1
|
McKenna S, Jung KI, Wolf JJ, Seo YJ, Hahm B. Multiple sphingolipid-metabolizing enzymes modulate influenza virus replication. Virology 2025; 603:110367. [PMID: 39754863 PMCID: PMC11793951 DOI: 10.1016/j.virol.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The sphingolipid network is sustained principally by the balance of bioactive sphingolipid molecules and their regulation by sphingolipid-metabolizing enzymes. The components in the lipid system display key functions in numerous cellular and disease conditions including virus infections. During the COVID-19 pandemic, there was a fruitful effort to use an inhibitor that blocks the activity of sphingosine kinase (SphK) 2 to cure the devastating disease. Support for the inhibitor came from pre-clinical research on influenza where the inhibitor demonstrated effective protection of mice from influenza-induced morbidity and mortality. This highlights the importance of basic and translational research on the sphingolipid system for improving human health. Multiple sphingolipid-metabolizing enzymes have been reported to regulate influenza virus replication and propagation. In this review, the emphasis is placed on the roles of these enzymes that impact influenza virus life cycle and the conceivable mechanisms for the interplay between influenza virus and the sphingolipid pathway.
Collapse
Affiliation(s)
- Savannah McKenna
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Kwang Il Jung
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Jennifer J Wolf
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Keller N, Midgley J, Khalid E, Lesmana H, Mathew G, Mincham C, Teig N, Khan Z, Khosla I, Mehr S, Guran T, Buder K, Xu H, Alhasan K, Buyukyilmaz G, Weaver N, Saba JD. Factors influencing survival in sphingosine phosphate lyase insufficiency syndrome: a retrospective cross-sectional natural history study of 76 patients. Orphanet J Rare Dis 2024; 19:355. [PMID: 39334450 PMCID: PMC11429486 DOI: 10.1186/s13023-024-03311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a recently recognized inborn error of metabolism associated with steroid-resistant nephrotic syndrome as well as adrenal insufficiency and immunological, neurological, and skin manifestations. SPLIS is caused by inactivating mutations in SGPL1, encoding the pyridoxal 5'phosphate-dependent enzyme sphingosine-1-phosphate lyase, which catalyzes the final step of sphingolipid metabolism. Some SPLIS patients have undergone kidney transplantation, and others have been treated with vitamin B6 supplementation. In addition, targeted therapies including gene therapy are in preclinical development. In anticipation of clinical trials, it will be essential to characterize the full spectrum and natural history of SPLIS. We performed a retrospective analysis of 76 patients in whom the diagnosis of SPLIS was established in a proband with at least one suggestive finding and biallelic SGPL1 variants identified by molecular genetic testing. The main objective of the study was to identify factors influencing survival in SPLIS subjects. RESULTS Overall survival at last report was 50%. Major influences on survival included: (1) age and organ involvement at first presentation; (2) receiving a kidney transplant, and (3) SGPL1 genotype. Among 48 SPLIS patients with nephropathy who had not received a kidney transplant, two clinical subgroups were distinguished. Of children diagnosed with SPLIS nephropathy before age one (n = 30), less than 30% were alive 2 years after diagnosis, and 17% were living at last report. Among those diagnosed at or after age one (n = 18), ~ 70% were alive 2 years after diagnosis, and 72% were living at time of last report. SPLIS patients homozygous for the SPL R222Q variant survived longer compared to patients with other genotypes. Kidney transplantation significantly extended survival outcomes. CONCLUSION Our results demonstrate that SPLIS is a phenotypically heterogeneous condition. We find that patients diagnosed with SPLIS nephropathy in the first year of life and patients presenting with prenatal findings represent two high-risk subgroups, whereas patients harboring the R222Q SGPL1 variant fare better than the rest. Time to progression from onset of proteinuria to end stage kidney disease varies from less than one month to five years, and kidney transplantation may be lifesaving.
Collapse
Affiliation(s)
- Nancy Keller
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Julian Midgley
- Department of Nephrology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Ehtesham Khalid
- Ochsner Clinical School, University of Queensland (Australia) and Ochsner Health, New Orleans, LA, USA
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare and Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| | - Christine Mincham
- Department of Nephrology, Perth Children's Hospital, Perth, Australia
| | - Norbert Teig
- Department of Neonatology and Pediatric Intensive Care, Ruhr-Universität Bochum, Bochum, Germany
| | - Zubair Khan
- Department of Pediatrics, NAMO Medical Education and Research Institute, Shri Vinoba Bhave Civil Hospital, Silvassa, Dadra and Nagar Haveli, Daman and Diu, India
| | - Indu Khosla
- Department of Pediatric Pulmonology and Sleep Medicine, NH SRCC Hospital for Children, Mumbai, India
| | - Sam Mehr
- Department of Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Kathrin Buder
- Pediatric Nephrology Department, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Department of General Pediatrics and Hematology/Oncology, University Hospital Tuebingen, University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076, Tuebingen, Germany
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gonul Buyukyilmaz
- Department of Pediatric Endocrinology, Ankara City Hospital, Ankara, Turkey
| | - Nicole Weaver
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie D Saba
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Armirola-Ricaurte C, Zonnekein N, Koutsis G, Amor-Barris S, Pelayo-Negro AL, Atkinson D, Efthymiou S, Turchetti V, Dinopoulos A, Garcia A, Karakaya M, Moris G, Polat AI, Yiş U, Espinos C, Van de Vondel L, De Vriendt E, Karadima G, Wirth B, Hanna M, Houlden H, Berciano J, Jordanova A. Alternative splicing expands the clinical spectrum of NDUFS6-related mitochondrial disorders. Genet Med 2024; 26:101117. [PMID: 38459834 PMCID: PMC11180951 DOI: 10.1016/j.gim.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.
Collapse
Affiliation(s)
- Camila Armirola-Ricaurte
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Noortje Zonnekein
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Silvia Amor-Barris
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ana Lara Pelayo-Negro
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Derek Atkinson
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, Attiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonio Garcia
- Service of Clinical Neurophysiology, University Hospital Marqués de Valdecilla, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - German Moris
- Service of Neurology, University Hospital Central de Asturias, University of Oviedo, Oviedo, Spain
| | - Ayşe Ipek Polat
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Carmen Espinos
- Rare Neurodegenerative Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), CIBER on Rare Diseases (CIBERER), Valencia, Spain
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jose Berciano
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Albena Jordanova
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
5
|
Liu M, You Y, Zhu H, Chen Y, Hu Z, Duan J. N-Acetylcysteine Alleviates Impaired Muscular Function Resulting from Sphingosine Phosphate Lyase Functional Deficiency-Induced Sphingoid Base and Ceramide Accumulation in Caenorhabditis elegans. Nutrients 2024; 16:1623. [PMID: 38892556 PMCID: PMC11174433 DOI: 10.3390/nu16111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) resides at the endpoint of the sphingolipid metabolic pathway, catalyzing the irreversible breakdown of sphingosine-1-phosphate. Depletion of SPL precipitates compromised muscle morphology and function; nevertheless, the precise mechanistic underpinnings remain elusive. Here, we elucidate a model of SPL functional deficiency in Caenorhabditis elegans using spl-1 RNA interference. Within these SPL-deficient nematodes, we observed diminished motility and perturbed muscle fiber organization, correlated with the accumulation of sphingoid bases, their phosphorylated forms, and ceramides (collectively referred to as the "sphingolipid rheostat"). The disturbance in mitochondrial morphology was also notable, as SPL functional loss resulted in heightened levels of reactive oxygen species. Remarkably, the administration of the antioxidant N-acetylcysteine (NAC) ameliorates locomotor impairment and rectifies muscle fiber disarray, underscoring its therapeutic promise for ceramide-accumulation-related muscle disorders. Our findings emphasize the pivotal role of SPL in preserving muscle integrity and advocate for exploring antioxidant interventions, such as NAC supplementation, as prospective therapeutic strategies for addressing muscle function decline associated with sphingolipid/ceramide metabolism disruption.
