1
|
Shi Z, Das S, Morabito S, Miyoshi E, Stocksdale J, Emerson N, Srinivasan SS, Shahin A, Rahimzadeh N, Cao Z, Silva J, Castaneda AA, Head E, Thompson L, Swarup V. Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611761. [PMID: 39282421 PMCID: PMC11398495 DOI: 10.1101/2024.09.06.611761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The study of neurodegenerative diseases, particularly tauopathies like Pick's disease (PiD) and Alzheimer's disease (AD), offers insights into the underlying regulatory mechanisms. By investigating epigenomic variations in these conditions, we identified critical regulatory changes driving disease progression, revealing potential therapeutic targets. Our comparative analyses uncovered disease-enriched non-coding regions and genome-wide transcription factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an interactive database (http://swaruplab.bio.uci.edu/scROAD) to visualize predicted single-cell TF occupancy and regulatory networks.
Collapse
Affiliation(s)
- Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Samuel Morabito
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Arshi Shahin
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Negin Rahimzadeh
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andres Alonso Castaneda
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Leslie Thompson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Chen Y, Zeng X, Diaz JL, Sehrawat A, Lafferty TK, Boslett JJ, Klunk WE, Pascoal TA, Villemagne VL, Cohen AD, Lopez O, Yates NA, Karikari TK. Effect of blood collection tube containing protease inhibitors on the pre-analytical stability of Alzheimer's disease plasma biomarkers. J Neurochem 2024; 168:2736-2750. [PMID: 38814273 PMCID: PMC11449657 DOI: 10.1111/jnc.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aβ42 and Aβ40 across all approaches. However, the Aβ42/Aβ40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aβ42 and Aβ40, and the Aβ42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jihui L. Diaz
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tara K. Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - James J. Boslett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Annie D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nathan A. Yates
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Otero-Losada M, Marseglia A, Blanco Calvo E, Capani F. Editorial: Neurological comorbidity in metabolic syndrome. Front Neurosci 2023; 17:1263570. [PMID: 37655009 PMCID: PMC10466043 DOI: 10.3389/fnins.2023.1263570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
| | - Anna Marseglia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo Blanco Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS.UAI-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
4
|
He S, Qiu S, Pan M, Palavicini JP, Wang H, Li X, Bhattacharjee A, Barannikov S, Bieniek KF, Dupree JL, Han X. Central nervous system sulfatide deficiency as a causal factor for bladder disorder in Alzheimer's disease. Clin Transl Med 2023; 13:e1332. [PMID: 37478300 PMCID: PMC10361545 DOI: 10.1002/ctm2.1332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Despite being a brain disorder, Alzheimer's disease (AD) is often accompanied by peripheral organ dysregulations (e.g., loss of bladder control in late-stage AD), which highly rely on spinal cord coordination. However, the causal factor(s) for peripheral organ dysregulation in AD remain elusive. METHODS The central nervous system (CNS) is enriched in lipids. We applied quantitative shotgun lipidomics to determine lipid profiles of human AD spinal cord tissues. Additionally, a CNS sulfatide (ST)-deficient mouse model was used to study the lipidome, transcriptome and peripheral organ phenotypes of ST loss. RESULTS We observed marked myelin lipid reduction in the spinal cord of AD subjects versus cognitively normal individuals. Among which, levels of ST, a myelin-enriched lipid class, were strongly and negatively associated with the severity of AD. A CNS myelin-specific ST-deficient mouse model was used to further identify the causes and consequences of spinal cord lipidome changes. Interestingly, ST deficiency led to spinal cord lipidome and transcriptome profiles highly resembling those observed in AD, characterized by decline of multiple myelin-enriched lipid classes and enhanced inflammatory responses, respectively. These changes significantly disrupted spinal cord function and led to substantial enlargement of urinary bladder in ST-deficient mice. CONCLUSIONS Our study identified CNS ST deficiency as a causal factor for AD-like lipid dysregulation, inflammation response and ultimately the development of bladder disorders. Targeting to maintain ST levels may serve as a promising strategy for the prevention and treatment of AD-related peripheral disorders.
Collapse
Affiliation(s)
- Sijia He
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Shulan Qiu
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Juan P. Palavicini
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Hu Wang
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Xin Li
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Savannah Barannikov
- Department of PathologyGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Department of PathologyGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Research DivisionMcGuire Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Division of DiabetesDepartment of MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
5
|
Öz Gergin Ö, Gergin İŞ, Pehlivan SS, Cengiz Mat O, Turan IT, Bayram A, Gönen ZB, Korkmaz Ş, Bıcer C, Yildiz K, Yay AH. The neuroprotective effect of mesenchymal stem cells in colistin-induced neurotoxicity. Toxicol Mech Methods 2023; 33:95-103. [PMID: 35702031 DOI: 10.1080/15376516.2022.2090303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colistin is an effective antibiotic against multidrug-resistant gram-negative bacterial infections; however, neurotoxic effects are fundamental dose-limiting factors for this treatment. Stem cell therapy is a promising method for treating neuronal diseases. Multipotent mesenchymal stromal cells (MSC) represent a promising source for regenerative medicine. Identification of neuroprotective agents that can be co-administered with colistin has the potential to allow the clinical application of this essential drug. This study was conducted to assess the potential protective effects of MSC, against colistin-induced neurotoxicity, and the possible mechanisms underlying any effect. Forty adult female albino rats were randomly classified into four equal groups; the control group, the MSC-treated group (A single dose of 1 × 106/mL MSCs through the tail vein), the colistin-treated group (36 mg/kg/d colistin was given for 7 d) and the colistin and MSC treated group (36 mg/kg/d colistin was administered for 7 d, and 1 × 106/mL MSCs). Colistin administration significantly increased GFAP, NGF, Beclin-1, IL-6, and TNF-α immunreactivity intensity. MSC administration in colistin-treated rats partially restored each of these markers. Histopathological changes in brain tissues were also alleviated by MSC co-treatment. Our study reveals a critical role of inflammation, autophagy, and apoptosis in colistin-induced neurotoxicity and showed that they were markedly ameliorated by MSC co-administration. Therefore, MSC could represent a promising agent for prevention of colistin-induced neurotoxicity.
Collapse
Affiliation(s)
- Özlem Öz Gergin
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Sibel Seckin Pehlivan
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Işıl Tuğçe Turan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Şeyda Korkmaz
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Cihangir Bıcer
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Karamehmet Yildiz
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Arzu Hanım Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Shi D, Wong JKY, Zhu K, Noakes PG, Rammes G. The Anaesthetics Isoflurane and Xenon Reverse the Synaptotoxic Effects of Aβ 1-42 on Megf10-Dependent Astrocytic Synapse Elimination and Spine Density in Ex Vivo Hippocampal Brain Slices. Int J Mol Sci 2023; 24:ijms24020912. [PMID: 36674434 PMCID: PMC9861496 DOI: 10.3390/ijms24020912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
It has been hypothesised that inhalational anaesthetics such as isoflurane (Iso) may trigger the pathogenesis of Alzheimer's disease (AD), while the gaseous anaesthetic xenon (Xe) exhibits many features of a putative neuroprotective agent. Loss of synapses is regarded as one key cause of dementia in AD. Multiple EGF-like domains 10 (MEGF10) is one of the phagocytic receptors which assists the elimination of synapses by astrocytes. Here, we investigated how β-amyloid peptide 1-42 (Aβ1-42), Iso and Xe interact with MEGF10-dependent synapse elimination. Murine cultured astrocytes as well as cortical and hippocampal ex vivo brain slices were treated with either Aβ1-42, Iso or Xe and the combination of Aβ1-42 with either Iso or Xe. We quantified MEGF10 expression in astrocytes and dendritic spine density (DSD) in slices. In brain slices of wild type and AAV-induced MEGF10 knock-down mice, antibodies against astrocytes (GFAP), pre- (synaptophysin) and postsynaptic (PSD95) components were used for co-localization analyses by means of immunofluorescence-imaging and 3D rendering techniques. Aβ1-42 elevated pre- and postsynaptic components inside astrocytes and decreased DSD. The combined application with either Iso or Xe reversed these effects. In the presence of Aβ1-42 both anaesthetics decreased MEGF10 expression. AAV-induced knock-down of MEGF10 reduced the pre- and postsynaptic marker inside astrocytes. The presented data suggest Iso and Xe are able to reverse the Aβ1-42-induced enhancement of synaptic elimination in ex vivo hippocampal brain slices, presumably through MEGF10 downregulation.
