1
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
2
|
Soldan A, Wang J, Pettigrew C, Davatzikos C, Erus G, Hohman TJ, Dumitrescu L, Bilgel M, Resnick SM, Rivera-Rivera LA, Langhough R, Johnson SC, Benzinger T, Morris JC, Laws SM, Fripp J, Masters CL, Albert MS. Alzheimer's disease genetic risk and changes in brain atrophy and white matter hyperintensities in cognitively unimpaired adults. Brain Commun 2024; 6:fcae276. [PMID: 39229494 PMCID: PMC11369827 DOI: 10.1093/braincomms/fcae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Reduced brain volumes and more prominent white matter hyperintensities on MRI scans are commonly observed among older adults without cognitive impairment. However, it remains unclear whether rates of change in these measures among cognitively normal adults differ as a function of genetic risk for late-onset Alzheimer's disease, including APOE-ɛ4, APOE-ɛ2 and Alzheimer's disease polygenic risk scores (AD-PRS), and whether these relationships are influenced by other variables. This longitudinal study examined the trajectories of regional brain volumes and white matter hyperintensities in relationship to APOE genotypes (N = 1541) and AD-PRS (N = 1093) in a harmonized dataset of middle-aged and older individuals with normal cognition at baseline (mean baseline age = 66 years, SD = 9.6) and an average of 5.3 years of MRI follow-up (max = 24 years). Atrophy on volumetric MRI scans was quantified in three ways: (i) a composite score of regions vulnerable to Alzheimer's disease (SPARE-AD); (ii) hippocampal volume; and (iii) a composite score of regions indexing advanced non-Alzheimer's disease-related brain aging (SPARE-BA). Global white matter hyperintensity volumes were derived from fluid attenuated inversion recovery (FLAIR) MRI. Using linear mixed effects models, there was an APOE-ɛ4 gene-dose effect on atrophy in the SPARE-AD composite and hippocampus, with greatest atrophy among ɛ4/ɛ4 carriers, followed by ɛ4 heterozygouts, and lowest among ɛ3 homozygouts and ɛ2/ɛ2 and ɛ2/ɛ3 carriers, who did not differ from one another. The negative associations of APOE-ɛ4 with atrophy were reduced among those with higher education (P < 0.04) and younger baseline ages (P < 0.03). Higher AD-PRS were also associated with greater atrophy in SPARE-AD (P = 0.035) and the hippocampus (P = 0.014), independent of APOE-ɛ4 status. APOE-ɛ2 status (ɛ2/ɛ2 and ɛ2/ɛ3 combined) was not related to baseline levels or atrophy in SPARE-AD, SPARE-BA or the hippocampus, but was related to greater increases in white matter hyperintensities (P = 0.014). Additionally, there was an APOE-ɛ4 × AD-PRS interaction in relation to white matter hyperintensities (P = 0.038), with greater increases in white matter hyperintensities among APOE-ɛ4 carriers with higher AD-PRS. APOE and AD-PRS associations with MRI measures did not differ by sex. These results suggest that APOE-ɛ4 and AD-PRS independently and additively influence longitudinal declines in brain volumes sensitive to Alzheimer's disease and synergistically increase white matter hyperintensity accumulation among cognitively normal individuals. Conversely, APOE-ɛ2 primarily influences white matter hyperintensity accumulation, not brain atrophy. Results are consistent with the view that genetic factors for Alzheimer's disease influence atrophy in a regionally specific manner, likely reflecting preclinical neurodegeneration, and that Alzheimer's disease risk genes contribute to white matter hyperintensity formation.
Collapse
Affiliation(s)
- Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangxia Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christos Davatzikos
- Centre for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guray Erus
- Centre for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Logan Dumitrescu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Leonardo A Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Rebecca Langhough
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jurgen Fripp
- Australian E-Health Research Centre, CSIRO Health & Biosecurity, Herston, QLD 4029, Australia
| | - Colin L Masters
- The Florey Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Eisenbaum M, Pearson A, Ortiz C, Koprivica M, Cembran A, Mullan M, Crawford F, Ojo J, Bachmeier C. Repetitive head trauma and apoE4 induce chronic cerebrovascular alterations that impair tau elimination from the brain. Exp Neurol 2024; 374:114702. [PMID: 38301863 PMCID: PMC10922621 DOI: 10.1016/j.expneurol.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
4
|
Iandolo R, Avci E, Bommarito G, Sandvig I, Rohweder G, Sandvig A. Characterizing upper extremity fine motor function in the presence of white matter hyperintensities: A 7 T MRI cross-sectional study in older adults. Neuroimage Clin 2024; 41:103569. [PMID: 38281363 PMCID: PMC10839532 DOI: 10.1016/j.nicl.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are a prevalent radiographic finding in the aging brain studies. Research on WMH association with motor impairment is mostly focused on the lower-extremity function and further investigation on the upper-extremity is needed. How different degrees of WMH burden impact the network of activation recruited during upper limb motor performance could provide further insight on the complex mechanisms of WMH pathophysiology and its interaction with aging and neurological disease processes. METHODS 40 healthy elderly subjects without a neurological/psychiatric diagnosis were included in the study (16F, mean age 69.3 years). All subjects underwent ultra-high field 7 T MRI including structural and finger tapping task-fMRI. First, we quantified the WMH lesion load and its spatial distribution. Secondly, we performed a data-driven stratification of the subjects according to their periventricular and deep WMH burdens. Thirdly, we investigated the distribution of neural recruitment and the corresponding activity assessed through BOLD signal changes among different brain regions for groups of subjects. We clustered the degree of WMH based on location, numbers, and volume into three categories; ranging from mild, moderate, and severe. Finally, we explored how the spatial distribution of WMH, and activity elicited during task-fMRI relate to motor function, measured with the 9-Hole Peg Test. RESULTS Within our population, we found three subgroups of subjects, partitioned according to their periventricular and deep WMH lesion load. We found decreased activity in several frontal and cingulate cortex areas in subjects with a severe WMH burden. No statistically significant associations were found when performing the brain-behavior statistical analysis for structural or functional data. CONCLUSION WMH burden has an effect on brain activity during fine motor control and the activity changes are associated with varying degrees of the total burden and distributions of WMH lesions. Collectively, our results shed new light on the potential impact of WMH on motor function in the context of aging and neurodegeneration.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Esin Avci
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Giulia Bommarito
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gitta Rohweder
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Stroke Unit, Department of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden; Department of Community Medicine and Rehabilitation, Umeå University Hospital, Umeå, Sweden.
| |
Collapse
|
5
|
Cheng Y, Liao Y, Chen C, Chung C, Fann CSJ, Chang C, Lee Y, Tang S. Contribution of the APOE Genotype to Cognitive Impairment in Individuals With NOTCH3 Cysteine-Altering Variants. J Am Heart Assoc 2023; 12:e032689. [PMID: 37982214 PMCID: PMC10727295 DOI: 10.1161/jaha.123.032689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most prevalent monogenic cerebral small-vessel disease. Phenotype variability in CADASIL suggests the possible role of genetic modifiers. We aimed to investigate the contributions of the APOE genotype and Neurogenic locus notch homolog protein 3 (NOTCH3) variant position to cognitive impairment associated with CADASIL. METHODS AND RESULTS Patients with the cysteine-altering NOTCH3 variant were enrolled in a cross-sectional study, including the Mini-Mental State Examination (MMSE), brain magnetic resonance imaging, and APOE genotyping. Cognitive impairment was defined as an MMSE score <24. The associations between the MMSE score and genetic factors were assessed using linear regression models. Bayesian adjustment for confounding was used to identify clinical confounders. A total of 246 individuals were enrolled, among whom 210 (85%) harbored the p.R544C variant, 96 (39%) had cognitive impairment, and 150 (61%) had a history of stroke. The APOE ɛ2 allele was associated with a lower MMSE score (adjusted B, -4.090 [95% CI, -6.708 to -1.473]; P=0.023), whereas the NOTCH3 p.R544C variant was associated with a higher MMSE score (adjusted B, 2.854 [95% CI, 0.603-5.105]; P=0.0132) after adjustment for age, education, and history of ischemic stroke. Mediation analysis suggests that the associations between the APOE ɛ2 allele and MMSE score and between the NOTCH3 p.R544C variant and MMSE score are mediated by mesial temporal atrophy and white matter hyperintensity, respectively. CONCLUSIONS APOE genotype may modify cognitive impairment in CADASIL, whereby individuals carrying the APOE ɛ2 allele may present a more severe cognitive impairment.