Collapse
Affiliation(s)
| | | | | | | | - Zhenying Hu
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingjing Duan
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
Wang W, Zhao Y, Zhu G. The role of sphingosine-1-phosphate in the development and progression of Parkinson's disease. Front Cell Neurosci 2023; 17:1288437. [PMID: 38179204 PMCID: PMC10764561 DOI: 10.3389/fncel.2023.1288437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Parkinson's disease (PD) could be viewed as a proteinopathy caused by changes in lipids, whereby modifications in lipid metabolism may lead to protein alterations, such as the accumulation of alpha-synuclein (α-syn), ultimately resulting in neurodegeneration. Although the loss of dopaminergic neurons in the substantia nigra is the major clinical manifestation of PD, the etiology of it is largely unknown. Increasing evidence has highlighted the important role of lipids in the pathophysiology of PD. Sphingosine-1-phosphate (S1P), a signaling lipid, has been suggested to have a potential association with the advancement and worsening of PD. Therefore, better understanding the mechanisms and regulatory proteins is of high interest. Most interestingly, S1P appears to be an important target to offers a new strategy for the diagnosis and treatment of PD. In this review, we first introduce the basic situation of S1P structure, function and regulation, with a special focus on the several pathways. We then briefly describe the regulation of S1P signaling pathway on cells and make a special focused on the cell growth, proliferation and apoptosis, etc. Finally, we discuss the function of S1P as potential therapeutic target to improve the clinical symptoms of PD, and even prevent the progression of the PD. In the context of PD, the functions of S1P modulators have been extensively elucidated. In conclusion, S1P modulators represent a novel and promising therapeutic principle and therapeutic method for PD. However, more research is required before these drugs can be considered as a standard treatment option for PD.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Maharaj AV. Familial Glucocorticoid Deficiency: the changing landscape of an eponymous syndrome. Front Endocrinol (Lausanne) 2023; 14:1268345. [PMID: 38189052 PMCID: PMC10771341 DOI: 10.3389/fendo.2023.1268345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Familial Glucocorticoid Deficiency encompasses a broad spectrum of monogenic recessive disorders that theoretically solely abrogate cortisol biosynthesis. In reality, delineating clear genotype-phenotype correlations in this disorder is made complicated by marked phenotypic heterogeneity even within kindreds harbouring identical variants. Phenotypes range from isolated glucocorticoid insufficiency to cortisol deficiency plus a variety of superimposed features including salt-wasting and hypoaldosteronism, primary hypothyroidism, hypogonadism and growth defects. Furthermore, mutation type, domain topology and perceived enzyme activity do not always predict disease severity. Given the high burden of disease and implications of a positive diagnosis, genetic testing is crucial in the management of patients warranting detailed delineation of genomic variants including viable functional studies.
Collapse
Affiliation(s)
- Avinaash V. Maharaj
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| |
Collapse
|
8
|
Xiao J. Sphingosine 1-Phosphate Lyase in the Developing and Injured Nervous System: a Dichotomy? Mol Neurobiol 2023; 60:6869-6882. [PMID: 37507574 PMCID: PMC10657793 DOI: 10.1007/s12035-023-03524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Sphingosine 1-phosphate lyase (SPL) is the terminal enzyme that controls the degradation of the bioactive lipid sphingosine 1-phosphate (S1P) within an interconnected sphingolipid metabolic network. The unique metabolic position of SPL in maintaining S1P levels implies SPL could be an emerging new therapeutic target. Over the past decade, an evolving effort has been made to unravel the role of SPL in the nervous system; however, to what extent SPL influences the developing and mature nervous system through altering S1P biosynthesis remains opaque. While congenital SPL deletion is associated with deficits in the developing nervous system, the loss of SPL activity in adults appears to be neuroprotective in acquired neurological disorders. The controversial findings concerning SPL's role in the nervous system are further constrained by the current genetic and pharmacological tools. This review attempts to focus on the multi-faceted nature of SPL function in the mammalian nervous systems, implying its dichotomy in the developing and adult central nervous system (CNS). This article also highlights SPL is emerging as a therapeutic molecule that can be selectively targeted to modulate S1P for the treatment of acquired neurodegenerative diseases, raising new questions for future investigation. The development of cell-specific inducible conditional SPL mutants and selective pharmacological tools will allow the precise understanding of SPL's function in the adult CNS, which will aid the development of a new strategy focusing on S1P-based therapies for neuroprotection.
Collapse
Affiliation(s)
- Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, John Street, Hawthorn, VIC, 3022, Australia.
| |
Collapse
|
9
|
Sedillo JC, Badduke C, Schrodi SJ, Scaria V, Onat OE, Alfadhel M, Ober C, Wentworth-Sheilds W, Steiner RD, Saba JD. Prevalence estimate of sphingosine phosphate lyase insufficiency syndrome in worldwide and select populations. GENETICS IN MEDICINE OPEN 2023; 2:100840. [PMID: 39669624 PMCID: PMC11613930 DOI: 10.1016/j.gimo.2023.100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/14/2024]
Abstract
Purpose Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a rare, often fatal, metabolic disorder and monogenic form of steroid-resistant nephrotic syndrome. Other manifestations include primary adrenal insufficiency, ichthyosis, and neurological defects. SPLIS is caused by biallelic pathogenic variants in SGPL1, encoding sphingosine-1-phosphate lyase, a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final step of sphingolipid metabolism. Treatment is primarily supportive, but pyridoxine supplementation may be therapeutic in some cases, and gene therapy is being explored. We sought to determine the prevalence of SPLIS globally and among different populations to facilitate patient finding in anticipation of SPLIS clinical trials. Methods Using publicly available genomic data sets, including Genome Aggregation Database (gnomAD) v.2.1.1 and gnomAD v3.1.2, Iranome, IndiGen, and private genomic data sets from Israeli, Saudi, South Dakota Hutterite, and Turkish populations, we estimated SPLIS prevalence based on cumulative variant allele frequencies for high-confidence pathogenic variants. SPLIS prevalence estimates were adjusted by the level of inbreeding when the inbreeding coefficient was known. A Bayesian point estimate and 95% credible interval for worldwide SPLIS were calculated based on gnomAD v2.1.1 (GRCh37). Results The SPLIS prevalence estimate based on the total number of samples included from gnomAD v.2.1.1 (n = 141,430) was 0.015/100,000 (95% CI: 0.010 to 0.021). Using additional population data sets, we calculated SPLIS prevalence ranging from 0.046/100,000 to 0.078/100,000 in Turkish and Iranian populations, respectively. Conclusion The estimated worldwide number of SPLIS individuals is 11,707. Individuals with East Asian, Finnish, Turkish, and Iranian ancestries have an especially high estimated prevalence.
Collapse
Affiliation(s)
- Joni C. Sedillo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI
| | - Chansonette Badduke
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, Mathura Road, New Delhi
| | - Onur Emre Onat
- Bezmialem Vakif University, Institute of Health Sciences and Biotechnology, Department of Molecular Biology, Istanbul, Turkey
| | - Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL
| | | | - Robert D. Steiner
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Julie D. Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Pournasiri Z, Madani A, Nazarpack F, Sayer JA, Chavoshzadeh Z, Nili F, Tran P, Saba JD, Jamee M. Sphingosine phosphate lyase insufficiency syndrome: a systematic review. World J Pediatr 2023; 19:425-437. [PMID: 36371483 DOI: 10.1007/s12519-022-00615-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) or nephrotic syndrome type-14 is caused by biallelic mutations in SGPL1. Here, we conducted a systematic review to delineate the characteristics of SPLIS patients. METHODS A literature search was performed in PubMed, Web of Science, and Scopus databases, and eligible studies were included. For all patients, demographic, clinical, laboratory, and molecular data were collected and analyzed. RESULTS Fifty-five SPLIS patients (54.9% male, 45.1% female) were identified in 19 articles. Parental consanguinity and positive family history were reported in 70.9% and 52.7% of patients, respectively. Most patients (54.9%) primarily manifested within the first year of life, nearly half of whom survived, while all patients with a prenatal diagnosis of SPLIS (27.5%) died at a median [interquartile (IQR)] age of 2 (1.4-5.3) months (P = 0.003). The most prevalent clinical feature was endocrinopathies, including primary adrenal insufficiency (PAI) (71.2%) and hypothyroidism (32.7%). Kidney disorders (42, 80.8%) were mainly in the form of steroid-resistant nephrotic syndrome (SRNS) and progressed to end-stage kidney disease (ESKD) in 19 (36.5%) patients at a median (IQR) age of 6 (1.4-42.6) months. Among 30 different mutations in SGPL1, the most common was c.665G > A (p.Arg222Gln) in 11 (20%) patients. Twenty-six (49.1%) patients with available outcome were deceased at a median (IQR) age of 5 (1.5-30.5) months, mostly following ESKD (23%) or sepsis/septic shock (23%). CONCLUSION In patients with PAI and/or SRNS, SGPL1 should be added to diagnostic genetic panels, which can provide an earlier diagnosis of SPLIS and prevention of ESKD and other life-threatening complications.