Collapse
Affiliation(s)
- Dai Shi
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, Ismaningerstraße 22, 81675 Munich, Germany
| | - Jaime K. Y. Wong
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 23, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Feodor-Lynen-Straße 23, 81377 Munich, Germany
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, Ismaningerstraße 22, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
7
|
Kater MSJ, Huffels CFM, Oshima T, Renckens NS, Middeldorp J, Boddeke EWGM, Smit AB, Eggen BJL, Hol EM, Verheijen MHG. Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease. Brain Behav Immun 2023; 107:225-241. [PMID: 36270437 DOI: 10.1016/j.bbi.2022.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.
Collapse
Affiliation(s)
- Mandy S J Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Takuya Oshima
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek S Renckens
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Saloner R, Fonseca C, Paolillo EW, Asken BM, Djukic NA, Lee S, Nilsson J, Brinkmalm A, Blennow K, Zetterberg H, Kramer JH, Casaletto KB. Combined Effects of Synaptic and Axonal Integrity on Longitudinal Gray Matter Atrophy in Cognitively Unimpaired Adults. Neurology 2022; 99:e2285-e2293. [PMID: 36041868 PMCID: PMC9694840 DOI: 10.1212/wnl.0000000000201165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Synaptic dysfunction and degeneration is a predominant feature of brain aging, and synaptic preservation buffers against Alzheimer disease (AD) protein-related brain atrophy. We tested whether CSF synaptic protein concentrations similarly moderate the effects of axonal injury, indexed by CSF neurofilament light [NfL]), on brain atrophy in clinically normal adults. METHODS Clinically normal older adults enrolled in the observational Hillblom Aging Network study at the UCSF Memory and Aging Center completed baseline lumbar puncture and longitudinal brain MRI (mean scan [follow-up] = 2.6 [3.7 years]). CSF was assayed for synaptic proteins (synaptotagmin-1, synaptosomal-associated protein 25 [SNAP-25], neurogranin, growth-associated protein 43 [GAP-43]), axonal injury (NfL), and core AD biomarkers (ptau181/Aβ42 ratio; reflecting AD proteinopathy). Ten bilateral temporoparietal gray matter region of interest (ROIs) shown to be sensitive to clinical AD were summed to generate a composite temporoparietal ROI. Linear mixed-effects models tested statistical moderation of baseline synaptic proteins on baseline NfL-related temporoparietal trajectories, controlling for ptau181/Aβ42 ratios. RESULTS Forty-six clinically normal older adults (mean age = 70 years; 43% female) were included. Synaptic proteins exhibited small to medium correlations with NfL (r range: 0.10-0.36). Higher baseline NfL, but not ptau181/Aβ42 ratios, predicted steeper temporoparietal atrophy (NfL × time: β = -0.08, p < 0.001; ptau181/Aβ42 × time: β = -0.02, p = 0.31). SNAP-25, neurogranin, and GAP-43 significantly moderated NfL-related atrophy trajectories (-0.07 ≤ β's ≥ -0.06, p's < 0.05) such that NfL was associated with temporoparietal atrophy at high (more abnormal) but not low (more normal) synaptic protein concentrations. At high NfL concentrations, atrophy trajectories were 1.5-4.5 times weaker when synaptic protein concentrations were low (β range: -0.21 to -0.07) than high (β range: -0.33 to -0.30). DISCUSSION The association between baseline CSF NfL and longitudinal temporoparietal atrophy is accelerated by synaptic dysfunction and buffered by synaptic integrity. Beyond AD proteins, concurrent examination of in vivo axonal and synaptic biomarkers may improve detection of neural alterations that precede overt structural changes in AD-sensitive brain regions.
Collapse
Affiliation(s)
- Rowan Saloner
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China.
| | - Corrina Fonseca
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Emily W Paolillo
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Breton M Asken
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Nina A Djukic
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Shannon Lee
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Johanna Nilsson
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Ann Brinkmalm
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Kaj Blennow
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Henrik Zetterberg
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Joel H Kramer
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| | - Kaitlin B Casaletto
- From the Department of Neurology (R.S., E.W.P., B.M.A., N.A.D., S.L., J.H.K., K.B.C.), Memory and Aging CenterWeill Institute for Neurosciences, University of California, San Francisco; Helen Wills Neuroscience Institute (C.F.), University of California, Berkeley; Department of Psychiatry and Neurochemistry (J.N., A.B., K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory (A.B., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL (H.Z.), London; and Hong Kong Center for Neurodegenerative Diseases (H.Z.), China
| |
Collapse
|
9
|
Liu J, Lin Y, Yang Y, Guo Y, Shang Y, Zhou B, Liu T, Fan J, Wei C. Z-Guggulsterone attenuates cognitive defects and decreases neuroinflammation in APPswe/PS1dE9 mice through inhibiting the TLR4 signaling pathway. Biochem Pharmacol 2022; 202:115149. [PMID: 35714682 DOI: 10.1016/j.bcp.2022.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Growing evidence indicates that inflammatory damage is implicated in the pathogenesis of Alzheimer's disease (AD). Z-Guggulsterone (Z-GS) is a natural steroid, which is extracted from Commiphora mukul and has anti-inflammatory effects in vivo and in vitro. In the present study, we investigated the disease-modifying effects of chronic Z-GS administration on the cognitive and neuropathological impairments in the transgenic mouse models of AD. We found that chronic Z-GS administration prevented learning and memory deficits in the APPswe/PS1dE9 mice. In addition, Z-GS treatment significantly decreased cerebral amyloid-β (Aβ) levels and plaque burden via inhibiting amyloid precursor protein (APP) processing by reducing beta-site APP cleaving enzyme 1 (BACE1) expression in the APPswe/PS1dE9 mice. We also found that Z-GS treatment markedly alleviated neuroinflammation and reduced synaptic defects in the APPswe/PS1dE9 mice. Furthermore, the activated TLR4/NF-κB signaling pathways in APPswe/PS1dE9 mice were remarkably inhibited by Z-GS treatment, which was achieved via suppressing the phosphorylation of JNK. Collectively, our data demonstrate that chronic Z-GS treatment restores cognitive defects and reverses multiple neuropathological impairments in the APPswe/PS1dE9 mice. This study provides novel insights into the neuroprotective effects and neurobiological mechanisms of Z-GS on AD, indicating that Z-GS is a promising disease-modifying agent for the treatment of AD.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Geriatrics, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Ye Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Yang
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yane Guo
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanchang Shang
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianlong Liu
- Department of Clinical Pharmacy, the 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730050, China
| | - Jiao Fan
- Institute of Geriatrics, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| | - Chao Wei
- Department of Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This article presents a practical approach to the evaluation of patients with rapidly progressive dementia. RECENT FINDINGS The approach presented in this article builds upon the standard dementia evaluation, leveraging widely available tests and emergent specific markers of disease to narrow the differential diagnosis and determine the cause(s) of rapid progressive decline. The discovery of treatment-responsive causes of rapidly progressive dementia underscores the need to determine the cause early in the symptomatic course when treatments are most likely to halt or reverse cognitive decline. SUMMARY A pragmatic and organized approach to patients with rapidly progressive dementia is essential to mitigate diagnostic and therapeutic challenges and optimize patient outcomes.
