1
|
Li X, Zhang J, Zhang S, Shi S, Lu Y, Leng Y, Li C. Biomarkers for neuromyelitis optica: a visual analysis of emerging research trends. Neural Regen Res 2024; 19:2735-2749. [PMID: 38595291 PMCID: PMC11168523 DOI: 10.4103/nrr.nrr-d-24-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis. Over the past 20 years, the search for biomarkers for neuromyelitis optica has been ongoing. Here, we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica. Research in this area is consistently increasing, with China and the United States leading the way on the number of studies conducted. The Mayo Clinic is a highly reputable institution in the United States, and was identified as the most authoritative institution in this field. Furthermore, Professor Wingerchuk from the Mayo Clinic was the most authoritative expert in this field. Keyword analysis revealed that the terms "neuromyelitis optica" (261 times), "multiple sclerosis" (220 times), "neuromyelitis optica spectrum disorder" (132 times), "aquaporin 4" (99 times), and "optical neuritis" (87 times) were the most frequently used keywords in literature related to this field. Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis. Furthermore, aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder. Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarker for myelin oligodendrocyte glycoprotein antibody-associated disease. Recent biomarkers for neuromyelitis optica include cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein, serum astrocyte damage biomarkers like FAM19A5, serum albumin, and gamma-aminobutyric acid. The latest prospective clinical trials are exploring the potential of these biomarkers. Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder. The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity, specificity, and safety for the accurate diagnosis of neuromyelitis optica.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Jiandong Zhang
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Siqi Zhang
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Shengling Shi
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yi’an Lu
- Department of Ophthalmology, Changchun Bright Eye Hospital, Changchun, Jilin Province, China
| | - Ying Leng
- Department of Ophthalmology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Chunyan Li
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| |
Collapse
|
2
|
Amanollahi M, Mozafar M, Rezaei S, Rafati A, Ashourizadeh H, Moheb N, Jameie M, Shobeiri P, Chen JJ. Optical coherence tomography angiography measurements in neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody disease: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 91:105864. [PMID: 39265270 DOI: 10.1016/j.msard.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are immune-mediated disorders that can often manifest with optic neuritis (ON) among other symptoms. Optical coherence tomography angiography (OCTA) is an emerging diagnostic method that can quantify retinal capillary blood flow and vessel density (VD), which have been shown to be affected in NMOSD and MOGAD. Hence, we aimed to systematically review the studies addressing retinal microvasculature using OCTA in these diseases. DESIGN Systematic review and meta-analysis. METHODS PubMed, EMBASE, and Web of Sciences were systematically searched to identify articles addressing OCTA measurements in patients with NMOSD or MOGAD. Following the data extraction, a meta-analysis was performed on the study population and OCTA types amongst at least two homogenous studies. RESULTS Twenty-two studies on NMOSD, MOGAD, or both were included. Parafoveal superficial retinal capillary plexus (SRCP) VD and radial peripapillary capillary (RPC) VD were diminished in NMOSD ON+ and NMOSD ON- groups compared to healthy controls (HCs). In addition, both the SRCP VD and RPC VD were significantly reduced in NMOSD ON+ compared to NMOSD ON-. However, meta-analysis for deep retinal capillary plexus (DRCP) did not show a significant difference between NMOSD patients and HCs, or among ON+ and ON- patients. Furthermore, there was no significant difference in foveal avascular zone (FAZ) area size between NMOSD patients and HCs. Regarding MOGAD, the meta-analysis showed decreased parafoveal SRCP VD and RPC VD in MOGAD ON+ patients compared to HCs. Comparing NMOSD ON+ and MOGAD ON+, a meta-analysis was conducted for RPC VD, which showed no significant difference between the two groups. CONCLUSIONS This systematic review and meta-analysis confirmed reduced VD in the macular and peripapillary areas in NMOSD and MOGAD eyes, particularly in the parafoveal SRCP and RPC, which is further impacted by prior ON.
Collapse
Affiliation(s)
- Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mozafar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Rezaei
- Eye and Skull Base Research Centers, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Ashourizadeh
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Negar Moheb
- Department of Neurology, Lehigh Valley Fleming Neuroscience Institute, Allentown, PA, USA
| | - Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Therriault J, Janelidze S, Benedet AL, Ashton NJ, Arranz Martínez J, Gonzalez-Escalante A, Bellaver B, Alcolea D, Vrillon A, Karim H, Mielke MM, Hyung Hong C, Roh HW, Contador J, Puig Pijoan A, Algeciras-Schimnich A, Vemuri P, Graff-Radford J, Lowe VJ, Karikari TK, Jonaitis E, Brum W, Tissot C, Servaes S, Rahmouni N, Macedo AC, Stevenson J, Fernandez-Arias J, Wang YT, Woo MS, Friese MA, Jia WL, Dumurgier J, Hourregue C, Cognat E, Ferreira PL, Vitali P, Johnson S, Pascoal TA, Gauthier S, Lleó A, Paquet C, Petersen RC, Salmon D, Mattsson-Carlgren N, Palmqvist S, Stomrud E, Galasko D, Son SJ, Zetterberg H, Fortea J, Suárez-Calvet M, Jack CR, Blennow K, Hansson O, Rosa-Neto P. Diagnosis of Alzheimer's disease using plasma biomarkers adjusted to clinical probability. NATURE AGING 2024; 4:1529-1537. [PMID: 39533113 PMCID: PMC11564087 DOI: 10.1038/s43587-024-00731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Recently approved anti-amyloid immunotherapies for Alzheimer's disease (AD) require evidence of amyloid-β pathology from positron emission tomography (PET) or cerebrospinal fluid (CSF) before initiating treatment. Blood-based biomarkers promise to reduce the need for PET or CSF testing; however, their interpretation at the individual level and the circumstances requiring confirmatory testing are poorly understood. Individual-level interpretation of diagnostic test results requires knowledge of disease prevalence in relation to clinical presentation (clinical pretest probability). Here, in a study of 6,896 individuals evaluated from 11 cohort studies from six countries, we determined the positive and negative predictive value of five plasma biomarkers for amyloid-β pathology in cognitively impaired individuals in relation to clinical pretest probability. We observed that p-tau217 could rule in amyloid-β pathology in individuals with probable AD dementia (positive predictive value above 95%). In mild cognitive impairment, p-tau217 interpretation depended on patient age. Negative p-tau217 results could rule out amyloid-β pathology in individuals with non-AD dementia syndromes (negative predictive value between 90% and 99%). Our findings provide a framework for the individual-level interpretation of plasma biomarkers, suggesting that p-tau217 combined with clinical phenotyping can identify patients where amyloid-β pathology can be ruled in or out without the need for PET or CSF confirmatory testing.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Javier Arranz Martínez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Armand Gonzalez-Escalante
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Agathe Vrillon
- Institut National de la Santé et de la Recherche Médicale, Université de Paris Cité, Paris, France
- Centre de Neurologie Cognitive, Paris, France
| | - Helmet Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Michelle M Mielke
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - José Contador
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
| | - Albert Puig Pijoan
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases Consortium, Barcelona, Spain
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Erin Jonaitis
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wagner Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidad Federal do RioGrande do Sul, Porto Alegre, Brazil
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marcel S Woo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wan Lu Jia
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Julien Dumurgier
- Institut National de la Santé et de la Recherche Médicale, Université de Paris Cité, Paris, France
- Centre de Neurologie Cognitive, Paris, France
| | - Claire Hourregue
- Institut National de la Santé et de la Recherche Médicale, Université de Paris Cité, Paris, France
- Centre de Neurologie Cognitive, Paris, France
| | - Emmanuel Cognat
- Institut National de la Santé et de la Recherche Médicale, Université de Paris Cité, Paris, France
- Centre de Neurologie Cognitive, Paris, France
| | | | - Paolo Vitali
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sterling Johnson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Claire Paquet
- Institut National de la Santé et de la Recherche Médicale, Université de Paris Cité, Paris, France
- Centre de Neurologie Cognitive, Paris, France
| | - Ronald C Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Salmon
- San Diego and Shiley-Marcos Alzheimer's Disease Research Center, University of California, La Jolla, CA, USA
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Douglas Galasko
- San Diego and Shiley-Marcos Alzheimer's Disease Research Center, University of California, La Jolla, CA, USA
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- ERA-Net on Cardiovascular Diseases Consortium, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Marc Suárez-Calvet
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20:602-619. [PMID: 39271964 DOI: 10.1038/s41582-024-01014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center Berlin and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universiaätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Jiang F, Cai H, Li H, Yin W, Ouyang S, Hu J, Tu E, Fu K, Yin J, Zhao Z, Yang J, Zeng Q, Yang H. Clinical characteristics of double negative atypical inflammatory demyelinating disease: A prospective study. Ann Clin Transl Neurol 2024; 11:2769-2784. [PMID: 39222463 PMCID: PMC11514904 DOI: 10.1002/acn3.52191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the clinical characteristics and predictors of relapse in double negative atypical inflammatory demyelinating disease (IDD) and to explore potential antigenic targets by tissue-based assays (TBA) using rat brain indirect immunofluorescence. METHODS We compared the clinical, laboratory, and MRI data of double negative atypical IDD with other IDD patients. Serum samples were collected for TBA. The predictors of relapse were examined over a minimum of 24 months follow-up. RESULTS In our cohort of 98 patients with double negative atypical IDD, there was no significant female predominance (58.2%, 57/98). The lesions primarily affected the spinal cord and brain stem, with fewer cases of involvement in the area postrema (5.1%, 5/98) and longitudinally extensive transverse myelitis (43.9%, 43/98). A total of 62.5% (50/80) patients tested positive for anti-astrocyte antibodies based on rat brain TBA. Over a median duration of 39.5 months, 80 patients completed the entire follow-up, and 47.5% (38/80) patients exhibited monophasic course. A total of 36% (18/50) patients positively for anti-astrocyte antibodies had a monophasic course, which is significantly lower than patients negatively for anti-astrocyte antibodies (66.7%, 20/30) (p = 0.008). The presence of anti-astrocyte antibodies (hazard ratio (HR), 2.243; 95% CI, 1.087-4.627; p = 0.029) and ≥4 cerebrum lesions at first attack (HR, 2.494; 95% CI, 1.224-5.078; p = 0.012) were risk factors for disease relapse, while maintenance immunotherapy during remission (HR, 0.361; 95% CI, 0.150-0.869; p = 0.023) was protective factor. INTERPRETATION Double negative atypical IDD are unique demyelinating diseases with a high relapse rate. Maintenance immunotherapy is helpful to the prevention of relapse, particularly in patients with anti-astrocyte antibodies or ≥4 cerebrum lesions at first attack.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| | - Haobing Cai
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| | - Hongliang Li
- Department of Acupuncture and Tuina RehabilitationThe First Hospital of Hunan University of Chinese MedicineChangsha410000HunanP.R. China
| | - Weifan Yin
- Department of Neurology, The Second Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- The “Double‐First Class” Application Characteristic Discipline of Hunan Province (Clinical Medicine) Changsha Medical UniversityChangsha410000HunanP.R. China
| | - Song Ouyang
- The “Double‐First Class” Application Characteristic Discipline of Hunan Province (Clinical Medicine) Changsha Medical UniversityChangsha410000HunanP.R. China
- Department of Neurology, The affiliated Changsha Hospital of Xiangya School of MedicineCentral South UniversityChangsha410000HunanP.R. China
| | - Jue Hu
- Department of NeurologyChangsha Central HospitalChangsha410000HunanP.R. China
| | - Ewen Tu
- Department of NeurologyHunan Provincial Brain Hospital (Hunan Second People's Hospital)Changsha410000HunanP.R. China
| | - Ke Fu
- Department of NeurologyHunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410000HunanP.R. China
| | - Junjie Yin
- Department of NeurologyHunan University of Medicine General HospitalHuaihua418000HunanP.R. China
| | - Zhen Zhao
- Department of Neurology, Zhuzhou Hospital Affiliated to Xiangya Medical CollegeCentral South UniversityZhuzhou412000HunanP.R. China
| | - Jieyu Yang
- Department of Social WorkChangsha Social Work CollegeChangsha410004HunanP.R. China
| | - Qiuming Zeng
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| | - Huan Yang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangsha410000HunanP.R. China
- Clinical Research Center for Neuroimmune and Neuromuscular disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangsha410008HunanP.R. China
| |
Collapse
|
6
|
Etemadifar M, Alaei SA, Akaishi T, Salari M, Norouzi M, Samadzadeh S, Paul F. Relapse-Independent disease activity in neuromyelitis optica spectrum disorder: A systematic review. Mult Scler Relat Disord 2024; 90:105843. [PMID: 39217808 DOI: 10.1016/j.msard.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Neuromyelitis Optica Spectrum Disorders (NMOSD) is a neuroinflammatory condition characterized by optic neuritis and transverse myelitis. While the current approach to NMOSD focuses on relapse-associated worsening (RAW), recent evidence indicates Relapse-Independent Disease Activity (RIDA) in patients. METHOD Databases including Embase, PubMed, Scopus, and Web of Sciences were systematically searched up to December 2023. No restrictions were applied. Inclusion criteria focused on studies reporting evidence of RIDA in NMOSD patients. Data extraction involved details such as study title, author, participant characteristics, treatment, evaluation methods, positive findings according to RIDA, and prevalence of findings in NMOSD patients. This study is conducted following the PRISMA guidelines with a registered protocol on PROSPERO (ID = CRD42023492352). RESULT Of 802 studies, 38 were included in the systematic review, covering 1881 NMOSD patients. AQP4-IGg status was positive in 90.6 % of the patients. Ocular findings indicative of RIDA were reported in 23 studies, including thinning of GCIPL, RNFL, GCC, and GCL layers, foveal and macular shape and volume abnormalities, vessel loss, and visual evoked potentials (VEPs) abnormalities. MRI findings supporting the RIDA were reported in 13 studies, including new lesion incidence and brain and spinal cord atrophy. Serum and CSF RIDA-supporting findings were reported in five studies, including elevation in sGFAP and sNFL. Biopsies and autopsies suggested inflammatory processes in relapse-free patients in 2 studies. The predominant manifestation of RIDA in NMOSD was identified in the visual system, suggesting the impaired retinal glial cells like Müller cells during the relapse-free period in NMOSD. INTERPRETATION Our systematic review provides valuable insights into RIDA in NMOSD. Establishing guidelines for the diagnosis and treatment of RIDA is crucial. Further studies are needed to provide robust evidence on RIDA in NMOSD patients.
