1
|
Goodwin JW, Hopkins L, Conrad AL. White matter tract integrity in isolated oral clefts: relationship to cognition and reading skills. Child Neuropsychol 2025; 31:31-52. [PMID: 38501945 PMCID: PMC11411015 DOI: 10.1080/09297049.2024.2330725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Children with isolated cleft of the lip and/or palate (iCL/P) have been shown to be at risk for impaired reading ability. Structural and functional neuroimaging studies have revealed subtle morphological and functional abnormalities correlated to cognition and reading ability. However, the integrity of white matter tracts and their potential relationship to reading performance in iCL/P is under-studied. The purpose of the present study was to evaluate white matter integrity related to cognition and reading skills among participants with and without iCL/P. Data from two cross-sectional, case/control studies with similar neuropsychological batteries and diffusion tensor imaging (DTI) protocols were combined. The final sample included 210 participants (ages 7 to 27 years). Group and sex differences in fractional anisotropy (FA) values were examined between participants with (n = 105) and without (n = 105) iCL/P. Potential associations between FA values and age, cognition, and reading skills were also evaluated separately by group and sex. Sex effects were prominent in association and projection fibers, and effects of cleft status were found in association fibers and cerebellar regions, with isolated associations to reading skills. Findings provide preliminary understanding of microstructural associations to cognitive and reading performance among children, adolescents, and young adults with iCL/P.
Collapse
Affiliation(s)
- Jon Willie Goodwin
- Department of Counseling, Clinical and School Psychology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lauren Hopkins
- Department of Psychiatry, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Amy Lynn Conrad
- Stead Family Department of Pediatrics, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
2
|
Neema M, Schultz JL, Langbehn DR, Conrad AL, Epping EA, Magnotta VA, Nopoulos PC. Mutant Huntingtin Drives Development of an Advantageous Brain Early in Life: Evidence in Support of Antagonistic Pleiotropy. Ann Neurol 2024; 96:1006-1019. [PMID: 39115048 PMCID: PMC11496017 DOI: 10.1002/ana.27046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Huntington's disease (HD) is a neurodegenerative disease caused by a triplet repeat expansion within the gene huntingtin (HTT). Antagonistic pleiotropy is a theory of aging that posits that some genes, facilitating individual fitness early in life through adaptive evolutionary changes, also augment detrimental aging-related processes. Antagonistic pleiotropy theory may explain a positive evolutionary pressure toward functionally advantageous brain development that is vulnerable to rapid degeneration. The current study investigated antagonistic pleiotropy in HD using a years-to-onset paradigm in a unique sample of children and young adults at risk for HD. METHODS Cognitive, behavioral, motor, and brain structural measures from premanifest gene-expanded (n = 79) and gene nonexpanded (n = 112) participants (6-21 years) in the Kids-HD study were examined. All measures in the gene-expanded group were modeled using a mixed-effects regression approach to assess years-to-onset-based changes while controlling for normal growth. Simultaneously, structure-function associations were also examined. RESULTS Decades from motor onset, gene-expanded participants showed significantly better cognitive, behavioral, and motor scores versus gene nonexpanded controls, along with larger cerebral volumes and cortical features. After this initial peak, a prolonged deterioration was observed in both functional and structural measures. Far from onset, brain measures were positively correlated with functional measures, supporting the view that functional advantages were mediated by structural differences. INTERPRETATION Mutant HTT may drive the development of a larger than normal brain that subserves superior early-life function. These findings support the antagonistic pleiotropy theory of HTT in HD, where this gene drives early advantage followed by accelerated aging processes. ANN NEUROL 2024;96:1006-1019.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Jordan L. Schultz
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
- Department of Neurology, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Douglas R. Langbehn
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Department of Radiology, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
- Department of Neurology, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
- Stead Family Department of Pediatrics, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
3
|
Liu Y, Chen X, Ma Y, Song C, Ma J, Chen C, Su J, Ma L, Saiyin H. Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol Psychiatry 2024; 29:3024-3039. [PMID: 38654124 PMCID: PMC11449793 DOI: 10.1038/s41380-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunlong Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chenyun Song
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jixin Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Yao J, Morrison MA, Jakary A, Avadiappan S, Rowley P, Glueck J, Driscoll T, Geschwind MD, Nelson AB, Possin KL, Xu D, Hess CP, Lupo JM. Altered Iron and Microstructure in Huntington's Disease Subcortical Nuclei: Insight From 7T MRI. J Magn Reson Imaging 2024; 60:1484-1499. [PMID: 38206986 PMCID: PMC11521114 DOI: 10.1002/jmri.29195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pathophysiological changes of Huntington's disease (HD) can precede symptom onset by decades. Robust imaging biomarkers are needed to monitor HD progression, especially before the clinical onset. PURPOSE To investigate iron dysregulation and microstructure alterations in subcortical regions as HD imaging biomarkers, and to associate such alterations with motor and cognitive impairments. STUDY TYPE Prospective. POPULATION Fourteen individuals with premanifest HD (38.0 ± 11.0 years, 9 females; far-from-onset N = 6, near-onset N = 8), 21 manifest HD patients (49.1 ± 12.1 years, 11 females), and 33 age-matched healthy controls (43.9 ± 12.2 years, 17 females). FIELD STRENGTH/SEQUENCE 7 T, T1-weighted imaging, quantitative susceptibility mapping, and diffusion tensor imaging. ASSESSMENT Volume, susceptibility, fractional anisotropy (FA), and mean diffusivity (MD) within subcortical brain structures were compared across groups, used to establish HD classification models, and correlated to clinical measures and cognitive assessments. STATISTICAL TESTS Generalized linear model, multivariate logistic regression, receiver operating characteristics with the area under the curve (AUC), and likelihood ratio test comparing a volumetric model to one that also includes susceptibility and diffusion metrics, Wilcoxon paired signed-rank test, and Pearson's correlation. A P-value <0.05 after Benjamini-Hochberg correction was considered statistically significant. RESULTS Significantly higher striatal susceptibility and FA were found in premanifest and manifest HD preceding atrophy, even in far-from-onset premanifest HD compared to controls (putamen susceptibility: 0.027 ± 0.022 vs. 0.018 ± 0.013 ppm; FA: 0.358 ± 0.048 vs. 0.313 ± 0.039). The model with additional susceptibility, FA, and MD features showed higher AUC compared to volume features alone when differentiating premanifest HD from HC (0.83 vs. 0.66), and manifest from premanifest HD (0.94 vs. 0.83). Higher striatal susceptibility significantly correlated with cognitive deterioration in HD (executive function: r = -0.600; socioemotional function: r = -0.486). DATA CONCLUSION 7 T MRI revealed iron dysregulation and microstructure alterations with HD progression, which could precede volume loss, provide added value to HD differentiation, and might be associated with cognitive changes. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jingwen Yao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Radiological Sciences, UCLA, Los Angeles, California, USA
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Paul Rowley
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Julia Glueck
- Department of Neurology, UCSF, San Francisco, California, USA
| | | | | | | | | | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Neurology, UCSF, San Francisco, California, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| |
Collapse
|
5
|
Vasilkovska T, Verschuuren M, Pustina D, van den Berg M, Van Audekerke J, Pintelon I, Cachope R, De Vos WH, Van der Linden A, Adhikari MH, Verhoye M. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington's disease mouse model. Clin Transl Med 2024; 14:e70055. [PMID: 39422700 PMCID: PMC11488302 DOI: 10.1002/ctm2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is marked by irreversible loss of neuronal function for which currently no availability for disease-modifying treatment exists. Advances in the understanding of disease progression can aid biomarker development, which in turn can accelerate therapeutic discovery. METHODS We characterised the progression of altered dynamics of whole-brain network states in the zQ175DN mouse model of HD using a dynamic functional connectivity (FC) approach to resting-state fMRI and identified quasi-periodic patterns (QPPs) of brain activity constituting the most prominent resting-state networks. RESULTS The occurrence of the normative QPPs, as observed in healthy controls, was reduced in the HD model as the phenotype progressed. This uncovered progressive cessation of synchronous brain activity with phenotypic progression, which is not observed with the conventional static FC approaches. To better understand the potential underlying cause of the observed changes in these brain states, we further assessed how mutant huntingtin (mHTT) protein deposition affects astrocytes and pericytes - one of the most important effectors of neurovascular coupling, along phenotypic progression. Increased cell-type dependent mHTT deposition was observed at the age of onset of motor anomalies, in the caudate putamen, somatosensory and motor cortex, regions that are prominently involved in HD pathology as seen in humans. CONCLUSION Our findings provide meaningful insights into the development and progression of altered functional brain dynamics in this HD model and open new avenues in assessing the dynamics of whole brain states, through QPPs, in clinical HD research. HIGHLIGHTS Hyperactivity in the LCN-linked regions within short QPPs observed before motor impairment onset. DMLN QPP presents a progressive decrease in DMLN activity and occurrence along HD-like phenotype development. Breakdown of the LCN DMLN state flux at motor onset leads to a subsequent absence of the LCN DMLN QPP at an advanced HD-like stage.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marlies Verschuuren
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Dorian Pustina
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Monica van den Berg
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Johan Van Audekerke
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Isabel Pintelon
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Roger Cachope
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Winnok H. De Vos
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Annemie Van der Linden
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Mohit H. Adhikari
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marleen Verhoye
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
6
|
Hanrahan J, Locke DP, Cahill LS. Magnetic Resonance Imaging to Detect Structural Brain Changes in Huntington's Disease: A Review of Data from Mouse Models. J Huntingtons Dis 2024; 13:279-299. [PMID: 39213087 PMCID: PMC11494634 DOI: 10.3233/jhd-240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Structural magnetic resonance imaging (MRI) is a powerful tool to visualize 3D neuroanatomy and assess pathology and disease progression in neurodegenerative disorders such as Huntington's disease (HD). The development of mouse models of HD that reproduce many of the psychiatric, motor and cognitive impairments observed in human HD has improved our understanding of the disease and provided opportunities for testing novel therapies. Similar to the clinical scenario, MRI of mouse models of HD demonstrates onset and progression of brain pathology. Here, we provided an overview of the articles that used structural MRI in mouse models of HD to date, highlighting the differences between studies and models and describing gaps in the current state of knowledge and recommendations for future studies.