Collapse
|
11
|
S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiol Dis 2022; 163:105603. [DOI: 10.1016/j.nbd.2021.105603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
|
12
|
Roveta F, Cermelli A, Boschi S, Ferrandes F, Grassini A, Marcinnò A, Spina M, Rubino E, Borsello T, Vercelli A, Rainero I. Synaptic Proteins as Fluid Biomarkers in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 90:1381-1393. [PMID: 36278349 DOI: 10.3233/jad-220515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Synaptic disruption precedes neuronal death and correlates with clinical features of Alzheimer's disease (AD). The identification of fluid biomarkers of synaptic damage is emerging as a goal for early and accurate diagnosis of the disease. OBJECTIVE To perform a systematic review and meta-analysis to determine whether fluid biomarkers of synaptic damage are impaired in AD. METHODS PubMed, Scopus, EMBASE, and Web of Science were searched for articles reporting synaptic proteins as fluid biomarkers in AD and cognitively unimpaired (CU) individuals. Pooled effect sizes were determined using the Hedge G method with random effects. Questions adapted from the Quality Assessment of Diagnostic Accuracy Studies were applied for quality assessment. A protocol for this study has been previously registered in PROSPERO (registration number: CRD42021277487). RESULTS The search strategy identified 204 articles that were assessed for eligibility. A total of 23 studies were included in the systematic review and 15 were included in the meta-analysis. For Neurogranin, 827 AD and 1,237 CU subjects were included in the meta-analysis, showing a significant increase in cerebrospinal fluid of patients with AD compared to CU individuals, with an effect size of 1.01 (p < 0.001). A significant increase in SNAP-25 and GAP-43 levels in CSF of patients with AD was observed. CONCLUSION Neurogranin, SNAP-25, and GAP-43 are possible biomarkers of synaptic damage in AD, and other potential synaptic biomarkers are emerging. This meta-analysis also revealed that there are still relatively few studies investigating these biomarkers in patients with AD or other dementias and showed wide heterogeneity in literature.
Collapse
Affiliation(s)
- Fausto Roveta
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Aurora Cermelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Fabio Ferrandes
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alberto Grassini
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Andrea Marcinnò
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Margherita Spina
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Elisa Rubino
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences University of Milano, Milan, Italy
- Mario Negri Institute for Pharmacological Research, University of Milano, Milan, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Innocenzo Rainero
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Hao Y, Liu X, Zhu R. Neurodegeneration and Glial Activation Related CSF Biomarker as the Diagnosis of Alzheimer's Disease: A Systematic Review and an Updated Meta-analysis. Curr Alzheimer Res 2021; 19:32-46. [PMID: 34879804 DOI: 10.2174/1567205018666211208142702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Recently, neuron specific enolase (NSE), Visinin-like protein-1 (VLP-1), neurogranin (Ng), and YKL-40 have been identified as candidates for neuronal degeneration and glial activation biomarkers. Therefore, we perform a comprehensive meta-analysis to assess the diagnostic value of CSF NSE, VLP-1, Ng and YKL-40 in Alzheimer's disease (AD). METHODS We searched Pubmed, MEDLINE, EMBASE databases for research about the levels of CSF NSE, VLP-1, Ng and YKL-40 in AD patients compared with controls or other dementia diseases until Dec 2020. RESULTS The present meta-analysis contained a total of 51 studies comprising 6248 patients with dementia disorders and 3861 controls. Among them, there were 3262 patients with AD, 2456 patients with mild cognitive impairment (MCI), 173 patients with vascular dementia (VaD), 221 patients with frontotemporal dementia (FTD), and 136 with Lewy bodies dementia (DLB). Our study demonstrated that CSF NSE, VLP-1, Ng and YKL-40 levels were increased in AD as compared to healthy controls. We also observed that the CSF NSE level was higher in AD than VaD, suggesting CSF NSE might act as a key role in distinguishing between AD and VaD. Interestingly, there was a higher VLP-1 expression in AD, and a lower expression in DLB patients. Moreover, we found the CSF Ng level was increased in AD than MCI, implying CSF Ng might be a biomarker for identifying the progression of AD. Additionally, a significantly higher CSF YKL-40 level was detected not only in AD, but also in FTD, DLB, VaD, signifying YKL-40 was not sensitive in the diagnosis of AD. CONCLUSION Our study confirmed that CSF levels of NSE, VLP-1, and Ng could be valuable biomarkers for identifying patients who are more susceptible to AD and distinguishing AD from other neurodegenerative dementia disorders.
Collapse
Affiliation(s)
- Yuehan Hao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001. China
| | - Xu Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001. China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001. China
| |
Collapse
|
14
|
Zhang K, Wang Z, Zhu K, Dong S, Pan X, Sun L, Li Q. Neurofilament Light Chain Protein Is a Predictive Biomarker for Stroke After Surgical Repair for Acute Type A Aortic Dissection. Front Cardiovasc Med 2021; 8:754801. [PMID: 34859071 PMCID: PMC8631920 DOI: 10.3389/fcvm.2021.754801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Although great progress has been made in surgery and perioperative care, stroke is still a fatal complication of acute type A aortic dissection (ATAAD). Serum biomarkers may help assess brain damage and predict patient's prognosis. Methods: From March, 2019 to January, 2020, a total of 88 patients underwent surgical treatment at the Department of Cardiovascular Surgery of Beijing Anzhen Hospital, China, and were enrolled in this study. Patients were divided into two groups according to whether they had suffered a stroke after the operation. Blood samples were collected at 8 time points within 3 days after surgery to determine the level of S100β, neuron-specific enolase (NSE) and neurofilament light chain protein (NFL). Receiver operating characteristic curves (ROC) were established to explore the biomarker predictive value in stroke. The area under the curve (AUC) was used to quantify the ROC curve. Results: The patient average age was 48.1 ± 11.0 years old and 70 (79.6%) patients were male. Fifteen (17.0%) patients suffered stroke after surgery. The NFL levels of patients in the stroke group at 12 and 24 h after surgery were significantly higher than those in the non-stroke group (all P < 0.001). However, the NSE and S100β levels did not differ significantly at any time point between the two groups. The predictive value of NFL was the highest at 12 and 24 h after surgery, and the AUC was 0.834 (95% CI, 0.723-0.951, P < 0.001) and 0.748 (95% CI, 0.603-0.894, P = 0.004), respectively. Its sensitivity and specificity at 12 h were 86.7 and 71.6%, respectively. The NFL cutoff value for the diagnosis of stroke at 12 h after surgery was 16.042 ng/ml. Conclusions: This study suggests that NFL is an early and sensitive serum marker for predicting post-operative neurological prognosis of ATAAD patients. Further studies, including large-scale prospective clinical trials, are necessary to test whether the NFL can be used as a biomarker for clinical decision-making.