Collapse
Affiliation(s)
- Zahra Pournasiri
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Madani
- Department of Pediatric Nephrology, Children's Medical Center, Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nazarpack
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, NE45PL, Tyne and Wear, UK
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paulina Tran
- Allergy Immunology Division, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15514-15468, Iran.
| |
Collapse
|
11
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Tastemel Ozturk T, Canpolat N, Saygili S, Bayrakci US, Soylemezoglu O, Ozaltin F, Topaloglu R. A rare cause of nephrotic syndrome-sphingosine-1-phosphate lyase (SGPL1) deficiency: 6 cases and a review of the literature. Pediatr Nephrol 2023; 38:711-719. [PMID: 35748945 DOI: 10.1007/s00467-022-05656-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recently, recessive mutations in SGPL1 (sphingosine-1-phosphate lyase), which encodes the final enzyme of sphingolipid metabolism, have been reported to cause steroid-resistant nephrotic syndrome, adrenal insufficiency, and many other organ/system involvements. We aimed to determine the clinical and genetic characteristics, and outcomes in patients with SGPL1 mutations. METHODS The study included 6 patients with bi-allelic SGPL1 mutation. Clinical, genetic, and laboratory characteristics, and outcomes of the patients were evaluated retrospectively. We also reviewed previously reported patients with SGPL1 mutations and compared them to the presented patients. RESULTS The median age at kidney presentation was 5 months. Four patients (67%) were diagnosed before age 1 year. Kidney biopsy showed focal segmental glomerulosclerosis in 2 patients and diffuse mesangial sclerosis in one patient. Steroids were given to 3 patients, but they did not respond. All 6 patients progressed to chronic kidney disease; 5 required kidney replacement therapy (KRT) at a median age of 6 months. Deceased kidney transplantation was performed in one patient. All 6 patients had adrenal insufficiency, of which 5 were diagnosed at age < 6 months. Three patients had hypothyroidism, 2 had ichthyosis, 4 had immunodeficiency, 5 had neurological findings, and 2 had genitourinary system anomalies. Four patients died at a median age of 30.5 months. Two patients are being followed up with KRT. One patient had a novel mutation. CONCLUSIONS Patients with SGPL1 mutations have a poor prognosis, and many types of extrarenal organ/system involvement beyond adrenal insufficiency can be seen. Genetic diagnosis of such patients is important for treatment, genetic counseling, and screening for comorbid conditions. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Tugba Tastemel Ozturk
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| | - Nur Canpolat
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seha Saygili
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Umut Selda Bayrakci
- Department of Pediatric Nephrology, Faculty of Medicine, Ankara City Hospital, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Oguz Soylemezoglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
13
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Ron HA, Scobell R, Strong A, Salazar EG, Ganetzky R. Congenital adrenal calcifications as the first clinical indication of sphingosine lyase insufficiency syndrome: A case report and review of the literature. Am J Med Genet A 2022; 188:3312-3317. [PMID: 35972040 PMCID: PMC9548492 DOI: 10.1002/ajmg.a.62956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/31/2023]
Abstract
Sphingosine Lyase Insufficiency Syndrome (SPLIS) or SGPL1 Deficiency is a newly described entity that is characterized by steroid-resistant nephrotic syndrome, primary adrenal insufficiency, lymphopenia, ichthyosis, and/or endocrine and neurologic abnormalities. The earliest identification of SGPL1 pathogenic variants in association with this syndrome was reported in 2017. Since then, at least 36 patients have been reported with this pediatric syndrome. Here, we report a new patient with SPLIS who had a prenatal finding of adrenal calcifications, congenital nephrotic syndrome, and abnormal newborn screening concerning for Severe Combined Immunodeficiency. We conclude that SPLIS is a clinically recognizable condition with prenatal onset. This case should increase awareness of SPLIS in the differential diagnosis for adrenal calcifications. We present a case on the severe end of the clinical spectrum of SPLIS, and a review of the literature.
Collapse
Affiliation(s)
- Hayley A. Ron
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca Scobell
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy Strong
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth G. Salazar
- Division of Neonatalogy, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca Ganetzky
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Atreya KB, Saba JD. Neurological Consequences of Sphingosine Phosphate Lyase Insufficiency. Front Cell Neurosci 2022; 16:938693. [PMID: 36187293 PMCID: PMC9519528 DOI: 10.3389/fncel.2022.938693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In 2017, an inborn error of metabolism caused by recessive mutations in SGPL1 was discovered. The disease features steroid-resistant nephrotic syndrome, adrenal insufficiency, and neurological defects. The latter can include sensorineural hearing loss, cranial nerve defects, peripheral neuropathy, abnormal brain development, seizures and/or neurodegeneration. SGPL1 encodes the pyridoxal-5’-phosphate (PLP) dependent enzyme sphingosine phosphate lyase (SPL), and the condition is now referred to as SPL insufficiency syndrome (SPLIS). SPL catalyzes the final step in the degradative pathway of sphingolipids in which the bioactive sphingolipid sphingosine-1-phosphate (S1P) is irreversibly degraded to a long chain aldehyde and phosphoethanolamine (PE). SPL guards the only exit point for sphingolipid metabolism, and its inactivation leads to accumulation of various types of sphingolipids which have biophysical roles in plasma membrane rafts and myelin, and signaling roles in cell cycle progression, vesicular trafficking, cell migration, and programmed cell death. In addition, the products of the SPL reaction have biological functions including regulation of autophagic flux, which is important in axonal and neuronal integrity. In this review, the neurological manifestations of SPLIS will be described, and insights regarding the neurological consequences of SPL insufficiency from the study of brain-specific SPL knockout mice and Drosophila SPL mutants will be summarized.
Collapse
Affiliation(s)
- Krishan B. Atreya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Julie D. Saba
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Julie D. Saba
| |
Collapse
|
16
|
Maharaj A, Kwong R, Williams J, Smith C, Storr H, Krone R, Braslavsky D, Clemente M, Ram N, Banerjee I, Çetinkaya S, Buonocore F, Güran T, Achermann JC, Metherell L, Prasad R. A retrospective analysis of endocrine disease in sphingosine-1-phosphate lyase insufficiency: case series and literature review. Endocr Connect 2022; 11:e220250. [PMID: 35904228 PMCID: PMC9346324 DOI: 10.1530/ec-22-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022]
Abstract
Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype-phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype-phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Kwong
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jack Williams
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Christopher Smith
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Helen Storr
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Krone
- Birmingham Children’s Hospital, Birmingham, UK
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas ‘Dr. Cesar Bergadá’ (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños ‘Ricardo Gutiérrez’, Buenos Aires, Argentina
| | - Maria Clemente
- Paediatric Endocrinology, Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nanik Ram
- Department of Endocrinology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Semra Çetinkaya
- Health Sciences University, Dr. Sami Ulus Obstetrics and Gynaecology, Children’s Health and Disease Education and Research Hospital, Ankara, Turkey
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tülay Güran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Louise Metherell
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Rathi Prasad
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
De la Garza-Rodea AS, Moore SA, Zamora-Pineda J, Hoffman EP, Mistry K, Kumar A, Strober JB, Zhao P, Suh JH, Saba JD. Sphingosine Phosphate Lyase Is Upregulated in Duchenne Muscular Dystrophy, and Its Inhibition Early in Life Attenuates Inflammation and Dystrophy in Mdx Mice. Int J Mol Sci 2022; 23:7579. [PMID: 35886926 PMCID: PMC9316262 DOI: 10.3390/ijms23147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.
