was reached following implicit aggregation methods. RESULTS Consensus was reached on a protocol for patients with clinically diagnosed familial AD or FTLD and a distinct protocol for their at-risk relatives. Genetic counseling should be provided by a multidisciplinary team including a geneticist, a neurologist/geriatrician, and a psychologist/psychiatrist, according to the following schedule: (i) initial consultation with tailored information on the genetics of the dementias; (ii) clinical, psychological, and cognitive assessment; if deemed appropriate (iii) genetic testing following a structured decision tree for gene mutation search; (iv) genetic testing result disclosure; (v) psychological support follow-up. CONCLUSION This genetic counseling protocol provides Italian centers with a line of shared practice for dealing with the requests for genetic testing for familial AD and FTLD from patients and at-risk relatives, who may also be eligible participants for novel prevention clinical trials.
Collapse
Affiliation(s)
- Martina Bocchetta
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Anna Mega
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Livia Bernardi
- Centro Regionale di Neurogenetica, ASP Catanzaro, Lamezia terme (CZ) Italy
| | - Emilio Di Maria
- Department of Health Sciences, University of Genova and Division of Medical Genetics, Galliera Hospital, Genova, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Barbara Borroni
- University of Brescia and Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Brescia, Brescia, Italy
| | - Rosanna Colao
- Centro Regionale di Neurogenetica, ASP Catanzaro, Lamezia terme (CZ) Italy
| | | | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Daniela Galimberti
- University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Corinna Porteri
- Bioethics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giacomina Rossi
- IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Suardi
- IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudio Babiloni
- Departiment of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCCS San Raffaele Pisana of Rome, Italy
| | - Elio Scarpini
- University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Alessandro Padovani
- University of Brescia and Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Brescia, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Amalia C Bruni
- Centro Regionale di Neurogenetica, ASP Catanzaro, Lamezia terme (CZ) Italy
| | | |
Collapse
|
27
|
Hsu JS, Kwan JSH, Pan Z, Garcia-Barcelo MM, Sham PC, Li M. Inheritance-mode specific pathogenicity prioritization (ISPP) for human protein coding genes. Bioinformatics 2016; 32:3065-3071. [PMID: 27354691 DOI: 10.1093/bioinformatics/btw381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Exome sequencing studies have facilitated the detection of causal genetic variants in yet-unsolved Mendelian diseases. However, the identification of disease causal genes among a list of candidates in an exome sequencing study is still not fully settled, and it is often difficult to prioritize candidate genes for follow-up studies. The inheritance mode provides crucial information for understanding Mendelian diseases, but none of the existing gene prioritization tools fully utilize this information. RESULTS We examined the characteristics of Mendelian disease genes under different inheritance modes. The results suggest that Mendelian disease genes with autosomal dominant (AD) inheritance mode are more haploinsufficiency and de novo mutation sensitive, whereas those autosomal recessive (AR) genes have significantly more non-synonymous variants and regulatory transcript isoforms. In addition, the X-linked (XL) Mendelian disease genes have fewer non-synonymous and synonymous variants. As a result, we derived a new scoring system for prioritizing candidate genes for Mendelian diseases according to the inheritance mode. Our scoring system assigned to each annotated protein-coding gene (N = 18 859) three pathogenic scores according to the inheritance mode (AD, AR and XL). This inheritance mode-specific framework achieved higher accuracy (area under curve = 0.84) in XL mode. CONCLUSION The inheritance-mode specific pathogenicity prioritization (ISPP) outperformed other well-known methods including Haploinsufficiency, Recessive, Network centrality, Genic Intolerance, Gene Damage Index and Gene Constraint scores. This systematic study suggests that genes manifesting disease inheritance modes tend to have unique characteristics. AVAILABILITY AND IMPLEMENTATION ISPP is included in KGGSeq v1.0 (http://grass.cgs.hku.hk/limx/kggseq/), and source code is available from (https://github.com/jacobhsu35/ISPP.git). CONTACT mxli@hku.hkSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | | | - Pak Chung Sham
- Department of Psychiatry Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Miaoxin Li
- Department of Psychiatry Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
28
|
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dement 2016; 12:733-48. [DOI: 10.1016/j.jalz.2016.01.012] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Rita Cacace
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| |
Collapse
|
29
|
Kim YK, Hwang MY, Kim YJ, Moon S, Han S, Kim BJ. Evaluation of pleiotropic effects among common genetic loci identified for cardio-metabolic traits in a Korean population. Cardiovasc Diabetol 2016; 15:20. [PMID: 26833210 PMCID: PMC4736473 DOI: 10.1186/s12933-016-0337-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genetic contribution to complex diseases or traits, including cardio-metabolic traits, has been elucidated recently by large-scale genome-wide association studies. These genome-wide association studies have indicated that most pleiotropic loci contain genes associated with lipids. Clinically, lipid related abnormalities are strongly associated with other diseases such as type 2 diabetes, coronary artery disease and hypertension. The aim of this study was to evaluate the shared genetic background of lipids and other cardio-metabolic traits. Methods We conducted meta-analyses of the association between 157 published lipid-associated loci and 10 cardio-metabolic traits in 14,028 Korean individuals genotyped using the Exome chip (Illumina HumanExome BeadChip). We also examined whether the pleiotropic effects of such loci constituted independent (i.e., biological) pleiotropy or mediated pleiotropy in these metabolic pathways. Results Eighteen lipid-associated loci were significantly associated with one of six cardio-metabolic traits after correction for multiple testing (P < 3.70 × 10−4). Region 12q24.12 had pleiotropic effects on fasting plasma glucose, blood pressure and obesity-related traits (body mass index and waist-hip ratio) independent of its effects on the lipid profile. Lipid risk scores, calculated according to whether or not subjects carried the risk allele for lipid traits, were significantly associated with fasting plasma glucose, blood pressure and obesity-related traits. Conclusions The 12q24.12 region showed ethnic-specific genetic pleiotropy among cardio-metabolic traits in this study. Our findings may help to account for molecular mechanisms based on shared genetic background underlying not only dyslipidemia, but also cardiovascular disease and type 2 diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0337-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Kyoung Kim
- Division of Structural and Functional Genomics, Center for Genome Sciences, National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, 28159, South Korea.
| | - Mi Yeong Hwang
- Division of Structural and Functional Genomics, Center for Genome Sciences, National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, 28159, South Korea.
| | - Young Jin Kim
- Division of Structural and Functional Genomics, Center for Genome Sciences, National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, 28159, South Korea.
| | - Sanghoon Moon
- Division of Structural and Functional Genomics, Center for Genome Sciences, National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, 28159, South Korea.
| | - Sohee Han
- Division of Structural and Functional Genomics, Center for Genome Sciences, National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, 28159, South Korea.
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Sciences, National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, Chungcheongbuk-do, 28159, South Korea.
| |
Collapse
|