Collapse
Affiliation(s)
- Yu‐Wen Cheng
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Yi‐Chu Liao
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Faculty of Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chih‐Hao Chen
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Chih‐Ping Chung
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
| | | | | | - Yi‐Chung Lee
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Faculty of Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Sung‐Chun Tang
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
6
|
Foddis M, Blumenau S, Holtgrewe M, Paquette K, Westra K, Alonso I, Macario MDC, Morgadinho AS, Velon AG, Santo G, Santana I, Mönkäre S, Kuuluvainen L, Schleutker J, Pöyhönen M, Myllykangas L, Pavlovic A, Kostic V, Dobricic V, Lohmann E, Hanagasi H, Santos M, Guven G, Bilgic B, Bras J, Beule D, Dirnagl U, Guerreiro R, Sassi C. TREX1 p.A129fs and p.Y305C variants in a large multi-ethnic cohort of CADASIL-like unrelated patients. Neurobiol Aging 2023; 123:208-215. [PMID: 36586737 DOI: 10.1016/j.neurobiolaging.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and retinal vasculopathy with cerebral leukodystrophy and systemic manifestations (RVCL-S) are the most common forms of rare monogenic early-onset cerebral small vessel disease and share clinical, and, to different extents, neuroradiological and neuropathological features. However, whether CADASIL and RVCL-S overlapping phenotype may be explained by shared genetic risk or causative factors such as TREX1 coding variants remains poorly understood. To investigate this intriguing hypothesis, we used exome sequencing to screen TREX1 protein-coding variability in a large multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic CADASIL-like Caucasian patients from the USA, Portugal, Finland, Serbia and Turkey. We report 2 very rare and likely pathogenic TREX1 mutations: a loss of function mutation (p.Ala129fs) clustering in the catalytic domain, in an apparently sporadic 46-year-old patient from the USA and a missense mutation (p.Tyr305Cys) in the well conserved C-terminal region, in a 57-year-old patient with positive family history from Serbia. In concert with recent findings, our study expands the clinical spectrum of diseases associated with TREX1 mutations.
Collapse
Affiliation(s)
- Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manuel Holtgrewe
- Berlin Institute of Health, BIH, Core Unit Bioinformatics and Charité - Universitätsmedizin Berlin, Berlin Germany
| | - Kimberly Paquette
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Kaitlyn Westra
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Isabel Alonso
- CGPP and UnIGENe, Instituto Biologia Molecular Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Maria do Carmo Macario
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Sofia Morgadinho
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Graça Velon
- Department of Neurology, Centro Hospitalar Trás-os-Montes e Alto Douro, Portugal
| | - Gustavo Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Centro de Neurociências e Biologia Celular da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal; Centro de Neurociências e Biologia Celular da Universidade de Coimbra, Coimbra, Portugal
| | - Saana Mönkäre
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
| | - Liina Kuuluvainen
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Johanna Schleutker
- Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
| | - Minna Pöyhönen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland; Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Aleksandra Pavlovic
- Clinic of Neurology, University of Belgrade, Belgrade, Serbia; Faculty for Special Education and Rehabilitation, University of Belgrade, Belgrade
| | - Vladimir Kostic
- Clinic of Neurology, University of Belgrade, Belgrade, Serbia
| | | | - Ebba Lohmann
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jose Bras
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics and Charité - Universitätsmedizin Berlin, Berlin Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rita Guerreiro
- Department for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Willumsen N, Arber C, Lovejoy C, Toombs J, Alatza A, Weston PSJ, Chávez-Gutiérrez L, Hardy J, Zetterberg H, Fox NC, Ryan NS, Lashley T, Wray S. The PSEN1 E280G mutation leads to increased amyloid-β43 production in induced pluripotent stem cell neurons and deposition in brain tissue. Brain Commun 2022; 5:fcac321. [PMID: 36687397 PMCID: PMC9847549 DOI: 10.1093/braincomms/fcac321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the presenilin 1 gene, PSEN1, which cause familial Alzheimer's disease alter the processing of amyloid precursor protein, leading to the generation of various amyloid-β peptide species. These species differ in their potential for aggregation. Mutation-specific amyloid-β peptide profiles may thereby influence pathogenicity and clinical heterogeneity. There is particular interest in comparing mutations with typical and atypical clinical presentations, such as E280G. We generated PSEN1 E280G mutation induced pluripotent stem cells from two patients and differentiated them into cortical neurons, along with previously reported PSEN1 M146I, PSEN1 R278I and two control lines. We assessed both the amyloid-β peptide profiles and presenilin 1 protein maturity. We also compared amyloid-β peptide profiles in human post-mortem brain tissue from cases with matched mutations. Amyloid-β ratios significantly differed compared with controls and between different patients, implicating mutation-specific alterations in amyloid-β ratios. Amyloid-β42:40 was increased in the M146I and both E280G lines compared with controls. Amyloid-β42:40 was not increased in the R278I line compared with controls. The amyloid-β43:40 ratio was increased in R278I and both E280G lines compared with controls, but not in M146I cells. Distinct amyloid-β peptide patterns were also observed in human brain tissue from individuals with these mutations, showing some similar patterns to cell line observations. Reduced presenilin 1 maturation was observed in neurons with the PSEN1 R278I and E280G mutations, but not the M146I mutation. These results suggest that mutation location can differentially alter the presenilin 1 protein and affect its autoendoproteolysis and processivity, contributing to the pathological phenotype. Investigating differences in underlying molecular mechanisms of familial Alzheimer's disease may inform our understanding of clinical heterogeneity.
Collapse
Affiliation(s)
- Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Jamie Toombs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Philip S J Weston
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
| | - Lucia Chávez-Gutiérrez
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Department of Neurology, KU Leuven, 3000 Leuven, Belgium
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute, University College London, London WC1E 6AU, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| |
Collapse
|
8
|
Vázquez-Justes D, Aguirregoicoa I, Fernandez L, Carnes-Vendrell A, Dakterzada F, Sanjuan L, Mena A, Piñol-Ripoll G. Clinical impact of microbleeds in patients with Alzheimer's disease. BMC Geriatr 2022; 22:774. [PMID: 36175849 PMCID: PMC9520821 DOI: 10.1186/s12877-022-03456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Cerebral microbleeds (CMBs) are more frequent in patients with Alzheimer’s disease (AD) than in the general population. However, their clinical significance remains poorly understood. We carried out a multimodal approach to evaluate the impact of CMBs at a clinical, neuropsychological, and survival level, as well as on core AD biomarkers in the cerebrospinal fluid (CSF) in AD patients. Methods We prospectively recruited 98 patients with mild-moderate AD. At baseline, they underwent brain MRI, and AD CSF biomarkers and APOE genotypes were analysed. An extensive neuropsychological battery was performed at baseline and after 1 year of follow-up. We analysed the stroke incidence and mortality with survival analyses. Results Forty-eight (48.5%) patients had at least one CMBs. Eight (8.2%) patients had strictly nonlobar CMBs, 39 (40.2%) had any lobar CMB locations. The incidence of stroke was higher in AD patients with lobar CMBs than in those without CMBs (p < 0.05). Mortality did not differ among groups (p > 0.05). At the cognitive level, CMBs patients deteriorated more rapidly at 12 months according to MMSE scores, with no differences observed at 24 months. We did not observe differences in the other tests, except for an increase in caregiver burden in the CMBs group. The presence of cerebral amyloidosis and APOE ε4 were associated with a greater presence of CMBs. Conclusion CMBs are associated with an increased risk of ischemic stroke in AD patients without differences in mortality. Patients with CMBs did not seem to have different consequences associated with cognitive decline except for an increase in caregiver overload.