Collapse
Affiliation(s)
- Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Drew P. Locke
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
7
|
Estevez-Fraga C, Altmann A, Parker CS, Scahill RI, Costa B, Chen Z, Manzoni C, Zarkali A, Durr A, Roos RAC, Landwehrmeyer B, Leavitt BR, Rees G, Tabrizi SJ, McColgan P. Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 2023; 146:4532-4546. [PMID: 37587097 PMCID: PMC10629790 DOI: 10.1093/brain/awad275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Christopher S Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Beatrice Costa
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Claudia Manzoni
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Paris 75013, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver BC V5Z 4H4Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver BC V6T 2B5, Canada
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Peter McColgan
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| |
Collapse
|
8
|
Schultz JL, Neema M, Nopoulos PC. Unravelling the role of huntingtin: from neurodevelopment to neurodegeneration. Brain 2023; 146:4408-4410. [PMID: 37816304 PMCID: PMC10629758 DOI: 10.1093/brain/awad353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
This scientific commentary refers to ‘Genetic topography and cortical cell loss in Huntington’s disease link development and neurodegeneration’ by Estevez-Fraga et al. (https://doi.org/10.1093/brain/awad275).
Collapse
Affiliation(s)
- Jordan L Schultz
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - Mohit Neema
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
| | - Peg C Nopoulos
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- Stead Family Children’s Hospital at the University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Cheng Y, Liu K, Yang T, Xiao Y, Jiang Q, Huang J, Zhang S, Wei Q, Ou R, Li C, Gu X, Burgunder J, Shang H. Factors influencing cognitive function in patients with Huntington's disease from China: A cross-sectional clinical study. Brain Behav 2023; 13:e3258. [PMID: 37849450 PMCID: PMC10636378 DOI: 10.1002/brb3.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND AIM Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder caused by CAG repeats expansion. Cognitive decline contributes to the loss of daily activity in manifest HD. We aimed to examine the cognition status in a Chinese HD cohort and explore factors influencing the diverse cognitive domains. METHODS A total of 205 participants were recruited in the study with the assessment by neuropsychological batteries, including the mini-mental state examination (MMSE), Stroop test, symbol digit modalities test (SDMT), trail making test (TMT), verbal fluency test (VFT), and Hopkins verbal learning test-revised, as well as motor and psychiatric assessment. Pearson correlation and multiple linear regression models were applied to investigate the correlation. RESULTS Only 41.46% of patients had normal global function first come to our center. There was a significantly difference in MMSE, Stroop test, SDMT, TMT, and VFT across each stage of HD patients (p < .05). Apathy of PBA-s was correlated to MMSE, animal VFT and Stroop-interference tests performance. Severity of motor symptoms, functional capacity, age, and age of motor symptom onset were correlated to all neuropsychological scores, whereas education attainment and diagnostic delay were correlated to most neuropsychological scores except TMT. Severity of motor symptoms, functional capacity, and education attainment showed independent predicting effect (p < .05) in diverse cognitive domains. CONCLUSION Cognitive impairment was very common in Chinese HD patients at the first visit and worse in the patients in advanced phase. The severity of motor symptoms and functional capacity were correlated to the diverse cognitive domains.
Collapse
Affiliation(s)
- Yang‐Fan Cheng
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Kun‐Cheng Liu
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Tian‐Mi Yang
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Yi Xiao
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Qi‐Rui Jiang
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Jing‐Xuan Huang
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Sirui Zhang
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Qian‐Qian Wei
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Ru‐Wei Ou
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Chun‐Yu Li
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Xiao‐Jing Gu
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| | - Jean‐Marc Burgunder
- Swiss Huntington's Disease Centre, Siloah, Department of NeurologyUniversity of BernBernSwitzerland
| | - Hui‐Fang Shang
- Department of NeurologyLaboratory of Neurodegenerative DisordersRare Disease CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Liu CF, Younes L, Tong XJ, Hinkle JT, Wang M, Phatak S, Xu X, Bu X, Looi V, Bang J, Tabrizi SJ, Scahill RI, Paulsen JS, Georgiou-Karistianis N, Faria AV, Miller MI, Ratnanather JT, Ross CA. Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington's disease. Brain Commun 2023; 5:fcad214. [PMID: 37744022 PMCID: PMC10516592 DOI: 10.1093/braincomms/fcad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Huntington's disease is caused by a CAG repeat expansion in the Huntingtin gene (HTT), coding for polyglutamine in the Huntingtin protein, with longer CAG repeats causing earlier age of onset. The variable 'Age' × ('CAG'-L), where 'Age' is the current age of the individual, 'CAG' is the repeat length and L is a constant (reflecting an approximation of the threshold), termed the 'CAG Age Product' (CAP) enables the consideration of many individuals with different CAG repeat expansions at the same time for analysis of any variable and graphing using the CAG Age Product score as the X axis. Structural MRI studies have showed that progressive striatal atrophy begins many years prior to the onset of diagnosable motor Huntington's disease, confirmed by longitudinal multicentre studies on three continents, including PREDICT-HD, TRACK-HD and IMAGE-HD. However, previous studies have not clarified the relationship between striatal atrophy, atrophy of other basal ganglia structures, and atrophy of other brain regions. The present study has analysed all three longitudinal datasets together using a single image segmentation algorithm and combining data from a large number of subjects across a range of CAG Age Product score. In addition, we have used a strategy of normalizing regional atrophy to atrophy of the whole brain, in order to determine which regions may undergo preferential degeneration. This made possible the detailed characterization of regional brain atrophy in relation to CAG Age Product score. There is dramatic selective atrophy of regions involved in the basal ganglia circuit-caudate, putamen, nucleus accumbens, globus pallidus and substantia nigra. Most other regions of the brain appear to have slower but steady degeneration. These results support (but certainly do not prove) the hypothesis of circuit-based spread of pathology in Huntington's disease, possibly due to spread of mutant Htt protein, though other connection-based mechanisms are possible. Therapeutic targets related to prion-like spread of pathology or other mechanisms may be suggested. In addition, they have implications for current neurosurgical therapeutic approaches, since delivery of therapeutic agents solely to the caudate and putamen may miss other structures affected early, such as nucleus accumbens and output nuclei of the striatum, the substantia nigra and the globus pallidus.
Collapse
Affiliation(s)
- Chin-Fu Liu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao J Tong
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Jared T Hinkle
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maggie Wang
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sanika Phatak
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Xu
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xuan Bu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Vivian Looi
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jee Bang
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah J Tabrizi
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Rachael I Scahill
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Andreia V Faria
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Hu B, Younes L, Bu X, Liu CF, Ratnanather JT, Paulsen J, Georgiou-Karistianis N, Miller MI, Ross C, Faria AV. Mixed longitudinal and cross-sectional analyses of deep gray matter and white matter using diffusion weighted images in premanifest and manifest Huntington's disease. Neuroimage Clin 2023; 39:103493. [PMID: 37582307 PMCID: PMC10448214 DOI: 10.1016/j.nicl.2023.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/29/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Changes in the brain of patients with Huntington's disease (HD) begin years before clinical onset, so it remains critical to identify biomarkers to track these early changes. Metrics derived from tensor modeling of diffusion-weighted MRIs (DTI), that indicate the microscopic brain structure, can add important information to regional volumetric measurements. This study uses two large-scale longitudinal, multicenter datasets, PREDICT-HD and IMAGE-HD, to trace changes in DTI of HD participants with a broad range of CAP scores (a product of CAG repeat expansion and age), including those with pre-manifest disease (i.e., prior to clinical onset). Utilizing a fully automated data-driven approach to study the whole brain divided in regions of interest, we traced changes in DTI metrics (diffusivity and fractional anisotropy) versus CAP scores, using sigmoidal and linear regression models. We identified points of inflection in the sigmoidal regression using change-point analysis. The deep gray matter showed more evident and earlier changes in DTI metrics over CAP scores, compared to the deep white matter. In the deep white matter, these changes were more evident and occurred earlier in superior and posterior areas, compared to anterior and inferior areas. The curves of mean diffusivity vs. age of HD participants within a fixed CAP score were different from those of controls, indicating that the disease has an additional effect to age on the microscopic brain structure. These results show the regional and temporal vulnerability of the white matter and deep gray matter in HD, with potential implications for experimental therapeutics.
Collapse
Affiliation(s)
- Beini Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Xuan Bu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chin-Fu Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Paulsen
- Department of Psychiatry, Neurology, Psychological Brain Sciences, University of Iowa, USA; Department Neurology, University of Wisconsin-Madison, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute of Brain and Mental Health, Monash University, Australia
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Ross
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Miguez A, Gomis C, Vila C, Monguió-Tortajada M, Fernández-García S, Bombau G, Galofré M, García-Bravo M, Sanders P, Fernández-Medina H, Poquet B, Salado-Manzano C, Roura S, Alberch J, Segovia JC, Allen ND, Borràs FE, Canals JM. Soluble mutant huntingtin drives early human pathogenesis in Huntington's disease. Cell Mol Life Sci 2023; 80:238. [PMID: 37535170 PMCID: PMC10400696 DOI: 10.1007/s00018-023-04882-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Andrés Miguez
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain.