Collapse
Affiliation(s)
- Masoud Etemadifar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed-Ali Alaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Norouzi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sara Samadzadeh
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany,; Institute of Regional Health Research and, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; The Center for Neurological Research, Department of Neurology Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany,; Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charite - Universita tsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Schöll M, Verberk IMW, Del Campo M, Delaby C, Therriault J, Chong JR, Palmqvist S, Alcolea D. Challenges in the practical implementation of blood biomarkers for Alzheimer's disease. THE LANCET. HEALTHY LONGEVITY 2024; 5:100630. [PMID: 39369727 DOI: 10.1016/j.lanhl.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 10/08/2024] Open
Abstract
Blood biomarkers have emerged as accessible, cost-effective, and highly promising tools for advancing the diagnostics of Alzheimer's disease. However, transitioning from cerebrospinal fluid biomarkers to blood biomarkers-eg, to verify amyloid β pathology-requires careful consideration. This Series paper highlights the main challenges in the implementation of blood biomarkers for Alzheimer's disease in different possible contexts of use. Despite the robustness of measuring blood biomarker concentrations, the widespread adoption of blood biomarkers requires rigorous standardisation efforts to address inherent challenges in diverse contexts of use. The challenges include understanding the effect of pre-analytical and analytical conditions, potential confounding factors, and comorbidities that could influence outcomes of blood biomarkers and their use in diverse populations. Additionally, distinct scenarios present their own specific challenges. In memory clinics, the successful integration of blood biomarkers in diagnostic tests will require well-established diagnostic accuracy and comprehensive assessments of the effect of blood biomarkers on the diagnostic confidence and patient management of clinicians. In primary care settings, and even more when implemented in population-based screening programmes for which no experience with any biomarkers for Alzheimer's disease currently exists, the implementation of blood biomarkers will be challenged by the need for education of primary care clinical staff and clear guidelines. However, despite the challenges, blood biomarkers hold great promise for substantially enhancing the diagnostic accuracy and effectively streamlining referral processes, leading to earlier diagnosis and access to treatments. The ongoing efforts that are shaping the integration of blood biomarkers across diverse clinical settings pave the way towards precision medicine in Alzheimer's disease.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK; Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marta Del Campo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Constance Delaby
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health Systems, Singapore
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
8
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
10
|
Preziosa P, Amato MP, Battistini L, Capobianco M, Centonze D, Cocco E, Conte A, Gasperini C, Gastaldi M, Tortorella C, Filippi M. Moving towards a new era for the treatment of neuromyelitis optica spectrum disorders. J Neurol 2024; 271:3879-3896. [PMID: 38771385 DOI: 10.1007/s00415-024-12426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) include a rare group of autoimmune conditions that primarily affect the central nervous system. They are characterized by inflammation and damage to the optic nerves, brain and spinal cord, leading to severe vision impairment, locomotor disability and sphynteric disturbances. In the majority of cases, NMOSD arises due to specific serum immunoglobulin G (IgG) autoantibodies targeting aquaporin 4 (AQP4-IgG), which is the most prevalent water-channel protein of the central nervous system. Early diagnosis and treatment are crucial to manage symptoms and prevent long-term disability in NMOSD patients. NMOSD were previously associated with a poor prognosis. However, recently, a number of randomized controlled trials have demonstrated that biological therapies acting on key elements of NMOSD pathogenesis, such as B cells, interleukin-6 (IL-6) pathway, and complement, have impressive efficacy in preventing the occurrence of clinical relapses. The approval of the initial drugs marks a revolutionary advancement in the treatment of NMOSD patients, significantly transforming therapeutic options and positively impacting their prognosis. In this review, we will provide an updated overview of the key immunopathological, clinical, laboratory, and neuroimaging aspects of NMOSD. Additionally, we will critically examine the latest advancements in NMOSD treatment approaches. Lastly, we will discuss key aspects regarding optimization of treatment strategies and their monitoring.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Pia Amato
- Department Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Conte
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Claudio Gasperini
- MS Center, Department of Neuroscience, San Camillo Forlanini Hospital, Rome, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Carla Tortorella
- MS Center, Department of Neuroscience, San Camillo Forlanini Hospital, Rome, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
11
|
Koerbel K, Maiworm M, Schaller-Paule M, Schäfer JH, Jakob J, Friedauer L, Steffen F, Bittner S, Foerch C, Yalachkov Y. Evaluating the utility of serum NfL, GFAP, UCHL1 and tTAU as estimates of CSF levels and diagnostic instrument in neuroinflammation and multiple sclerosis. Mult Scler Relat Disord 2024; 87:105644. [PMID: 38701697 DOI: 10.1016/j.msard.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND This study aimed to evaluate the utility of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCHL1) and total tau (tTAU) serum concentrations as approximation for cerebrospinal fluid (CSF) concentrations of the respective biomarkers in the context of neuroinflammation and multiple sclerosis (MS). METHODS NfL, GFAP, UCHL1 and tTAU concentrations in serum and CSF were measured in 183 patients (122 with neuroinflammatory disease and 61 neurological or somatoform disease controls) using the single molecule array HD-1 analyzer (Quanterix, Boston, MA). Spearman's rank correlations were computed between serum and CSF concentrations. In a second step, the effects of age, BMI, gadolinium-enhancing lesions in MRI, integrity of the blood-brain barrier (BBB) and presence of acute relapse were accounted for by computing partial correlations. The analyses were repeated for a subsample consisting of MS phenotype patients only (n = 118). EDSS, MS disease activity and acute relapse were considered as additional covariates. Receiver operating characteristic (ROC) analysis was performed for each serum/CSF biomarker concentration to assess how well the particular biomarker concentration differentiates MS patients from somatoform disease controls. Correlations between serum and CSF levels as well as area under the curve (AUC) values were compared for the different biomarkers using z-test statistics. RESULTS Serum concentrations correlated positively with CSF levels for NfL (r = 0.705, p < 0.01) as well as for GFAP (r = 0.259, p < 0.01). Correlation coefficients were significantly higher for NfL than for GFAP (z = 5.492, p < 0.01). We found no significant serum-CSF correlations for UCHL1 or tTAU. After adjusting for covariates, the results remained unchanged. In the analysis focusing only on MS patients, the results were replicated. ROC analysis demonstrated similarly acceptable performance of serum and CSF NfL values in differentiating MS phenotype patients from somatoform disease controls. AUC values were significantly higher for serum and CSF NfL compared to other biomarkers. CONCLUSION NfL and GFAP but not UCHL1 or tTAU serum concentrations are associated with CSF levels of the respective biomarker. NfL exhibits more robust correlations between its serum and CSF concentrations as compared to GFAP independently from BBB integrity, clinical and radiological covariates. Both serum and CSF NfL values differentiate between MS and controls.
Collapse
Affiliation(s)
- Kimberly Koerbel
- Department of Neurology, Goethe University Frankfurt, University Hospital, Schleusenweg 2-16, Frankfurt am Main 60528, Germany.
| | - Michelle Maiworm
- Department of Neurology, Goethe University Frankfurt, University Hospital, Schleusenweg 2-16, Frankfurt am Main 60528, Germany
| | - Martin Schaller-Paule
- Department of Neurology, Goethe University Frankfurt, University Hospital, Schleusenweg 2-16, Frankfurt am Main 60528, Germany; Practice for Neurology and Psychiatry Eltville, Eltville am Rhein, Germany
| | - Jan Hendrik Schäfer
- Department of Neurology, Goethe University Frankfurt, University Hospital, Schleusenweg 2-16, Frankfurt am Main 60528, Germany
| | - Jasmin Jakob
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lucie Friedauer
- Department of Neurology, Goethe University Frankfurt, University Hospital, Schleusenweg 2-16, Frankfurt am Main 60528, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (RMN2), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Foerch
- Department of Neurology, Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Yavor Yalachkov
- Department of Neurology, Goethe University Frankfurt, University Hospital, Schleusenweg 2-16, Frankfurt am Main 60528, Germany
| |
Collapse
|
12
|
Shaygannejad A, Rafiei N, Vaheb S, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1050. [PMID: 39064479 PMCID: PMC11279275 DOI: 10.3390/medicina60071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
There is debate on the role of glial fibrillary acidic protein (GFAP) as a reliable biomarker in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), and its potential to reflect disease progression. This review aimed to investigate the role of GFAP in MS and NMOSD. A systematic search of electronic databases, including PubMed, Embase, Scopus, and Web of Sciences, was conducted up to 20 December 2023 to identify studies that measured GFAP levels in people with MS (PwMS) and people with NMOSD (PwNMOSD). R software version 4.3.3. with the random-effect model was used to pool the effect size with its 95% confidence interval (CI). Of 4109 studies, 49 studies met our inclusion criteria encompassing 3491 PwMS, 849 PwNMOSD, and 1046 healthy controls (HCs). The analyses indicated that the cerebrospinal fluid level of GFAP (cGFAP) and serum level of GFAP (sGFAP) were significantly higher in PwMS than HCs (SMD = 0.7, 95% CI: 0.54 to 0.86, p < 0.001, I2 = 29%, and SMD = 0.54, 95% CI: 0.1 to 0.99, p = 0.02, I2 = 90%, respectively). The sGFAP was significantly higher in PwNMOSD than in HCs (SMD = 0.9, 95% CI: 0.73 to 1.07, p < 0.001, I2 = 10%). Among PwMS, the Expanded Disability Status Scale (EDSS) exhibited significant correlations with cGFAP (r = 0.43, 95% CI: 0.26 to 0.59, p < 0.001, I2 = 91%) and sGFAP (r = 0.36, 95% CI: 0.23 to 0.49, p < 0.001, I2 = 78%). Regarding that GFAP is increased in MS and NMOSD and has correlations with disease features, it can be a potential biomarker in MS and NMOSD and indicate the disease progression and disability in these disorders.