Collapse
Affiliation(s)
- Anabel S. De la Garza-Rodea
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Steven A. Moore
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Jesus Zamora-Pineda
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Eric P. Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-State University of New York, Binghamton, NY 13902, USA;
| | - Karishma Mistry
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Ashok Kumar
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Jonathan B. Strober
- Department of Neurology, UCSF Benioff Children’s Hospital San Francisco, 550 16th Street, San Francisco, CA 94158, USA;
| | - Piming Zhao
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Jung H. Suh
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| | - Julie D. Saba
- Department of Pediatrics, University of California San Francisco, 550 16th Street, Box 0110, San Francisco, CA 94143, USA; (A.S.D.l.G.-R.); (J.Z.-P.); (K.M.); (A.K.); (P.Z.); (J.H.S.)
| |
Collapse
|
18
|
Yang W, Zhou B, Liu Q, Liu T, Wang H, Zhang P, Lu L, Zhang L, Zhang F, Huang R, Zhou J, Chao T, Gu Y, Lee S, Wang H, Liang Y, He L. A Murine Point Mutation of Sgpl1 Skin Is Enriched With Vγ6 IL17-Producing Cell and Revealed With Hyperpigmentation After Imiquimod Treatment. Front Immunol 2022; 13:728455. [PMID: 35769463 PMCID: PMC9234551 DOI: 10.3389/fimmu.2022.728455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate lyase is encoded by the Sgpl1 gene, degrades S1P, and is crucial for S1P homeostasis in animal models and humans. S1P lyase deficient patients suffer from adrenal insufficiency, severe lymphopenia, and skin disorders. In this study, we used random mutagenesis screening to identify a mouse line carrying a missense mutation of Sgpl1 (M467K). This mutation caused similar pathologies as Sgpl1 knock-out mice in multiple organs, but greatly preserved its lifespan, which M467K mutation mice look normal under SPF conditions for over 40 weeks, in contrast, the knock-out mice live no more than 6 weeks. When treated with Imiquimod, Sgpl1M467K mice experienced exacerbated skin inflammation, as revealed by aggravated acanthosis and orthokeratotic hyperkeratosis. We also demonstrated that the IL17a producing Vγ6+ cell was enriched in Sgpl1M467K skin and caused severe pathology after imiquimod treatment. Interestingly, hyperchromic plaque occurred in the mutant mice one month after Imiquimod treatment but not in the controls, which resembled the skin disorder found in Sgpl1 deficient patients. Therefore, our results demonstrate that Sgpl1M467K point mutation mice successfully modeled a human disease after being treated with Imiquimod. We also revealed a major subset of γδT cells in the skin, IL17 secreting Vγ6 T cells were augmented by Sgpl1 deficiency and led to skin pathology. Therefore, we have, for the first time, linked the IL17a and γδT cells to SPL insufficiency.
Collapse
Affiliation(s)
- Wenyi Yang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qi Liu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Taozhen Liu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Huijie Wang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Pei Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liaoxun Lu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Fanghui Zhang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- CeleScreen SAS, Paris, France
| | - Rong Huang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jitong Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Tianzhu Chao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yanrong Gu
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | | | - Hui Wang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| | - Yinming Liang
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| | - Le He
- Henan Provincial Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang, ; Yinming Liang, ; Le He,
| |
Collapse
|
19
|
Mathew G, Yasmeen MS, Deepthi RV, Swain M, Vattam A, Shah MA, Agarwal I. Infantile nephrotic syndrome, immunodeficiency and adrenal insufficiency-a rare cause: Answers. Pediatr Nephrol 2022; 37:817-819. [PMID: 34999987 DOI: 10.1007/s00467-021-05377-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - M S Yasmeen
- Little Star Children's Hospital, Hyderabad, India
| | - R V Deepthi
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| | - Meenakshi Swain
- Department of Histopathology, Apollo Health City, Hyderabad, India
| | | | - Mehul A Shah
- Little Star Children's Hospital, Hyderabad, India
| | - Indira Agarwal
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India
| |
Collapse
|
20
|
Wolf JJ, Saba JD, Hahm B. Analyzing Opposing Interactions Between Sphingosine 1-Phosphate Lyase and Influenza A Virus. DNA Cell Biol 2022; 41:331-335. [PMID: 35325556 PMCID: PMC9063141 DOI: 10.1089/dna.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sphingosine 1-phosphate lyase (SPL) is a critical component of sphingosine 1-phosphate (S1P) metabolism. SPL has been associated with several crucial cellular functions due to its role in S1P metabolism, but its role in viral infections is poorly understood. Studies show that SPL has an antiviral function against influenza A virus (IAV) by interacting with IKKɛ, promoting the type I interferon (IFN) innate immune response to IAV infection. However, a more recent study has revealed that IAV NS1 protein hampers this by triggering ubiquitination and subsequent degradation of SPL, which reduces the type I IFN innate immune response. In this study, we describe SPL, the type I IFN response, and known interactions between SPL and IAV.
Collapse
Affiliation(s)
- Jennifer J. Wolf
- Department of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Julie D. Saba
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Bumsuk Hahm
- Department of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Address correspondence to: Bumsuk Hahm, PhD, Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
21
|
Follis RM, Tep C, Genaro-Mattos TC, Kim ML, Ryu JC, Morrison VE, Chan JR, Porter N, Carter BD, Yoon SO. Metabolic Control of Sensory Neuron Survival by the p75 Neurotrophin Receptor in Schwann Cells. J Neurosci 2021; 41:8710-8724. [PMID: 34507952 PMCID: PMC8528492 DOI: 10.1523/jneurosci.3243-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.
Collapse
Affiliation(s)
- Rose M Follis
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Chhavy Tep
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Thiago C Genaro-Mattos
- Department of Chemistry, Vanderbilt University School of Arts and Sciences, Nashville, Tennessee 37232
| | - Mi Lyang Kim
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Vivianne E Morrison
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jonah R Chan
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | - Ned Porter
- Department of Chemistry, Vanderbilt University School of Arts and Sciences, Nashville, Tennessee 37232
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Spohner AK, Jakobi K, Trautmann S, Thomas D, Schumacher F, Kleuser B, Lütjohann D, El-Hindi K, Grösch S, Pfeilschifter J, Saba JD, Meyer zu Heringdorf D. Mouse Liver Compensates Loss of Sgpl1 by Secretion of Sphingolipids into Blood and Bile. Int J Mol Sci 2021; 22:10617. [PMID: 34638955 PMCID: PMC8508615 DOI: 10.3390/ijms221910617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5-2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.
Collapse
Affiliation(s)
- Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| | - Katja Jakobi
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Dominique Thomas
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Fabian Schumacher
- Institut für Pharmazie, Pharmakologie und Toxikologie, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany; (F.S.); (B.K.)
| | - Burkhard Kleuser
- Institut für Pharmazie, Pharmakologie und Toxikologie, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany; (F.S.); (B.K.)
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany;
| | - Khadija El-Hindi
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Sabine Grösch
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| | - Julie D. Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, 505 Parnassus Ave, San Francisco, CA 94143, USA;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| |
Collapse
|
23
|
Saba JD, Keller N, Wang JY, Tang F, Slavin A, Shen Y. Genotype/Phenotype Interactions and First Steps Toward Targeted Therapy for Sphingosine Phosphate Lyase Insufficiency Syndrome. Cell Biochem Biophys 2021; 79:547-559. [PMID: 34133011 DOI: 10.1007/s12013-021-01013-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by a deficiency in sphingosine-1-phosphate lyase (SPL), the final enzyme in the sphingolipid degradative pathway. Inactivating mutations of SGPL1-the gene encoding SPL-lead to a deficiency of its downstream products, and buildup of sphingolipid intermediates, including its bioactive substrate, sphingosine-1-phosphate (S1P), the latter causing lymphopenia, a hallmark of the disease. Other manifestations of SPLIS include nephrotic syndrome, neuronal defects, and adrenal insufficiency, but their pathogenesis remains unknown. In this report, we describe the correlation between SGPL1 genotypes, age at diagnosis, and patient outcome. Vitamin B6 serves as a cofactor for SPL. B6 supplementation may aid some SPLIS patients by overcoming poor binding kinetics and promoting proper folding and stability of mutant SPL proteins. However, this approach remains limited to patients with a susceptible allele. Gene therapy represents a potential targeted therapy for SPLIS patients harboring B6-unresponsive missense mutations, truncations, deletions, and splice-site mutations. When Sgpl1 knockout (SPLKO) mice that model SPLIS were treated with adeno-associated virus (AAV)-mediated SGPL1 gene therapy, they showed profound improvement in survival and kidney and neurological function compared to untreated SPLKO mice. Thus, gene therapy appears promising as a universal, potentially curative treatment for SPLIS.