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Cinta Gomis
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Cristina Vila
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Marta Monguió-Tortajada
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
| | - Sara Fernández-García
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
- Laboratory of Pathophysiology of Neurodegenerative Diseases, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Mireia Galofré
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - María García-Bravo
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Phil Sanders
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Helena Fernández-Medina
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Blanca Poquet
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Jordi Alberch
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
- Laboratory of Pathophysiology of Neurodegenerative Diseases, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Nicholas D Allen
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Francesc E Borràs
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Nephrology Department, Germans Trias i Pujol Universitary Hospital, Badalona, Spain
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain.
| |
Collapse
|
13
|
Pfalzer AC, Watson KH, Ciriegio AE, Hale L, Diehl S, McDonell KE, Vnencak-Jones C, Huitz E, Snow A, Roth MC, Guthrie CS, Riordan H, Long JD, Compas BE, Claassen DO. Impairments to executive function in emerging adults with Huntington disease. J Neurol Neurosurg Psychiatry 2023; 94:130-135. [PMID: 36450478 DOI: 10.1136/jnnp-2022-329812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES The clinical diagnosis of Huntington disease (HD) is typically made once motor symptoms and chorea are evident. Recent reports highlight the onset of cognitive and psychiatric symptoms before motor manifestations. These findings support further investigations of cognitive function across the lifespan of HD sufferers. METHODS To assess cognitive symptoms in the developing brain, we administered assessments from the National Institutes of Health Toolbox Cognitive Battery, an age-appropriate cognitive assessment with population norms, to a cohort of children, adolescents and young adults with (gene-expanded; GE) and without (gene-not-expanded; GNE) the trinucleotide cytosine, adenine, guanine (CAG) expansion in the Huntingtin gene. These five assessments that focus on executive function are well validated and form a composite score, with population norms. We modelled these scores across age, and CAP score to estimate the slope of progression, comparing these results to motor symptoms. RESULTS We find significant deficits in the composite measure of executive function in GE compared with GNE participants. GE participant performance on working memory was significantly lower compared with GNE participants. Modelling these results over age suggests that these deficits occur as early as 18 years of age, long before motor manifestations of HD. CONCLUSIONS This work provides strong evidence that impairments in executive function occur as early as the second decade of life, well before anticipated motor onset. Future investigations should delineate whether these impairments in executive function are due to abnormalities in neurodevelopment or early sequelae of a neurodegenerative process.
Collapse
Affiliation(s)
- Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly H Watson
- Psychology and Human Development, Vanderbilt University Peabody College of Education and Human Development, Nashville, Tennessee, USA
| | - Abagail E Ciriegio
- Psychology and Human Development, Vanderbilt University Peabody College of Education and Human Development, Nashville, Tennessee, USA
| | - Lisa Hale
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Spencer Diehl
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katherine E McDonell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cindy Vnencak-Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth Huitz
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abigail Snow
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marissa C Roth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, USA
| | - Cara S Guthrie
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather Riordan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Bruce E Compas
- Psychology and Human Development, Vanderbilt University Peabody College of Education and Human Development, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Early TNF-Dependent Regulation of Excitatory and Inhibitory Synapses on Striatal Direct Pathway Medium Spiny Neurons in the YAC128 Mouse Model of Huntington's Disease. J Neurosci 2023; 43:672-680. [PMID: 36517241 PMCID: PMC9888503 DOI: 10.1523/jneurosci.1655-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin gene. Neurodegeneration first occurs in the striatum, accompanied by an elevation in inflammatory cytokines. Using the presymptomatic male YAC128 HD model mouse, we examined the synaptic input onto the striatal medium spiny neurons to look for early changes that precede degeneration. We observed an increase in excitatory synaptic strength, as measured by AMPA/NMDA ratios, specifically on direct pathway D1 receptor expressing medium spiny neurons, with no changes on indirect pathway neurons. The changes in excitation were accompanied by a decrease in inhibitory synaptic strength, as measured by the amplitude of miniature inhibitory synaptic currents. The pro-inflammatory cytokine tumor necrosis factor alpha (TNF) was elevated in the striatum of YAC128 at the ages examined. Critically, the changes in excitatory and inhibitory inputs are both dependent on TNF signaling, as blocking TNF signaling genetically or pharmacological normalized synaptic strength. The observed changes in synaptic function are similar to the changes seen in D1 medium spiny neurons treated with high levels of TNF, suggesting that saturating levels of TNF exist in the striatum even at early stages of HD. The increase in glutamatergic synaptic strength and decrease in inhibitory synaptic strength would increase direct pathway neuronal excitability, which may potentiate excitotoxicity during the progress of HD.SIGNIFICANCE STATEMENT The striatum is the first structure to degenerate in Huntington's disease, but the early changes that presage the degeneration are not well defined. Here we identify early synaptic changes in the YAC128 mouse model of Huntington's disease specifically on a subpopulation of striatal neurons. These neurons have stronger excitatory synapses and weaker inhibitory inputs, and thus would increase the susceptibility to excitotoxicity. These changes are dependent on signaling by the pro-inflammatory cytokine TNFα. TNF is elevated even at early presymptomatic stages, and blocking TNF signaling even acutely will reverse the synaptic changes. This suggests early intervention could be important therapeutically.
Collapse
|
15
|
Matsushima A, Pineda SS, Crittenden JR, Lee H, Galani K, Mantero J, Tombaugh G, Kellis M, Heiman M, Graybiel AM. Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington's disease. Nat Commun 2023; 14:282. [PMID: 36650127 PMCID: PMC9845362 DOI: 10.1038/s41467-022-35752-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington's disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.
Collapse
Affiliation(s)
- Ayano Matsushima
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sergio Sebastian Pineda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jill R Crittenden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriakitsa Galani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Julio Mantero
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | | | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Schultz JL, Langbehn DR, Al-Kaylani HM, van der Plas E, Koscik TR, Epping EA, Espe-Pfeifer PB, Martin EP, Moser DJ, Magnotta VA, Nopoulos PC. Longitudinal Clinical and Biological Characteristics in Juvenile-Onset Huntington's Disease. Mov Disord 2023; 38:113-122. [PMID: 36318082 PMCID: PMC9851979 DOI: 10.1002/mds.29251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/26/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Juvenile-onset Huntington's disease (JOHD) is a rare form of Huntington's disease (HD) characterized by symptom onset before the age of 21 years. Observational data in this cohort is lacking. OBJECTIVES Quantify measures of disease progression for use in clinical trials of patients with JOHD. METHODS Participants who received a motor diagnosis of HD before the age of 21 were included in the Kids-JOHD study. The comparator group consisted of children and young adults who were at-risk for inheriting the genetic mutation that causes HD, but who were found to have a CAG repeat in the non-expanded range (gene non-expanded [GNE]). RESULTS Data were obtained between March 17, 2006, and February 13, 2020. There were 26 JOHD participants and 78 GNE participants who were comparable on age (16.03 vs. 14.43, respectively) and sex (53.8% female vs. 57.7% female, respectively). The mean annualized decrease in striatal volume in the JOHD group was -3.99% compared to -0.06% in the GNE (mean difference [MD], -3.93%; 95% confidence intervals [CI], [-4.98 to -2.80], FDR < 0.0001). The mean increase in the Unified Huntington's Disease Rating Scale Total Motor Score per year in the JOHD group was 7.29 points compared to a mean decrease of -0.21 point in the GNE (MD, 7.5; 95% CI, [5.71-9.28], FDR < 0·0001). CONCLUSIONS These findings demonstrate that structural brain imaging and clinical measures in JOHD may be potential biomarkers of disease progression for use in clinical trials. Collaborative efforts are required to validate these results in a larger cohort of patients with JOHD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jordan L. Schultz
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- University of Iowa College of Pharmacy, Division of Pharmacy Practice and Sciences, 200 Hawkins Drive, Iowa City, IA
| | - Douglas R. Langbehn
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Hend M. Al-Kaylani
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Ellen van der Plas
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Timothy R. Koscik
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Patricia B. Espe-Pfeifer
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Erin P. Martin
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - David J. Moser
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- Stead Family Children’s Hospital at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
17
|
Finger E, Malik R, Bocchetta M, Coleman K, Graff C, Borroni B, Masellis M, Laforce R, Greaves CV, Russell LL, Convery RS, Bouzigues A, Cash DM, Otto M, Synofzik M, Rowe JB, Galimberti D, Tiraboschi P, Bartha R, Shoesmith C, Tartaglia MC, van Swieten JC, Seelaar H, Jiskoo LC, Sorbi S, Butler CR, Gerhard A, Sanchez-Valle R, de Mendonça A, Moreno F, Vandenberghe R, Le Ber I, Levin J, Pasquier F, Santana I, Rohrer JD, Ducharme S. Neurodevelopmental effects of genetic frontotemporal dementia in young adult mutation carriers. Brain 2022; 146:2120-2131. [PMID: 36458975 DOI: 10.1093/brain/awac446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
While frontotemporal dementia (frontotemporal dementia) has been considered a neurodegenerative disease that starts in mid-life or later, it is now clearly established that cortical and subcortical volume loss is observed more than a decade prior to symptom onset and progresses with aging. To test the hypothesis that genetic mutations causing frontotemporal dementia have neurodevelopmental consequences, we have examined the youngest adults in the GENFI cohort of pre-symptomatic frontotemporal dementia mutation carriers who are between the ages of 19 and 30y. Structural brain differences and improved performance on some cognitive tests was found for MAPT and GRN mutation carriers relative to familial non-carriers, while smaller volumes were observed in C9orf72 repeat expansion carriers at a mean age of 26y. The detection of such early differences supports potential advantageous neurodevelopmental consequences of some frontotemporal dementia causing genetic mutations. These results have implications for design of therapeutic interventions for frontotemporal dementia. Future studies at younger ages are needed to identify specific early pathophysiologic or compensatory processes in the neurodevelopmental period.