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China.,Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhu Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Kai Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Songbo Dong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xudong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lizhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qing Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Dulewicz M, Kulczyńska-Przybik A, Słowik A, Borawska R, Mroczko B. Neurogranin and Neuronal Pentraxin Receptor as Synaptic Dysfunction Biomarkers in Alzheimer's Disease. J Clin Med 2021; 10:jcm10194575. [PMID: 34640593 PMCID: PMC8509697 DOI: 10.3390/jcm10194575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated with cognitive decline in Alzheimer’s disease (AD). It seems that by assessing proteins related to synapses, one may reflect their dysfunction and improve the understanding of neurobiological processes in the early stage of the disease. To our best knowledge, this is the first study that analyzes the CSF concentrations of two synaptic proteins together, such as neurogranin (Ng) and neuronal pentraxins receptor (NPTXR) in relation to neurochemical dementia biomarkers in Alzheimer’s disease. Methods: Ng, NPTXR and classical AD biomarkers concentrations were measured in the CSF of patients with AD and non-demented controls (CTRL) using an enzyme-linked immunosorbent assay (ELISA) and Luminex xMAP technology. Results: The CSF level of Ng was significantly higher, whereas the NPTXR was significantly lower in the AD patients than in cognitively healthy controls. As a first, we calculated the NPTXR/Ng ratio as an indicator of synaptic disturbance. The patients with AD presented a significantly decreased NPTXR/Ng ratio. The correlation was observed between both proteins in the AD and the whole study group. Furthermore, the relationship between the Ng level and pTau181 was found in the AD group of patients. Conclusions: The Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers reflecting pathological changes in AD.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Krakow, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
16
|
Marefati N, Beheshti F, Vafaee F, Barabadi M, Hosseini M. The Effects of Incensole Acetate on Neuro-inflammation, Brain-Derived Neurotrophic Factor and Memory Impairment Induced by Lipopolysaccharide in Rats. Neurochem Res 2021; 46:2473-2484. [PMID: 34173963 DOI: 10.1007/s11064-021-03381-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Incensole acetate (IA) is a major component of Boswellia serrata resin that has been shown to have anti-inflammatory, anti-oxidant and neuroprotective properties. The present study determined the effect of IA on lipopolysaccharide (LPS)-induced memory impairment, and hippocampal cytokines and oxidative stress indicators level. We used 32 Wistar rats (220-250 g weight) randomly divided into four groups. The control group, which only received the saline-diluted DMSO (vehicle); LPS group which received LPS and was treated with the vehicle; and two IA-treated groups which received 2.5 or 5 mg/ kg IA before LPS injection. Morris water maze (MWM) and passive avoidance (PA) tests were performed. Finally, the brains were removed and were used to assess cytokines levels and oxidative stress status. Compared to the LPS group, IA administration reduced the time spent and path traveled to reach the hidden platform during 5 days of learning in MWM while increased the time spent in the target quadrant in the probe test. Moreover, IA increased latency while decreased entry number and time spent in the dark chamber of PA test compared to the LPS group. Additionally, pre-treatment with IA attenuated interleukin(IL)-6, tumor necrosis alpha (TNF-α), glial fibrillary acidic protein (GFAP), malondialdehyde (MDA) and nitric oxide (NO) metabolites levels while increased those of IL-10, total thiol, superoxide dismutase (SOD), catalase (CAT) and brain-derived neurotrophic factor (BDNF). Our results indicated that IA improved LPS-induced learning and memory impairments. The observed effects seem to be mediated via a protective activity against neuro-inflammation and brain tissue oxidative damage and through improving BDNF.
Collapse
Affiliation(s)
- Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moslem Barabadi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Teo S, Salinas PC. Wnt-Frizzled Signaling Regulates Activity-Mediated Synapse Formation. Front Mol Neurosci 2021; 14:683035. [PMID: 34194299 PMCID: PMC8236581 DOI: 10.3389/fnmol.2021.683035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022] Open
Abstract
The formation of synapses is a tightly regulated process that requires the coordinated assembly of the presynaptic and postsynaptic sides. Defects in synaptogenesis during development or in the adult can lead to neurodevelopmental disorders, neurological disorders, and neurodegenerative diseases. In order to develop therapeutic approaches for these neurological conditions, we must first understand the molecular mechanisms that regulate synapse formation. The Wnt family of secreted glycoproteins are key regulators of synapse formation in different model systems from invertebrates to mammals. In this review, we will discuss the role of Wnt signaling in the formation of excitatory synapses in the mammalian brain by focusing on Wnt7a and Wnt5a, two Wnt ligands that play an in vivo role in this process. We will also discuss how changes in neuronal activity modulate the expression and/or release of Wnts, resulting in changes in the localization of surface levels of Frizzled, key Wnt receptors, at the synapse. Thus, changes in neuronal activity influence the magnitude of Wnt signaling, which in turn contributes to activity-mediated synapse formation.
Collapse
Affiliation(s)
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Zhang X, Fu Q. [Correlation of cerebrospinal fluid amyloid β-protein 42 and neurofilament light protein levels with postoperative neurocognitive dysfunction in elderly patients]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:574-578. [PMID: 33963718 DOI: 10.12122/j.issn.1673-4254.2021.04.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect cerebrospinal fluid levels of amyloid beta- protein 42 (Aβ42) and neurofilament light protein (NFL) and explore their correlation with postoperative neurocognitive dysfunction (PNCD) in elderly patients. OBJECTIVE A total of 90 elderly patients undergoing hip or knee replacement with joint epidural anesthesia in our Hospital between January, 2017 and December, 2018 were recruited in this study. The levels of Aβ42 and NFL in the cerebrospinal fluid were detected using ELISA. Simple cognitive status assessment scale (MMSE) was used to evaluate the cognitive status of the patients 1 day before and 7 days after the surgery. All the patients underwent neurocognitive function tests, and the z-score method was used to determine the occurrence of PNCD. Spearman rank correlation analysis was used to analyze the correlation of Aβ42 and NFL levels in the cerebrospinal fluid with MMSE scores. Receiver operating characteristic curve (ROC) was used to analyze the predictive value of cerebrospinal fluid Aβ42 and NFL levels for PNCD. OBJECTIVE PNCD occurred in 38 of the 90 elderly patients, with an incidence of 42.2%. The level of Aβ42 in the cerebrospinal fluid was significantly lower in PNCD group than in the nonPNCD group (1.96 vs 2.54 ng/mL; t=3.29, P < 0.05); the concentration of NFL in the cerebrospinal fluid was significantly higher in PNCD group than in non- PNCD group (4.59 vs 3.16 ng/mL; t=3.72, P < 0.05). Aβ42 level in the cerebrospinal fluid was positively correlated while NFL was negatively correlated with the MMSE score of the patients (r=-0.659, P < 0.05; r=-0.626, P < 0.05). ROC curve analysis showed that the area under the curve (AUC) of cerebrospinal fluid Aβ42 and NFL levels were 0.744 and 0.768, respectively; the AUC of their combination was 0.847 for prediction of PNCD. OBJECTIVE Elderly patients with PNCD have significantly higher levels of Aβ42 and NFL in the cerebrospinal fluid than those without PNCD. Both Aβ42 and NFL levels in the cerebrospinal fluid can help to predict the occurrence of POCD in elderly patients, and their combination has a higher diagnostic value.