Collapse
Affiliation(s)
- Julie D Saba
- UCSF Department of Pediatrics, San Francisco, CA, USA.
| | - Nancy Keller
- UCSF Department of Pediatrics, San Francisco, CA, USA
| | - Jen-Yeu Wang
- UCSF Department of Pediatrics, San Francisco, CA, USA
| | - Felicia Tang
- UCSF Department of Pediatrics, San Francisco, CA, USA
| | - Avi Slavin
- UCSF Department of Pediatrics, San Francisco, CA, USA
| | - Yizhuo Shen
- UCSF Department of Pediatrics, San Francisco, CA, USA
| |
Collapse
|
24
|
Zhao P, Tassew GB, Lee JY, Oskouian B, Muñoz DP, Hodgin JB, Watson GL, Tang F, Wang JY, Luo J, Yang Y, King S, Krauss RM, Keller N, Saba JD. Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome. JCI Insight 2021; 6:145936. [PMID: 33755599 PMCID: PMC8119223 DOI: 10.1172/jci.insight.145936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9–mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Cure Genetics, Suzhou, China
| | | | - Joanna Y Lee
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Babak Oskouian
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Denise P Muñoz
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gordon L Watson
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Felicia Tang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jen-Yeu Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah King
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Ronald M Krauss
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nancy Keller
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Julie D Saba
- Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
26
|
Hornemann T. Mini review: Lipids in Peripheral Nerve Disorders. Neurosci Lett 2020; 740:135455. [PMID: 33166639 DOI: 10.1016/j.neulet.2020.135455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Neurons are polarized cells whose fundamental functions are to receive, conduct and transmit signals. In bilateral animals, the nervous system is divided into the central (CNS) and peripheral (PNS) nervous system. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Sensory axons can be up to 3 feet in length. Because of its long-reaching and complex structure, the peripheral nervous system (PNS) is exposed and vulnerable to many genetic, metabolic and environmental predispositions. Lipids and lipid intermediates are essential components of nerves. About 50 % of the brain dry weight consist of lipids, which makes it the second highest lipid rich tissue after adipose tissue. However, the role of lipids in neurological disorders in particular of the peripheral nerves is not well understood. This review aims to provide an overview about the role of lipids in the disorders of the PNS.
Collapse
Affiliation(s)
- Th Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland.
| |
Collapse
|
27
|
Martin KW, Weaver N, Alhasan K, Gumus E, Sullivan BR, Zenker M, Hildebrandt F, Saba JD. MRI Spectrum of Brain Involvement in Sphingosine-1-Phosphate Lyase Insufficiency Syndrome. AJNR Am J Neuroradiol 2020; 41:1943-1948. [PMID: 32855188 DOI: 10.3174/ajnr.a6746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
SGPL1 encodes sphingosine-1-phosphate lyase, the final enzyme of sphingolipid metabolism. In 2017, a condition featuring steroid-resistant nephrotic syndrome and/or adrenal insufficiency associated with pathogenic SGPL1 variants was reported. In addition to the main features of the disease, patients often exhibit a range of neurologic deficits. In a handful of cases, brain imaging results were described. However, high-quality imaging results and a systematic analysis of brain MR imaging findings associated with the condition are lacking. In this study, MR images from 4 new patients and additional published case reports were reviewed by a pediatric neuroradiologist. Analysis reveals recurring patterns of features in affected patients, including isolated callosal dysgenesis and prominent involvement of the globus pallidus, thalamus, and dentate nucleus, with progressive atrophy and worsening of brain lesions. MR imaging findings of abnormal deep gray nuclei, microcephaly, or callosal dysgenesis in an infant or young child exhibiting other typical clinical features of sphingosine-1-phosphate lyase insufficiency syndrome should trigger prompt genetic testing for SGPL1 mutations.
Collapse
Affiliation(s)
- K W Martin
- From the Department of Radiology (K.W.M.), UCSF Benioff Children's Hospital Oakland, Oakland, California
| | - N Weaver
- Division of Human Genetics (N.W.), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - K Alhasan
- Department of Pediatrics (K.A.), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - E Gumus
- Department of Medicine (E.G.), Harran University, Sanliurfa, Turkey
| | - B R Sullivan
- Division of Clinical Genetics (B.R.S.), Children's Mercy, Kansas City, Missouri
- Department of Pediatrics (B.R.S.), University of Missouri, Kansas City, Missouri
| | - M Zenker
- Institute of Genetics (M.Z.), Otto von Guericke Universitat, Magdeburg, Germany
| | - F Hildebrandt
- Department of Pediatrics (F.H.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J D Saba
- UCSF Department of Pediatrics (J.D.S.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
28
|
Maharaj A, Williams J, Bradshaw T, Güran T, Braslavsky D, Casas J, Chan LF, Metherell LA, Prasad R. Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. J Steroid Biochem Mol Biol 2020; 202:105730. [PMID: 32682944 PMCID: PMC7482430 DOI: 10.1016/j.jsbmb.2020.105730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023]
Abstract
Deficiency in Sphingosine-1-phosphate lyase (S1P lyase) is associated with a multi-systemic disorder incorporating primary adrenal insufficiency (PAI), steroid resistant nephrotic syndrome and neurological dysfunction. Accumulation of sphingolipid intermediates, as seen with loss of function mutations in SGPL1, has been implicated in mitochondrial dysregulation, including alterations in mitochondrial membrane potentials and initiation of mitochondrial apoptosis. For the first time, we investigate the impact of S1P lyase deficiency on mitochondrial morphology and function using patient-derived human dermal fibroblasts and CRISPR engineered SGPL1-knockout HeLa cells. Reduced cortisol output in response to progesterone stimulation was observed in two patient dermal fibroblast cell lines. Mass spectrometric analysis of patient dermal fibroblasts revealed significantly elevated levels of sphingosine-1-phosphate, sphingosine, ceramide species and sphingomyelin when compared to control. Total mitochondrial volume was reduced in both S1P lyase deficient patient and HeLa cell lines. Mitochondrial dynamics and parameters of oxidative phosphorylation were altered when compared to matched controls, though differentially across the cell lines. Mitochondrial dysfunction may represent a major event in the pathogenesis of this disease, associated with severity of phenotype.
Collapse
Affiliation(s)
- A Maharaj
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - J Williams
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - T Bradshaw
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - T Güran
- Marmara University, School of Medicine, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - D Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergadá" (CEDIE) - CONICET - FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - J Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, IQAC-CSIC, Jordi Girona 18-26, Barcelona, Spain
| | - L F Chan
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - L A Metherell
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - R Prasad
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
29
|
Zhao P, Liu ID, Hodgin JB, Benke PI, Selva J, Torta F, Wenk MR, Endrizzi JA, West O, Ou W, Tang E, Goh DLM, Tay SKH, Yap HK, Loh A, Weaver N, Sullivan B, Larson A, Cooper MA, Alhasan K, Alangari AA, Salim S, Gumus E, Chen K, Zenker M, Hildebrandt F, Saba JD. Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation. J Inherit Metab Dis 2020; 43:1131-1142. [PMID: 32233035 PMCID: PMC8072405 DOI: 10.1002/jimd.12238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Isaac D. Liu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan Hospitals and Health Center, Ann Arbor, Michigan
| | - Peter I. Benke
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeremy Selva
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Torta
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James A. Endrizzi
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Olivia West
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Weixing Ou
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Emily Tang
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Denise Li-Meng Goh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Stacey Kiat-Hong Tay
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hui-Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Alwin Loh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Nicole Weaver
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Bonnie Sullivan
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Clinical Genetics, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Austin Larson
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - Megan A. Cooper
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alangari
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Suha Salim
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Evren Gumus
- Department of Medicine, Harran University, Sanliurfa, Turkey
| | - Karin Chen
- Department of Pediatrics, Division of Allergy and Immunology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | | | - Julie D. Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| |
Collapse
|
30
|
Visigalli D, Capodivento G, Basit A, Fernández R, Hamid Z, Pencová B, Gemelli C, Marubbi D, Pastorino C, Luoma AM, Riekel C, Kirschner DA, Schenone A, Fernández JA, Armirotti A, Nobbio L. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol 2020; 11:903. [PMID: 32982928 PMCID: PMC7477391 DOI: 10.3389/fneur.2020.00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.