Collapse
Affiliation(s)
- Aysa Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran;
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
13
|
Park Y, KC N, Paneque A, Cole PD. Tau, Glial Fibrillary Acidic Protein, and Neurofilament Light Chain as Brain Protein Biomarkers in Cerebrospinal Fluid and Blood for Diagnosis of Neurobiological Diseases. Int J Mol Sci 2024; 25:6295. [PMID: 38928000 PMCID: PMC11204270 DOI: 10.3390/ijms25126295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease's progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson's disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.
Collapse
Affiliation(s)
- Yongkyu Park
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Nirajan KC
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Alysta Paneque
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Peter D. Cole
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Rodin RE, Chitnis T. Soluble biomarkers for Neuromyelitis Optica Spectrum Disorders: a mini review. Front Neurol 2024; 15:1415535. [PMID: 38817544 PMCID: PMC11137173 DOI: 10.3389/fneur.2024.1415535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
The Neuromyelitis Optica Spectrum Disorders (NMOSD) constitute a spectrum of rare autoimmune diseases of the central nervous system characterized by episodes of transverse myelitis, optic neuritis, and other demyelinating attacks. Previously thought to be a subtype of multiple sclerosis, NMOSD is now known to be a distinct disease with unique pathophysiology, clinical course, and treatment options. Although there have been significant recent advances in the diagnosis and treatment of NMOSD, the field still lacks clinically validated biomarkers that can be used to stratify disease severity, monitor disease activity, and inform treatment decisions. Here we review many emerging NMOSD biomarkers including markers of cellular damage, neutrophil-to-lymphocyte ratio, complement, and cytokines, with a focus on how each biomarker can potentially be used for initial diagnosis, relapse surveillance, disability prediction, and treatment monitoring.
Collapse
Affiliation(s)
- Rachel E. Rodin
- Department of Neurology, Brigham MS Center, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tanuja Chitnis
- Department of Neurology, Brigham MS Center, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Liu C, Zhou W, Sun X, Zhang X, Xiao H, Yang H, Lin H, Lu Y, Liu Z, Qiu W, Kermode AG, Yang X, Wang Y. Combination of serum markers with optical coherence tomography angiography for evaluating neuromyelitis optica spectrum disorders and multiple sclerosis. Mult Scler Relat Disord 2024; 85:105478. [PMID: 38457885 DOI: 10.1016/j.msard.2024.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 01/27/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS), autoimmune inflammatory diseases of the central nervous system, affect the optic nerve and brain. A lumbar puncture to obtain biomarkers is highly invasive. Serum biomarkers and optical coherence tomography angiography (OCTA) are more accessible and less expensive than magnetic resonance imaging and provide reliable, reproducible measures of neuroaxonal damage. This study investigated the association between serum neurofilament light chain (sNfL), serum glial fibrillary acidic protein (sGFAP), and OCTA metrics. Serum sNfL and sGFAP levels, OCTA values, and clinical characteristics were compared among 91 patients with NMOSD, 81 patients with MS, and 34 healthy controls (HCs) at baseline and 1-year follow-up. RESULTS sNfL and sGFAP levels were higher while the sGFAP/sNfL quotients were significantly lower in NMOSD and MS patients than those in HCs. At baseline, the average thicknesses of the peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell-inner plexiform layer (mGC-IPL) were significantly smaller in NMOSD and MS patients than those in HCs (pRNFL: MS 92.0 [80.2; 101] μm, NMOSD 80.0 [59.0; 95.8] μm, vs HC 99.0 [92.0; 104] μm, p < 0.001; mGC-IPL: MS 74.5 [64.2; 81.0] μm, NMOSD 68.0 [56.0; 81.0] μm, vs HC 83.5 [78.0; 88.0] μm, p < 0.001). The vessel density (VD) and perfusion density (PD) were increased in MS patients without optic neuritis compared to HCs (VD: MS 16.7 [15.6; 17.9] HC 15.3 [13.4; 16.9], p = 0.008; PD: MS 0.41 [0.38; 0.43], HC 0.37 [0.32; 0.41], p = 0.017). In NMOSD patients without optic neuritis, sNfL was significantly associated with PD at baseline (r = 0.329, q = 0.041). The baseline and follow-up values of the sNfL level and average pRNFL and mGC-IPL thicknesses in MS patients showed significant differences. NMOSD patients showed significant differences between baseline and follow-up sNfL and sGFAP levels but not OCTA metrics. CONCLUSION Changes in retinal microvasculature might occur earlier than those in retinal structure and may therefore serve as a promising diagnostic marker for early NMOSD. The combination of serum markers and OCTA metrics could be used to evaluate and differentiate between MS and NMOSD.
Collapse
Affiliation(s)
- Chunxin Liu
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Emergency Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - WeiXiong Zhou
- Emergency Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Sun
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiayin Zhang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiao
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Yang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaxin Lu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zifeng Liu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Qiu
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Allan G Kermode
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Perron Institute, University of Western Australia, Nedlands, Australia
| | - Xiaoyan Yang
- Emergency Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Kim H, Kim HJ, So J, Kim JY, Jung HJ, Kim S, Seo D, Kim HJ, Song HE, Lim YM, Yoo HJ, Lee EJ. Blood sphingolipid as a novel biomarker in patients with neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2024; 85:105551. [PMID: 38564996 DOI: 10.1016/j.msard.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/12/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Sphingolipids are signaling molecules and structural components of the axolemma and myelin sheath. Plasma sphingolipid levels may reflect disease status of neuromyelitis optica spectrum disorder (NMOSD). We aimed to examine plasma sphingolipids as disease severity biomarkers for NMOSD and compare their characteristics with those of serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP). METHODS We measured plasma sphingolipids, sNfL, and sGFAP levels in NMOSD cases with anti-aquaporin-4-antibody. An unbiased approach, partial least square discriminant analysis (PLS-DA), was utilized to determine whether sphingolipid profiles differ according to the disease state of NMOSD (presence, moderate-to-severe disability [Expanded Disease Severity Scale, (EDSS) > 3.0], and relapses). RESULTS We investigated 81 patients and 10 controls. PLS-DA models utilizing sphingolipids successfully differentiated patients with EDSS > 3.0, but failed to identify the presence of disease and relapses. Ceramide-C14-a significant contributor to differentiating EDSS > 3.0-positively correlated with EDSS, while its levels were independent of age and the presence of relapses. This characteristic was unique from those of sNfL and sGFAP, which were affected by age and relapses as well as EDSS. CONCLUSION Plasma sphingolipids may be useful NMOSD biomarkers for disability with distinct characteristics compared to sNfL and sGFAP.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Translational Biomedical Research Group, Asan Medical Center, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jungmin So
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Yon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Jae Jung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungmi Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, Republic of Korea
| | - Dayoung Seo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ji Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, Republic of Korea
| | - Ha Eun Song
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Translational Biomedical Research Group, Asan Medical Center, University of Ulsan, Seoul, 05505, Republic of Korea; Department of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, Republic of Korea; Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Chatanaka MK, Avery LM, Pasic MD, Sithravadivel S, Rotstein D, Demos C, Cohen R, Gorham T, Wang M, Stengelin M, Mathew A, Sigal G, Wohlstadter J, Prassas I, Diamandis EP. The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies. Clin Proteomics 2024; 21:28. [PMID: 38580905 PMCID: PMC10998414 DOI: 10.1186/s12014-024-09466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. METHODS To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. RESULTS GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p < 0.001). A logistic regression model to classify serostatus was able to separate αAQP4 seropositivity using GFAP + tau, and αMOG seropositivity using tau. The areas under the ROC curves (AUCs) were 0.77 and 0.72, respectively. Finally, a combined seropositivity versus negative status logistic regression model was generated, with AUC = 0.80. CONCLUSION The 3 markers can univariately and multivariately classify with moderate accuracy the samples with seropositivity and seronegativity for αAQP4 and αMOG.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, 60 Murray St. Box 32, Floor 6, Rm L6-201, Toronto, ON, M5T 3L9, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Lisa M Avery
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Maria D Pasic
- Department of Laboratory and Medicine Pathobiology, University of Toronto, 60 Murray St. Box 32, Floor 6, Rm L6-201, Toronto, ON, M5T 3L9, Canada
- Department of Laboratory Medicine, St. Joseph's Health Centre, Unity Health Toronto, Toronto, Canada
| | - Shanthan Sithravadivel
- Department of Laboratory Medicine, St. Joseph's Health Centre, Unity Health Toronto, Toronto, Canada
| | | | | | | | | | | | | | - Anu Mathew
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | | | | | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
- Lunenfeld- Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
19
|
Arroyo Pereiro P, Muñoz-Vendrell A, León Moreno I, Bau L, Matas E, Romero-Pinel L, Martínez Yélamos A, Martínez Yélamos S, Andrés-Benito P. Baseline serum neurofilament light chain levels differentiate aggressive from benign forms of relapsing-remitting multiple sclerosis: a 20-year follow-up cohort. J Neurol 2024; 271:1599-1609. [PMID: 38085343 PMCID: PMC10973070 DOI: 10.1007/s00415-023-12135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Serum biomarkers are emerging as useful prognostic tools for multiple sclerosis (MS); however, long-term studies are lacking. We aimed to evaluate the long-term prognostic value of the serum levels of neurofilament light chain (NfL), total tau, glial fibrillary acidic protein (GFAP), and chitinase 3-like-1 (CHI3L1) measured close to the time of MS onset. METHODS In this retrospective, exploratory, observational, case and controls study, patients with relapsing-remitting MS (RRMS) with available baseline serum samples and prospectively follow-up in our MS unit for a long time were selected based on their clinical evolution to form two groups: (1) a benign RRMS (bRRMS) group, defined as patients with an Expanded Disability Status Scale (EDSS) score of ≤ 3 at ≥ 10 years of follow-up; (2) an aggressive RRMS (aRRMS) group, defined as patients with an EDSS score of ≥ 6 at ≤ 15 years of follow-up. An age-matched healthy control (HC) group was selected. NfL, total tau, and GFAP serum levels were quantified using a single-molecule array (SIMOA), and CHI3L1 was quantified using ELISA. RESULTS Thirty-one patients with bRRMS, 19 with aRRMS, and 10 HC were included. The median follow-up time from sample collection was 17.74 years (interquartile range, 14.60-20.37). Bivariate and multivariate analyses revealed significantly higher NfL and GFAP levels in the aRRMS group than in the bRRMS group. A receiver operating characteristic curve analysis identified serum NfL level as the most efficient marker for distinguishing aRRMS from bRRMS. DISCUSSION This proof-of-concept study comparing benign and aggressive RRMS groups reinforces the potential role of baseline NfL serum levels as a promising long-term disability prognostic marker. In contrast, serum GFAP, total tau, and CHI3L1 levels demonstrated a lower or no ability to differentiate between the long-term outcomes of RRMS.