Collapse
Affiliation(s)
- Daniel Vázquez-Justes
- Neurology Department, Clinical Neuroscience Research Group, IRBLleida-Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Iván Aguirregoicoa
- Radiology Department, Hospital General Barbastro, Salud Aragón, Barbastro, Spain
| | - Leandre Fernandez
- Radiology Department, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Carnes-Vendrell
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain
| | - Faride Dakterzada
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain
| | - Laura Sanjuan
- Radiology Department, Hospital General Barbastro, Salud Aragón, Barbastro, Spain
| | - Andreu Mena
- Radiology Department, Hospital General Barbastro, Salud Aragón, Barbastro, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Hospital Universitari Santa Maria, IRBLleida, Lleida, Spain. .,Cognitive Disorders Unit, Hospital Universitari Santa Maria, Rovira Roure n° 44. 25198, Lleida, Spain.
| |
Collapse
|
9
|
Hill EJ, Robak LA, Al-Ouran R, Deger J, Fong JC, Vandeventer PJ, Schulman E, Rao S, Saade H, Savitt JM, von Coelln R, Desai N, Doddapaneni H, Salvi S, Dugan-Perez S, Muzny DM, McGuire AL, Liu Z, Gibbs RA, Shaw C, Jankovic J, Shulman LM, Shulman JM. Genome Sequencing in the Parkinson Disease Clinic. Neurol Genet 2022; 8:e200002. [PMID: 35747619 PMCID: PMC9210549 DOI: 10.1212/nxg.0000000000200002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Background and Objectives Genetic variants affect both Parkinson disease (PD) risk and manifestations. Although genetic information is of potential interest to patients and clinicians, genetic testing is rarely performed during routine PD clinical care. The goal of this study was to examine interest in comprehensive genetic testing among patients with PD and document reactions to possible findings from genome sequencing in 2 academic movement disorder clinics. Methods In 203 subjects with PD (age = 63 years, 67% male), genome sequencing was performed and filtered using a custom panel, including 49 genes associated with PD, parkinsonism, or related disorders, as well as a 90-variant PD genetic risk score. Based on the results, 231 patients (age = 67 years, 63% male) were surveyed on interest in genetic testing and responses to vignettes covering (1) familial risk of PD (LRRK2); (2) risk of PD dementia (GBA); (3) PD genetic risk score; and (4) secondary, medically actionable variants (BRCA1). Results Genome sequencing revealed a LRRK2 variant in 3% and a GBA risk variant in 10% of our clinical sample. The genetic risk score was normally distributed, identifying 41 subjects with a high risk of PD. Medically actionable findings were discovered in 2 subjects (1%). In our survey, the majority (82%) responded that they would share a LRRK2 variant with relatives. Most registered unchanged or increased interest in testing when confronted with a potential risk for dementia or medically actionable findings, and most (75%) expressed interest in learning their PD genetic risk score. Discussion Our results highlight broad interest in comprehensive genetic testing among patients with PD and may facilitate integration of genome sequencing in clinical practice.
Collapse
Affiliation(s)
| | | | - Rami Al-Ouran
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Jennifer Deger
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Jamie C. Fong
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Paul Jerrod Vandeventer
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Emily Schulman
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Sindhu Rao
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Hiba Saade
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Joseph M. Savitt
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Rainer von Coelln
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Neeja Desai
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Harshavardhan Doddapaneni
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Sejal Salvi
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Shannon Dugan-Perez
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Donna M. Muzny
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Amy L. McGuire
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Zhandong Liu
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Richard A. Gibbs
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Chad Shaw
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Joseph Jankovic
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Lisa M. Shulman
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| | - Joshua M. Shulman
- From the Department of Neurology (E.J.H., S.R., H.S., J.J., J.M. Shulman), and Parkinson's Disease Center and Movement Disorders Clinic (E.J.H., C.S., J.J., J.M. Shulman), Baylor College of Medicine, Houston, TX. E.J. Hill is now with Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH; Department of Molecular and Human Genetics (L.A.R., J.C.F., P.J.V., R.A.G., J.M. Shulman), Department of Pediatrics (R.A.-O., Z.L.), and Department of Neuroscience (J.D., J.M. Shulman), Baylor College of Medicine, Houston, TX; Department of Neurology (E.S., J.M. Savitt, R.v.C., N.D., L.M.S.), University of Maryland School of Medicine, Baltimore; Center for Alzheimer's and Neurodegenerative Diseases (H.S., A.L.M., Z.L., J.M. Shulman), Human Genome Sequencing Center (H.D., S.S., S.D.-P., D.M.M., R.A.G.), and Center for Medical Ethics and Health Policy (A.L.M.), Baylor College of Medicine, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (Z.L., J.M. Shulman), Texas Children's Hospital, Houston
| |
Collapse
|
10
|
Kim H, Devanand DP, Carlson S, Goldberg TE. Apolipoprotein E Genotype e2: Neuroprotection and Its Limits. Front Aging Neurosci 2022; 14:919712. [PMID: 35912085 PMCID: PMC9329577 DOI: 10.3389/fnagi.2022.919712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this review, we comprehensively, qualitatively, and critically synthesized several features of APOE-e2, a known APOE protective variant, including its associations with longevity, cognition, and neuroimaging, and neuropathology, all in humans. If e2’s protective effects—and their limits—could be elucidated, it could offer therapeutic windows for Alzheimer’s disease (AD) prevention or amelioration. Literature examining e2 within the years 1994–2021 were considered for this review. Studies on human subjects were selectively reviewed and were excluded if observation of e2 was not specified. Effects of e2 were compared with e3 and e4, separately and as a combined non-e2 group. Our examination of existing literature indicated that the most robust protective role of e2 is in longevity and AD neuropathologies, but e2’s effect on cognition and other AD imaging markers (brain structure, function, and metabolism) were inconsistent, thus inconclusive. Notably, e2 was associated with greater risk of non-AD proteinopathies and a disadvantageous cerebrovascular profile. We identified multiple methodological shortcomings of the literature on brain function and cognition that could have contributed to inconsistent and potentially misleading findings. We make careful interpretations of existing findings and provide directions for research strategies that could effectively examine the independent and unbiased effect of e2 on AD risk.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Scott Carlson
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Terry E. Goldberg,
| |
Collapse
|
11
|
Salvadó G, Ferreira D, Operto G, Cumplido-Mayoral I, Arenaza-Urquijo EM, Cacciaglia R, Falcon C, Vilor-Tejedor N, Minguillon C, Groot C, van der Flier WM, Barkhof F, Scheltens P, Ossenkoppele R, Kern S, Zettergren A, Skoog I, Hort J, Stomrud E, van Westen D, Hansson O, Molinuevo JL, Wahlund LO, Westman E, Gispert JD. The protective gene dose effect of the APOE ε2 allele on gray matter volume in cognitively unimpaired individuals. Alzheimers Dement 2021; 18:1383-1395. [PMID: 34877786 PMCID: PMC9542211 DOI: 10.1002/alz.12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. METHODS Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired ε2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to each other and to the reference group (APOE ε3/ε3). RESULTS Carrying at least one ε2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in areas related to successful aging. DISCUSSION In addition to the known resistance against amyloid-β deposition, the larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional protection against AD-related cognitive decline.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Natàlia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Department of Clinical Genetics, ERASMUS MC, Rotterdam, the Netherlands
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU Medical Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands.,Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Jakub Hort
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic.,Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Erik Stomrud
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, Lund, Sweden.,Image and Function, Skåne University Hospital, Lund, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | |
Collapse
|
12
|
Costa AS, Pinho J, Kučikienė D, Reich A, Schulz JB, Reetz K. Cerebral Amyloid Angiopathy in Amyloid-Positive Patients from a Memory Clinic Cohort. J Alzheimers Dis 2021; 79:1661-1672. [PMID: 33492291 DOI: 10.3233/jad-201218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The overlap between cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is frequent and relevant for patients with cognitive impairment. OBJECTIVE To assess the role of the diagnosis of CAA on the phenotype of amyloid-β (Aβ) positive patients from a university-hospital memory clinic. METHODS Consecutive patients referred for suspected cognitive impairment, screened for Aβ pathological changes in cerebrospinal fluid (CSF), with available MRI and neuropsychological results were included. We determined the association between probable CAA and clinical, neuropsychological (at presentation and after a mean follow-up of 17 months in a sub-sample) and MRI (atrophy, white matter hyperintensities, perivascular spaces) characteristics. RESULTS Of 218 amyloid-positive patients, 8.3% fulfilled criteria for probable CAA. A multivariable logistic regression showed an independent association of probable CAA with lower Aβ1-42 (adjusted odds ratio [aOR] = 0.94, 95% confidence interval [95% CI] = 0.90-0.98, p = 0.003), and Aβ1-40 (aOR = 0.98, 95% CI=0.97-0.99 p = 0.017) levels in CSF, and presence of severe burden of enlarged perivascular spaces (EPVS) in the centrum semiovale (aOR = 3.67, 95% CI = 1.21-11.15, p = 0.022). Linear mixed-model analysis showed that both groups significantly deteriorated in global clinical severity, executive function and memory. Nevertheless, the presence of probable CAA did not differently affect the rate of cognitive decline. CONCLUSION The presence of probable CAA in Aβ positive patients was associated with lower Aβ1-42 and Aβ1-40 CSF levels and increased centrum semiovale EPVS burden, but did not independently influence clinical phenotype nor the rate of cognitive decline within our follow-up time window.