Collapse
Affiliation(s)
- Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Abdul Basit
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Zeeshan Hamid
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Barbora Pencová
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Chiara Gemelli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Daniela Marubbi
- DIMES, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Oncologia Cellulare Genoa, Genoa, Italy
| | - Cecilia Pastorino
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Adrienne M Luoma
- Department of Biology, Boston College, Boston, MA, United States
| | | | | | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| |
Collapse
|
31
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
32
|
Maharaj A, Theodorou D, Banerjee I(I, Metherell LA, Prasad R, Wallace D. A Sphingosine-1-Phosphate Lyase Mutation Associated With Congenital Nephrotic Syndrome and Multiple Endocrinopathy. Front Pediatr 2020; 8:151. [PMID: 32322566 PMCID: PMC7156639 DOI: 10.3389/fped.2020.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/18/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Loss of function mutations in SGPL1 are associated with Sphingosine-1-phosphate lyase insufficiency syndrome, comprising steroid resistant nephrotic syndrome, and primary adrenal insufficiency (PAI) in the majority of cases. SGPL1 encodes sphingosine-1-phosphate lyase (SGPL1) which is a major modulator of sphingolipid signaling. Case Presentation: A Pakistani male infant presented at 5 months of age with failure to thrive, nephrotic syndrome, primary adrenal insufficiency, hypothyroidism, and hypogonadism. Other systemic manifestations included persistent lymphopenia, ichthyosis, and motor developmental delay. Aged 9 months, he progressed rapidly into end stage oligo-anuric renal failure and subsequently died. Sanger sequencing of the entire coding region of SGPL1 revealed the novel association of a rare homozygous mutation (chr10:72619152, c.511A>G, p.N171D; MAF-1.701e-05) with the condition. Protein expression of the p.N171D mutant was markedly reduced compared to SGPL1 wild type when overexpressed in an SGPL1 knockout cell line, and associated with a severe clinical phenotype. Conclusions: The case further highlights the emerging phenotype of patients with loss-of-function SGPL1 mutations. Whilst nephrotic syndrome is a recognized feature of other disorders of sphingolipid metabolism, sphingosine-1-phosphate lyase insufficiency syndrome is unique amongst the sphingolipidoses in presenting with multiple endocrinopathies. Given the multi-systemic and progressive nature of this form of PAI/ nephrotic syndrome, a genetic diagnosis is crucial for optimal management and appropriate screening for comorbidities in these patients.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Demetria Theodorou
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Indraneel (Indi) Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Louise A. Metherell
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dean Wallace
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|
33
|
Larrea D, Pera M, Gonnelli A, Quintana-Cabrera R, Akman HO, Guardia-Laguarta C, Velasco KR, Area-Gomez E, Dal Bello F, De Stefani D, Horvath R, Shy ME, Schon EA, Giacomello M. MFN2 mutations in Charcot-Marie-Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Hum Mol Genet 2020; 28:1782-1800. [PMID: 30649465 PMCID: PMC6522073 DOI: 10.1093/hmg/ddz008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT.
Collapse
Affiliation(s)
- Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Kevin R Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
34
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
35
|
Clarke BA, Majumder S, Zhu H, Lee YT, Kono M, Li C, Khanna C, Blain H, Schwartz R, Huso VL, Byrnes C, Tuymetova G, Dunn TM, Allende ML, Proia RL. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife 2019; 8:51067. [PMID: 31880535 PMCID: PMC6934382 DOI: 10.7554/elife.51067] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are membrane and bioactive lipids that are required for many aspects of normal mammalian development and physiology. However, the importance of the regulatory mechanisms that control sphingolipid levels in these processes is not well understood. The mammalian ORMDL proteins (ORMDL1, 2 and 3) mediate feedback inhibition of the de novo synthesis pathway of sphingolipids by inhibiting serine palmitoyl transferase in response to elevated ceramide levels. To understand the function of ORMDL proteins in vivo, we studied mouse knockouts (KOs) of the Ormdl genes. We found that Ormdl1 and Ormdl3 function redundantly to suppress the levels of bioactive sphingolipid metabolites during myelination of the sciatic nerve. Without proper ORMDL-mediated regulation of sphingolipid synthesis, severe dysmyelination results. Our data indicate that the Ormdls function to restrain sphingolipid metabolism in order to limit levels of dangerous metabolic intermediates that can interfere with essential physiological processes such as myelination.
Collapse
Affiliation(s)
- Benjamin A Clarke
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Saurav Majumder
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hongling Zhu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Y Terry Lee
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Cuiling Li
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Caroline Khanna
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hailey Blain
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Ronit Schwartz
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Vienna L Huso
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Colleen Byrnes
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Galina Tuymetova
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Teresa M Dunn
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Maria L Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
36
|
S1P/S1P Receptor Signaling in Neuromuscolar Disorders. Int J Mol Sci 2019; 20:ijms20246364. [PMID: 31861214 PMCID: PMC6941007 DOI: 10.3390/ijms20246364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), and the signaling pathways triggered by its binding to specific G protein-coupled receptors play a critical regulatory role in many pathophysiological processes, including skeletal muscle and nervous system degeneration. The signaling transduced by S1P binding appears to be much more complex than previously thought, with important implications for clinical applications and for personalized medicine. In particular, the understanding of S1P/S1P receptor signaling functions in specific compartmentalized locations of the cell is worthy of being better investigated, because in various circumstances it might be crucial for the development or/and the progression of neuromuscular diseases, such as Charcot-Marie-Tooth disease, myasthenia gravis, and Duchenne muscular dystrophy.
Collapse
|
37
|
Transcriptional dysregulation by a nucleus-localized aminoacyl-tRNA synthetase associated with Charcot-Marie-Tooth neuropathy. Nat Commun 2019; 10:5045. [PMID: 31695036 PMCID: PMC6834567 DOI: 10.1038/s41467-019-12909-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a length-dependent peripheral neuropathy. The aminoacyl-tRNA synthetases constitute the largest protein family implicated in CMT. Aminoacyl-tRNA synthetases are predominantly cytoplasmic, but are also present in the nucleus. Here we show that a nuclear function of tyrosyl-tRNA synthetase (TyrRS) is implicated in a Drosophila model of CMT. CMT-causing mutations in TyrRS induce unique conformational changes, which confer capacity for aberrant interactions with transcriptional regulators in the nucleus, leading to transcription factor E2F1 hyperactivation. Using neuronal tissues, we reveal a broad transcriptional regulation network associated with wild-type TyrRS expression, which is disturbed when a CMT-mutant is expressed. Pharmacological inhibition of TyrRS nuclear entry with embelin reduces, whereas genetic nuclear exclusion of mutant TyrRS prevents hallmark phenotypes of CMT in the Drosophila model. These data highlight that this translation factor may contribute to transcriptional regulation in neurons, and suggest a therapeutic strategy for CMT. Tyrosyl-tRNA synthetase (TyrRS) is a translation factor and predominantly cytoplasmic, but can also be found in the nucleus. Here authors show using a fly model of Charcot-Marie-Tooth (CMT) disease that nuclear localization of mutant TyrRS contributes to the CMT-like phenotype.