Collapse
Affiliation(s)
- Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rubina Malik
- Schulich School of Medicine & Dentistry, Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kristy Coleman
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden
- Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm Sweden
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lize C Jiskoo
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | | | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich; German Center for Neurodegenerative Diseases (DZNE), Munich; Munich Cluster of Systems Neurology, Munich, Germany
| | - Florence Pasquier
- Univ Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
18
|
Schultz JL, Epping EA, van der Plas E, Magnotta VA, Nopoulos PC. Striatal Development in Early-Onset Huntington's Disease. Mov Disord 2022; 37:2459-2460. [PMID: 36177602 PMCID: PMC9878993 DOI: 10.1002/mds.29227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 08/29/2022] [Indexed: 01/29/2023] Open
Affiliation(s)
- Jordan L. Schultz
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Ellen van der Plas
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- Stead Family Children’s Hospital at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
19
|
Tan B, Shishegar R, Oldham S, Fornito A, Poudel G, Georgiou-Karistianis N. Investigating longitudinal changes to frontal cortico-striatal tracts in Huntington's disease: the IMAGE-HD study. Brain Imaging Behav 2022; 16:2457-2466. [PMID: 35768755 PMCID: PMC9712302 DOI: 10.1007/s11682-022-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The striatum is the principal site of disease pathology in Huntington's disease and contains neural connections to numerous cortical brain regions. Studies examining abnormalities to neural connections find that white matter integrity is compromised in HD; however, further regional, and longitudinal investigation is required. This paper is the first longitudinal investigation into region-based white-matter integrity changes in Huntington's Disease. The aim of this study was to better understand how disease progression impacts white matter tracts connecting the striatum to the prefrontal and motor cortical regions in HD. We used existing neuroimaging data from IMAGE-HD, comprised of 25 pre-symptomatic, 27 symptomatic, and 25 healthy controls at three separate time points (baseline, 18-months, 30-months). Fractional anisotropy, axial diffusivity and radial diffusivity were derived as measures of white matter microstructure. The anatomical regions of interest were identified using the Desikan-Killiany brain atlas. A Group by Time repeated measures ANCOVA was conducted for each tract of interest and for each measure. We found significantly lower fractional anisotropy and significantly higher radial diffusivity in the symptomatic group, compared to both the pre-symptomatic group and controls (the latter two groups did not differ from each other), in the rostral middle frontal and superior frontal tracts; as well as significantly higher axial diffusivity in the rostral middle tracts only. We did not find a Group by Time interaction for any of the white matter integrity measures. These findings demonstrate that whilst the microstructure of white matter tracts, extending from the striatum to these regions of interest, are compromised during the symptomatic stages of Huntington's disease, 36-month follow-up did not show progressive changes in these measures. Additionally, no correlations were found between clinical measures and tractography changes, indicating further investigations into the relationship between tractography changes and clinical symptoms in Huntington's disease are required.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| | - Rosita Shishegar
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- The Australian E-Health Research Centre, CSIRO, Melbourne, Australia
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
| | - Stuart Oldham
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Alex Fornito
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
| | - Govinda Poudel
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- Sydney Imaging, Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, 2050, Australia
- The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
20
|
Evidences for Mutant Huntingtin Inducing Musculoskeletal and Brain Growth Impairments via Disturbing Testosterone Biosynthesis in Male Huntington Disease Animals. Cells 2022; 11:cells11233779. [PMID: 36497038 PMCID: PMC9737670 DOI: 10.3390/cells11233779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
Body weight (BW) loss and reduced body mass index (BMI) are the most common peripheral alterations in Huntington disease (HD) and have been found in HD mutation carriers and HD animal models before the manifestation of neurological symptoms. This suggests that, at least in the early disease stage, these changes could be due to abnormal tissue growth rather than tissue atrophy. Moreover, BW and BMI are reported to be more affected in males than females in HD animal models and patients. Here, we confirmed sex-dependent growth alterations in the BACHD rat model for HD and investigated the associated contributing factors. Our results showed growth abnormalities along with decreased plasma testosterone and insulin-like growth factor 1 (IGF-1) levels only in males. Moreover, we demonstrated correlations between growth parameters, IGF-1, and testosterone. Our analyses further revealed an aberrant transcription of testosterone biosynthesis-related genes in the testes of BACHD rats with undisturbed luteinizing hormone (LH)/cAMP/PKA signaling, which plays a key role in regulating the transcription process of some of these genes. In line with the findings in BACHD rats, analyses in the R6/2 mouse model of HD showed similar results. Our findings support the view that mutant huntingtin may induce abnormal growth in males via the dysregulation of gene transcription in the testis, which in turn can affect testosterone biosynthesis.
Collapse
|
21
|
Palaiogeorgou AM, Papakonstantinou E, Golfinopoulou R, Sigala M, Mitsis T, Papageorgiou L, Diakou I, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Recent approaches on Huntington's disease (Review). Biomed Rep 2022; 18:5. [PMID: 36544856 PMCID: PMC9756286 DOI: 10.3892/br.2022.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by severe motor, cognitive and psychiatric symptoms. Patients of all ages can present with a dysfunction of the nervous system, which leads to the progressive loss of movement control and disabilities in speech, swallowing, communications, etc. The molecular basis of the disease is well-known, as HD is related to a mutated gene, a trinucleotide expansion, which encodes to the huntingtin protein. This protein is linked to neurogenesis and the loss of its function leads to neurodegenerative disorders. Although the genetic cause of the disorder has been known for decades, no effective treatment is yet available to prevent onset or to eliminate the progression of symptoms. Thus, the present review focused on the development of novel methods for the timely and accurate diagnosis of HD in an aim to aid the development of therapies which may reduce the severity of the symptoms and control their progression. The majority of the therapies include gene-silencing mechanisms of the mutated huntingtin gene aiming to suppress its expression, and the use of various substances as drugs with highly promising results. In the present review, the latest approaches on the diagnosis of HD are discussed along with the need for genetic counseling and an up-to-date presentation of the applied treatments.
Collapse
Affiliation(s)
- Anastasia Marina Palaiogeorgou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Rebecca Golfinopoulou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Markezina Sigala
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece,University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece,Correspondence to: Dr Dimitrios Vlachakis, Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
22
|
Marchionini DM, Liu JP, Ambesi-Impiombato A, Kerker K, Cirillo K, Bansal M, Mushlin R, Brunner D, Ramboz S, Kwan M, Kuhlbrodt K, Tillack K, Peters F, Rauhala L, Obenauer J, Greene JR, Hartl C, Khetarpal V, Lager B, Rosinski J, Aaronson J, Alam M, Signer E, Muñoz-Sanjuán I, Howland D, Zeitlin SO. Benefits of global mutant huntingtin lowering diminish over time in a Huntington's disease mouse model. JCI Insight 2022; 7:e161769. [PMID: 36278490 PMCID: PMC9714791 DOI: 10.1172/jci.insight.161769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 10/02/2023] Open
Abstract
We have developed an inducible Huntington's disease (HD) mouse model that allows temporal control of whole-body allele-specific mutant huntingtin (mHtt) expression. We asked whether moderate global lowering of mHtt (~50%) was sufficient for long-term amelioration of HD-related deficits and, if so, whether early mHtt lowering (before measurable deficits) was required. Both early and late mHtt lowering delayed behavioral dysfunction and mHTT protein aggregation, as measured biochemically. However, long-term follow-up revealed that the benefits, in all mHtt-lowering groups, attenuated by 12 months of age. While early mHtt lowering attenuated cortical and striatal transcriptional dysregulation evaluated at 6 months of age, the benefits diminished by 12 months of age, and late mHtt lowering did not ameliorate striatal transcriptional dysregulation at 12 months of age. Only early mHtt lowering delayed the elevation in cerebrospinal fluid neurofilament light chain that we observed in our model starting at 9 months of age. As small-molecule HTT-lowering therapeutics progress to the clinic, our findings suggest that moderate mHtt lowering allows disease progression to continue, albeit at a slower rate, and could be relevant to the degree of mHTT lowering required to sustain long-term benefits in humans.
Collapse
Affiliation(s)
| | - Jeh-Ping Liu
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | - Mei Kwan
- Psychogenics Inc., Paramus, New Jersey, USA
| | | | | | | | | | | | | | | | | | - Brenda Lager
- CHDI Management/CHDI Foundation, New York, New York, USA
| | - Jim Rosinski
- CHDI Management/CHDI Foundation, New York, New York, USA
| | - Jeff Aaronson
- CHDI Management/CHDI Foundation, New York, New York, USA
| | - Morshed Alam
- CHDI Management/CHDI Foundation, New York, New York, USA
| | - Ethan Signer
- CHDI Management/CHDI Foundation, New York, New York, USA
| | | | - David Howland
- CHDI Management/CHDI Foundation, New York, New York, USA
| | - Scott O. Zeitlin
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
24
|
Reasoner EE, van der Plas E, Al‐Kaylani HM, Langbehn DR, Conrad AL, Schultz JL, Epping EA, Magnotta VA, Nopoulos PC. Behavioral features in child and adolescent huntingtin gene-mutation carriers. Brain Behav 2022; 12:e2630. [PMID: 35604958 PMCID: PMC9304841 DOI: 10.1002/brb3.2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION We compared neuropsychiatric symptoms between child and adolescent huntingtin gene-mutation carriers and noncarriers. Given previous evidence of atypical striatal development in carriers, we also assessed the relationship between neuropsychiatric traits and striatal development. METHODS Participants between 6 and 18 years old were recruited from families affected by Huntington's disease and tested for the huntingtin gene expansion. Neuropsychiatric traits were assessed using the Pediatric Behavior Scale and the Behavior Rating Inventory of Executive Function. Striatal volumes were extracted from 3T neuro-anatomical images. Multivariable linear regression models were conducted to evaluate the impact of group (i.e., gene nonexpanded [GNE] or gene expanded [GE]), age, and trajectory of striatal growth on neuropsychiatric symptoms. RESULTS There were no group differences in any behavioral measure with the exception of depression/anxiety score, which was higher in the GNE group compared to the GE group (estimate = 4.58, t(129) = 2.52, FDR = 0.051). The growth trajectory of striatal volume predicted depression scores (estimate = 0.429, 95% CI 0.15:0.71, p = .0029), where a negative slope of striatal volume over time was associated with lower depression/anxiety. CONCLUSIONS The current findings show that GE children may have lower depression/anxiety compared to their peers. Previously, we observed a unique pattern of early striatal hypertrophy and continued decrement in volume over time among GE children and adolescents. In contrast, GNE individuals largely show striatal volume growth. These findings suggest that the lower scores of depression and anxiety seen in GE children and adolescents may be associated with differential growth of the striatum.