Collapse
Affiliation(s)
- X Zhang
- Department of Anesthesiology, General Hospital of PLA, Beijing 100853, China
| | - Q Fu
- Department of Anesthesiology, General Hospital of PLA, Beijing 100853, China
| |
Collapse
|
19
|
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia 2021; 62:1485-1493. [PMID: 33971019 DOI: 10.1111/epi.16918] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) can increase the risk of epilepsy by up to 10-fold compared to healthy age-matched controls. However, the pathological mechanisms that underlie this increased risk are poorly understood. Because disruption in brain glutamate homeostasis has been implicated in both AD and epilepsy, this might play a mechanistic role in the pathogenesis of epilepsy in AD. Prior to the formation of amyloid beta (Aβ) plaques, the brain can undergo pathological changes as a result of increased production of amyloid precursor protein (APP) and Aβ oligomers. Impairments in the glutamate uptake ability of astrocytes due to astrogliosis are hypothesized to be an early event occurring before Aβ plaque formation. Astrogliosis may increase the susceptibility to epileptogenesis of the brain via accumulation of extracellular glutamate and resulting excitotoxicity. Here we hypothesize that Aβ oligomers and proinflammatory cytokines can cause astrogliosis and accumulation of extracellular glutamate, which then contribute to the pathogenesis of epilepsy in AD. In this review article, we consider the evidence supporting a potential role of dysfunction of the glutamate-glutamine cycle and the astrocyte in the pathogenesis of epilepsy in AD.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
20
|
Sultan ZW, Jaeckel ER, Krause BM, Grady SM, Murphy CA, Sanders RD, Banks MI. Electrophysiological signatures of acute systemic lipopolysaccharide-induced inflammation: potential implications for delirium science. Br J Anaesth 2021; 126:996-1008. [PMID: 33648701 PMCID: PMC8132883 DOI: 10.1016/j.bja.2020.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Novel preventive therapies are needed for postoperative delirium, which especially affects older patients. A mouse model is presented that captures inflammation-associated cortical slow wave activity (SWA) observed in patients, allowing exploration of the mechanistic role of prostaglandin-adenosine signalling. METHODS EEG and cortical cytokine measurements (interleukin 6, monocyte chemoattractant protein-1) were obtained from adult and aged mice. Behaviour, SWA, and functional connectivity were assayed before and after systemic administration of lipopolysaccharide (LPS)+piroxicam (cyclooxygenase inhibitor) or LPS+caffeine (adenosine receptor antagonist). To avoid the confounder of inflammation-driven changes in movement which alter SWA and connectivity, electrophysiological recordings were classified as occurring during quiescence or movement, and propensity score matching was used to match distributions of movement magnitude between baseline and post-LPS administration. RESULTS LPS produces increases in cortical cytokines and behavioural quiescence. In movement-matched data, LPS produces increases in SWA (likelihood-ratio test: χ2(4)=21.51, P<0.001), but not connectivity (χ2(4)=6.39, P=0.17). Increases in SWA associate with interleukin 6 (P<0.001) and monocyte chemoattractant protein-1 (P=0.001) and are suppressed by piroxicam (P<0.001) and caffeine (P=0.046). Aged animals compared with adult animals show similar LPS-induced SWA during movement, but exaggerated cytokine response and increased SWA during quiescence. CONCLUSIONS Cytokine-SWA correlations during wakefulness are consistent with observations in patients with delirium. Absence of connectivity effects after accounting for movement changes suggests decreased connectivity in patients is a biomarker of hypoactivity. Exaggerated effects in quiescent aged animals are consistent with increased hypoactive delirium in older patients. Prostaglandin-adenosine signalling may link inflammation to neural changes and hence delirium.
Collapse
Affiliation(s)
- Ziyad W Sultan
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bryan M Krause
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin A Murphy
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert D Sanders
- Specialty of Anaesthetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Yang J, Jia L, Li Y, Qiu Q, Quan M, Jia J. Fluid Biomarkers in Clinical Trials for Alzheimer's Disease: Current and Future Application. J Alzheimers Dis 2021; 81:19-32. [PMID: 33749646 DOI: 10.3233/jad-201068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) research is entering a unique moment in which enormous information about the molecular basis of this disease is being translated into therapeutics. However, almost all drug candidates have failed in clinical trials over the past 30 years. These many trial failures have highlighted a need for the incorporation of biomarkers in clinical trials to help improve the trial design. Fluid biomarkers measured in cerebrospinal fluid and circulating blood, which can reflect the pathophysiological process in the brain, are becoming increasingly important in AD clinical trials. In this review, we first succinctly outline a panel of fluid biomarkers for neuropathological changes in AD. Then, we provide a comprehensive overview of current and future application of fluid biomarkers in clinical trials for AD. We also summarize the many challenges that have been encountered in efforts to integrate fluid biomarkers in clinical trials, and the barriers that have begun to be overcome. Ongoing research efforts in the field of fluid biomarkers will be critical to make significant progress in ultimately unveiling disease-modifying therapies in AD.
Collapse
Affiliation(s)
- Jianwei Yang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Qiongqiong Qiu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,National Clinical Research Center for Geriatric Diseases, Beijing, People's Republic of China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, People's Republic of China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| |
Collapse
|
22
|
Van Hulle C, Jonaitis EM, Betthauser TJ, Batrla R, Wild N, Kollmorgen G, Andreasson U, Okonkwo O, Bendlin BB, Asthana S, Carlsson CM, Johnson SC, Zetterberg H, Blennow K. An examination of a novel multipanel of CSF biomarkers in the Alzheimer's disease clinical and pathological continuum. Alzheimers Dement 2020; 17:431-445. [PMID: 33336877 PMCID: PMC8016695 DOI: 10.1002/alz.12204] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/30/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION This study examines the utility of a multipanel of cerebrospinal fluid (CSF) biomarkers complementing Alzheimer's disease (AD) biomarkers in a clinical research sample. We compared biomarkers across groups defined by clinical diagnosis and pTau181 /Aβ42 status (+/-) and explored their value in predicting cognition. METHODS CSF biomarkers amyloid beta (Aβ)42 , pTau181 , tTau, Aβ40 , neurogranin, neurofilament light (NfL), α-synuclein, glial fibrillary acidic protein (GFAP), chitinase-3-like protein 1 (YKL-40), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), S100 calcium binding protein B (S100B), and interleukin 6 (IL6), were measured with the NeuroToolKit (NTK) for 720 adults ages 40 to 93 years (mean age = 63.9 years, standard deviation [SD] = 9.0; 50 with dementia; 54 with mild cognitive impairment [MCI], 616 unimpaired). RESULTS Neurodegeneration and glial activation biomarkers were elevated in pTau181 /Aβ42 + MCI/dementia participants relative to all pTau181 /Aβ42 - participants. Neurodegeneration biomarkers increased with clinical severity among pTau181 /Aβ42 + participants and predicted worse cognitive performance. Glial activation biomarkers were unrelated to cognitive performance. DISCUSSION The NTK contains promising markers that improve the pathophysiological characterization of AD. Neurodegeneration biomarkers beyond tTau improved statistical prediction of cognition and disease stages.
Collapse
Affiliation(s)
- Carol Van Hulle
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard Batrla
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | | | | | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Geriatric Research, Education and Clinical Center at the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Geriatric Research, Education and Clinical Center at the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Geriatric Research, Education and Clinical Center at the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
23
|
Neurogranin and VILIP-1 as Molecular Indicators of Neurodegeneration in Alzheimer's Disease: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21218335. [PMID: 33172069 PMCID: PMC7664397 DOI: 10.3390/ijms21218335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Neurogranin (Ng) and visinin-like protein 1 (VILIP-1) are promising candidates for Alzheimer's Disease (AD) biomarkers closely related to synaptic and neuronal degeneration. Both proteins are involved in calcium-mediated pathways. The meta-analysis was performed in random effects based on the ratio of means (RoM) with calculated pooled effect size. The diagnostic utility of these proteins was examined in cerebrospinal fluid (CSF) of patients in different stages of AD compared to control (CTRL). Ng concentration was also checked in various groups with positive (+) and negative (-) amyloid beta (Aβ). Ng highest levels of RoM were observed in the AD (n = 1894) compared to CTRL (n = 2051) group (RoM: 1.62). Similarly, the VILIP-1 highest values of RoM were detected in the AD (n = 706) compared to CTRL (n = 862) group (RoM: 1.34). Concentrations of both proteins increased in more advanced stages of AD. However, Ng seems to be an earlier biomarker for the assessment of cognitive impairment. Ng appears to be related with amyloid beta, and the highest levels of Ng in CSF was observed in the group with pathological Aβ+ status. Our meta-analysis confirms that Ng and VILIP-1 can be useful CSF biomarkers in differential diagnosis and monitoring progression of cognitive decline. Although, an additional advantage of the protein concentration Ng is the possibility of using it to predict the risk of developing cognitive impairment in normal controls with pathological levels of Aβ1-42. Analyses in larger cohorts are needed, particularly concerning Aβ status.
Collapse
|
24
|
Mazzucchi S, Palermo G, Campese N, Galgani A, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev Proteomics 2020; 17:543-559. [PMID: 33028119 DOI: 10.1080/14789450.2020.1831388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.