Collapse
|
38
|
Pulli I, Löf C, Blom T, Asghar M, Lassila T, Bäck N, Lin KL, Nyström J, Kemppainen K, Toivola D, Dufour E, Sanz A, Cooper H, Parys J, Törnquist K. Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1475-1486. [DOI: 10.1016/j.bbamcr.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
|
39
|
Debeuf N, Zhakupova A, Steiner R, Van Gassen S, Deswarte K, Fayazpour F, Van Moorleghem J, Vergote K, Pavie B, Lemeire K, Hammad H, Hornemann T, Janssens S, Lambrecht BN. The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J Allergy Clin Immunol 2019; 144:1648-1659.e9. [PMID: 31330218 DOI: 10.1016/j.jaci.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Assem Zhakupova
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Spring AM, Raimer AC, Hamilton CD, Schillinger MJ, Matera AG. Comprehensive Modeling of Spinal Muscular Atrophy in Drosophila melanogaster. Front Mol Neurosci 2019; 12:113. [PMID: 31156382 PMCID: PMC6532329 DOI: 10.3389/fnmol.2019.00113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that affects motor neurons, primarily in young children. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN functions in the assembly of spliceosomal RNPs and is well conserved in many model systems including mouse, zebrafish, fruit fly, nematode, and fission yeast. Work in Drosophila has focused on the loss of SMN function during larval stages, primarily using null alleles or strong hypomorphs. A systematic analysis of SMA-related phenotypes in the context of moderate alleles that more closely mimic the genetics of SMA has not been performed in the fly, leading to debate over the validity and translational value of this model. We, therefore, examined 14 Drosophila lines expressing SMA patient-derived missense mutations in Smn, with a focus on neuromuscular phenotypes in the adult stage. Animals were evaluated on the basis of organismal viability and longevity, locomotor function, neuromuscular junction structure, and muscle health. In all cases, we observed phenotypes similar to those of SMA patients, including progressive loss of adult motor function. The severity of these defects is variable and forms a broad spectrum across the 14 lines examined, recapitulating the full range of phenotypic severity observed in human SMA. This includes late-onset models of SMA, which have been difficult to produce in other model systems. The results provide direct evidence that SMA-related locomotor decline can be reproduced in the fly and support the use of patient-derived SMN missense mutations as a comprehensive system for modeling SMA.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Amanda C. Raimer
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Christine D. Hamilton
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | | | - A. Gregory Matera
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Maharaj A, Maudhoo A, Chan LF, Novoselova T, Prasad R, Metherell LA, Guasti L. Isolated glucocorticoid deficiency: Genetic causes and animal models. J Steroid Biochem Mol Biol 2019; 189:73-80. [PMID: 30817990 DOI: 10.1016/j.jsbmb.2019.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/04/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
Hereditary adrenocorticotropin (ACTH) resistance syndromes encompass the genetically heterogeneous isolated or Familial Glucocorticoid Deficiency (FGD) and the distinct clinical entity known as Triple A syndrome. The molecular basis of adrenal resistance to ACTH includes defects in ligand binding, MC2R/MRAP receptor trafficking, cellular redox balance, cholesterol synthesis and sphingolipid metabolism. Biochemically, this manifests as ACTH excess in the setting of hypocortisolaemia. Triple A syndrome is an inherited condition involving a tetrad of adrenal insufficiency, achalasia, alacrima and neuropathy. FGD is an autosomal recessive condition characterized by the presence of isolated glucocorticoid deficiency, classically in the setting of preserved mineralocorticoid secretion. Primarily there are three established subtypes of the disease: FGD 1, FGD2 and FGD3 corresponding to mutations in the Melanocortin 2 receptor MC2R (25%), Melanocortin 2 receptor accessory protein MRAP (20%), and Steroidogenic acute regulatory protein STAR (5-10%) respectively. Together, mutations in these 3 genes account for approximately half of cases. Whole exome sequencing in patients negative for MC2R, MRAP and STAR mutations, identified mutations in minichromosome maintenance 4 MCM4, nicotinamide nucleotide transhydrogenase NNT, thioredoxin reductase 2 TXNRD2, cytochrome p450scc CYP11A1, and sphingosine 1-phosphate lyase SGPL1 accounting for a further 10% of FGD. These novel genes have linked replicative and oxidative stress and altered redox potential as a mechanism of adrenocortical damage. However, a genetic diagnosis is still unclear in about 40% of cases. We describe here an updated list of FGD genes and provide a description of relevant mouse models that, despite some being flawed, have been precious allies in the understanding of FGD pathobiology.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Ashwini Maudhoo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Tatiana Novoselova
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
42
|
Saba JD. Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. J Lipid Res 2019; 60:456-463. [PMID: 30635364 PMCID: PMC6399507 DOI: 10.1194/jlr.s091181] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Sphingosine phosphate lyase (SPL) is the final enzyme in the sphingolipid degradative pathway, catalyzing the irreversible cleavage of long-chain base phosphates (LCBPs) to yield a long-chain aldehyde and ethanolamine phosphate (EP). SPL guards the sole exit point of sphingolipid metabolism. Its inactivation causes product depletion and accumulation of upstream sphingolipid intermediates. The main substrate of the reaction, sphingosine-1-phosphate (S1P), is a bioactive lipid that controls immune-cell trafficking, angiogenesis, cell transformation, and other fundamental processes. The products of the SPL reaction contribute to phospholipid biosynthesis and programmed cell-death activation. The main features of SPL enzyme activity were first described in detail by Stoffel et al. in 1969. The first SPL-encoding gene was cloned from budding yeast in 1997. Reverse and forward genetic strategies led to the rapid identification of other genes in the pathway and their homologs in other species. Genetic manipulation of SPL-encoding genes in model organisms has revealed the contribution of sphingolipid metabolism to development, physiology, and host-pathogen interactions. In 2017, recessive mutations in the human SPL gene SGPL1 were identified as the cause of a novel inborn error of metabolism associated with nephrosis, endocrine defects, immunodeficiency, acanthosis, and neurological problems. We refer to this condition as SPL insufficiency syndrome (SPLIS). Here, we share our perspective on the 50-year history of SPL from discovery to disease, focusing on insights provided by model organisms regarding the pathophysiology of SPLIS and how SPLIS raises the possibility of a hidden role for sphingolipids in other disease conditions.
Collapse
Affiliation(s)
- Julie D Saba
- Children's Hospital Oakland Research Institute, University of California, San Francisco Benioff Children's Hospital Oakland, Oakland, CA 94609
| |
Collapse
|
43
|
Yeast Mpo1 Is a Novel Dioxygenase That Catalyzes the α-Oxidation of a 2-Hydroxy Fatty Acid in an Fe 2+-Dependent Manner. Mol Cell Biol 2019; 39:MCB.00428-18. [PMID: 30530523 DOI: 10.1128/mcb.00428-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/02/2018] [Indexed: 01/05/2023] Open
Abstract
Phytosphingosine (PHS) is the major long-chain base component of sphingolipids in Saccharomyces cerevisiae The PHS metabolic pathway includes a fatty acid (FA) α-oxidation reaction. Recently, we identified the novel protein Mpo1, which is involved in PHS metabolism. However, the details of the FA α-oxidation reaction and the role of Mpo1 in PHS metabolism remained unclear. In the present study, we revealed that Mpo1 is involved in the α-oxidation of 2-hydroxy (2-OH) palmitic acid (C16:0-COOH) in the PHS metabolic pathway. Our in vitro assay revealed that not only the Mpo1-containing membrane fraction but also the soluble fraction was required for the α-oxidation of 2-OH C16:0-COOH. The addition of Fe2+ eliminated the need for the soluble fraction. Purified Mpo1 converted 2-OH C16:0-COOH to C15:0-COOH in the presence of Fe2+, indicating that Mpo1 is the enzyme body responsible for catalyzing the FA α-oxidation reaction. This reaction was also found to require an oxygen molecule. Our findings indicate that Mpo1 catalyzes the FA α-oxidation reaction as 2-OH fatty acid dioxygenase, mediated by iron(IV) peroxide. Although numerous Mpo1 homologs exist in bacteria, fungi, protozoa, and plants, their functions had not yet been clarified. However, our findings suggest that these family members function as dioxygenases.
Collapse
|
44
|
Karsai G, Kraft F, Haag N, Korenke GC, Hänisch B, Othman A, Suriyanarayanan S, Steiner R, Knopp C, Mull M, Bergmann M, Schröder JM, Weis J, Elbracht M, Begemann M, Hornemann T, Kurth I. DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. J Clin Invest 2019; 129:1229-1239. [PMID: 30620338 DOI: 10.1172/jci124159] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive. METHODS A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder. RESULTS By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9-derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1. CONCLUSION We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems. TRIAL REGISTRATION Not applicable. FUNDING Seventh Framework Program of the European Commission, Swiss National Foundation, Rare Disease Initiative Zurich.
Collapse
Affiliation(s)
- Gergely Karsai
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.,Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natja Haag
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - G Christoph Korenke
- Clinic for Neuropediatrics and Congenital Metabolic Diseases, University Clinic for Paediatrics and Adolescent Medicine, Oldenburg, Germany
| | - Benjamin Hänisch
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alaa Othman
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.,Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Saranya Suriyanarayanan
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.,Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Regula Steiner
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.,Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Mull
- Department of Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Bergmann
- Institute for Neuropathology, Hospital Bremen-Mitte, Bremen, Germany
| | - J Michael Schröder
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.,Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
45
|
Choi YJ, Saba JD. Sphingosine phosphate lyase insufficiency syndrome (SPLIS): A novel inborn error of sphingolipid metabolism. Adv Biol Regul 2018; 71:128-140. [PMID: 30274713 DOI: 10.1016/j.jbior.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Sphingosine-1-phosphate lyase (SPL) is an intracellular enzyme that controls the final step in the sphingolipid degradative pathway, the only biochemical pathway for removal of sphingolipids. Specifically, SPL catalyzes the cleavage of sphingosine 1-phosphate (S1P) at the C2-3 carbon bond, resulting in its irreversible degradation to phosphoethanolamine (PE) and hexadecenal. The substrate of the reaction, S1P, is a bioactive sphingolipid metabolite that signals through a family of five G protein-coupled S1P receptors (S1PRs) to mediate biological activities including cell migration, cell survival/death/proliferation and cell extrusion, thereby contributing to development, physiological functions and - when improperly regulated - the pathophysiology of disease. In 2017, several groups including ours reported a novel childhood syndrome that featured a wide range of presentations including fetal hydrops, steroid-resistant nephrotic syndrome (SRNS), primary adrenal insufficiency (PAI), rapid or insidious neurological deterioration, immunodeficiency, acanthosis and endocrine abnormalities. In all cases, the disease was attributed to recessive mutations in the human SPL gene, SGPL1. We now refer to this condition as SPL Insufficiency Syndrome, or SPLIS. Some features of this new sphingolipidosis were predicted by the reported phenotypes of Sgpl1 homozygous null mice that serve as vertebrate SPLIS disease models. However, other SPLIS features reveal previously unrecognized roles for SPL in human physiology. In this review, we briefly summarize the biochemistry, functions and regulation of SPL, the main clinical and biochemical features of SPLIS and what is known about the pathophysiology of this condition from murine and cell models. Lastly, we consider potential therapeutic strategies for the treatment of SPLIS patients.