Collapse
Affiliation(s)
- Pablo Arroyo Pereiro
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Albert Muñoz-Vendrell
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Isabel León Moreno
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Laura Bau
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Elisabet Matas
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Lucía Romero-Pinel
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Antonio Martínez Yélamos
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergio Martínez Yélamos
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Institute of Biomedical Research (IDIBELL), Avinguda de la Gran Via de L'Hospitalet, 199, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
- Multiple Sclerosis Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
20
|
Haham N, Zveik O, Rechtman A, Brill L, Vaknin-Dembinsky A. Altered immune co-inhibitory receptor expression and correlation of LAG-3 expression to disease severity in NMOSD. J Neuroimmunol 2024; 388:578289. [PMID: 38301597 DOI: 10.1016/j.jneuroim.2024.578289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Co-inhibitory receptors (CIR)s regulate T cell-mediated immune responses and growing evidence links co-inhibitory receptors to the progression of neuroimmunological diseases. We studied the expression levels of CIRs: TIM-3, TIGIT, PD-1 and LAG-3 in the peripheral blood mononuclear cells (PBMCs) of 30 patients with Neuromyelitis optica spectrum disorder (NMOSD), 11 Multiple sclerosis (MS) patients and 31 Healthy controls (HC). We found that the mRNA expression levels of TIM-3 were significantly increased in NMOSD compared with HC, and increased LAG-3 surface protein expression was also observed on T-cells of NMOSD patients. Moreover, we observed a negative correlation between LAG-3 expression and disease severity in NMOSD. Our findings suggest a protective effect of LAG-3 in the setting of NMOSD, and that the differential expression of CIRs observed in this study may play a role in the pathological process of NMOSD.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
21
|
Katsu M, Sekine-Tanaka M, Tanaka M, Horai Y, Akatsuka A, Suga M, Kiyohara K, Fujita T, Sasaki A, Yamashita T. Inhibition of repulsive guidance molecule-a ameliorates compromised blood-spinal cord barrier integrity associated with neuromyelitis optica in rats. J Neuroimmunol 2024; 388:578297. [PMID: 38306928 DOI: 10.1016/j.jneuroim.2024.578297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The influx of pathogenic aquaporin-4 antibodies (AQP4-Abs) across the blood-spinal cord barrier (BSCB) is crucial for the development and exacerbation of neuromyelitis optica (NMO). We examined whether prophylactic intravenous administration of anti-repulsive guidance molecule-a antibodies (RGMa-Abs) has disease-modifying effects on BSCB dysfunction using an NMO model elicited by peripheral administration of AQP4-Abs to rats. RGMa-Ab treatment attenuated the acute exacerbation of perivascular astrocytopathy in the spinal cord and clinical symptoms, which were highly correlated with neurofilament light chain levels in both the cerebrospinal fluid (CSF) and serum. Additionally, RGMa-Ab treatment suppressed the expression of proinflammatory cytokines/chemokines and the infiltration of inflammatory cells into the spinal cord. CSF analysis of NMO rats revealed that RGMa-Ab treatment improved the CSF/serum albumin ratio and suppressed AQP4-Abs influx. RGMa inhibition using RGMa-Abs is suggested as a potential therapeutic option for BSCB dysfunction associated with NMO.
Collapse
Affiliation(s)
- Masataka Katsu
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Misuzu Sekine-Tanaka
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Masaharu Tanaka
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Yasushi Horai
- Research Unit/Frontier Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan.
| | - Airi Akatsuka
- Research Unit/Frontier Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan.
| | - Misao Suga
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Kazuhiro Kiyohara
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Takuya Fujita
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Atsushi Sasaki
- Research Unit/Neuroscience Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Toshihide Yamashita
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Kim S, Lee JJ, Park JS, Kang M, Seok HY. Neurofilament light chain as a biomarker in neuromyelitis optica spectrum disorder: a comprehensive review and integrated analysis with glial fibrillary acidic protein. Neurol Sci 2024; 45:1255-1261. [PMID: 38141119 DOI: 10.1007/s10072-023-07277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND In the context of neuromyelitis optica spectrum disorder (NMOSD), there are several measures that serve as a biomarker. However, each of the methods has the intrinsic limitations. While neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) have emerged as an additional biomarker for NMOSD, a thorough investigation of their role remains incomplete. Our aim is to provide a comprehensive review of the current literature regarding NfL and GFAP as a biomarker and explore their potential utility in NMOSD. METHODS We performed a comprehensive search using PubMed and Google Scholar to identify peer-reviewed articles investigating NfL and GFAP as a biomarker in NMOSD. RESULTS Our search identified 13 relevant studies. NfL consistently showed promise in distinguishing NMOSD patients from healthy individuals, although it had limited specificity in distinguishing NMOSD from other demyelinating diseases. NfL offered certain advantages over GFAP, notably its ability to predict disability worsening during attacks. In contrast, GFAP provided valuable insight, particularly in distinguishing NMOSD from multiple sclerosis and identifying clinical relapses. In addition, GFAP showed predictive potential for future attacks. Some studies even suggested that NfL may serve as an indicator of treatment response in NMOSD. CONCLUSIONS NfL and GFAP hold promise as biomarkers for NMOSD, demonstrating their usefulness in distinguishing patients from healthy individuals, assessing disease severity, and possibly reflecting treatment response. However, it is important to recognize that NfL and GFAP may, at some point, have different roles.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Neurology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Jae-Joon Lee
- Department of Neurology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Minsung Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Hung Youl Seok
- Department of Neurology, Dongsan Hospital, Keimyung University School of Medicine, 1035 Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
23
|
Al-Hakeim HK, Twaij BAAR, Al-Naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease. J Affect Disord 2024; 347:220-229. [PMID: 38007104 DOI: 10.1016/j.jad.2023.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Many biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD. AIM We examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD. METHODS ELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls. RESULTS ESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50 % of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index. CONCLUSIONS The severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
Affiliation(s)
| | | | - Tabarek Hadi Al-Naqeeb
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
24
|
Havdal LB, Selvakumar J, Lund Berven L, Stiansen-Sonerud T, Zetterberg H, Blennow K, Holmøy T, Wyller VBB. Neurological involvement among non-hospitalized adolescents and young adults 6 months after acute COVID-19. Front Neurol 2024; 15:1345787. [PMID: 38385031 PMCID: PMC10879600 DOI: 10.3389/fneur.2024.1345787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The post-COVID-19 condition (PCC) is characterized by debilitating persistent symptoms, including symptoms suggesting neurological aberrations such as concentration difficulties, impaired memory, pain, and sleep disturbances. The underlying mechanisms remain elusive. This study aimed to investigate brain injury biomarkers, neurocognitive test performance, and self-reported neurological and neuropsychological symptoms in young people with PCC. Methods A total of 404 non-hospitalized adolescents and young adults aged 12-25 years who tested positive for SARS-CoV-2, along with 105 matched SARS-CoV-2 negative individuals, were prospectively enrolled and followed-up for 6 months (Clinical Trials ID: NCT04686734). All participants underwent comprehensive assessment encompassing clinical examinations, questionnaires, neurocognitive testing and blood sampling. Serum samples were immunoassayed for the brain injury biomarkers neurofilament light chain (Nfl) and glial fibrillary acidic protein (GFAp). At 6 months, cross-sectional analyses of serum Nfl/GFAp, neurocognitive test results and symptom scores were performed across groups based on adherence to PCC criteria as well as initial SARS-CoV-2 test results. Also, associations between Nfl/GFAp, neurocognitive test results, and symptom scores were explored. Results A total of 381 SARS-CoV-2 positive and 85 SARS-CoV-2 negative were included in the final analysis at 6 months, of whom 48% and 47%, respectively, adhered to the PCC criteria. Serum levels of Nfl and GFAp were almost equal across groups and did not differ from reference values in healthy populations. Also, neurocognitive test results were not different across groups, whereas symptom scores were significantly higher in patients fulfilling PCC criteria (independent of initial SARS-CoV-2 status). No significant associations between Nfl/GFAp, neurocognitive test results, and symptom scores were found. Conclusion Normal brain injury biomarkers and neurocognitive performance 6 months after mild COVID-19 implies that the persistent symptoms associated with PCC are not concurrent with ongoing central nervous system damage or permanent disruption of cognitive functions. This finding contradicts the notion of neuroinflammation as a likely explanation for the persistent symptoms.
Collapse
Affiliation(s)
- Lise Beier Havdal
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
| | - Joel Selvakumar
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lise Lund Berven
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
| | - Tonje Stiansen-Sonerud
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UCL Institute of Neurology, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Kowloon, Hong Kong SAR, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Chertcoff A, Schneider R, Azevedo CJ, Sicotte N, Oh J. Recent Advances in Diagnostic, Prognostic, and Disease-Monitoring Biomarkers in Multiple Sclerosis. Neurol Clin 2024; 42:15-38. [PMID: 37980112 DOI: 10.1016/j.ncl.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease. Currently, a combination of clinical features, MRI, and cerebrospinal fluid markers are used in clinical practice for diagnosis and treatment decisions. In recent years, there has been considerable effort to develop novel biomarkers that better reflect the pathologic substrates of the disease to aid in diagnosis and early prognosis, evaluation of ongoing inflammatory activity, detection and monitoring of disease progression, prediction of treatment response, and monitoring of disease-modifying treatment safety. In this review, the authors provide an overview of promising recent developments in diagnostic, prognostic, and disease-monitoring/treatment-response biomarkers in MS.