Collapse
Affiliation(s)
- Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France.,Brain & Spine Institute (ICM), INSERM U1127 , Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP , Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| |
Collapse
|
25
|
Tible M, Sandelius Å, Höglund K, Brinkmalm A, Cognat E, Dumurgier J, Zetterberg H, Hugon J, Paquet C, Blennow K. Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease. Neurology 2020; 95:e953-e961. [PMID: 32586895 DOI: 10.1212/wnl.0000000000010131] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/15/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the ability of a combination of synaptic CSF biomarkers to separate Alzheimer disease (AD) and non-AD disorders and to help in the differential diagnosis between neurocognitive diseases. METHODS This was a retrospective cross-sectional monocentric study. All participants explored with CSF assessments for neurocognitive decline were invited to participate. After complete clinical and imaging evaluations, 243 patients were included. CSF synaptic (GAP-43, neurogranin, SNAP-25 total, SNAP-25aa40, synaptotagmin-1) and AD biomarkers were blindly quantified with ELISA or mass spectrometry. Statistical analysis compared CSF levels between the various groups of AD dementias (n = 81), mild cognitive impairment (MCI)-AD (n = 30), other MCI (n = 49), other dementias (OD) (n = 49), and neurologic controls (n = 35) and their discriminatory powers. RESULTS All synaptic biomarkers were significantly increased in patients with MCI-AD and AD-dementia compared to the other groups. All synaptic biomarkers could efficiently discriminate AD dementias from OD (AUC ≥0.80). All but synaptotagmin were also able to discriminate patients with MCI-AD from controls (area under the curve [AUC] ≥0.85) and those with AD dementias from controls (AUC ≥0.80). Overall, CSF SNAP-25aa40 had the highest discriminative power (AUC 0.93 between patients with AD dementias and controls or OD, AUC 0.90 between those with MCI-AD and controls). Higher levels were associated with 2 alleles of APOE ε4. CONCLUSION All synaptic biomarkers tested had a good discriminatory power to distinguish patients with AD abnormal CSF from those with non-AD disorders. SNAP25aa40 demonstrated the highest power to discriminate AD CSF-positive patients from patients without AD and neurologic controls in this cohort. CLASSIFICATION OF EVIDENCE This retrospective study provides Class II evidence that CSF synaptic biomarkers discriminate patients with AD from those without AD.
Collapse
Affiliation(s)
- Marion Tible
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Åsa Sandelius
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Kina Höglund
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Ann Brinkmalm
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Emmanuel Cognat
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Julien Dumurgier
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Henrik Zetterberg
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Jacques Hugon
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| | - Claire Paquet
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France.
| | - Kaj Blennow
- From the Université de Paris INSERM U1144 (M.T., E.C., J.D., J.H., C.P.), France; Clinical Neurochemistry Laboratory (A.S., K.H., A.B., H.Z., K.B.), Sahlgrenska University Hospital; Institute of Neuroscience and Physiology (A.S., K.H., A.B., H.Z., K.B.), Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and Center of Cognitive Neurology (E.C., J.D., J.H., C.P.), Lariboisière Fernand-Widal Hospital, APHP, Paris, France
| |
Collapse
|
26
|
Liu W, Lin H, He X, Chen L, Dai Y, Jia W, Xue X, Tao J, Chen L. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer's disease and mild cognitive impairment. Transl Psychiatry 2020; 10:125. [PMID: 32350238 PMCID: PMC7190828 DOI: 10.1038/s41398-020-0801-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with clinical, biological, and pathological features occurring along a continuum from normal to end-stage disease. Currently, the diagnosis of AD depends on clinical assessments and post-mortem neuropathology, which is unbenefited early diagnosis and progressive monitoring. In recent years, clinical studies have reported that the level of cerebrospinal fluid (CSF) and blood neurogranin (Ng) are closely related to the occurrence and subsequent progression of AD. Therefore, the study used meta-analysis to identify the CSF and blood Ng levels for the development of diagnosis biomarker of patients with AD and mild cognitive impairment (MCI). We searched the Pubmed, Embase, Cochrane Library, and Web of Science databases. A total of 24 articles eligible for inclusion and exclusion criteria were assessed, including 4661 individuals, consisting of 1518 AD patients, 1501 MCI patients, and 1642 healthy control subjects. The level of CSF Ng significantly increased in patients with AD and MCI compared with healthy control subjects (SMD: 0.84 [95% CI: 0.70-0.98], P < 0.001; SMD: 0.53 [95% CI: 0.40-0.66], P = 0.008), and higher in AD patients than in MCI patients (SMD: 0.18 [95% CI: 0.07-0.30], P = 0.002), and CSF Ng level of patients with MCI-AD who progressed from MCI to AD was significantly higher than that of patients with stable MCI (sMCI) (SMD: 0.71 [95% CI: 0.25-1.16], P = 0.002). Moreover, the concentration of Ng in blood plasma exosomes of patients with AD and MCI was lower than that of healthy control subjects (SMD: -6.657 [95% CI: -10.558 to -2.755], P = 0.001; and SMD: -3.64 [95% CI: -6.50 to -0.78], P = 0.013), and which in patients with AD and MCI-AD were also lower than those in patients with sMCI (P < 0.001). Furthermore, regression analysis showed a negative relationship between MMSE scores and CSF Ng levels in MCI patients (slope = -0.249 [95% CI: -0.003 to -0.495], P = 0.047). Therefore, the Ng levels increased in CSF, but decreased in blood plasma exosomes of patients with AD and MCI-AD, and highly associated with cognitive declines. These findings provide the clinical evidence that CSF and blood exosomes Ng can be used as a cognitive biomarker for AD and MCI-AD, and further studies are needed to define the specific range of Ng values for diagnosis at the different stages of AD.
Collapse
Affiliation(s)
- Weilin Liu
- grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Huawei Lin
- grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Xiaojun He
- grid.411504.50000 0004 1790 1622The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Lewen Chen
- grid.411504.50000 0004 1790 1622The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Yaling Dai
- grid.411504.50000 0004 1790 1622The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Weiwei Jia
- grid.411504.50000 0004 1790 1622The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Xiehua Xue
- grid.411504.50000 0004 1790 1622Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Jing Tao
- grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Lidian Chen
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
27
|
Biomarker profiling beyond amyloid and tau: cerebrospinal fluid markers, hippocampal atrophy, and memory change in cognitively unimpaired older adults. Neurobiol Aging 2020; 93:1-15. [PMID: 32438258 DOI: 10.1016/j.neurobiolaging.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Brain changes occurring in aging can be indexed by biomarkers. We used cluster analysis to identify subgroups of cognitively unimpaired individuals (n = 99, 64-93 years) with different profiles of the cerebrospinal fluid biomarkers beta amyloid 1-42 (Aβ42), phosphorylated tau (P-tau), total tau, chitinase-3-like protein 1 (YKL-40), fatty acid binding protein 3 (FABP3), and neurofilament light (NFL). Hippocampal volume and memory were assessed across multiple follow-up examinations covering up to 6.8 years. Clustering revealed one group (39%) with more pathological concentrations of all biomarkers, which could further be divided into one group (20%) characterized by tauopathy and high FABP3 and one (19%) by brain β-amyloidosis, high NFL, and slightly higher YKL-40. The clustering approach clearly outperformed classification based on Aβ42 and P-tau alone in prediction of memory decline, with the individuals with most tauopathy and FABP3 showing more memory decline, but not more hippocampal volume change. The results demonstrate that older adults can be classified based on biomarkers beyond amyloid and tau, with improved prediction of memory decline.