Collapse
Affiliation(s)
- Erin E. Reasoner
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Ellen van der Plas
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Hend M. Al‐Kaylani
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Douglas R. Langbehn
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Amy L. Conrad
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
| | - Jordan L. Schultz
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Eric A. Epping
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Vincent A. Magnotta
- Department of RadiologyUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Peggy C. Nopoulos
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
- Department of NeurologyUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| |
Collapse
|
25
|
Byrne LM, Schultz JL, Rodrigues FB, van der Plas E, Langbehn D, Nopoulos PC, Wild EJ. Neurofilament Light Protein as a Potential Blood Biomarker for Huntington's Disease in Children. Mov Disord 2022; 37:1526-1531. [PMID: 35437792 PMCID: PMC9308659 DOI: 10.1002/mds.29027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Juvenile-onset Huntington's disease (JOHD) is a rare and particularly devastating form of Huntington's disease (HD) for which clinical diagnosis is challenging and robust outcome measures are lacking. Neurofilament light protein (NfL) in plasma has emerged as a prognostic biomarker for adult-onset HD. METHODS We performed a retrospective analysis of samples and data collected between 2009 and 2020 from the Kids-HD and Kids-JHD studies. Plasma samples from children and young adults with JOHD, premanifest HD (preHD) mutation carriers, and age-matched controls were used to quantify plasma NfL concentrations using ultrasensitive immunoassay. RESULTS We report elevated plasma NfL concentrations in JOHD and premanifest HD mutation-carrying children. In pediatric HD mutation carriers who were within 20 years of their predicted onset and patients with JOHD, plasma NfL level was associated with caudate and putamen volumes. CONCLUSIONS Quantifying plasma NfL concentration may assist clinical diagnosis and therapeutic trial design in the pediatric population. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lauren M. Byrne
- Huntington's Disease Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Jordan L. Schultz
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
- Department of NeurologyCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Filipe B. Rodrigues
- Huntington's Disease Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Ellen van der Plas
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Douglas Langbehn
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Peggy C. Nopoulos
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
- Department of NeurologyCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Edward J. Wild
- Huntington's Disease Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
26
|
Tan B, Shishegar R, Fornito A, Poudel G, Georgiou-Karistianis N. Longitudinal mapping of cortical surface changes in Huntington's Disease. Brain Imaging Behav 2022; 16:1381-1391. [PMID: 35029800 DOI: 10.1007/s11682-021-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
This paper investigated cortical folding in Huntington's disease to understand how disease progression impacts the surface of the cortex. Cortical morphometry changes in eight gyral based regions of interest (i.e. the left and right hemispheres of the lateral occipital, precentral, superior frontal and rostral middle gyri) were examined. We used existing neuroimaging data from IMAGE-HD, comprising 26 pre-symptomatic, 26 symptomatic and 24 healthy control individuals at three separate time points (baseline, 18-month, 30-month). Local gyrification index and cortical thickness were derived as the measures of cortical morphometry using FreeSurfer 6.0's longitudinal pipeline. The gyral based regions of interest were identified using the Desikan-Killiany Atlas. A Group by Time repeated measures ANCOVA was conducted for each region of interest. We found significantly lower LGI at a group level in the right hemisphere lateral occipital region and both hemispheres of the precentral region; as well as significantly reduced cortical thickness at a group level in both hemispheres of the lateral occipital and precentral regions and the right hemisphere of the superior frontal region. We also found a Group by Time interaction for Local gyrification index in the right hemisphere lateral occipital region. This change was largely driven by a significant decrease in the symptomatic group between baseline and 18-months. Additionally, lower local gyrification index and cortical thickness were associated with higher disease burden score. These findings demonstrate that significant longitudinal decline in right hemisphere local gyrification index is evident during manifest disease in lateral occipital cortex and that these changes are more profound in individuals with greater disease burden score.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia
| | - Rosita Shishegar
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,The Australian e-Health Research Centre, CSIRO, Melbourne, Australia.,Monash Biomedical Imaging, 770 Blackburn Road, 3800, Melbourne, Victoria, Australia
| | - Alex Fornito
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,Monash Biomedical Imaging, 770 Blackburn Road, 3800, Melbourne, Victoria, Australia
| | - Govinda Poudel
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia.,Sydney Imaging, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, 2050, Australia.,The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, 3800, Australia. .,Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
27
|
Langbehn DR. Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease. Am J Hum Genet 2022; 109:172-179. [PMID: 34942093 DOI: 10.1016/j.ajhg.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is well known that the length of the CAG trinucleotide expansion of the huntingtin gene is associated with many aspects of Huntington disease progression. These include age of clinical onset and rate of initial progression of disease severity. The relationship between CAG length and survival in Huntington disease is less studied. To address this, we obtained the complete Registry HD database from the European Huntington Disease Network and reanalyzed the time from reported age of disease onset until death. We conducted semiparametric proportional hazards modeling of 8,422 participants who had experienced onset of clinical Huntington disease, either retrospectively or prospectively. Of these, 826 had a recorded age of death. To avoid biased model estimates, retrospective onset ages were represented by left truncation at study entry. After controlling for onset age, which tends to be younger in those with longer CAG repeat lengths, we found that CAG length had a substantial and highly significant influence upon survival time after disease onset. For a fixed age of onset, longer CAG expansions were predictive of shorter survival. This is consistent with other known relationships between CAG length and disease severity. We also show that older onset age predicts shorter lifespan after controlling for CAG length and that the influence of CAG on survival length is substantially greater in women. We demonstrate that apparent contradictions between these and previous analyses of the same data are primarily due to the question of whether to control for clinical onset age in the analysis of time until death.
Collapse
Affiliation(s)
- Douglas R Langbehn
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
29
|
Reasoner EE, van der Plas E, Langbehn DR, Conrad AL, Koscik TR, Epping EA, Magnotta VA, Nopoulos PC. Cortical Features in Child and Adolescent Carriers of Mutant Huntingtin (mHTT). J Huntingtons Dis 2022; 11:173-178. [PMID: 35275555 PMCID: PMC9177765 DOI: 10.3233/jhd-210512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Molecular studies provide evidence that mutant huntingtin (mHTT) affects early cortical development; however, cortical development has not been evaluated in child and adolescent carriers of mHTT. OBJECTIVE To evaluate the impact of mHTT on the developmental trajectories of cortical thickness and surface area. METHODS Children and adolescents (6-18 years) participated in the KidsHD study. mHTT carrier status was determined for research purposes only to classify participants as gene expanded (GE) and gene non-expanded (GNE). Cortical features were extracted from 3T neuroimaging using FreeSurfer. Nonlinear mixed effects models were conducted to determine if age, group, and CAG repeat were associated with cortical morphometry. RESULTS Age-related changes in cortical morphometry were similar across groups. Expanded CAG repeat was not significantly associated with cortical features. CONCLUSION While striatal development is markedly different in GE and GNE, developmental change of the cortex appears grossly normal among child and adolescent carrier of mHTT.
Collapse
Affiliation(s)
- Erin E. Reasoner
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Douglas R. Langbehn
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Timothy R. Koscik
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Eric A. Epping
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Vincent A. Magnotta
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242,Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| | - Peggy C. Nopoulos
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA 52242,Stead Family Department of Pediatrics, University of Iowa Hospital and Clinics, Iowa City, IA 52242,Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA 52242
| |
Collapse
|
30
|
Bakels HS, Roos RA, van Roon‐Mom WM, de Bot ST. Juvenile-Onset Huntington Disease Pathophysiology and Neurodevelopment: A Review. Mov Disord 2022; 37:16-24. [PMID: 34636452 PMCID: PMC9291924 DOI: 10.1002/mds.28823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
Huntington disease is an autosomal dominant inherited brain disorder that typically becomes manifest in adulthood. Juvenile-onset Huntington disease refers to approximately 5% of patients with symptom onset before the age of 21 years. The causal factor is a pathologically expanded CAG repeat in the Huntingtin gene. Age at onset is inversely correlated with CAG repeat length. Juvenile-onset patients have distinct symptoms and signs with more severe pathology of involved brain structures in comparison with disease onset in adulthood. The aim of this review is to compare clinical and pathological features in juvenile- and adult-onset Huntington disease and to explore which processes potentially contribute to the observed differences. A specific focus is placed on molecular mechanisms of mutant huntingtin in early neurodevelopment and the interaction of a neurodegenerative disease and postnatal brain maturation. The importance of a better understanding of pathophysiological differences between juvenile- and adult-onset Huntington disease lies in development and implementation of new therapeutic strategies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hannah S. Bakels
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | - Raymund A.C. Roos
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Susanne T. de Bot
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
31
|
Kisby GE, Spencer PS. Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Front Neurosci 2021; 15:752153. [PMID: 34924930 PMCID: PMC8675606 DOI: 10.3389/fnins.2021.752153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
Collapse
Affiliation(s)
- Glen E. Kisby
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR, United States
| | - Peter S. Spencer
- School of Medicine (Neurology), Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
32
|
Isoform-Specific Reduction of the Basic Helix-Loop-Helix Transcription Factor TCF4 Levels in Huntington's Disease. eNeuro 2021; 8:ENEURO.0197-21.2021. [PMID: 34518368 PMCID: PMC8519306 DOI: 10.1523/eneuro.0197-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder with onset of characteristic motor symptoms at midlife, preceded by subtle cognitive and behavioral disturbances. Transcriptional dysregulation emerges early in the disease course and is considered central to HD pathogenesis. Using wild-type (wt) and HD knock-in mouse striatal cell lines we observed a HD genotype-dependent reduction in the protein levels of transcription factor 4 (TCF4), a member of the basic helix-loop-helix (bHLH) family with critical roles in brain development and function. We characterized mouse Tcf4 gene structure and expression of alternative mRNAs and protein isoforms in cell-based models of HD, and in four different brain regions of male transgenic HD mice (R6/1) from young to mature adulthood. The largest decrease in the levels of TCF4 at mRNA and specific protein isoforms were detected in the R6/1 mouse hippocampus. Translating this finding to human disease, we found reduced expression of long TCF4 isoforms in the postmortem hippocampal CA1 area and in the cerebral cortex of HD patients. Additionally, TCF4 protein isoforms showed differential synergism with the proneural transcription factor ASCL1 in activating reporter gene transcription in hippocampal and cortical cultured neurons. Induction of neuronal activity increased these synergistic effects in hippocampal but not in cortical neurons, suggesting brain region-dependent differences in TCF4 functions. Collectively, this study demonstrates isoform-specific changes in TCF4 expression in HD that could contribute to the progressive impairment of transcriptional regulation and neuronal function in this disease.