Collapse
Affiliation(s)
- Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - João Pinho
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Arno Reich
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Ferreira D, Nedelska Z, Graff-Radford J, Przybelski SA, Lesnick TG, Schwarz CG, Botha H, Senjem ML, Fields JA, Knopman DS, Savica R, Ferman TJ, Graff-Radford NR, Lowe VJ, Jack CR, Petersen RC, Lemstra AW, van de Beek M, Barkhof F, Blanc F, Loureiro de Sousa P, Philippi N, Cretin B, Demuynck C, Hort J, Oppedal K, Boeve BF, Aarsland D, Westman E, Kantarci K. Cerebrovascular disease, neurodegeneration, and clinical phenotype in dementia with Lewy bodies. Neurobiol Aging 2021; 105:252-261. [PMID: 34130107 PMCID: PMC8338792 DOI: 10.1016/j.neurobiolaging.2021.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
We investigated whether cerebrovascular disease contributes to neurodegeneration and clinical phenotype in dementia with Lewy bodies (DLB). Regional cortical thickness and subcortical gray matter volumes were estimated from structural magnetic resonance imaging (MRI) in 165 DLB patients. Cortical and subcortical infarcts were recorded and white matter hyperintensities (WMHs) were assessed. Subcortical only infarcts were more frequent (13.3%) than cortical only infarcts (3.1%) or both subcortical and cortical infarcts (2.4%). Infarcts, irrespective of type, were associated with WMHs. A higher WMH volume was associated with thinner orbitofrontal, retrosplenial, and posterior cingulate cortices, smaller thalamus and pallidum, and larger caudate volume. A higher WMH volume was associated with the presence of visual hallucinations and lower global cognitive performance, and tended to be associated with the absence of probable rapid eye movement sleep behavior disorder. Presence of infarcts was associated with the absence of parkinsonism. We conclude that cerebrovascular disease is associated with gray matter neurodegeneration in patients with probable DLB, which may have implications for the multifactorial treatment of probable DLB.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Zuzana Nedelska
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | | | | | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Marleen van de Beek
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands; Queen Square Institute of Neurology, University College London, London, UK
| | - Frederic Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Paulo Loureiro de Sousa
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Nathalie Philippi
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Benjamin Cretin
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Catherine Demuynck
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Jakub Hort
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ketil Oppedal
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Stavanger Medical Imaging Laboratory (SMIL), Department of Radiology, Stavanger University Hospital, Stavanger, Norway; Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | | | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Ikeda M, Okamoto K, Suzuki K, Takai E, Kasahara H, Furuta N, Furuta M, Tashiro Y, Shimizu C, Takatama S, Naito I, Sato M, Sakai Y, Takahashi M, Amari M, Takatama M, Higuchi T, Tsushima Y, Yokoo H, Kurabayashi M, Ishibashi S, Ishii K, Ikeda Y. Recurrent Lobar Hemorrhages and Multiple Cortical Superficial Siderosis in a Patient of Alzheimer's Disease With Homozygous APOE ε2 Allele Presenting Hypobetalipoproteinemia and Pathological Findings of 18F-THK5351 Positron Emission Tomography: A Case Report. Front Neurol 2021; 12:645625. [PMID: 34305778 PMCID: PMC8294698 DOI: 10.3389/fneur.2021.645625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer's disease, the apolipoprotein E gene (APOE) ε2 allele is a protective genetic factor, whereas the APOE ε4 allele is a genetic risk factor. However, both the APOE ε2 and the APOE ε4 alleles are genetic risk factors for lobar intracerebral hemorrhage. The reasons for the high prevalence of lobar intracerebral hemorrhage and the low prevalence of Alzheimer's disease with the APOE ε2 allele remains unknown. Here, we describe the case of a 79-year-old Japanese female with Alzheimer's disease, homozygous for the APOE ε2 allele. This patient presented with recurrent lobar hemorrhages and multiple cortical superficial siderosis. The findings on the 11C-labeled Pittsburgh Compound B-positron emission tomography (PET) were characteristic of Alzheimer's disease. 18F-THK5351 PET revealed that the accumulation of 18F-THK 5351 in the right pyramidal tract at the pontine level, the cerebral peduncle of the midbrain, and the internal capsule, reflecting the lesions of the previous lobar intracerebral hemorrhage in the right frontal lobe. Moreover, 18F-THK5351 accumulated in the bilateral globus pallidum, amygdala, caudate nuclei, and the substantia nigra of the midbrain, which were probably off-target reaction, by binding to monoamine oxidase B (MAO-B). 18F-THK5351 were also detected in the periphery of prior lobar hemorrhages and a cortical subarachnoid hemorrhage, as well as in some, but not all, areas affected by cortical siderosis. Besides, 18F-THK5351 retentions were observed in the bilateral medial temporal cortices and several cortical areas without cerebral amyloid angiopathy or prior hemorrhages, possibly where tau might accumulate. This is the first report of a patient with Alzheimer's disease, carrying homozygous APOE ε2 allele and presenting with recurrent lobar hemorrhages, multiple cortical superficial siderosis, and immunohistochemically vascular amyloid β. The 18F-THK5351 PET findings suggested MAO-B concentrated regions, astroglial activation, Waller degeneration of the pyramidal tract, neuroinflammation due to CAA related hemorrhages, and possible tau accumulation.
Collapse
Affiliation(s)
- Masaki Ikeda
- Division of General Education (Neurology), Faculty of Health & Medical Care, Saitama Medical University, Saitama, Japan.,Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan.,Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Keiji Suzuki
- Department of Pathology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Eriko Takai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Natsumi Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuichi Tashiro
- Department of Neurology, Mito Medical Center, Mito, Japan
| | - Chisato Shimizu
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Shin Takatama
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Isao Naito
- Department of Neurosurgery, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Mie Sato
- Department of Anesthesiology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yasujiro Sakai
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Manabu Takahashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masakuni Amari
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiko Kurabayashi
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenji Ishii
- Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
15
|
Piersson AD, Mohamad M, Suppiah S, Rajab NF. Topographical patterns of whole-brain structural alterations in association with genetic risk, cerebrospinal fluid, positron emission tomography biomarkers of Alzheimer’s disease, and neuropsychological measures. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Salvadó G, Grothe MJ, Groot C, Moscoso A, Schöll M, Gispert JD, Ossenkoppele R. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. Eur J Nucl Med Mol Imaging 2021; 48:2212-2224. [PMID: 33521872 PMCID: PMC8175302 DOI: 10.1007/s00259-021-05192-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/03/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE To examine associations between the APOE-ε2 and APOE-ε4 alleles and core Alzheimer's disease (AD) pathological hallmarks as measured by amyloid-β (Aβ) and tau PET in older individuals without dementia. METHODS We analyzed data from 462 ADNI participants without dementia who underwent Aβ ([18F]florbetapir or [18F]florbetaben) and tau ([18F]flortaucipir) PET, structural MRI, and cognitive testing. Employing APOE-ε3 homozygotes as the reference group, associations between APOE-ε2 and APOE-ε4 carriership with global Aβ PET and regional tau PET measures (entorhinal cortex (ERC), inferior temporal cortex, and Braak-V/VI neocortical composite regions) were investigated using linear regression models. In a subset of 156 participants, we also investigated associations between APOE genotype and regional tau accumulation over time using linear mixed models. Finally, we assessed whether Aβ mediated the cross-sectional and longitudinal associations between APOE genotype and tau. RESULTS Compared to APOE-ε3 homozygotes, APOE-ε2 carriers had lower global Aβ burden (βstd [95% confidence interval (CI)]: - 0.31 [- 0.45, - 0.16], p = 0.034) but did not differ on regional tau burden or tau accumulation over time. APOE-ε4 participants showed higher Aβ (βstd [95%CI]: 0.64 [0.42, 0.82], p < 0.001) and tau burden (βstd range: 0.27-0.51, all p < 0.006). In mediation analyses, APOE-ε4 only retained an Aβ-independent effect on tau in the ERC. APOE-ε4 showed a trend towards increased tau accumulation over time in Braak-V/VI compared to APOE-ε3 homozygotes (βstd [95%CI]: 0.10 [- 0.02, 0.18], p = 0.11), and this association was fully mediated by baseline Aβ. CONCLUSION Our data suggest that the established protective effect of the APOE-ε2 allele against developing clinical AD is primarily linked to resistance against Aβ deposition rather than tau pathology.