Collapse
Affiliation(s)
- Anibal Chertcoff
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine, University of Southern California, HCT 1520 San Pablo Street, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Nancy Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, 127 S San Vicente Boulevard, 6th floor, Suite A6600, Los Angeles, CA 90048, USA
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Vlahovic L, McDonald J, Hinman J, Tomczak A, Lock C, Palmer CA, Cook LJ, Yeaman MR, Burnett MK, Deutsch GK, Nelson LM, Han MH. Prevalence, Demographic, and Clinical Factors Associated With Cognitive Dysfunction in Patients With Neuromyelitis Optica Spectrum Disorder. Neurology 2024; 102:e207965. [PMID: 38165361 PMCID: PMC10834131 DOI: 10.1212/wnl.0000000000207965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuromyelitis optica spectrum disorder (NMOSD) is a chronic CNS demyelinating autoimmune disorder targeting the astrocyte antigen aquaporin-4 (AQP4), typically presenting with optic neuritis, transverse myelitis, and brain syndromes. Cognitive dysfunction (CD) in NMOSD is under-recognized and poorly understood. The purpose of this study was to evaluate the prevalence and clinical variables associated with CD in NMOSD. METHODS This observational retrospective study with longitudinal follow-up describes a clinical cohort seen in the Collaborative International Research in Clinical and Longitudinal Experience Study in NMOSD. Serial Montreal Cognitive Assessments (MoCAs) were performed upon enrollment and at 6-month intervals to evaluate longitudinal cognitive function relative to demographic and disease-related factors. We used 2-tailed t test, analysis of variance, the χ2 test, linear regression for univariable and adjusted analyses and simultaneous linear regression and mixed-effects model for multivariable analyses. RESULTS Thirty-four percent (75/219) of patients met criteria for CD (MoCA <26); 29% (64/219) showed mild dysfunction (MoCA 20-26/30), and 5% (11/219) showed moderate (MoCA <20/30) dysfunction. Patients with less neurologic disability and lower pain scores had higher MoCA scores (95% CI 0.24-0.65 and 95% CI 0.09-0.42, respectively). Patients with at least high school education scored higher on the MoCA (95% CI 2.2-5). When comparing patients dichotomized for CD, patients never on rituximab scored higher than patients only treated with rituximab (p < 0.029). There was no significant association between annualized relapse rate, age, sex, disease duration, AQP4 serostatus or brain lesions, and CD. CD was more pronounced among Black than White patients (95% CI -2.7 to -0.7). Multivariable analysis of serial MoCA did not indicate change (p = 0.715). Descriptive analysis of serial MoCA showed 30% (45/150) of patients with worsening MoCA performance had impaired language and verbal recall. DISCUSSION To our knowledge, this is the largest study of diverse cohort to investigate CD in patients with NMOSD. Our findings demonstrate 34% of patients with NMOSD experience mild-to-moderate CD, while 30% of patients demonstrated decline on serial testing. The substantial prevalence of CD in this pilot report highlights the need for improved and validated screening tools and comprehensive measures to investigate CD in NMOSD.
Collapse
Affiliation(s)
- Luka Vlahovic
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Jamie McDonald
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Jessica Hinman
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Anna Tomczak
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Christopher Lock
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Chella A Palmer
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Lawrence J Cook
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Michael R Yeaman
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Melinda K Burnett
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Gayle K Deutsch
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - Lorene M Nelson
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| | - May H Han
- From the Providence Multiple Sclerosis Center (L.V.), Providence Brain and Spine Institute, Portland, OR; Departments of Neurology and Neurological Sciences (J.M., A.T., C.L., G.D., M.H.H.), and Epidemiology and Population Health (J.H., L.M.N.), Stanford University School of Medicine; Sparta Science (J.H.), Menlo Park, CA; Department of Pediatrics (C.P., L.J.C.), Data Coordinating Center, University of Utah School of Medicine, Salt Lake City; Department of Medicine (M.R.Y.), Geffen School of Medicine, University of California, Los Angeles; Division of Molecular Medicine (M.R.Y.), and The Lundquist Institute for Infection & Immunity, Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; and Department of Neurology (M.B.), Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
27
|
Coppola L, Smaldone G, Grimaldi AM, Estraneo A, Magliacano A, Soddu A, Ciccarelli G, Salvatore M, Cavaliere C. Peripheral blood BDNF and soluble CAM proteins as possible markers of prolonged disorders of consciousness: a pilot study. Sci Rep 2024; 14:341. [PMID: 38172270 PMCID: PMC10764320 DOI: 10.1038/s41598-023-50581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Although clinical examination still represents the gold standard for the differential diagnosis of prolonged disorders of consciousness (pDoC), the introduction of innovative markers is essential for diagnosis and prognosis, due to the problem of covert cognition. We evaluated the brain-derived neurotrophic factor protein (BDNF) and the soluble cell adhesion molecules proteins (CAMs) in a cohort of prolonged disorders of consciousness patients to identify a possible application in the clinical context. Furthermore, peripheral blood determinations were correlated with imaging parameters such as white matter hyperintensities (WMH), cranial standardized uptake value (cSUV), electroencephalography (EEG) data and clinical setting. Our results, although preliminary, identify BDNF as a possible blood marker for the diagnosis of pDoC (p value 0.001), the soluble CAMs proteins CD44, Vcam-1, E-selectin (p value < 0.01) and Icam-3 (p value < 0.05) showed a higher peripheral blood value in pDoC compared with control. Finally, soluble Ncam protein could find useful applications in the clinical evolution of the pDoC, showing high levels in the MCS and EMCS subgroups (p value < 0. 001) compared to VS/UWS.
Collapse
Affiliation(s)
| | | | | | - A Estraneo
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Florence, Italy
| | - A Magliacano
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Florence, Italy
| | - A Soddu
- Department of Physics and Astronomy, Western Institute of Neuroscience, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
28
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
29
|
Guo RY, Wang WY, Huang JY, Jia Z, Sun YF, Li B. Deciphering prognostic indicators in AQP4-IgG-seropositive neuromyelitis optica spectrum disorder: An integrative review of demographic and laboratory factors. Mult Scler 2024; 30:7-15. [PMID: 37982449 DOI: 10.1177/13524585231212832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a group of inflammatory diseases affecting the central nervous system, characterized by optic neuritis and myelitis. The complex nature of NMOSD and varied patient response necessitates personalized treatment and efficient patient stratification strategies. OBJECTIVE To provide a comprehensive review of recent advances in clinical and biomarker research related to aquaporin-4 (AQP4)-immunoglobulin G (IgG)-seropositive NMOSD prognosis and identify key areas for future research. METHODS A comprehensive review and synthesis of recent literature were conducted, focusing on demographic factors and laboratory investigations. RESULTS Demographic factors, such as age, ethnicity, and sex, influence NMOSD prognosis. Key biomarkers for NMOSD prognosis include homocysteine, antinuclear antibodies, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, thyroid hormone levels, neurofilament light chain levels, and serum glial fibrillary acidic protein might also predict NMOSD attack prognosis. CONCLUSION Further investigation is required to understand sex-related disparities and biomarker inconsistencies. Identification and understanding of these factors can aid in the development of personalized therapeutic strategies, thereby improving outcomes for NMOSD patients. Future studies should focus on unifying research design for consistent results.
Collapse
Affiliation(s)
- Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Wen-Ya Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jing-Ying Huang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ya-Fei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
30
|
Carta S, Dinoto A, Capobianco M, Valentino P, Montarolo F, Sala A, Reindl M, Lo Re M, Chiodega V, Branger P, Audoin B, Aboab J, Papeix C, Collongues N, Kerschen P, Zephir H, Créange A, Bourre B, Schanda K, Flanagan EP, Redenbaugh V, Villacieros-Álvarez J, Arrambide G, Cobo-Calvo A, Ferrari S, Marignier R, Mariotto S. Serum Biomarker Profiles Discriminate AQP4 Seropositive and Double Seronegative Neuromyelitis Optica Spectrum Disorder. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200188. [PMID: 38134369 PMCID: PMC10753928 DOI: 10.1212/nxi.0000000000200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) serum levels are useful to define disease activity in different neurologic conditions. These biomarkers are increased in patients with aquaporin-4 antibody-positive NMOSD (AQP4+NMOSD) during clinical attacks suggesting a concomitant axonal and glial damage. However, there are contradictory results in double seronegative NMOSD (DS-NMOSD). The aim of this study was to characterize the neuronal, axonal, and glial damage of DS-NMOSD in comparison with AQP4+NMOSD. METHODS Patients with DS-NMOSD (i.e., for AQP4 and myelin oligodendrocyte glycoprotein antibodies-MOG-Abs) and age-matched AQP4+NMOSD diagnosed according to the latest diagnostic criteria and with available serum samples obtained within 3 months from onset/relapse were retrospectively enrolled from 14 international centers. Clinical and radiologic data were collected. Serum NfL, GFAP, tau, and UCH-L1 levels were determined using an ultrasensitive paramagnetic bead-based ELISA (SIMOA). Statistical analysis was performed using nonparametric tests and receiver-operating characteristic (ROC) curve analysis. RESULTS We included 25 patients with AQP4+NMOSD and 26 with DS-NMOSD. The median age at disease onset (p = 0.611) and female sex predominance (p = 0.072) were similar in the 2 groups. The most common syndromes at sampling in both AQP4+NMOSD and DS-NMOSD were myelitis (56% vs 38.5%) and optic neuritis (34.6% vs 32%), with no statistical differences (p = 0.716). Median EDSS at sampling was 3.2 (interquartile range [IQR] 2-7.7) in the AQP4+NMOSD group and 4 (IQR [3-6]) in the DS-NMOSD group (p = 0.974). Serum GFAP, tau, and UCH-L1 levels were higher in patients with AQP4+NMOSD compared with those with DS-NMOSD (median 308.3 vs 103.4 pg/mL p = 0.001; median 1.2 vs 0.5 pg/mL, p = 0.001; and median 61.4 vs 35 pg/mL, p = 0.006, respectively). The ROC curve analysis showed that GFAP, tau, and UCH-L1, but not NfL, values were able to discriminate between AQP4+ and DS-NMOSD (area under the curve (AUC) tau: 0.782, p = 0.001, AUC GFAP: 0.762, p = 0.001, AUC UCH-L1: 0.723, p = 0.006). NfL levels were associated with EDSS at nadir only in patients with AQP4+NMOSD. DISCUSSION Serum GFAP, tau, and UCH-L1 levels discriminate between AQP4+NMOSD and DS-NMOSD. The different biomarker profile of AQP4+NMOSD vs DS-NMOSD suggests heterogeneity of diseases within the latter category and provides useful data to improve our understanding of this disease.