Collapse
|
33
|
Xu J, Wen Z. Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells Int 2021; 2021:5902824. [PMID: 34539790 PMCID: PMC8448601 DOI: 10.1155/2021/5902824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
With the rapid development of stem cell technology, the advent of three-dimensional (3D) cultured brain organoids has opened a new avenue for studying human neurodevelopment and neurological disorders. Brain organoids are stem-cell-derived 3D suspension cultures that self-assemble into an organized structure with cell types and cytoarchitectures recapitulating the developing brain. In recent years, brain organoids have been utilized in various aspects, ranging from basic biology studies, to disease modeling, and high-throughput screening of pharmaceutical compounds. In this review, we overview the establishment and development of brain organoid technology, its recent progress, and translational applications, as well as existing limitations and future directions.
Collapse
Affiliation(s)
- Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
van der Plas E, Schultz JL, Nopoulos PC. The Neurodevelopmental Hypothesis of Huntington's Disease. J Huntingtons Dis 2021; 9:217-229. [PMID: 32925079 PMCID: PMC7683043 DOI: 10.3233/jhd-200394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current dogma of HD pathoetiology posits it is a degenerative disease affecting primarily the striatum, caused by a gain of function (toxicity) of the mutant mHTT that kills neurons. However, a growing body of evidence supports an alternative theory in which loss of function may also influence the pathology.This theory is predicated on the notion that HTT is known to be a vital gene for brain development. mHTT is expressed throughout life and could conceivably have deleterious effects on brain development. The end event in the disease is, of course, neurodegeneration; however the process by which that occurs may be rooted in the pathophysiology of aberrant development.To date, there have been multiple studies evaluating molecular and cellular mechanisms of abnormal development in HD, as well as studies investigating abnormal brain development in HD animal models. However, direct study of how mHTT could affect neurodevelopment in humans has not been approached until recent years. The current review will focus on the most recent findings of a unique study of children at-risk for HD, the Kids-HD study. This study evaluates brain structure and function in children ages 6-18 years old who are at risk for HD (have a parent or grand-parent with HD).
Collapse
Affiliation(s)
- Ellen van der Plas
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Jordan L Schultz
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Peg C Nopoulos
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| |
Collapse
|
35
|
Cheong RY, Baldo B, Sajjad MU, Kirik D, Petersén Å. Effects of mutant huntingtin inactivation on Huntington disease-related behaviours in the BACHD mouse model. Neuropathol Appl Neurobiol 2021; 47:564-578. [PMID: 33330988 PMCID: PMC8247873 DOI: 10.1111/nan.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
AIMS Huntington disease (HD) is a fatal neurodegenerative disorder with no disease-modifying treatments approved so far. Ongoing clinical trials are attempting to reduce huntingtin (HTT) expression in the central nervous system (CNS) using different strategies. Yet, the distribution and timing of HTT-lowering therapies required for a beneficial clinical effect is less clear. Here, we investigated whether HD-related behaviours could be prevented by inactivating mutant HTT at different disease stages and to varying degrees in an experimental model. METHODS We generated mutant BACHD mice with either a widespread or circuit-specific inactivation of mutant HTT by using Cre recombinase (Cre) under the nestin promoter or the adenosine A2A receptor promoter respectively. We also simulated a clinical gene therapy scenario with allele-specific HTT targeting by injections of recombinant adeno-associated viral (rAAV) vectors expressing Cre into the striatum of adult BACHD mice. All mice were assessed using behavioural tests to investigate motor, metabolic and psychiatric outcome measures at 4-6 months of age. RESULTS While motor deficits, body weight changes, anxiety and depressive-like behaviours are present in BACHD mice, early widespread CNS inactivation during development significantly improves rotarod performance, body weight changes and depressive-like behaviour. However, conditional circuit-wide mutant HTT deletion from the indirect striatal pathway during development and focal striatal-specific deletion in adulthood failed to rescue any of the HD-related behaviours. CONCLUSIONS Our results indicate that widespread targeting and the timing of interventions aimed at reducing mutant HTT are important factors to consider when developing disease-modifying therapies for HD.
Collapse
Affiliation(s)
- Rachel Y. Cheong
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Barbara Baldo
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
- Present address:
Evotec SEHD Research and Translational SciencesHamburgGermany
| | - Muhammad U. Sajjad
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Åsa Petersén
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| |
Collapse
|
36
|
Edamakanti CR, Opal P. Developmental Alterations in Adult-Onset Neurodegenerative Disorders: Lessons from Polyglutamine Diseases. Mov Disord 2021; 36:1548-1552. [PMID: 34014004 DOI: 10.1002/mds.28657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Schultz JL, Saft C, Nopoulos PC. Association of CAG Repeat Length in the Huntington Gene With Cognitive Performance in Young Adults. Neurology 2021; 96:e2407-e2413. [PMID: 33692166 PMCID: PMC10508647 DOI: 10.1212/wnl.0000000000011823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relationships between CAG repeat length in the huntingtin gene and cognitive performance in participants above and below the disease threshold for Huntington disease (HD), we performed a cross-sectional analysis of the Enroll-HD database. METHODS We analyzed data from young, developing adults (≤30 years of age) without a history of depression, apathy, or cognitive deficits. We included participants with and without the gene expansion (CAG ≥36) for HD. All participants had to have a Total Functional Capacity Score of 13, a diagnostic confidence level of zero, and a total motor score of <10 and had to be >28.6 years from their predicted motor onset. We performed regression analyses to investigate the nonlinear relationship between CAG repeat length and various cognitive measures controlling for age, sex, and education level. RESULTS There were significant positive relationships between CAG repeat length and the Symbol Digit Modalities, Stroop Color Naming, and Stroop Interference test scores. There were significant negative relationships between CAG repeat length and scores on Parts A and B of the Trails Making Test (p < 0.05), indicating that longer CAG repeat lengths were associated with better performance. DISCUSSION An increasing number of CAG repeats in the huntingtin gene below disease threshold and low pathologic CAG ranges were associated with some improvements in cognitive performance. These findings outline the relationship between CAG repeats within the huntingtin gene and cognitive development. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that CAG repeat length is positively associated with cognitive function across a spectrum of CAG repeat lengths.
Collapse
Affiliation(s)
- Jordan L Schultz
- From the Departments of Psychiatry (J.L.S., P.C.N.) and Neurology (J.L.S., P.C.N.), Carver College of Medicine at the University of Iowa; Division of Pharmacy Practice and Sciences (J.L.S.), University of Iowa College of Pharmacy, Iowa City; Department of Neurology (C.S.), Huntington Center NRW, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany; and Stead Family Children's Hospital at the University of Iowa (P.C.N.), Iowa City.
| | - Carsten Saft
- From the Departments of Psychiatry (J.L.S., P.C.N.) and Neurology (J.L.S., P.C.N.), Carver College of Medicine at the University of Iowa; Division of Pharmacy Practice and Sciences (J.L.S.), University of Iowa College of Pharmacy, Iowa City; Department of Neurology (C.S.), Huntington Center NRW, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany; and Stead Family Children's Hospital at the University of Iowa (P.C.N.), Iowa City
| | - Peggy C Nopoulos
- From the Departments of Psychiatry (J.L.S., P.C.N.) and Neurology (J.L.S., P.C.N.), Carver College of Medicine at the University of Iowa; Division of Pharmacy Practice and Sciences (J.L.S.), University of Iowa College of Pharmacy, Iowa City; Department of Neurology (C.S.), Huntington Center NRW, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany; and Stead Family Children's Hospital at the University of Iowa (P.C.N.), Iowa City
| |
Collapse
|
38
|
Szlachcic WJ, Ziojla N, Kizewska DK, Kempa M, Borowiak M. Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:629212. [PMID: 33996792 PMCID: PMC8116659 DOI: 10.3389/fcell.2021.629212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by β-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to β-cell loss, or a pancreatic dysfunction. The restoration of a functional β-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human β-cells de novo, in vitro, or in vivo. The efficient generation of functional β-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.
Collapse
Affiliation(s)
- Wojciech J. Szlachcic
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Ziojla
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dorota K. Kizewska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcelina Kempa
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
39
|
Johnson EB, Parker CS, Scahill RI, Gregory S, Papoutsi M, Zeun P, Osborne-Crowley K, Lowe J, Nair A, Estevez-Fraga C, Fayer K, Rees G, Zhang H, Tabrizi SJ. Altered iron and myelin in premanifest Huntington's Disease more than 20 years before clinical onset: Evidence from the cross-sectional HD Young Adult Study. EBioMedicine 2021; 65:103266. [PMID: 33706250 PMCID: PMC7960938 DOI: 10.1016/j.ebiom.2021.103266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Pathological processes in Huntington's disease (HD) begin many years prior to symptom onset. Recently we demonstrated that in a premanifest cohort approximately 24 years from predicted disease onset, despite intact function, there was evidence of subtle neurodegeneration. Here, we use novel imaging techniques to determine whether macro- and micro-structural changes can be detected across the whole-brain in the same cohort. METHODS 62 premanifest HD (PreHD) and 61 controls from the HD Young Adult Study (HD-YAS) were included. Grey and white matter volume, diffusion weighted imaging (DWI) measures of white matter microstructure, multiparametric maps (MPM) estimating myelin and iron content from magnetization transfer (MT), proton density (PD), longitudinal relaxation (R1) and effective transverse relaxation (R2*), and myelin g-ratio were examined. Group differences between PreHD and controls were assessed; associations between all imaging metrics and disease burden and CSF neurofilament light (NfL) were also performed. Volumetric and MPM results were corrected at a cluster-wise value of familywise error (FWE) 0.05. Diffusion and g-ratio results were corrected via threshold-free cluster enhancement at FWE 0.05. FINDINGS We showed significantly increased R1 and R2*, suggestive of increased iron, in the putamen, globus pallidum and external capsule of PreHD participants. There was also a significant association between lower cortical R2*, suggestive of reduced myelin or iron, and higher CSF NfL in the frontal lobe and the parieto-occipital cortices. No other results were significant at corrected levels. INTERPRETATION Increased iron in subcortical structures and the surrounding white matter is a feature of very early PreHD. Furthermore, increases in CSF NfL were linked to microstructural changes in the posterior parietal-occipital cortex, a region previously shown to undergo some of the earliest cortical changes in HD. These findings suggest that disease related process are occurring in both subcortical and cortical regions more than 20 years from predicted disease onset.