Collapse
|
28
|
Wei C, Fan J, Sun X, Yao J, Guo Y, Zhou B, Shang Y. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic Biol Med 2020; 150:96-108. [PMID: 32109514 DOI: 10.1016/j.freeradbiomed.2020.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a complex disease involved oxidative stress and inflammation in its pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid compound from extracts of Boswellia serrata, which has been widely used as an antioxidant and anti-inflammatory agent. The present study was to determine whether AKBA, a novel candidate, could protect against cognitive and neuropathological impairments in AD. We found that AKBA treatment resulted in a significant improvement of learning and memory deficits, a dramatic decrease in cerebral amyloid-β (Aβ) levels and plaque burden, a profound alleviation in oxidative stress and inflammation, and a marked reduction in activated glial cells and synaptic defects in the APPswe/PS1dE9 mice. Furthermore, amyloid precursor protein (APP) processing was remarkably suppressed with AKBA treatment by inhibiting beta-site APP cleaving enzyme 1 (BACE1) protein expression to produce Aβ in the APPswe/PS1dE9 mice brains. Mechanistically, AKBA modulated antioxidant and anti-inflammatory pathways via increasing nuclear erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression, and via declining phosphorylation of inhibitor of nuclear factor-kappa B alpha (IκBα) and p65. Collectively, our findings provide evidence that AKBA protects neurons against oxidative stress and inflammation in AD, and this neuroprotective effect involves the Nrf2/HO-1 and nuclear factor-kappa B (NF-κB) signaling pathways.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xuan Sun
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiarui Yao
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yane Guo
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanchang Shang
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
29
|
Araújo AR, Camero S, Taboada P, Reis RL, Pires RA. Vescalagin and castalagin reduce the toxicity of amyloid-beta42 oligomers through the remodelling of its secondary structure. Chem Commun (Camb) 2020; 56:3187-3190. [PMID: 32068230 DOI: 10.1039/d0cc00192a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The isomers vescalagin and castalagin protect SH-SY5Y cells from Aβ42-mediated death. This is achieved better by vescalagin due to the spatial organization of its OH group at the C1 position of the glycosidic chain, improving its capacity to remodel the secondary structure of toxic Aβ42 oligomers.
Collapse
Affiliation(s)
- Ana R Araújo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Sergio Camero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, Campus Vida, E-15782-Santiago de Compostela, Spain
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
30
|
Calderón-Garcidueñas L, Mukherjee PS, Waniek K, Holzer M, Chao CK, Thompson C, Ruiz-Ramos R, Calderón-Garcidueñas A, Franco-Lira M, Reynoso-Robles R, Gónzalez-Maciel A, Lachmann I. Non-Phosphorylated Tau in Cerebrospinal Fluid is a Marker of Alzheimer's Disease Continuum in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2019; 66:1437-1451. [PMID: 30412505 DOI: 10.3233/jad-180853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-β1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aβ1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.
Collapse
Affiliation(s)
| | | | | | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | | | | | - Rubén Ruiz-Ramos
- Instituto de Medicina Forense, Universidad Veracruzana, Boca del Rio, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Saller T, Petzold A, Zetterberg H, Kuhle J, Chappell D, von Dossow V, Klawitter F, Schurholz T, Hagl C, Reuter DA, Zwissler B, Ehler J. A case series on the value of tau and neurofilament protein levels to predict and detect delirium in cardiac surgery patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:241-246. [PMID: 31530945 DOI: 10.5507/bp.2019.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Delirium following cardiac surgery is a relevant complication in the majority of elderly patients but its prediction is challenging. Cardiopulmonary bypass, essential for many interventions in cardiac surgery, is responsible for a severe inflammatory response leading to neuroinflammation and subsequent delirium. Neurofilament light protein (NfL) and tau protein (tau) are specific biomarkers to detect neuroaxonal injury as well as glial fibrillary acidic protein (GFAP), a marker of astrocytic activation. METHODS We thought to examine the perioperative course of these markers in a case series of each three cardiac surgery patients under off-pump cardiac arterial bypass without evolving delirium (OPCAB-NDEL), patients with a procedure under cardio-pulmonary bypass (CPB) without delirium (CPB-NDEL) and delirium after a CPB procedure (CPB-DEL). Delirium was diagnosed by the Confusion Assessment Method for the ICU and chart reviews. RESULTS We observed increased preoperative levels of tau in patients with later delirium, whereas values of NfL and GFAP did not differ. In the postoperative course, all biomarkers increased multi-fold. NfL levels sharply increased in patients with CPB reaching the highest levels in the CPB-DEL group. CONCLUSION Tau and NfL might be of benefit to identify patients in cardiac surgery at risk for delirium and to detect patients with the postoperative emergence of delirium.
Collapse
Affiliation(s)
- Thomas Saller
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Axel Petzold
- UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Moorfields Eye Hospital, London, United Kingdom and Amsterdam UMC, The Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Molndal, Sweden
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
| | - Daniel Chappell
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Vera von Dossow
- Institute for Anesthesiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Felix Klawitter
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Tobias Schurholz
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Daniel A Reuter
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Bernhard Zwissler
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
32
|
Jin M, Cao L, Dai YP. Role of Neurofilament Light Chain as a Potential Biomarker for Alzheimer's Disease: A Correlative Meta-Analysis. Front Aging Neurosci 2019; 11:254. [PMID: 31572170 PMCID: PMC6753203 DOI: 10.3389/fnagi.2019.00254] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
Neurofilament light (NFL) is a putative biomarker of neurodegeneration. This study evaluates the correlative association of NFL with Alzheimer's disease (AD) indices. Relevant studies were identified after a literature search in electronic databases and study selection was based on pre-determined eligibility criteria. Correlation coefficients between NFL levels and important AD indices reported by individual studies were pooled as z-scores. Meta-regression analyses were performed to evaluate the relationships between important covariates. Data from 38 studies (age 68.3 years [95% confidence interval (CI): 65.7, 70.9]; 54 % [95% CI: 50, 57] females) were used. Meta-analyses of correlation coefficients reported by the included studies showed that NFL levels in blood and cerebrospinal fluid (CSF) correlated well (r = 0.59 [95% CI: 0.45, 0.71]; p < 0.0001). NFL levels correlated with MMSE score (r = −0.345 [95% CI: −0.43, −0.25]; p = 0.0001), and age (r = 0.485 [95% CI: 0.35, 0.61]; p = 0.00001). CSF NFL levels correlated with total tau (t-tau; r = 0.39 [95% CI: 0.27, 0.50]; p = 0.0001), phosphorylated tau (p-tau; r = 0.34 [95% CI: 0.19, 0.47]; p = 0.00001), and neurogranin (r = 0.25 [95% CI: 0.12, 0.37]; p = 0.001) but not with beta amyloid (Aβ) (r = 0.00 [95%CI: −0.13, 0.12]; p = 0.937). In meta-regression, MMSE scores were associated inversely with blood NFL (metaregression coefficient (MC) −0.236 [95% CI:−0.40, −0.072; p = 0.008), and age (MC) −0.235 [−0.36, −0.11]; p = 0.001) and positively with CSF Aβ-42 (MC 0.017 [0.010, 0.023]; p = 0.00001). NFL has good correlations with t-tau, and p-tau in CSF and CSF NFL levels correlates well with blood NFL levels. These results show that NFL can be a useful biomarker for improving diagnosis and predicting prognosis in AD patients especially if age weighted.