Collapse
Affiliation(s)
- Gemma Salvadó
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n 41013, Seville, Spain.
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Juan Domingo Gispert
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Groot C, Risacher SL, Chen JQA, Dicks E, Saykin AJ, Mac Donald CL, Mez J, Trittschuh EH, Mukherjee S, Barkhof F, Scheltens P, van der Flier WM, Ossenkoppele R, Crane PK. Differential trajectories of hypometabolism across cognitively-defined Alzheimer's disease subgroups. NEUROIMAGE-CLINICAL 2021; 31:102725. [PMID: 34153688 PMCID: PMC8238088 DOI: 10.1016/j.nicl.2021.102725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
Cognitive-subgroups can be identified among individuals
with AD dementia. Subgroup-specific patterns and longitudinal trajectories of
hypometabolism observed. Regional hypometabolism matched respective cognitive
profiles of subgroups. Cognitive-classification yields biologically distinct
subgroups.
Disentangling biologically distinct subgroups of Alzheimer’s
disease (AD) may facilitate a deeper understanding of the neurobiology underlying
clinical heterogeneity. We employed longitudinal [18F]FDG-PET
standardized uptake value ratios (SUVRs) to map hypometabolism across
cognitively-defined AD subgroups. Participants were 384 amyloid-positive individuals
with an AD dementia diagnosis from ADNI who had a total of 1028 FDG-scans (mean time
between first and last scan: 1.6 ± 1.8 years). These participants were categorized
into subgroups on the basis of substantial impairment at time of dementia diagnosis
in a specific cognitive domain relative to the average across domains. This approach
resulted in groups of AD-Memory (n = 135), AD-Executive (n = 8), AD-Language
(n = 22), AD-Visuospatial (n = 44), AD-Multiple Domains (n = 15) and AD-No Domains
(for whom no domain showed substantial relative impairment; n = 160). Voxelwise
contrasts against controls revealed that all AD-subgroups showed progressive
hypometabolism compared to controls across temporoparietal regions at time of AD
diagnosis. Voxelwise and regions-of-interest (ROI)-based linear mixed model analyses
revealed there were also subgroup-specific hypometabolism patterns and trajectories.
The AD-Memory group had more pronounced hypometabolism compared to all other groups
in the medial temporal lobe and posterior cingulate, and faster decline in metabolism
in the medial temporal lobe compared to AD-Visuospatial. The AD-Language group had
pronounced lateral temporal hypometabolism compared to all other groups, and the
pattern of metabolism was also more asymmetrical (left < right) than all other
groups. The AD-Visuospatial group had faster decline in metabolism in parietal
regions compared to all other groups, as well as faster decline in the precuneus
compared to AD-Memory and AD-No Domains. Taken together, in addition to a common
pattern, cognitively-defined subgroups of people with AD dementia show
subgroup-specific hypometabolism patterns, as well as differences in trajectories of
metabolism over time. These findings provide support to the notion that
cognitively-defined subgroups are biologically distinct.
Collapse
Affiliation(s)
- Colin Groot
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | | | - J Q Alida Chen
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Ellen Dicks
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Andrew J Saykin
- Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, MA, USA.
| | - Emily H Trittschuh
- Psychiatry & Behavioral Science, University of Washington, Seattle, WA, USA; Veterans Affairs Puget Sound Health Care System, Geriatric Research, Education, & Clinical Center, Seattle, WA, USA
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; University College London, Institutes of Neurology & Healthcare Engineering, London, United Kingdom.
| | - Philip Scheltens
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Wiesje M van der Flier
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Rik Ossenkoppele
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Lund University, Clinical Memory Research Unit, Lund, Sweden.
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
18
|
Paolini Paoletti F, Simoni S, Parnetti L, Gaetani L. The Contribution of Small Vessel Disease to Neurodegeneration: Focus on Alzheimer's Disease, Parkinson's Disease and Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22094958. [PMID: 34066951 PMCID: PMC8125719 DOI: 10.3390/ijms22094958] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer's disease (AD) and Parkinson's disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response.
Collapse
|
19
|
Ulugut Erkoyun H, Groot C, Heilbron R, Nelissen A, van Rossum J, Jutten R, Koene T, van der Flier WM, Wattjes MP, Scheltens P, Ossenkoppele R, Barkhof F, Pijnenburg Y. A clinical-radiological framework of the right temporal variant of frontotemporal dementia. Brain 2021; 143:2831-2843. [PMID: 32830218 PMCID: PMC9172625 DOI: 10.1093/brain/awaa225] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of the right temporal variant of frontotemporal dementia (rtvFTD) is still equivocal. The syndrome accompanying predominant right anterior temporal atrophy has previously been described as memory loss, prosopagnosia, getting lost and behavioural changes. Accurate detection is challenging, as the clinical syndrome might be confused with either behavioural variant FTD (bvFTD) or Alzheimer’s disease. Furthermore, based on neuroimaging features, the syndrome has been considered a right-sided variant of semantic variant primary progressive aphasia (svPPA). Therefore, we aimed to demarcate the clinical and neuropsychological characteristics of rtvFTD versus svPPA, bvFTD and Alzheimer’s disease. Moreover, we aimed to compare its neuroimaging profile against svPPA, which is associated with predominant left anterior temporal atrophy. Of 619 subjects with a clinical diagnosis of frontotemporal dementia or primary progressive aphasia, we included 70 subjects with a negative amyloid status in whom predominant right temporal lobar atrophy was identified based on blinded visual assessment of their initial brain MRI scans. Clinical symptoms were assessed retrospectively and compared with age- and sex-matched patients with svPPA (n = 70), bvFTD (n = 70) and Alzheimer’s disease (n = 70). Prosopagnosia, episodic memory impairment and behavioural changes such as disinhibition, apathy, compulsiveness and loss of empathy were the most common initial symptoms, whereas during the disease course, patients developed language problems such as word-finding difficulties and anomia. Distinctive symptoms of rtvFTD compared to the other groups included depression, somatic complaints, and motor/mental slowness. Aside from right temporal atrophy, the imaging pattern showed volume loss of the right ventral frontal area and the left temporal lobe, which represented a close mirror image of svPPA. Atrophy of the bilateral temporal poles and the fusiform gyrus were associated with prosopagnosia in rtvFTD. Our results highlight that rtvFTD has a unique clinical presentation. Since current diagnostic criteria do not cover specific symptoms of the rtvFTD, we propose a diagnostic tree to be used to define diagnostic criteria and call for an international validation.
Collapse
Affiliation(s)
- Hulya Ulugut Erkoyun
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ronja Heilbron
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anne Nelissen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonathan van Rossum
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Roos Jutten
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ted Koene
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mike P Wattjes
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Lund University, Clinical Memory Research Unit, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, University College London, UK
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Xia Y, Wang Y, Yang L, Wang Y, Liang X, Zhao Q, Wu J, Chu S, Liang Z, Ding H, Ding D, Cheng X, Dong Q. Incident cerebral microbleeds and hypertension defined by the 2017 ACC/AHA Guidelines. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:314. [PMID: 33708941 PMCID: PMC7944264 DOI: 10.21037/atm-20-5142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The cut-off for hypertension was lowered to blood pressure (BP) over 130/80 mmHg in the 2017 American College of Cardiology/American Heart Association (ACC/AHA) guideline. Whether the new definition of hypertension remains a potent risk factor of cerebral microbleeds (CMBs) is uncertain. We aimed to analyze the relationship between the new definition of hypertension and incident CMBs in a 7-year longitudinal community study. Methods This study is a sub-study of the Shanghai Aging Study (SAS). A total of 317 participants without stroke or dementia were included at baseline (2009–2011), and were invited to repeated clinical examinations and cerebral magnetic resonance imaging (MRI) at follow-up (2016–2018). CMBs at baseline and follow-up were evaluated on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted angiography (SWAN) sequence of MRI. We classified baseline BP into four categories: normal BP, elevated systolic BP, stage 1 hypertension and stage 2 hypertension according to the ACC/AHA guideline. We assessed the associations between BP categories and incident CMBs by generalized linear models. Results A total of 159 participants (median age, 67 years) completed follow–up examinations with a mean interval of 6.9 years. Both stage 1 and stage 2 hypertension at baseline were significantly related with a higher risk of incident CMBs (IRR 2.77, 95% CI, 1.11–6.91, P=0.028; IRR 3.04, 95% CI, 1.29–7.16, P=0.011, respectively), indicating dose-response effects across BP categories. Participants with ≥5 incident CMBs or incident CMBs in the deep locations all had baseline stage 1 and 2 hypertension. Conclusions Participants with baseline stage 1 and stage 2 hypertension had a significantly higher risk of incident CMBs in this 7-year longitudinal community cohort.