Collapse
Affiliation(s)
- Sara Carta
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Alessandro Dinoto
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Marco Capobianco
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Paola Valentino
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Francesca Montarolo
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Arianna Sala
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Markus Reindl
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Marianna Lo Re
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Vanessa Chiodega
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Pierre Branger
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Bertrand Audoin
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Jennifer Aboab
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Caroline Papeix
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Nicolas Collongues
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Philippe Kerschen
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Helene Zephir
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Alain Créange
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Bertrand Bourre
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Kathrin Schanda
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Eoin P Flanagan
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Vyanka Redenbaugh
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Javier Villacieros-Álvarez
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Georgina Arrambide
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Alvaro Cobo-Calvo
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Sergio Ferrari
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Romain Marignier
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| | - Sara Mariotto
- From the Department of Neuroscience, Biomedicine, and Movement Science (S.C., A.D., V.C., S.M., S.F.), University of Verona; S. Croce e Carle Hospital (M.C.), Cuneo; CRESM Biobank (M.C.), Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (P.V., M.L.R.); CRESM Biobank (P.V., M.L.R.), University Hospital San Luigi, Orbassano; Neurobiology Laboratory, Department of Neurology (A.S.), University Hospital San Luigi, Orbassano; Neuroscience Institute Cavalieri Ottolenghi (NICO) (F.M.), University of Turin, Italy; Clinical Department of Neurology (M.R., K.S.), Innsbruck Medical University, Austria; Department of Neurology (P.B.), CHU de Caen Normandie; Department of Neurology (B.A.), Pôle de Neurosciences Cliniques, APHM, Hôpital de la Timone, Aix Marseille University; Department of Internal Medecine (J.A.), Centre Hospitalier National des Quinze-Vingts, Paris Cedex; Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (C.P.), Institut du Cerveau, CIC Neuroscience, ICM, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris; Service de Neurologie and CIC INSERM 1434 (N.C.), CHU de Strasbourg, France; Centre Hospitalier de Luxembourg (P.K.), Luxembourg City, Luxemburg; Department of Neurology (H.Z.), U 1172, CRC-SEP, University Hospital of Lille, France; Service de Neurologie (A.C.), Centre de Ressources et de Compétences-Sclérose en Plaques, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Université Paris-Est Créteil, Créteil; Department of Neurology (B.B.), Rouen University Hospital, France; Mayo Clinic College of Medicine and Science (E.P.F., V.R.), Department of Neurology, Department of Laboratory Medicine and Pathology, Rochester; Centre d'Esclerosi Múltiple de Catalunya (J.V.-Á., G.A., A.C.-C.), (CEMCAT), Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Servei de Neurologia-Neuroimmunologia, Barcelona; and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (R.M.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, France
| |
Collapse
|
31
|
Huang KY, Wu CL, Chang YS, Huang WY, Su FC, Lin SW, Chien YY, Weng WC, Wei YC. Elevated plasma neurofilament light chain in immune-mediated neurological disorders (IMND) detected by immunomagnetic reduction (IMR). Brain Res 2023; 1821:148587. [PMID: 37739331 DOI: 10.1016/j.brainres.2023.148587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND In cases of immune-mediated neurological disorders (IMND), different syndromes are associated with antibodies against neuronal surface antigens, intra-neuronal antigens, astrocytic aquaporin, and gangliosides. These autoantibodies can be pathogenic or connected to neuroinflammation and resulting neuronal injuries. This study aims to identify a blood biomarker that can detect neuronal damage in individuals with IMND. To this end, we use immunomagnetic reduction (IMR) nanobead technology to measure plasma neurofilament light chain (NfL). METHODS The patients with IMND were enrolled in the Chang Gung Memorial Hospital at Keelung from 2018 to 2023. Seronegative patients were excluded based on the results of antibody tests. The healthy controls (HC) were community-dwelling adults from the Northeastern Taiwan Community Medicine Research Cohort (NTCMRC) conducted by the Community Medicine Research Center of the Keelung CGMH from 2020 to 2022. IMR technique detects magnetic susceptibility via measuring magnetic signal reduction caused by antigen-antibody immunocomplex formation on magnetic nanobeads. The plasma level of NfL was determined by the magnetic susceptibility changes in IMR. RESULTS The study enrolled 57 IMND patients from the hospital and 73 HC participants from the communities. The plasma NfL was significantly higher in the IMND than in the HC (11.022 ± 2.637 vs. 9.664 ± 2.610 pg/mL, p = 0.004), regardless of age effects on plasma NfL in an analysis of covariance (ANCOVA) (F = 0.720, p = 0.950). In the receiver of operation curve analysis, the area under curve for plasma NfL to discriminate IMND and HC was 0.664 (95% CI = 0.549 to 0.739, p = 0.005). The subgroup analysis of plasma NfL in the IMND patients showed no difference between peripheral immune-mediated neuropathy (IMN) and central immune-mediated encephalomyelitis (IMEM) (11.331 ± 2.895 vs. 10.627 ± 2.260 pg/mL, p = 0.322), nor between tumor and non-tumor IMND (10.784 ± 3.446 vs. 11.093 ± 2.391 pg/mL, p = 0.714). Additionally, the antibody class of ganglioside antibodies in IMN did not have an impact on plasma NfL level (p = 0.857). CONCLUSION Plasma NfL measurement is a reliable indicator of axonal injuries in patients with IMND. It is equally effective in detecting nerve injuries in inflammatory peripheral neuropathies and central neuroinflammation. The IMR nanobead technology offers a feasible method of detecting plasma NfL, which helps identify axonal injuries in IMND.
Collapse
Affiliation(s)
- Kuan-Yu Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chia-Lun Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yueh-Shih Chang
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Feng-Chieh Su
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Shun-Wen Lin
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Yu-Yi Chien
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Wei-Chieh Weng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| |
Collapse
|
32
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
33
|
Chatanaka MK, Avery LM, Pasic MD, Sithravadivel S, Rotstein D, Demos C, Cohen R, Gorham T, Wang M, Stengelin M, Mathew A, Wohlstadter J, Prassas I, Diamandis EP. The relationship between serum astroglial and neuronal markers and AQP4 and MOG autoantibodies. RESEARCH SQUARE 2023:rs.3.rs-3659922. [PMID: 38077014 PMCID: PMC10705596 DOI: 10.21203/rs.3.rs-3659922/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Background Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. Methods To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. Results GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p < 0.001). A logistic regression model to classify serostatus was able to separate αAQP4 seropositivity using GFAP + tau, and αMOG seropositivity using tau. The areas under the ROC curves (AUCs) were 0.77 and 0.72, respectively. Finally, a combined seropositivity versus negative status logistic regression model was generated, with AUC = 0.80. Conclusion The 3 markers can univariately and multivariately classify with moderate accuracy the samples with seropositivity and seronegativity for αAQP4 and αMOG.
Collapse
|
34
|
Li Y, Liu Y, Zhao W, An X, Zhang F, Zhang TX, Liu Y, Du C, Zeng P, Yuan M, Zhang N, Zhang C. Serum neurofilament light chain predicts spinal cord atrophy in neuromyelitis optica spectrum disorder. J Neuroimmunol 2023; 384:578218. [PMID: 37801952 DOI: 10.1016/j.jneuroim.2023.578218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
Levels of serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) are useful biomarkers of disease activity and disability in neuromyelitis optica spectrum disorder (NMOSD). Here we investigated the association of sNfL and sGFAP levels with brain and spinal cord volumes in patients with NMOSD. Fifteen patients with NMOSD were enrolled in this prospective study. The median baseline level of sNfL was 42.2 (IQR, 16.1-72.6) pg/mL and decreased to 8.5 (IQR, 7.4-16.6) pg/mL at the end of the study. The reduction in sNfL was associated with a 7.5% loss of cervical spinal cord volume (CSCV) (p = 0.001). The levels of sGFAP reduced from 239.2 (IQR, 139.0-3393.3) pg/mL at baseline to 108.5 (IQR, 74.2-154.6) pg/mL. However, there was no strong correlation between sGFAP levels and CSCV changes during the follow-up period. Our data suggested that sNfL level is a useful biomarker for predicting spinal cord atrophy in patients with NMOSD.
Collapse
Affiliation(s)
- Yulin Li
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjin Zhao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China; Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueting An
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian-Xiang Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Du
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pei Zeng
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Yuan
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningnannan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China; Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
35
|
Toader C, Dobrin N, Brehar FM, Popa C, Covache-Busuioc RA, Glavan LA, Costin HP, Bratu BG, Corlatescu AD, Popa AA, Ciurea AV. From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. Int J Mol Sci 2023; 24:16119. [PMID: 38003309 PMCID: PMC10671641 DOI: 10.3390/ijms242216119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the inexorable aging of the global populace, neurodegenerative diseases (NDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) pose escalating challenges, which are underscored by their socioeconomic repercussions. A pivotal aspect in addressing these challenges lies in the elucidation and application of biomarkers for timely diagnosis, vigilant monitoring, and effective treatment modalities. This review delineates the quintessence of biomarkers in the realm of NDs, elucidating various classifications and their indispensable roles. Particularly, the quest for novel biomarkers in AD, transcending traditional markers in PD, and the frontier of biomarker research in ALS are scrutinized. Emergent susceptibility and trait markers herald a new era of personalized medicine, promising enhanced treatment initiation especially in cases of SOD1-ALS. The discourse extends to diagnostic and state markers, revolutionizing early detection and monitoring, alongside progression markers that unveil the trajectory of NDs, propelling forward the potential for tailored interventions. The synergy between burgeoning technologies and innovative techniques like -omics, histologic assessments, and imaging is spotlighted, underscoring their pivotal roles in biomarker discovery. Reflecting on the progress hitherto, the review underscores the exigent need for multidisciplinary collaborations to surmount the challenges ahead, accelerate biomarker discovery, and herald a new epoch of understanding and managing NDs. Through a panoramic lens, this article endeavors to provide a comprehensive insight into the burgeoning field of biomarkers in NDs, spotlighting the promise they hold in transforming the diagnostic landscape, enhancing disease management, and illuminating the pathway toward efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Popa
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
- Medical Science Section, Romanian Academy, 060021 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Andrei Adrian Popa
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
- Medical Science Section, Romanian Academy, 060021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
36
|
Lee HL, Seok JM, Chung YH, Min JH, Baek SH, Kim SM, Sohn E, Kim J, Kang SY, Hong YH, Shin HY, Cho JY, Oh J, Lee SS, Kim S, Kim SH, Kim HJ, Kim BJ, Kim BJ. Serum neurofilament and glial fibrillary acidic protein in idiopathic and seropositive transverse myelitis. Mult Scler Relat Disord 2023; 79:104957. [PMID: 37688927 DOI: 10.1016/j.msard.2023.104957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/22/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Serum levels of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) reflect the disease activity and disability in central nervous system (CNS) demyelinating diseases. However, the clinical significance of NfL and GFAP in idiopathic transverse myelitis (iTM), an inflammatory spinal cord disease with unknown underlying causes, remains unclear. This study aimed to investigate NfL and GFAP levels in iTM and their association with the clinical parameters compared with those in TM with disease-specific antibodies such as anti-aquaporin 4 or myelin oligodendrocyte glycoprotein antibodies (sTM). METHODS We collected serum and clinical data of 365 patients with CNS inflammatory diseases from 12 hospitals. The serum NfL and GFAP levels were measured in patients with iTM (n = 37) and sTM (n = 39) using ultrasensitive single-molecule array assays. Regression analysis was performed to investigate the associations between serum levels of NfL and GFAP and the clinical parameters such as higher EDSS scores (EDSS ≥ 4.0). RESULTS Mean NfL levels were not significantly different between iTM (50.29 pg/ml) and sTM (63.18 pg/ml) (p = 0.824). GFAP levels were significantly lower in iTM (112.34 pg/ml) than in sTM (3814.20 pg/ml) (p = 0.006). NfL levels correlated with expanded disability status scale (EDSS) scores in sTM (p = 0.001) but not in iTM (p = 0.824). Disease duration also correlated with higher EDSS scores in sTM (p = 0.017). CONCLUSION NfL levels and disease duration correlated with EDSS scores in sTM, and GFAP levels could be a promising biomarker to differentiate iTM from sTM.
Collapse
Affiliation(s)
- Hye Lim Lee
- Department of Neurology, Korea University, College of Medicine, Seoul, Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Seol-Hee Baek
- Department of Neurology, Korea University, College of Medicine, Seoul, Korea
| | - Sung Min Kim
- Department of Neurology, Seoul National University, College of Medicine, Seoul, Korea
| | - Eunhee Sohn
- Department of Neurology, Chungnam National University, College of Medicine, Daejeon, Korea
| | - Juhyeon Kim
- Department of Neurology, Gyeongsang Institute of Health Science, Gyeongsang National University, College of Medicine, Jinju, Korea
| | - Sa-Yoon Kang
- Department of Neurology, Jeju National University, College of Medicine, Jeju, Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul National University, College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Joong-Yang Cho
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Jeeyoung Oh
- Department of Neurology, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Sang-Soo Lee
- Department of Neurology, Chungbuk National University, College of Medicine, Chungbuk, Korea
| | - Sunyoung Kim
- Department of Neurology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University, College of Medicine, Seoul, Korea.