Collapse
Affiliation(s)
- Mei Jin
- Department of Neurology, Nangang Branch, Heilongjiang Provincial Hospital, Harbin, China
| | - Li Cao
- Department of Neurology, Nangang Branch, Heilongjiang Provincial Hospital, Harbin, China
| | - Yan-Ping Dai
- Department of Neurology, Nangang Branch, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
33
|
Baldacci F, Lista S, Palermo G, Giorgi FS, Vergallo A, Hampel H. The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: advances in development. Expert Rev Proteomics 2019; 16:593-600. [PMID: 31195846 DOI: 10.1080/14789450.2019.1628643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Neuroinflammation is a common pathophysiological mechanism in neurodegenerative diseases (ND). Cerebrospinal fluid (CSF) YKL-40 has recently been candidated as a neuroinflammatory biomarker of ND. Areas covered: We provide an update on the role of CSF YKL-40 as a pathophysiological biomarker of ND. YKL-40 may discriminate Alzheimer's disease (AD) from controls and may predict the progression from the early preclinical to the late dementia stage. In genetic AD, YKL-40 increases decades before the clinical onset. It does not seem a specific biomarker of a certain ND although sporadic Creutzfeldt-Jacob disease shows the highest YKL-40 concentrations. YKL-40 may discriminate between amyotrophic lateral sclerosis (ALS) and ALS-mimics. YKL-40 is potentially associated with the rate of ALS progression. YKL-40 correlates with biomarkers of neuronal injury, large axonal damage and synaptic disruption in various ND. It is not associated with the presence of the APOE-ε4 allele whereas possibly linked to aging, female sex, Hispanic ethnicity and some genetic variants of the chitinase-3-like 1 locus. Expert opinion: There is growing evidence expanding the relevance of CSF YKL-40 as a pathophysiological biomarker for ND. Patients showing high YKL-40 levels might benefit from targeted clinical trials that use compounds acting against neuroinflammatory mechanisms, independently of the initial clinical diagnosis of ND.
Collapse
Affiliation(s)
- Filippo Baldacci
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy.,b Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital , F-75013, Paris , France.,c Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital , F-75013, Paris , France.,d Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP , Boulevard de l'hôpital , F-75013, Paris , France
| | - Simone Lista
- b Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital , F-75013, Paris , France.,c Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital , F-75013, Paris , France.,d Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP , Boulevard de l'hôpital , F-75013, Paris , France
| | - Giovanni Palermo
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Filippo Sean Giorgi
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Andrea Vergallo
- b Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital , F-75013, Paris , France.,c Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital , F-75013, Paris , France.,d Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP , Boulevard de l'hôpital , F-75013, Paris , France
| | - Harald Hampel
- b Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital , F-75013, Paris , France
| |
Collapse
|
34
|
Electroacupuncture Mitigates Hippocampal Cognitive Impairments by Reducing BACE1 Deposition and Activating PKA in APP/PS1 Double Transgenic Mice. Neural Plast 2019; 2019:2823679. [PMID: 31223308 PMCID: PMC6541940 DOI: 10.1155/2019/2823679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Increased amyloid-β (Aβ) plaque deposition is thought to be the main cause of Alzheimer's disease (AD). β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is the key protein involved in Aβ peptide generation. Excessive expression of BACE1 might cause overproduction of neurotoxins in the central nervous system. Previous studies indicated that BACE1 initially cleaves the amyloid precursor protein (APP) and may subsequently interfere with physiological functions of proteins such as PKA, which is recognized to be closely associated with long-term potentiation (LTP) level and can effectively ameliorate cognitive impairments. Therefore, revealing the underlying mechanism of BACE1 in the pathogenesis of AD might have a significant impact on the future development of therapeutic agents targeting dementia. This study examined the effects of electroacupuncture (EA) stimulation on BACE1, APP, and p-PKA protein levels in hippocampal tissue samples. Memory and learning abilities were assessed using the Morris water maze test after EA intervention. Immunofluorescence, immunohistochemistry, and western blot were employed to assess the distribution patterns and expression levels of BACE1, APP, and p-PKA, respectively. The results showed the downregulation of BACE1 and APP and the activation of PKA by EA. In summary, EA treatment might reduce BACE1 deposition in APP/PS1 transgenic mice and regulate PKA and its associated substrates, such as LTP to change memory and learning abilities.
Collapse
|
35
|
Neurofilament light chain protein in neurodegenerative dementia: A systematic review and network meta-analysis. Neurosci Biobehav Rev 2019; 102:123-138. [PMID: 31026486 DOI: 10.1016/j.neubiorev.2019.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/11/2023]
Abstract
The diagnostic value of neurofilament light chain protein in neurodegenerative dementia diseases is still controversial. A systematic literature search was performed to identify relevant case-control studies conducted through October 2018. Traditional and net meta-analyses were performed based on 42 studies that tested the diagnostic performance of neurofilament light chain protein (NfL) concentration in CSF and serum/plasma from patients with neurodegenerative dementia. CSF and serum/plasma NfL levels were significantly increased in patients with neurodegenerative dementia diseases. Network meta-analysis showed a significant reduction in CSF NfL levels during mild cognitive impairment, whereas an increase was observed in vascular dementia compared to Alzheimer's disease. Surface under the cumulative ranking curve and cluster analysis showed that the NfL concentration in CSF (vascular dementia, frontotemporal dementia, and Alzheimer's disease) and serum/plasma (frontotemporal dementia and Alzheimer's disease) ranked first among neurodegenerative dementia diseases. NfL is an important biomarker that can help clinical neurologists make early diagnoses of neurodegenerative diseases, so patients can receive prompt treatment.
Collapse
|
36
|
Gangishetti U, Christina Howell J, Perrin RJ, Louneva N, Watts KD, Kollhoff A, Grossman M, Wolk DA, Shaw LM, Morris JC, Trojanowski JQ, Fagan AM, Arnold SE, Hu WT. Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:98. [PMID: 30253800 PMCID: PMC6156847 DOI: 10.1186/s13195-018-0426-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 11/21/2022]
Abstract
Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by neuropathologic changes involving beta-amyloid (Aβ), tau, neuronal loss, and other associated biological events. While levels of cerebrospinal fluid (CSF) Aβ and tau peptides have enhanced the antemortem detection of AD-specific changes, these two markers poorly reflect the severity of cognitive and functional deficits in people with altered Aβ and tau levels. While multiple previous studies identified non-Aβ, non-tau proteins as candidate neurodegenerative markers to inform the A/T/N biomarker scheme of AD, few have advanced beyond association with clinical AD diagnosis. Here we analyzed nine promising neurodegenerative markers in a three-centered cohort using independent assays to identify candidates most likely to complement Aβ and tau in the A/T/N framework. Methods CSF samples from 125 subjects recruited at the three centers were exchanged such that each of the nine previously identified biomarkers can be measured at one of the three centers. Subjects were classified according to cognitive status and CSF AD biomarker profiles as having normal cognition and normal CSF (n = 31), normal cognition and CSF consistent with AD (n = 13), mild cognitive impairment and normal CSF (n = 13), mild cognitive impairment with CSF consistent with AD (n = 23), AD dementia (n = 32; CSF consistent with AD), and other non-AD dementia (n = 13; CSF not consistent with AD). Results Three biomarkers were identified to differ among the AD stages, including neurofilament light chain (NfL; p < 0.001), fatty acid binding protein 3 (Fabp3; p < 0.001), and interleukin (IL)-10 (p = 0.033). Increased NfL levels were most strongly associated with the dementia stage of AD, but increased Fabp3 levels were more sensitive to milder AD stages and correlated with both CSF tau markers. IL-10 levels did not correlate with tau biomarkers, but were associated with rates of longitudinal cognitive decline in mild cognitive impairment due to AD (p = 0.006). Prefreezing centrifugation did not influence measured CSF biomarker levels. Conclusion CSF proteins associated with AD clinical stages and progression can complement Aβ and tau markers to inform neurodegeneration. A validated panel inclusive of multiple biomarker features (etiology, stage, progression) can improve AD phenotyping along the A/T/N framework.
Collapse
Affiliation(s)
- Umesh Gangishetti
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - J Christina Howell
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA.,Department of Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Richard J Perrin
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Pathology, Washington University, St. Louis, MO, USA
| | - Natalia Louneva
- Department of Pathology, Washington University, St. Louis, MO, USA
| | - Kelly D Watts
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - Alexander Kollhoff
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - Murray Grossman
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Penn FTD Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University, St. Louis, MO, USA
| | - John Q Trojanowski
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University, St. Louis, MO, USA
| | - Steven E Arnold
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Present Address: Massachusetts General Hospital, Boston, MA, USA
| | - William T Hu
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA. .,Department of Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|