Collapse
Affiliation(s)
- Yiwei Xia
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lumeng Yang
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yiqing Wang
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Wu
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Department of Neurology, Jing'an District Center Hospital, Shanghai, China
| | - Shuguang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Center Hospital, Shanghai, China
| | - Hansheng Ding
- Shanghai Health Development Research Center (Shanghai Medical Information Center), Shanghai, China
| | - Ding Ding
- Institute of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Camarda C, Torelli P, Pipia C, Sottile G, Cilluffo G, Camarda R. APOE Genotypes and Brain Imaging Classes in Normal Cognition, Mild Cognitive Impairment, and Alzheimer's Disease: A Longitudinal Study. Curr Alzheimer Res 2020; 17:766-780. [PMID: 33167837 DOI: 10.2174/1567205017666201109093314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/20/2020] [Accepted: 10/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate in 419 stroke-free cognitively normal subjects (CN) aged 45-82 years covering during a long prospective study (11.54 ± 1.47 years) the preclinical to dementia spectrum: 1) the distribution of small vessel disease (V) and brain atrophy (A) aggregated as following: V-/A-, V-/A+, V+/A-, V+/A+; 2) the relationship of these imaging classes with individual apolipoprotein E (APOE) genotypes; 3) the risk of progression to Alzheimer Disease (AD) of the individual APOE genotypes. METHODS Participants underwent one baseline (t0), and 4 clinical and neuropsychological assessments (t1,t2,t3, and t4). Brain MRI was performed in all subjects at t0, t2, t3 and t4.. White matter hyperintensities were assessed through two visual rating scales. Lacunes were also rated. Subcortical and global brain atrophy were determined through the bicaudate ratio and the lateral ventricle to brain ratio, respectively. APOE genotypes were determined at t0 in all subjects. Cox proportional hazard model was used to evaluate the risk of progression to AD. RESULTS The imaging class of mixed type was very common in AD, and in non amnestic mild cognitive impaired APOE ε4 non carriers. In these subjects, frontal and parieto-occipital regions were most affected by small vessel disease. CONCLUSION Our findings suggest that the APOE ε3 allele is probably linked to the brain vascular pathology.
Collapse
Affiliation(s)
- Cecilia Camarda
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paola Torelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | | | - Gianluca Sottile
- Department of Economics, Business, and Statistics, University of Palermo, Palermo, Italy,Institute for Research and Biomedical Innovation (IRIB), National Research Council, Palermo, Italy
| | - Giovanna Cilluffo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council, Palermo, Italy
| | - Rosolino Camarda
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Singleton EH, Pijnenburg YAL, Sudre CH, Groot C, Kochova E, Barkhof F, La Joie R, Rosen HJ, Seeley WW, Miller B, Cardoso MJ, Papma J, Scheltens P, Rabinovici GD, Ossenkoppele R. Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. Alzheimers Res Ther 2020; 12:148. [PMID: 33189136 PMCID: PMC7666520 DOI: 10.1186/s13195-020-00717-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND We previously found temporoparietal-predominant atrophy patterns in the behavioral variant of Alzheimer's disease (bvAD), with relative sparing of frontal regions. Here, we aimed to understand the clinico-anatomical dissociation in bvAD based on alternative neuroimaging markers. METHODS We retrospectively included 150 participants, including 29 bvAD, 28 "typical" amnestic-predominant AD (tAD), 28 behavioral variant of frontotemporal dementia (bvFTD), and 65 cognitively normal participants. Patients with bvAD were compared with other diagnostic groups on glucose metabolism and metabolic connectivity measured by [18F]FDG-PET, and on subcortical gray matter and white matter hyperintensity (WMH) volumes measured by MRI. A receiver-operating-characteristic-analysis was performed to determine the neuroimaging measures with highest diagnostic accuracy. RESULTS bvAD and tAD showed predominant temporoparietal hypometabolism compared to controls, and did not differ in direct contrasts. However, overlaying statistical maps from contrasts between patients and controls revealed broader frontoinsular hypometabolism in bvAD than tAD, partially overlapping with bvFTD. bvAD showed greater anterior default mode network (DMN) involvement than tAD, mimicking bvFTD, and reduced connectivity of the posterior cingulate cortex with prefrontal regions. Analyses of WMH and subcortical volume showed closer resemblance of bvAD to tAD than to bvFTD, and larger amygdalar volumes in bvAD than tAD respectively. The top-3 discriminators for bvAD vs. bvFTD were FDG posterior-DMN-ratios (bvAD bvFTD, area under the curve [AUC] range 0.85-0.91, all p < 0.001). The top-3 for bvAD vs. tAD were amygdalar volume (bvAD>tAD), MRI anterior-DMN-ratios (bvADCONCLUSIONS Subtle frontoinsular hypometabolism and anterior DMN involvement may underlie the prominent behavioral phenotype in bvAD.
Collapse
Affiliation(s)
- Ellen H. Singleton
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Carole H. Sudre
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elena Kochova
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Center for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - William W. Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - Bruce Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - M. Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Translational Imaging Group, CMIC, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Janne Papma
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gil D. Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, USA
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Lee JS, Lee H, Park S, Choe Y, Park YH, Cheon BK, Hahn A, Ossenkoppele R, Kim HJ, Kim S, Yoo H, Jang H, Cho SH, Kim SJ, Kim JP, Jung YH, Park KC, DeCarli C, Weiner MW, Na DL, Seo SW. Association between APOE ε2 and Aβ burden in patients with Alzheimer- and vascular-type cognitive impairment. Neurology 2020; 95:e2354-e2365. [PMID: 32928967 DOI: 10.1212/wnl.0000000000010811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between APOE genotype and β-amyloid (Aβ) burden, as measured by PET in patients with subcortical vascular cognitive impairment (SVCI) and those with Alzheimer disease-related cognitive impairment (ADCI). METHODS This was a cross-sectional study of 310 patients with SVCI and 999 with ADCI. To evaluate the effects of APOE genotype or diagnostic group on Aβ positivity, we performed multivariate logistic regression analyses. Further distinctive underlying features of latent subgroups were examined by employing a latent class cluster analysis approach. RESULTS In comparison with ε3 homozygotes, in the ADCI group, ε2 carriers showed a lower frequency of Aβ positivity (odds ratio [OR] 0.43, 95% confidence interval [CI] 0.23-0.79), while in the SVCI group, ε2 carriers showed a higher frequency of Aβ positivity (OR 2.26, 95% CI 1.02-5.01). In particular, we observed an interaction effect of ε2 carrier status and diagnostic group on Aβ positivity (OR 5.12, 95% CI 1.93-13.56), in that relative to ε3 homozygotes, there were more Aβ-positive ε2 carriers in the SVCI group than in the ADCI group. We also identified latent subgroups of Aβ-positive APOE ε2 carriers with SVCI and Aβ-positive APOE ε4 carriers with ADCI. CONCLUSIONS Our findings suggest that APOE ε2 is distinctly associated with Aβ deposition in patients with SVCI and those with ADCI. Our findings further suggest that there is a distinctive subgroup of Aβ-positive APOE ε2 carriers with SVCI among patients with cognitive impairment.