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
37
|
Chu F, Shi M, Liu C, Zhu J. Discrepancy in clinical and laboratory profiles of NMOSD patients between AQP4 antibody positive and negative: can NMOSD be diagnosed without AQP4 antibody? Clin Exp Immunol 2023; 213:363-370. [PMID: 37161978 PMCID: PMC10570998 DOI: 10.1093/cei/uxad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023] Open
Abstract
AQP4-IgG has been considered as the pathogenic factor leading to NMOSD. However, about 20-30% of patients lack AQP4-IgG. So far, all therapeutic medicines are ineffective for NMOSD patients without AQP4 IgG. Thus AQP4-IgG is the pathogenic factor of NMOSD has been suspected and challenged. In addition, lack of efficacy of immunotherapy in NMOSD without AQP4 IgG has been a serious problem in the neurology. Identifying the clinical and laboratory characteristics and diversities between NMOSD patients with and without AQP4-IgG can be helpful to further explore the pathogenesis of NMOSD and guide clinical treatment. This is a single-centre retrospective study in The First Hospital of Jilin University, China including 92 patients diagnosed as NMOSD from January 2013 to January 2015. The characteristics of clinic, blood, cerebrospinal fluid (CSF), and image between AQP4-IgG negative (AQP4-IgG-) and AQP4-IgG positive (AQP4-IgG+) NMOSDs were compared. Our results showed that in the AQP4-IgG+ group, the ratio of women to men was 5.55, while in AQP4-IgG- group was 1.54 (P = 0.0092). In the AQP4-IgG+ patients, the expanded disability status scale (EDSS) was from 0 to 8.5, with an average of 5.550 ± 0.25, and the AQP4-IgG- patients had the EDSS score from 0 to 9, with an average of 4.032 ± 0.36 (P = 0.0006), which mainly affected movement system (P < 0.05) and superficial sensory impairment (P < 0.05). In the AQP4-IgG+ group, the blood brain barrier (BBB) permeability (P = 0.0210) and myelin basic protein (MBP) were increased (P = 0.0310) when compared to AQP4-IgG- group. Higher level IL-17 was seen in AQP4-IgG+ group than AQP4-IgG- group (P= 0.0066). Our results demonstrated that the NMOSD with AQP4-IgG more likely occurred in women and presented more severe clinical symptoms as well as significant BBB damage and increased MBP and IL-17 in CSF and blood, respectively compared with NMOSD without AQP4-IgG group. The differences in clinical and laboratory profiles between NMOSD with and without AQP4-IgG indicate the heterogeneity of NMOSD, in which AQP4-IgG may not be the only pathogenic molecule. It is necessary to find more pathogenic factors and to explore the new pathogenesis of NMOSD and therapeutic methods in the future.
Collapse
Affiliation(s)
- Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Canyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
38
|
Plantone D, Sabatelli E, Locci S, Marrodan M, Laakso SM, Mateen FJ, Feresiadou A, Buelens T, Bianco A, Fiol MP, Correale J, Tienari P, Calabresi P, De Stefano N, Iorio R. Clinically relevant increases in serum neurofilament light chain and glial fibrillary acidic protein in patients with Susac syndrome. Eur J Neurol 2023; 30:3256-3264. [PMID: 37335505 DOI: 10.1111/ene.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND PURPOSE Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising neuro-axonal damage and astrocytic activation biomarkers. Susac syndrome (SS) is an increasingly recognized neurological condition and biomarkers that can help assess and monitor disease evolution are highly needed for the adequate management of these patients. sNfL and sGFAP levels were evaluated in patients with SS and their clinical relevance in the relapse and remission phase of the disease was assessed. METHODS As part of a multicentre study that enrolled patients diagnosed with SS from six international centres, sNfL and sGFAP levels were assessed in 22 SS patients (nine during a relapse and 13 in remission) and 59 age- and sex-matched healthy controls using SimoaTM assay Neurology 2-Plex B Kit. RESULTS Serum NfL levels were higher than those of healthy controls (p < 0.001) in SS patients and in both subgroups of patients in relapse and in remission (p < 0.001 for both), with significantly higher levels in relapse than in remission (p = 0.008). sNfL levels showed a negative correlation with time from the last relapse (r = -0.663; p = 0.001). sGFAP levels were slightly higher in the whole group of patients than in healthy controls (p = 0.046) and were more pronounced in relapse than in remission (p = 0.013). CONCLUSION In SS patients, both sNFL and sGFAP levels increased compared with healthy controls. Both biomarkers had higher levels during clinical relapse and much lower levels in remission. sNFL was shown to be time sensitive to clinical changes and can be useful to monitor neuro-axonal damage in SS.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Eleonora Sabatelli
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Sini M Laakso
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amalia Feresiadou
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Section of Neurology, Uppsala University, Uppsala, Sweden
| | - Tom Buelens
- Department of Ophthalmology, CHU St Pierre and Brugmann, Brussels, Belgium
| | - Assunta Bianco
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
| | | | - Jorge Correale
- Neurology Department, Fleni, Buenos Aires, Argentina
- Institute of Biological Chemistry and Biophysics (IQUIFIB) CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Pentti Tienari
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
- Research Program of Translational Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Raffaele Iorio
- Neurology Unit, Fondazione Policlinico Universitario 'A.Gemelli' IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
39
|
Leppert D, Watanabe M, Schaedelin S, Piehl F, Furlan R, Gastaldi M, Lambert J, Evertsson B, Fink K, Matsushita T, Masaki K, Isobe N, Kira JI, Benkert P, Maceski A, Willemse E, Oechtering J, Orleth A, Meier S, Kuhle J. Granulocyte activation markers in cerebrospinal fluid differentiate acute neuromyelitis spectrum disorder from multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:726-737. [PMID: 37076291 PMCID: PMC10447383 DOI: 10.1136/jnnp-2022-330796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Granulocyte invasion into the brain is a pathoanatomical feature differentiating neuromyelitis optica spectrum disorder (NMOSD) from multiple sclerosis (MS). We aimed to determine whether granulocyte activation markers (GAM) in cerebrospinal fluid (CSF) can be used as a biomarker to distinguish NMOSD from MS, and whether levels associate with neurological impairment. METHODS We quantified CSF levels of five GAM (neutrophil elastase, myeloperoxidase, neutrophil gelatinase-associated lipocalin, matrixmetalloproteinase-8, tissue inhibitor of metalloproteinase-1), as well as a set of inflammatory and tissue-destruction markers, known to be upregulated in NMOSD and MS (neurofilament light chain, glial fibrillary acidic protein, S100B, matrix metalloproteinase-9, intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), in two cohorts of patients with mixed NMOSD and relapsing-remitting multiple sclerosis (RRMS). RESULTS In acute NMOSD, GAM and adhesion molecules, but not the other markers, were higher than in RRMS and correlated with actual clinical disability scores. Peak GAM levels occurred at the onset of NMOSD attacks, while they were stably low in MS, allowing to differentiate the two diseases for ≤21 days from onset of clinical exacerbation. Composites of GAM provided area under the curve values of 0.90-0.98 (specificity of 0.76-1.0, sensitivity of 0.87-1.0) to differentiate NMOSD from MS, including all anti-aquaporin-4 protein (aAQP4)-antibody-negative patients who were untreated. CONCLUSIONS GAM composites represent a novel biomarker to reliably differentiate NMOSD from MS, including in aAQP4- NMOSD. The association of GAM with the degree of concurrent neurological impairment provides evidence for their pathogenic role, in turn suggesting them as potential drug targets in acute NMOSD.
Collapse
Affiliation(s)
- David Leppert
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sabine Schaedelin
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fredrik Piehl
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Furlan
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Hospital, Milan, Italy
| | - Matteo Gastaldi
- Laboratory of Neuroimmunology, National Neurological Institute C. Mondino, Pavia, Italy
| | | | - Björn Evertsson
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Fink
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka, Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Pascal Benkert
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aleksandra Maceski
- Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Eline Willemse
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Johanna Oechtering
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Annette Orleth
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Aktas O, Hartung HP, Smith MA, Rees WA, Fujihara K, Paul F, Marignier R, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, Cutter G, She D, Gunsior M, Cimbora D, Katz E, Cree BA. Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: analysis of four potential biomarkers in neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry 2023; 94:757-768. [PMID: 37221052 PMCID: PMC10447388 DOI: 10.1136/jnnp-2022-330412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R2=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER NCT02200770.
Collapse
Affiliation(s)
- Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Medical University Vienna, Vienna, Austria
- Department of Neurology, Palacky University in Olomouc, Olomouc, Czech Republic
| | | | | | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Koriyama, Fukushima, Japan
- Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Romain Marignier
- Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Hopital Neurologique et Neurochirurgical Pierre Wertheimer Centre de reference des syndromes neurologiques paraneoplasiques et encephalites auto-immun, Lyon, Auvergne-Rhône-Alpes, France
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Republic of Korea
| | - Brian G Weinshenker
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Sean J Pittock
- Department of Neurology and Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dewei She
- Horizon Therapeutics plc, Gaithersburg, Maryland, USA
| | | | | | - Eliezer Katz
- Horizon Therapeutics plc, Gaithersburg, Maryland, USA
| | - Bruce A Cree
- Department of Neurology, UCSF, Weill Institute for Neurosciences, University California of San Francisco, San Francisco, California, USA
| |
Collapse
|
41
|
Wessels MHJ, Van Lierop ZYGJ, Noteboom S, Strijbis EMM, Heijst JA, Van Kempen ZLE, Moraal B, Barkhof F, Uitdehaag BMJ, Schoonheim MM, Killestein J, Teunissen CE. Serum glial fibrillary acidic protein in natalizumab-treated relapsing-remitting multiple sclerosis: An alternative to neurofilament light. Mult Scler 2023; 29:1229-1239. [PMID: 37530045 PMCID: PMC10503252 DOI: 10.1177/13524585231188625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND There is a need in Relapsing-Remitting Multiple Sclerosis (RRMS) treatment for biomarkers that monitor neuroinflammation, neurodegeneration, treatment response, and disease progression despite treatment. OBJECTIVE To assess the value of serum glial fibrillary acidic protein (sGFAP) as a biomarker for clinical disease progression and brain volume measurements in natalizumab-treated RRMS patients. METHODS sGFAP and neurofilament light (sNfL) were measured in an observational cohort of natalizumab-treated RRMS patients at baseline, +3, +12, and +24 months and at the last sample follow-up (median 5.17 years). sGFAP was compared between significant clinical progressors and non-progressors and related to magnetic resonance imaging (MRI)-derived volumes of the whole brain, ventricle, thalamus, and lesion. The relationship between sGFAP and sNfL was assessed. RESULTS A total of 88 patients were included, and 47.7% progressed. sGFAP levels at baseline were higher in patients with gadolinium enhancement (1.3-fold difference, p = 0.04) and decreased in 3 months of treatment (adj. p < 0.001). No association was found between longitudinal sGFAP levels and progressor status. sGFAP at baseline and 12 months was significantly associated with normalized ventricular (positively), thalamic (negatively), and lesion volumes (positively). Baseline and 12-month sGFAP predicted annualized ventricle volume change rate after 1 year of treatment. sGFAP correlated with sNfL at baseline (p < 0.001) and last sample follow-up (p < 0.001) but stabilized earlier. DISCUSSION sGFAP levels related to MRI markers of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Mark HJ Wessels
- Mark HJ Wessels Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands.