Collapse
Affiliation(s)
- Eileanoir B Johnson
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Christopher S Parker
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Rachael I Scahill
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marina Papoutsi
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK; IXICO Plc, London, , UK
| | - Paul Zeun
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katherine Osborne-Crowley
- Division of Equity, Diversity and Inclusion, University of New South Wales, Sydney, New South Wales, Australia
| | - Jessica Lowe
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Akshay Nair
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, UCL Queen Square Institute of Neurology, London, UK
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kate Fayer
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- University College London Institute of Cognitive Neuroscience, University College London, London, UK
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Dementia Research Institute at University College London, London, UK
| |
Collapse
|
40
|
Hickman RA, Faust PL, Rosenblum MK, Marder K, Mehler MF, Vonsattel JP. Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains. Acta Neuropathol 2021; 141:399-413. [PMID: 33517535 PMCID: PMC7882590 DOI: 10.1007/s00401-021-02269-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Neuropathologic hallmarks of Huntington Disease (HD) include the progressive neurodegeneration of the striatum and the presence of Huntingtin (HTT) aggregates that result from abnormal polyQ expansion of the HTT gene. Whether the pathogenic trinucleotide repeat expansion of the HTT gene causes neurodevelopmental abnormalities has garnered attention in both murine and human studies; however, documentation of discrete malformations in autopsy brains of HD individuals has yet to be described. We retrospectively searched the New York Brain Bank (discovery cohort) and an independent cohort (validation cohort) to determine whether developmental malformations are more frequently detected in HD versus non-HD brains and to document their neuropathologic features. One-hundred and thirty HD and 1600 non-HD whole brains were included in the discovery cohort and 720 HD and 1989 non-HD half brains were assessed in the validation cohort. Cases with developmental malformations were found at 6.4–8.2 times greater frequency in HD than in non-HD brains (discovery cohort: OR 8.68, 95% CI 3.48–21.63, P=4.8 × 10-5; validation cohort: OR 6.50, 95% CI 1.83–23.17, P=0.0050). Periventricular nodular heterotopias (PNH) were the most frequent malformations and contained HTT and p62 aggregates analogous to the cortex, whereas cortical malformations with immature neuronal populations did not harbor such inclusions. HD individuals with malformations had heterozygous HTT CAG expansions between 40 and 52 repeats, were more frequently women, and all were asymmetric and focal, aside from one midline hypothalamic hamartoma. Using two independent brain bank cohorts, this large neuropathologic series demonstrates an increased occurrence of developmental malformations in HD brains. Since pathogenic HTT gene expansion is associated with genomic instability, one possible explanation is that neuronal precursors are more susceptible to somatic mutation of genes involved in cortical migration. Our findings further support emerging evidence that pathogenic trinucleotide repeat expansions of the HTT gene may impact neurodevelopment.
Collapse
Affiliation(s)
- R A Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, USA.
| | - P L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, USA
| | - M K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - K Marder
- Department of Neurology and Psychiatry, Columbia University Irving Medical Center, New York, USA
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - M F Mehler
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA
| | - J P Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
41
|
Schultz JL, van der Plas E, Langbehn DR, Conrad AL, Nopoulos PC. Age-Related Cognitive Changes as a Function of CAG Repeat in Child and Adolescent Carriers of Mutant Huntingtin. Ann Neurol 2021; 89:1036-1040. [PMID: 33521985 DOI: 10.1002/ana.26039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/08/2022]
Abstract
Limited data exists regarding the disease course of Huntington's Disease (HD) in children and young adults. Here, we evaluate the trajectory of various cognitive skill development as a function of cytosine-adenine-guanine (CAG) repeat length in children and adolescents that carry the mutation that causes HD. We discovered that the development of verbal skills seems to plateau earlier as CAG repeat length increases. These findings increase our understanding of the relationship between neurodegeneration and neurodevelopment and may have far-reaching implications for future gene-therapy treatment strategies. ANN NEUROL 2021;89:1036-1040.
Collapse
Affiliation(s)
- Jordan L Schultz
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Pharmacy Practice and Sciences, University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Douglas R Langbehn
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Amy L Conrad
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Peg C Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
42
|
Oosterloo M, de Greef BTA, Bijlsma EK, Durr A, Tabrizi SJ, Estevez-Fraga C, de Die-Smulders CEM, Roos RAC. Disease Onset in Huntington's Disease: When Is the Conversion? Mov Disord Clin Pract 2021; 8:352-360. [PMID: 33816663 PMCID: PMC8015887 DOI: 10.1002/mdc3.13148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/21/2020] [Accepted: 12/06/2020] [Indexed: 11/15/2022] Open
Abstract
Background Determination of disease onset in Huntington's disease is made by clinical experience. The diagnostic confidence level is an assessment regarding the certainty about the clinical diagnosis based on motor signs. A level of 4 means the rater has ≥99% confidence motor abnormalities are unequivocal signs of disease. However, it does not state which motor abnormalities are signs of disease and how many must be present. Objective Our aim is to explore how accurate the diagnostic confidence level is in estimating disease onset using the Enroll‐HD data set. For clinical disease onset we use a cut‐off total motor score >5 of the Unified Huntington's Disease Rating Scale. This score is used in the TRACK‐HD study, with ≤5 indicating no substantial motor signs in premanifests. Methods At baseline premanifest participants who converted to manifest (converters) and non‐converters were compared for clinical symptoms and diagnostic confidence level. Clinical symptoms and diagnostic confidence levels were longitudinally displayed in converters. Results Of 3731 eligible participants, 455 were converters and 3276 non‐converters. Baseline diagnostic confidence levels were significantly higher in converters compared to non‐converters (P < 0.001). 232 (51%) converters displayed a baseline motor score >5 (mean = 6.7). Converters had significantly more baseline clinical symptoms, and higher disease burden compared to non‐converters (P < 0.001). Diagnostic confidence level before disease onset ranged between 1 and 3 in converters. Conclusions According to this data the diagnostic confidence level is not an accurate instrument to determine phenoconversion. With trials evaluating disease modifying therapies it is important to develop more reliable diagnostic criteria.
Collapse
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology Maastricht University Medical Center Maastricht The Netherlands.,Department of Neurology Leiden University Medical Center Leiden The Netherlands
| | - Bianca T A de Greef
- Department of Neurology Maastricht University Medical Center Maastricht The Netherlands.,Department of Clinical Epidemiology and Medical Technology Assessment Maastricht University Medical Center Maastricht The Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands
| | - Alexandra Durr
- Institut du Cerveau et de la Moelle épinière (ICM), AP-HP, Inserm, CNRS, Sorbonne Université University Hospital Pitié-Salpêtrière Paris France
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Huntington's Disease Centre, UCL Queen Square Institute of Neurology University College London London United Kingdom
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, Huntington's Disease Centre, UCL Queen Square Institute of Neurology University College London London United Kingdom
| | - Christine E M de Die-Smulders
- Department of Clinical Genetics Maastricht University Medical Center Maastricht The Netherlands.,GROW Research Institute for Oncology and Developmental Biology Maastricht University Maastricht The Netherlands
| | - Raymund A C Roos
- Department of Neurology Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
43
|
Koscik TR, Sloat L, van der Plas E, Joers JM, Deelchand DK, Lenglet C, Öz G, Nopoulos PC. Brainstem and striatal volume changes are detectable in under 1 year and predict motor decline in spinocerebellar ataxia type 1. Brain Commun 2020; 2:fcaa184. [PMID: 33409488 PMCID: PMC7772094 DOI: 10.1093/braincomms/fcaa184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 1 is a progressive neurodegenerative, movement disorder. With potential therapies on the horizon, it is critical to identify biomarkers that (i) differentiate between unaffected and spinocerebellar ataxia Type 1-affected individuals; (ii) track disease progression; and (iii) are directly related to clinical changes of the patient. Magnetic resonance imaging of volumetric changes in the brain may be a suitable source of biomarkers for spinocerebellar ataxia Type 1. In a previous report on a longitudinal study of patients with spinocerebellar ataxia Type 1, we evaluated the volume and magnetic resonance spectroscopy measures of the cerebellum and pons, showing pontine volume and pontine N-acetylaspartate-to-myo-inositol ratio were sensitive to change over time. As a follow-up, the current study conducts a whole brain exploration of volumetric MRI measures with the aim to identify biomarkers for spinocerebellar ataxia Type 1 progression. We adapted a joint label fusion approach using multiple, automatically generated, morphologically matched atlases to label brain regions including cerebellar sub-regions. We adjusted regional volumes by total intracranial volume allowing for linear and power-law relationships. We then utilized Bonferroni corrected linear mixed effects models to (i) determine group differences in regional brain volume and (ii) identify change within affected patients only. We then evaluated the rate of change within each brain region to identify areas that changed most rapidly. Lastly, we used a penalized, linear mixed effects model to determine the strongest brain predictors of motor outcomes. Decrease in pontine volume and accelerating decrease in putamen volume: (i) reliably differentiated spinocerebellar ataxia Type 1-affected and -unaffected individuals; (ii) were observable in affected individuals without referencing an unaffected comparison group; (iii) were detectable within ∼6-9 months; and (iv) were associated with increased disease burden. In conclusion, volumetric change in the pons and putamen may provide powerful biomarkers to track disease progression in spinocerebellar ataxia Type 1. The methods employed here are readily translatable to current clinical settings, providing a framework for study and usage of volumetric neuroimaging biomarkers for clinical trials.