Collapse
Affiliation(s)
- Youn-Jeong Choi
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Julie D Saba
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| |
Collapse
|
46
|
Ferreira CR, Goorden SMI, Soldatos A, Byers HM, Ghauharali-van der Vlugt JMM, Beers-Stet FS, Groden C, van Karnebeek CD, Gahl WA, Vaz FM, Jiang X, Vernon HJ. Deoxysphingolipid precursors indicate abnormal sphingolipid metabolism in individuals with primary and secondary disturbances of serine availability. Mol Genet Metab 2018; 124:204-209. [PMID: 29789193 PMCID: PMC6057808 DOI: 10.1016/j.ymgme.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Patients with primary serine biosynthetic defects manifest with intellectual disability, microcephaly, ichthyosis, seizures and peripheral neuropathy. The underlying pathogenesis of peripheral neuropathy in these patients has not been elucidated, but could be related to a decrease in the availability of certain classical sphingolipids, or to an increase in atypical sphingolipids. Here, we show that patients with primary serine deficiency have a statistically significant elevation in specific atypical sphingolipids, namely deoxydihydroceramides of 18-22 carbons in acyl length. We also show that patients with aberrant plasma serine and alanine levels secondary to mitochondrial disorders also display peripheral neuropathy along with similar elevations of atypical sphingolipids. We hypothesize that the etiology of peripheral neuropathy in patients with primary mitochondrial disorders is related to this elevation of deoxysphingolipids, in turn caused by increased availability of alanine and decreased availability of serine. These findings could have important therapeutic implications for the management of these patients.
Collapse
Affiliation(s)
- C R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Division of Genetics and Metabolism, Children's National Health System, Washington, DC, USA
| | - S M I Goorden
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - H M Byers
- Division of Medical Genetics, Stanford University, Palo Alto, CA, USA
| | | | - F S Beers-Stet
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - C Groden
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - C D van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - W A Gahl
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - X Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - H J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Bamborschke D, Pergande M, Becker K, Koerber F, Dötsch J, Vierzig A, Weber LT, Cirak S. A novel mutation in sphingosine-1-phosphate lyase causing congenital brain malformation. Brain Dev 2018; 40:480-483. [PMID: 29501407 DOI: 10.1016/j.braindev.2018.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recently recessive mutations in sphingosine-1-phosphate lyase (SGPL1) have been published as a cause of syndromic congenital nephrotic syndrome with adrenal insufficiency. We have identified a case with fetal hydrops and brain malformations due to a mutation in SGPL1. CASE REPORT We report a patient presenting with severe fetal hydrops, congenital nephrotic syndrome and adrenal calcifications. MRI imaging showed generalized cortical atrophy with simplified gyral pattern and hypoplastic temporal lobes as well as cerebellar hypoplasia and hyperintensity in the pons. The boy deceased at 6 weeks of age. Via whole exome sequencing, we identified a novel homozygous frameshift mutation c.1233delC (p.Phe411Leufs∗56) in SGPL1. CONCLUSION In our patient, we describe a novel mutation in sphingosine-1-phosphate lyase (SGPL1) leading to severe brain malformation. Neurodevelopmental phenotypes have been reported earlier, but not described in detail. To this end, we present a review on all published SGPL1-mutations and genotype-phenotype correlations focusing on neurodevelopmental outcomes. We hypothesized on the severe neurological phenotypes, which might be due to disruption of neuronal autophagy. Mutations in SGPL1 shall be considered in the differential diagnosis of fetal hydrops as well as congenital brain malformations and neuropathies.
Collapse
Affiliation(s)
- Daniel Bamborschke
- Center for Molecular Medicine Cologne, Cologne, Germany; Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Matthias Pergande
- Center for Molecular Medicine Cologne, Cologne, Germany; Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Kerstin Becker
- Center for Molecular Medicine Cologne, Cologne, Germany; Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Friederike Koerber
- Department of Pediatric Radiology, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Anne Vierzig
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lutz T Weber
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Center for Molecular Medicine Cologne, Cologne, Germany; Department of Pediatrics, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
48
|
Schwartz NU, Linzer RW, Truman JP, Gurevich M, Hannun YA, Senkal CE, Obeid LM. Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F. FASEB J 2018; 32:1716-1728. [PMID: 29133339 DOI: 10.1096/fj.201701067r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurologic disorder, but its molecular mechanisms remain unclear. One variant of CMT, 2F, is characterized by mutations in heat shock protein 27 (Hsp27). As bioactive sphingolipids have been implicated in neurodegenerative diseases, we sought to determine if their dysregulation is involved in CMT. Here, we show that Hsp27 knockout mice demonstrated decreases in ceramide in peripheral nerve tissue and that the disease-associated Hsp27 S135F mutant demonstrated decreases in mitochondrial ceramide. Given that Hsp27 is a chaperone protein, we examined its role in regulating ceramide synthases (CerSs), an enzyme family responsible for catalyzing generation of the sphingolipid ceramide. We determined that CerSs colocalized with Hsp27, and upon the presence of S135F mutants, CerS1 lost its colocalization with mitochondria suggesting that decreased mitochondrial ceramides result from reduced mitochondrial CerS localization rather than decreased CerS activity. Mitochondria in mutant cells appeared larger with increased interconnectivity. Furthermore, mutant cell lines demonstrated decreased mitochondrial respiratory function and increased autophagic flux. Mitochondrial structural and functional changes were recapitulated by blocking ceramide generation pharmacologically. These results suggest that mutant Hsp27 decreases mitochondrial ceramide levels, producing structural and functional changes in mitochondria leading to neuronal degeneration.-Schwartz, N. U., Linzer, R. W., Truman, J.-P., Gurevich, M., Hannun, Y. A., Senkal, C. E., Obeid, L. M. Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F.
Collapse
Affiliation(s)
- Nicholas U Schwartz
- Department of Neurobiology and Behavior, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Ryan W Linzer
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Jean-Philip Truman
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Mikhail Gurevich
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, New York, USA.,Department of Orthopaedics, Stony Brook University School of Medicine, Stony Brook, New York, USA; and
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Can E Senkal
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, USA.,Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
49
|
S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling. Mediators Inflamm 2017; 2017:7685142. [PMID: 29333002 PMCID: PMC5733215 DOI: 10.1155/2017/7685142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL). SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC). Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes.
Collapse
|
50
|
Prasad R, Hadjidemetriou I, Maharaj A, Meimaridou E, Buonocore F, Saleem M, Hurcombe J, Bierzynska A, Barbagelata E, Bergadá I, Cassinelli H, Das U, Krone R, Hacihamdioglu B, Sari E, Yesilkaya E, Storr HL, Clemente M, Fernandez-Cancio M, Camats N, Ram N, Achermann JC, Van Veldhoven PP, Guasti L, Braslavsky D, Guran T, Metherell LA. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest 2017; 127:942-953. [PMID: 28165343 PMCID: PMC5330744 DOI: 10.1172/jci90171] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.
Collapse
Affiliation(s)
- Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Eirini Meimaridou
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Moin Saleem
- Children’s and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Jenny Hurcombe
- Children’s and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Agnieszka Bierzynska
- Children’s and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Eliana Barbagelata
- Servicio de Nefrología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. Cesar Bergadá” (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Hamilton Cassinelli
- Centro de Investigaciones Endocrinológicas “Dr. Cesar Bergadá” (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Urmi Das
- Alderhey Children’s Hospital NHS Foundation Trust, Eaton Road, Liverpool, United Kingdom
| | - GOSgene
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- The center is detailed in the Supplemental Acknowledgments
| | - Ruth Krone
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | - Bulent Hacihamdioglu
- Health Sciences University, Suleymaniye Maternity and Children’s Training and Research Hospital, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - Erkan Sari
- Gulhane Military Medical School Department of Paediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Ediz Yesilkaya
- Gulhane Military Medical School Department of Paediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Maria Clemente
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Monica Fernandez-Cancio
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nuria Camats
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nanik Ram
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - John C. Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paul P. Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions (LIPIT), Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. Cesar Bergadá” (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños “Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Tulay Guran
- Marmara University, Department of Paediatric Endocrinology and Diabetes, Istanbul, Turkey
| | - Louise A. Metherell
- Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|