Collapse
Affiliation(s)
- Jin San Lee
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA.
| | - Hyejoo Lee
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA.
| | - Seongbeom Park
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Yeongsim Choe
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Yu Hyun Park
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Bo Kyoung Cheon
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Alice Hahn
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Rik Ossenkoppele
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Hee Jin Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Seonwoo Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Heejin Yoo
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Hyemin Jang
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Soo Hyun Cho
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Seung Joo Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Jun Pyo Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Young Hee Jung
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Key-Chung Park
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Charles DeCarli
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Michael W Weiner
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Duk L Na
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Sang Won Seo
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA.
| |
Collapse
|
24
|
Low A, Ng KP, Chander RJ, Wong B, Kandiah N. Association of Asymmetrical White Matter Hyperintensities and Apolipoprotein E4 on Cognitive Impairment. J Alzheimers Dis 2020; 70:953-964. [PMID: 31306121 DOI: 10.3233/jad-190159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Asymmetrical patterns of cerebral damage have been widely observed in a range of neurodegenerative diseases, including Alzheimer's disease (AD). OBJECTIVE To elucidate the clinical associations of asymmetrical white matter hyperintensities (WMH) in mild cognitive impairment (MCI) and AD. METHODS Regional WMH asymmetry of 340 participants (90 healthy controls, 132 MCI, 118 AD) was calculated as the difference in normalized hemispheric WMH volume (WMH/ICV) adjusted for structural brain asymmetry of respective lobar regions and total WMH. WMH asymmetry was analyzed in relation to disease classification, cognition, and APOE4 status using ANCOVA and multiple regression analysis, controlling for gender, age, ethnicity, and correcting for multiple comparisons using Bonferroni correction. Moderation analysis examined interaction effects of APOE4 on associations between cognition and WMH asymmetry. RESULTS Greater left-dominant occipital WMH asymmetry was observed in AD, compared to healthy controls and MCI, and was associated with poorer global cognition, memory, language, and executive functions among cognitively impaired participants (MCI and AD). Cognitively impaired APOE4 carriers displayed greater left-dominant WMH asymmetry in the whole brain and frontal lobe, compared to non-carriers. Importantly, effects were independent of structural brain asymmetry, global cerebral atrophy, and overall WMH burden. Moderation analysis demonstrated associations between left-dominant WMH asymmetry and cognition in cognitively impaired APOE4 non-carriers, but not APOE4 carriers. CONCLUSION Leftward asymmetry of WMH may be more pathological in nature, compared to symmetrical WMH. Furthermore, the detrimental effects of WMH asymmetry was more relevant in APOE4-negative cognitive impairment, compared to APOE4-positive which may be driven primarily by AD pathology.
Collapse
Affiliation(s)
- Audrey Low
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Russell Jude Chander
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Benjamin Wong
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS, Singapore, Singapore
| |
Collapse
|
25
|
Ingala S, Mazzai L, Sudre CH, Salvadó G, Brugulat-Serrat A, Wottschel V, Falcon C, Operto G, Tijms B, Gispert JD, Molinuevo JL, Barkhof F. The relation between APOE genotype and cerebral microbleeds in cognitively unimpaired middle- and old-aged individuals. Neurobiol Aging 2020; 95:104-114. [PMID: 32791423 DOI: 10.1016/j.neurobiolaging.2020.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/10/2023]
Abstract
Positive associations between cerebral microbleeds (CMBs) and APOE-ε4 (apolipoprotein E) genotype have been reported in Alzheimer's disease, but show conflicting results. We investigated the effect of APOE genotype on CMBs in a cohort of cognitively unimpaired middle- and old-aged individuals enriched for APOE-ε4 genotype. Participants from ALFA (Alzheimer and Families) cohort were included and their magnetic resonance scans assessed (n = 564, 50% APOE-ε4 carriers). Quantitative magnetic resonance analyses included visual ratings, atrophy measures, and white matter hyperintensity (WMH) segmentations. The prevalence of CMBs was 17%, increased with age (p < 0.05), and followed an increasing trend paralleling APOE-ε4 dose. The number of CMBs was significantly higher in APOE-ε4 homozygotes compared to heterozygotes and non-carriers (p < 0.05). This association was driven by lobar CMBs (p < 0.05). CMBs co-localized with WMH (p < 0.05). No associations between CMBs and APOE-ε2, gray matter volumes, and cognitive performance were found. Our results suggest that cerebral vessels of APOE-ε4 homozygous are more fragile, especially in lobar locations. Co-occurrence of CMBs and WMH suggests that such changes localize in areas with increased vascular vulnerability.
Collapse
Affiliation(s)
- Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Linda Mazzai
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Medicine (DiMED), Institute of Radiology, University of Padua, Padua, Italy
| | - Carole H Sudre
- Engineering and Imaging Sciences, King's College London, London, UK; Dementia Research Centre, University College London, London, UK; Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, UK
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Viktor Wottschel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain
| | - Betty Tijms
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Pompeu Fabra University, Barcelona, Spain.
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | | |
Collapse
|
26
|
Liu D, Duan S, Wei P, Chen L, Wang J, Zhang J. Aberrant Brain Spontaneous Activity and Synchronization in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study. Front Aging Neurosci 2020; 12:181. [PMID: 32612525 PMCID: PMC7308457 DOI: 10.3389/fnagi.2020.00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
The study aimed to investigate the aberration of brain spontaneous activity and synchronization in type 2 diabetes mellitus (T2DM) patients homozygous for the apolipoprotein E (APOE)-ε3 allele. In the APOE-ε3 homozygotes, 37 T2DM patients and 37 well-matched healthy controls (HC) were included to acquire blood sample measurements, neuropsychological tests, and brain functional MRI data. The amplitude of low-frequency fluctuations (ALFF) analysis was conducted to identify the brain areas with abnormal spontaneous activity. Then, the identified brain areas were taken as seeds to compute their functional connectivity (FC) with other brain regions. The two-sample t-test or the Mann-Whitney U test were applied to reveal significant differences in acquired measurements between the two groups. The potential correlations among the three types of measurements were explored using partial correlation analysis in the T2DM group. The T2DM group had elevated glycemic levels and scored lower on the cognitive assessment but higher on the anxiety and depression tests (p < 0.05). The T2DM group exhibited higher ALFF in the left middle occipital gyrus, and the left middle occipital gyrus had lower FC with the left caudate nucleus and the left inferior parietal gyrus (p < 0.05). No significant correlations were observed. T2DM patients homozygous for the APOE-ε3 allele exhibited aberrant brain spontaneous activity and synchronization in brain regions associated with vision-related information processing, executive function, and negative emotions. The findings may update our understanding of the mechanisms of brain dysfunction in T2DM patients in a neuroimaging perspective.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Medical Imaging, Chongqing University Cancer Hospital, Chongqing, China
| | - Shanshan Duan
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lihua Chen
- Department of Radiology, PLA 904 Hospital, Wuxi, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiuquan Zhang
- Department of Medical Imaging, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
27
|
Investigating APOE, APP-Aβ metabolism genes and Alzheimer's disease GWAS hits in brain small vessel ischemic disease. Sci Rep 2020; 10:7103. [PMID: 32345996 PMCID: PMC7188838 DOI: 10.1038/s41598-020-63183-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease and small vessel ischemic disease frequently co-exist in the aging brain. However, pathogenic links between these 2 disorders are yet to be identified. Therefore we used Taqman genotyping, exome and RNA sequencing to investigate Alzheimer’s disease known pathogenic variants and pathways: APOE ε4 allele, APP-Aβ metabolism and late-onset Alzheimer’s disease main genome-wide association loci (APOE, BIN1, CD33, MS4A6A, CD2AP, PICALM, CLU, CR1, EPHA1, ABCA7) in 96 early-onset small vessel ischemic disease Caucasian patients and 368 elderly neuropathologically proven controls (HEX database) and in a mouse model of cerebral hypoperfusion. Only a minority of patients (29%) carried APOE ε4 allele. We did not detect any pathogenic mutation in APP, PSEN1 and PSEN2 and report a burden of truncating mutations in APP-Aß degradation genes. The single-variant association test identified 3 common variants with a likely protective effect on small vessel ischemic disease (0.54>OR > 0.32, adj. p-value <0.05) (EPHA1 p.M900V and p.V160A and CD33 p.A14V). Moreover, 5/17 APP-Aß catabolism genes were significantly upregulated (LogFC > 1, adj. p-val<0.05) together with Apoe, Ms4a cluster and Cd33 during brain hypoperfusion and their overexpression correlated with the ischemic lesion size. Finally, the detection of Aβ oligomers in the hypoperfused hippocampus supported the link between brain ischemia and Alzheimer’s disease pathology.