Collapse
Affiliation(s)
- Timothy R Koscik
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| | - Lauren Sloat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1000, USA
| |
Collapse
|
44
|
Tan B, Shishegar R, Poudel GR, Fornito A, Georgiou-Karistianis N. Cortical morphometry and neural dysfunction in Huntington's disease: a review. Eur J Neurol 2020; 28:1406-1419. [PMID: 33210786 DOI: 10.1111/ene.14648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
Numerous neuroimaging techniques have been used to identify biomarkers of disease progression in Huntington's disease (HD). To date, the earliest and most sensitive of these is caudate volume; however, it is becoming increasingly evident that numerous changes to cortical structures, and their interconnected networks, occur throughout the course of the disease. The mechanisms by which atrophy spreads from the caudate to these cortical regions remains unknown. In this review, the neuroimaging literature specific to T1-weighted and diffusion-weighted magnetic resonance imaging is summarized and new strategies for the investigation of cortical morphometry and the network spread of degeneration in HD are proposed. This new avenue of research may enable further characterization of disease pathology and could add to a suite of biomarker/s of disease progression for patient stratification that will help guide future clinical trials.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Rosita Shishegar
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Melbourne, VIC, Australia
| | - Govinda R Poudel
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Sydney Imaging, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Australian Catholic University, Melbourne, VIC, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Melbourne, VIC, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, Bresolin N, Comi GP, Corti S. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Res Rev 2020; 64:101172. [PMID: 32971256 DOI: 10.1016/j.arr.2020.101172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
In 2011, a hexanucleotide repeat expansion (HRE) in the noncoding region of C9orf72 was associated with the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The main pathogenic mechanisms in C9-ALS/FTD are haploinsufficiency of the C9orf72 protein and gain of function toxicity from bidirectionally-transcribed repeat-containing RNAs and dipeptide repeat proteins (DPRs) resulting from non-canonical RNA translation. Additionally, abnormalities in different downstream cellular mechanisms, such as nucleocytoplasmic transport and autophagy, play a role in pathogenesis. Substantial research efforts using in vitro and in vivo models have provided valuable insights into the contribution of each mechanism in disease pathogenesis. However, conflicting evidence exists, and a unifying theory still lacks. Here, we provide an overview of the recently published literature on clinical, neuropathological and molecular features of C9-ALS/FTD. We highlight the supposed neuronal role of C9orf72 and the HRE pathogenic cascade, mainly focusing on the contribution of RNA foci and DPRs to neurodegeneration and discussing the several downstream mechanisms. We summarize the emerging biochemical and neuroimaging biomarkers, as well as the potential therapeutic approaches. Despite promising results, a specific disease-modifying treatment is still not available to date and greater insights into disease mechanisms may help in this direction.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Luca Andreoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
46
|
Colpo GD, Rocha NP, Furr Stimming E, Teixeira AL. Gene Expression Profiling in Huntington's Disease: Does Comorbidity with Depressive Symptoms Matter? Int J Mol Sci 2020; 21:E8474. [PMID: 33187165 PMCID: PMC7697115 DOI: 10.3390/ijms21228474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. Besides the well-characterized motor symptoms, HD is marked by cognitive impairment and behavioral changes. In this study, we analyzed the blood of HD gene carries using RNA-sequencing techniques. We evaluated samples from HD gene carriers with (n = 8) and without clinically meaningful depressive symptoms (n = 8) compared with healthy controls (n = 8). Groups were age- and sex-matched. Preprocessing of data and between-group comparisons were calculated using DESeq2. The Wald test was used to generate p-values and log2 fold changes. We found 60 genes differently expressed in HD and healthy controls, of which 21 were upregulated and 39 downregulated. Within HD group, nineteen genes were differently expressed between patients with and without depression, being 6 upregulated and 13 downregulated. Several of the top differentially expressed genes are involved in nervous system development. Although preliminary, our findings corroborate the emerging view that in addition to neurodegenerative mechanisms, HD has a neurodevelopmental component. Importantly, the emergence of depression in HD might be related to these mechanisms.
Collapse
Affiliation(s)
- Gabriela Delevati Colpo
- Neuropsychiatry Program, Louis A Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Natalia Pessoa Rocha
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Erin Furr Stimming
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Louis A Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
- HDSA Center of Excellence at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (N.P.R.); (E.F.S.)
- Instituto de Ensino & Pesquisa, Santa Casa BH, Belo Horizonte 30150-221, Brazil
| |
Collapse
|
47
|
McDonell KE, Ciriegio AE, Pfalzer AC, Hale L, Shiino S, Riordan H, Moroz S, Darby RR, Compas BE, Claassen DO. Risk-Taking Behaviors in Huntington's Disease. J Huntingtons Dis 2020; 9:359-369. [PMID: 33164940 DOI: 10.3233/jhd-200431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Risky behaviors are common in Huntington's disease (HD) and can lead to significant adverse consequences. However, the prevalence and scope of these symptoms have not been studied systematically, and no empirically validated measures are available to screen for them. OBJECTIVE To test a novel screening tool designed to assess risk-taking behaviors in HD. METHODS We administered the Risk Behavior Questionnaire (RBQ-HD) to HD patients and caregivers at Vanderbilt University Medical Center between 2018-2019. Patients completed the questionnaire based on self-report; caregivers provided collateral reports. Clinical and demographic information were obtained from the electronic medical record. RESULTS 60 patients and 60 caregivers completed the RBQ-HD. 80% of patients (n = 48) and 91.7% of caregivers (n = 60) reported at least one risky behavior. Adverse social behaviors, impulsive/compulsive behaviors, and reckless driving were the most common behavioral domains reported. Male patients were more likely to report risky behaviors than females (92.3% vs. 70.6%, p = 0.04). The number of risky behaviors reported by patients and caregivers was negatively correlated with patient age (r = -0.32, p = 0.01; r = -0.47, p = 0.0001, respectively). Patient and caregiver reports were highly correlated in matched pairs (n = 30; r = 0.63, p = 0.0002). CONCLUSION These findings emphasize that risky behaviors are highly prevalent in HD and can be effectively identified through the use of a novel screening measure. We hypothesize that early pathological involvement of frontostriatal and mesolimbic networks may be important factors in the development of these behaviors.
Collapse
Affiliation(s)
- Katherine E McDonell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abagail E Ciriegio
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Anna C Pfalzer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Hale
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuhei Shiino
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather Riordan
- Department of Pediatrics, Division of Child Neurology, Vanderbilt Children's Hospital, United States
| | - Sarah Moroz
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce E Compas
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Labayru G, Jimenez‐Marin A, Fernández E, Villanua J, Zulaica M, Cortes JM, Díez I, Sepulcre J, López de Munain A, Sistiaga A. Neurodegeneration trajectory in pediatric and adult/late DM1: A follow-up MRI study across a decade. Ann Clin Transl Neurol 2020; 7:1802-1815. [PMID: 32881379 PMCID: PMC7545612 DOI: 10.1002/acn3.51163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To characterize the progression of brain structural abnormalities in adults with pediatric and adult/late onset DM1, as well as to examine the potential predictive markers of such progression. METHODS 21 DM1 patients (pediatric onset: N = 9; adult/late onset: N = 12) and 18 healthy controls (HC) were assessed longitudinally over 9.17 years through brain MRI. Additionally, patients underwent neuropsychological, genetic, and muscular impairment assessment. Inter-group comparisons of total and voxel-level regional brain volume were conducted through Voxel Based Morphometry (VBM); cross-sectionally and longitudinally, analyzing the associations between brain changes and demographic, clinical, and cognitive outcomes. RESULTS The percentage of GM loss did not significantly differ in any of the groups compared with HC and when assessed independently, adult/late DM1 patients and their HC group suffered a significant loss in WM volume. Regional VBM analyses revealed subcortical GM damage in both DM1 groups, evolving to frontal regions in the pediatric onset patients. Muscular impairment and the outcomes of certain neuropsychological tests were significantly associated with follow-up GM damage, while visuoconstruction, attention, and executive function tests showed sensitivity to WM degeneration over time. INTERPRETATION Distinct patterns of brain atrophy and its progression over time in pediatric and adult/late onset DM1 patients are suggested. Results indicate a possible neurodevelopmental origin of the brain abnormalities in DM1, along with the possible existence of an additional neurodegenerative process. Fronto-subcortical networks appear to be involved in the disease progression at young adulthood in pediatric onset DM1 patients. The involvement of a multimodal integration network in DM1 is discussed.
Collapse
Affiliation(s)
- Garazi Labayru
- Personality, Assessment and psychological treatment department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastiánGipuzkoaSpain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| | - Antonio Jimenez‐Marin
- Biocruces‐Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
- Biomedical Research Doctorate ProgramUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Esther Fernández
- OsatekDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
| | - Jorge Villanua
- OsatekDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
| | - Miren Zulaica
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| | - Jesus M. Cortes
- Biocruces‐Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
- Cell Biology and Histology DepartmentUniversity of the Basque Country (UPV/EHU)LeioaSpain
- IKERBASQUEThe Basque Foundation for ScienceBilbaoSpain
| | - Ibai Díez
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Neurotechnology LaboratoryTecnalia Health DepartmentDerioSpain
| | - Jorge Sepulcre
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Adolfo López de Munain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Neurology DepartmentDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
- Neuroscience DepartmentUniversity of the Basque Country (UPV/EHU)Donostia‐San SebastiánGipuzkoaSpain
| | - Andone Sistiaga
- Personality, Assessment and psychological treatment department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastiánGipuzkoaSpain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| |
Collapse
|
49
|
Pfister EL, Aronin N. Huntington’s Disease: Les Jeux Sont Faits? Trends Mol Med 2020; 26:889-890. [DOI: 10.1016/j.molmed.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
|
50
|
Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020; 145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually starts during midlife with progressive alterations of motor and cognitive functions. The disease is caused by a CAG repeat expansion within the huntingtin gene leading to severe striatal neurodegeneration. Recent studies conducted on pre-HD children highlight early striatal developmental alterations starting as soon as 6 years old, the earliest age assessed. These findings, in line with data from mouse models of HD, raise the questions of when during development do the first disease-related striatal alterations emerge and whether they contribute to the later appearance of the neurodegenerative features of the disease. In this review we will describe the different stages of striatal network development and then discuss recent evidence for its alterations in rodent models of the disease. We argue that a better understanding of the striatum's development should help in assessing aberrant neurodevelopmental processes linked to the HD mutation.
Collapse
Affiliation(s)
- Margaux Lebouc
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Quentin Richard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Maurice Garret
- Université de Bordeaux, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|