Collapse
|
28
|
van Loenhoud AC, de Boer C, Wols K, Pijnenburg YA, Lemstra AW, Bouwman FH, Prins ND, Scheltens P, Ossenkoppele R, van der Flier WM. High occurrence of transportation and logistics occupations among vascular dementia patients: an observational study. ALZHEIMERS RESEARCH & THERAPY 2019; 11:112. [PMID: 31882022 PMCID: PMC6933928 DOI: 10.1186/s13195-019-0570-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022]
Abstract
Background Growing evidence suggests a role of occupation in the emergence and manifestation of dementia. Occupations are often defined by complexity level, although working environments and activities differ in several other important ways. We aimed to capture the multi-faceted nature of occupation through its measurement as a qualitative (instead of a quantitative) variable and explored its relationship with different types of dementia. Methods We collected occupational information of 2121 dementia patients with various suspected etiologies from the Amsterdam Dementia Cohort (age 67 ± 8, 57% male; MMSE 21 ± 5). Our final sample included individuals with Alzheimer’s disease (AD) dementia (n = 1467), frontotemporal dementia (n = 281), vascular dementia (n = 98), Lewy body disease (n = 174), and progressive supranuclear palsy/corticobasal degeneration (n = 101). Within the AD group, we used neuropsychological data to further characterize patients by clinical phenotypes. All participants were categorized into 1 of 11 occupational classes, across which we evaluated the distribution of dementia (sub)types with χ2 analyses. We gained further insight into occupation-dementia relationships through post hoc logistic regressions that included various demographic and health characteristics as explanatory variables. Results There were significant differences in the distribution of dementia types across occupation groups (χ2 = 85.87, p < .001). Vascular dementia was relatively common in the Transportation/Logistics sector, and higher vascular risk factors partly explained this relationship. AD occurred less in Transportation/Logistics and more in Health Care/Welfare occupations, which related to a higher/lower percentage of males. We found no relationships between occupational classes and clinical phenotypes of AD (χ2 = 53.65, n.s.). Conclusions Relationships between occupation and dementia seem to exist beyond the complexity level, which offers new opportunities for disease prevention and improvement of occupational health policy.
Collapse
Affiliation(s)
- A C van Loenhoud
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| | - C de Boer
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - K Wols
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Y A Pijnenburg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - A W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - F H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - N D Prins
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - P Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - R Ossenkoppele
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Lund University, 221 00, Lund, Sweden
| | - W M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Wolters EE, Ossenkoppele R, Golla SS, Verfaillie SC, Timmers T, Visser D, Tuncel H, Coomans EM, Windhorst AD, Scheltens P, van der Flier WM, Boellaard R, van Berckel BN. Hippocampal [ 18F]flortaucipir BP ND corrected for possible spill-in of the choroid plexus retains strong clinico-pathological relationships. NEUROIMAGE-CLINICAL 2019; 25:102113. [PMID: 31835238 PMCID: PMC6920114 DOI: 10.1016/j.nicl.2019.102113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Off-target [18F]flortaucipir (tau) PET binding in the choroid plexus causes spill-in into the nearby hippocampus, which may influence the correlation between [18F]flortaucipir binding and measures of cognition. Previously, we showed that partial volume correction (combination of Van Cittert iterative deconvolution and HYPR denoising; PVC HDH) and manually eroding the hippocampus resulted in a significant decrease of the choroid plexus spill-in. In this study, we compared three different approaches for the quantification of hippocampal [18F]flortaucipir signal using a semi-automated technique, and assessed correlations with cognitive performance across methods. METHODS Dynamic 130 min [18F]flortaucipir PET scans were performed in 109 subjects (45 cognitively normal subjects (CN) and 64 mild cognitive impairment/Alzheimer's disease (AD) dementia patients. We extracted hippocampal binding potential (BPND) using receptor parametric mapping with cerebellar grey matter as reference region. PVC HDH was performed. Based on our previous study in which we manually eroded 40% ± 10% of voxels of the hippocampus, three hippocampal volumes-of-interest (VOIs) were generated: a non-optimized 100% hippocampal VOI [100%], and combining HDH with eroding a percentage of the highest hippocampus BPND voxels (i.e. lowering spill-in) resulting in optimized 50%[50%HDH] and 40%[40%HDH] hippocampal VOIs. Cognitive performance was assessed with the Mini-Mental State Examination (MMSE) and Rey auditory verbal learning delayed recall. We performed receiver operating characteristic analyses to investigate which method could best discriminate MCI/AD from controls. Subsequently, we performed linear regressions to investigate associations between the hippocampal [18F]flortaucipir BPND VOIs and MMSE/delayed recall adjusted for age, sex and education. RESULTS We found higher hippocampal [18F]flortaucipir BPND in MCI/AD patients (BPND100%=0.27±0.15) compared to CN (BPND100%= 0.07±0.13) and all methods showed comparable discriminative effects (AUC100%=0.85[CI=0.78-0.93]; AUC50%HDH=0.84[CI=0.74-0.92]; AUC40%HDH=0.83[CI=0.74-0.92]). Across groups, higher [18F]flortaucipir BPND was related to lower scores on MMSE (standardized β100%=-0.38[CI=-0.57-0.20]; β50%HDH= -0.37[CI=-0.54-0.19]; β40%HDH=-0.35[CI=-0.53-0.17], all p<0.001) and delayed recall (standardized β100%=-0.64[CI=-0.79-0.49]; β50%HDH= -0.61[CI=-0.76-0.46]; β40%HDH=-0.59[CI=-0.75-0.44]; all p<0.001), with comparable effect sizes for all hippocampal VOIs. CONCLUSIONS Hippocampal tau load measured with [18F]flortaucipir PET is strongly associated with cognitive function. Both discrimination between diagnostic groups and associations between hippocampal [18F]flortaucipir BPND and memory were comparable for all methods. The non-optimized 100% hippocampal VOI may be sufficient for clinical interpretation. However, proper correction for choroid plexus spillover and may be required in case of smaller effect sizes between subject groups or for longitudinal studies.
Collapse
Affiliation(s)
- Emma E Wolters
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sandeep Sv Golla
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Sander Cj Verfaillie
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Tessa Timmers
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands; Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Denise Visser
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Hayel Tuncel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Emma M Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Bart Nm van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
30
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 719] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
31
|
Clinical phenotype, atrophy, and small vessel disease in APOEε2 carriers with Alzheimer disease. Neurology 2019; 93:135. [DOI: 10.1212/wnl.0000000000007421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Caunca MR, De Leon-Benedetti A, Latour L, Leigh R, Wright CB. Neuroimaging of Cerebral Small Vessel Disease and Age-Related Cognitive Changes. Front Aging Neurosci 2019; 11:145. [PMID: 31316367 PMCID: PMC6610261 DOI: 10.3389/fnagi.2019.00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023] Open
Abstract
Subclinical cerebrovascular disease is frequently identified in neuroimaging studies and is thought to play a role in the pathogenesis of cognitive disorders. Identifying the etiologies of different types of lesions may help investigators differentiate between age-related and pathological cerebrovascular damage in cognitive aging. In this review article, we aim to describe the epidemiology and etiology of various brain magnetic resonance imaging (MRI) measures of vascular damage in cognitively normal, older adult populations. We focus here on population-based prospective cohort studies of cognitively unimpaired older adults, as well as discuss the heterogeneity of MRI findings and their relationships with cognition. This review article emphasizes the need for a better understanding of subclinical cerebrovascular disease in cognitively normal populations, in order to more effectively identify and prevent cognitive decline in our rapidly aging population.
Collapse
Affiliation(s)
- Michelle R Caunca
- Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Leonard M. Miller School of Medicine, Evelyn F. McKnight Brain Institute, University of Miami, Miami, FL, United States.,Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Andres De Leon-Benedetti
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lawrence Latour
- National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Richard Leigh
- National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Clinton B Wright
- National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Mollayeva T, Hurst M, Escobar M, Colantonio A. Sex-specific incident dementia in patients with central nervous system trauma. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:355-367. [PMID: 31065582 PMCID: PMC6495080 DOI: 10.1016/j.dadm.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction Despite evidence that central nervous system (CNS) trauma, including traumatic brain injury and spinal cord injury, can cause sustained neurocognitive impairment, it remains unclear whether trauma-related variables are associated with incident dementia independently of other known risk factors. Methods All adults without dementia entering the health-care system with diagnoses of CNS trauma were examined for occurrence of dementia. All trauma-related variables were examined as predictors in sex-specific Cox regression models, controlling for other known risk factors. Results Over a median follow-up of 52 months, 32,834 of 712,708 patients (4.6%) developed dementia. Traumatic brain injury severity and spinal cord injury interacted with age to influence dementia onset; women were at a greater risk of developing dementia earlier than men, all other factors being equal. Discussion Risk stratification of patients with CNS trauma by sex is vital in identifying those most likely to develop dementia and in understanding the course and modifying factors.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehab-University Health Network, Toronto, Ontario, Canada.,Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
| | - Mackenzie Hurst
- Toronto Rehab-University Health Network, Toronto, Ontario, Canada
| | - Michael Escobar
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehab-University Health Network, Toronto, Ontario, Canada.,Acquired Brain Injury Research Lab, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Over the last decade over 40 loci have been associated with risk of Alzheimer's disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants. RECENT FINDINGS Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC. SUMMARY There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.
Collapse
Affiliation(s)
- Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Brian Fulton-Howard
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|