| | - Zoë YGJ Van Lierop
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Samantha Noteboom
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva MM Strijbis
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Heijst
- Department of Clinical Chemistry, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Zoé LE Van Kempen
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Queen Square Institute of Neurology, Centre for Medical Image Computing, University College London, London, UK
| | - Bernard MJ Uitdehaag
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Gao F, Dai L, Wang Q, Liu C, Deng K, Cheng Z, Lv X, Wu Y, Zhang Z, Tao Q, Yuan J, Li S, Wang Y, Su Y, Cheng X, Ni J, Wu Z, Zhang S, Shi J, Shen Y. Blood-based biomarkers for Alzheimer's disease: a multicenter-based cross-sectional and longitudinal study in China. Sci Bull (Beijing) 2023; 68:1800-1808. [PMID: 37500404 DOI: 10.1016/j.scib.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Discrepancies in diagnostic biomarkers for Alzheimer's Disease (AD) may arise from racial disparities, risk factors, or lifestyle differences. Moreover, there has been a lack of systematic and multicenter studies to evaluate baselines of the AD biomarkers in Chinese populations. Thus, there is an urgent need for research to investigate the effectiveness of blood biomarkers for AD, specifically in the Chinese Han population, using a multicenter approach. In the present multicenter-based cross-sectional and longitudinal study, we evaluated 817 blood samples from 6 different clinical centers. We measured plasma amyloid beta (Aβ)-40, Aβ42, phosphorylated tau 181 (pTau), total tau (tTau), serum neurofilament light (NFL), and glial fibrillary acidic protein (GFAP). Additionally, 18F-florbetapir positron electron tomography and magnetic resonance imaging were also performed. A combination of the APOE genotype with plasma pTau and serum GFAP demonstrated exceptional performance in distinguishing Aβ status. Furthermore, baseline GFAP levels exhibited a strong association with cognitive decline over time and brain atrophy, with higher GFAP levels predicting a faster rate of neurodegeneration. In summary, these results validate the practicality of blood biomarkers in the Chinese Han population, encompassing various regions within China. Additionally, they emphasize the potential of pTau and GFAP as non-invasive methods for detecting and screening AD at an early stage.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Linbin Dai
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaozhao Cheng
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinyi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yan Wu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingqing Tao
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Yuan
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ya Su
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Cheng
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China.
| | - Zhiying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jiong Shi
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
43
|
Varley JA, Strippel C, Handel A, Irani SR. Autoimmune encephalitis: recent clinical and biological advances. J Neurol 2023; 270:4118-4131. [PMID: 37115360 PMCID: PMC10345035 DOI: 10.1007/s00415-023-11685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
In 2015, we wrote a review in The Journal of Neurology summarizing the field of autoantibody-associated neurological diseases. Now, in 2023, we present an update of the subject which reflects the rapid expansion and refinement of associated clinical phenotypes, further autoantibody discoveries, and a more detailed understanding of immunological and neurobiological pathophysiological pathways which mediate these diseases. Increasing awareness around distinctive aspects of their clinical phenotypes has been a key driver in providing clinicians with a better understanding as to how these diseases are best recognized. In clinical practice, this recognition supports the administration of often effective immunotherapies, making these diseases 'not to miss' conditions. In parallel, there is a need to accurately assess patient responses to these drugs, another area of growing interest. Feeding into clinical care are the basic biological underpinnings of the diseases, which offer clear pathways to improved therapies toward enhanced patient outcomes. In this update, we aim to integrate the clinical diagnostic pathway with advances in patient management and biology to provide a cohesive view on how to care for these patients in 2023, and the future.
Collapse
Affiliation(s)
- James A Varley
- Department of Brain Sciences, Charing Cross Hospital, Imperial College London, Fulham Palace Road, London, W6 8RF, UK
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Christine Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Adam Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 3, West Wing, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, OX3 9DU, UK.
| |
Collapse
|
44
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
45
|
Bian J, Sun J, Chang H, Wei Y, Cong H, Yao M, Xiao F, Wang H, Zhao Y, Liu J, Zhang X, Yin L. Profile and potential role of novel metabolite biomarkers, especially indoleacrylic acid, in pathogenesis of neuromyelitis optica spectrum disorders. Front Pharmacol 2023; 14:1166085. [PMID: 37324490 PMCID: PMC10263123 DOI: 10.3389/fphar.2023.1166085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune central nervous system (CNS) inflammatory and demyelinating disorder that can lead to serious disability and mortality. Humoral fluid biomarkers with specific, convenient, and efficient profiles that could characterize and monitor disease activity or severity are very useful. We aimed to develop a sensitive and high-throughput liquid chromatography-tandem mass spectrometry (LC-MS)/MS-based analytical method for novel biomarkers finding in NMOSD patients and verified its function tentatively. Methods: Serum samples were collected from 47 NMOSD patients, 18 patients with other neurological disorders (ONDs), and 35 healthy controls (HC). Cerebrospinal fluid (CSF) samples were collected from 18 NMOSD and 17 OND patients. Three aromatic amino acids (phenylalanine, tyrosine, and tryptophan) and nine important metabolites that included phenylacetylglutamine (PAGln), indoleacrylic acid (IA), 3-indole acetic acid (IAA), 5-hydroxyindoleacetic acid (HIAA), hippuric acid (HA), I-3-carboxylic acid (I-3-CA), kynurenine (KYN), kynurenic acid (KYNA), and quinine (QUIN) were analyzed by using the liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method. The profile of IA was further analyzed, and its function was verified in an astrocyte injury model stimulated by NMO-IgG, which represents important events in NMOSD pathogenesis. Results: In the serum, tyrosine and some of the tryptophan metabolites IA and I-3-CA decreased, and HIAA increased significantly in NMOSD patients. The CSF levels of phenylalanine and tyrosine showed a significant increase exactly during the relapse stage, and IA in the CSF was also increased markedly during the relapse and remission phases. All conversion ratios had similar profiles with their level fluctuations. In addition, the serum IA levels negatively correlated with glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) levels in the serum of NMOSD patients were measured by using ultra-sensitive single-molecule arrays (Simoa). IA showed an anti-inflammatory effect in an in vitro astrocyte injury model. Conclusion: Our data suggest that essential aromatic amino acid tryptophan metabolites IA in the serum or CSF may serve as a novel promising biomarker to monitor and predict the activity and severity of NMOSD disease. Supplying or enhancing IA function can promote anti-inflammatory responses and may have therapeutic benefits.
Collapse
Affiliation(s)
- Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiali Sun
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoxiao Chang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fuyao Xiao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huabing Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaobo Zhao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Al-hakeim HK, Al-raheem Twaij BA, Al-naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease.. [DOI: 10.1101/2023.05.03.23289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractBackgroundMany biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD.AimWe examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD.MethodsELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls.ResultsESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50% of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index.ConclusionsThe severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
|
47
|
Teleanu RI, Niculescu AG, Vladacenco OA, Roza E, Perjoc RS, Teleanu DM. The State of the Art of Pediatric Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24098251. [PMID: 37175954 PMCID: PMC10179691 DOI: 10.3390/ijms24098251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) represents a chronic immune-mediated neurodegenerative disease of the central nervous system that generally debuts around the age of 20-30 years. Still, in recent years, MS has been increasingly recognized among the pediatric population, being characterized by several peculiar features compared to adult-onset disease. Unfortunately, the etiology and disease mechanisms are poorly understood, rendering the already limited MS treatment options with uncertain efficacy and safety in pediatric patients. Thus, this review aims to shed some light on the progress in MS therapeutic strategies specifically addressed to children and adolescents. In this regard, the present paper briefly discusses the etiology, risk factors, comorbidities, and diagnosis possibilities for pediatric-onset MS (POMS), further moving to a detailed presentation of current treatment strategies, recent clinical trials, and emerging alternatives. Particularly, promising care solutions are indicated, including new treatment formulations, stem cell therapies, and cognitive training methods.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Oana Aurelia Vladacenco
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Eugenia Roza
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Radu-Stefan Perjoc
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Daniel Mihai Teleanu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
48
|
Jarius S, Aktas O, Ayzenberg I, Bellmann-Strobl J, Berthele A, Giglhuber K, Häußler V, Havla J, Hellwig K, Hümmert MW, Kleiter I, Klotz L, Krumbholz M, Kümpfel T, Paul F, Ringelstein M, Ruprecht K, Senel M, Stellmann JP, Bergh FT, Tumani H, Wildemann B, Trebst C. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J Neurol 2023:10.1007/s00415-023-11634-0. [PMID: 37022481 DOI: 10.1007/s00415-023-11634-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
The term 'neuromyelitis optica spectrum disorders' (NMOSD) is used as an umbrella term that refers to aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica (NMO) and its formes frustes and to a number of closely related clinical syndromes without AQP4-IgG. NMOSD were originally considered subvariants of multiple sclerosis (MS) but are now widely recognized as disorders in their own right that are distinct from MS with regard to immunopathogenesis, clinical presentation, optimum treatment, and prognosis. In part 1 of this two-part article series, which ties in with our 2014 recommendations, the neuromyelitis optica study group (NEMOS) gives updated recommendations on the diagnosis and differential diagnosis of NMOSD. A key focus is on differentiating NMOSD from MS and from myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD), which shares significant similarity with NMOSD with regard to clinical and, partly, radiological presentation, but is a pathogenetically distinct disease. In part 2, we provide updated recommendations on the treatment of NMOSD, covering all newly approved drugs as well as established treatment options.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Katrin Giglhuber
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Vivien Häußler
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Markus Krumbholz
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology and Stroke, University Hospital of Tübingen, Tübingen, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedemann Paul
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | | | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
49
|
Kim HJ, Lee EJ, Kim SY, Kim H, Kim KW, Kim S, Kim H, Seo D, Lee BJ, Lim HT, Kim KK, Lim YM. Serum proteins for monitoring and predicting visual function in patients with recent optic neuritis. Sci Rep 2023; 13:5609. [PMID: 37019946 PMCID: PMC10076295 DOI: 10.1038/s41598-023-32748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
It is unclear whether serum proteins can serve as biomarkers to reflect pathological changes and predict recovery in inflammation of optic nerve. We evaluated whether serum proteins could monitor and prognosticate optic neuritis (ON). We prospectively recruited consecutive patients with recent ON, classified as ON with anti-aquaporin-4 antibody (AQP4-ON), ON with anti-myelin oligodendrocyte glycoprotein antibody (MOG-ON), and double-seronegative ON (DSN-ON). Using ultrasensitive single-molecule array assays, we measured serum neurofilament light chain and glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF). We analyzed the markers according to disease group, state, severity, and prognosis. We enrolled 60 patients with recent ON (15 AQP4-ON; 14 MOG-ON; 31 DSN-ON). At baseline, AQP4-ON group had significantly higher serum GFAP levels than did other groups. In AQP4-ON group, serum GFAP levels were significantly higher in the attack state than in the remission state and correlated with poor visual acuity. As a prognostic indicator, serum BDNF levels were positively correlated with follow-up visual function in the AQP4-ON group (r = 0.726, p = 0.027). Serum GFAP reflected disease status and severity, while serum BDNF was identified as a prognostic biomarker in AQP4-ON. Serum biomarkers are potentially helpful for patients with ON, particularly those with AQP4-ON.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Meidcal Center, Seoul, South Korea.
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Keon-Woo Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungmi Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunji Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
50
|
Zhang F, Gao X, Liu J, Zhang C. Biomarkers in autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1111719. [PMID: 37090723 PMCID: PMC10113662 DOI: 10.3389/fimmu.2023.1111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The autoimmune diseases of the central nervous system (CNS) represent individual heterogeneity with different disease entities. Although clinical and imaging features make it possible to characterize larger patient cohorts, they may not provide sufficient evidence to detect disease activity and response to disease modifying drugs. Biomarkers are becoming a powerful tool due to their objectivity and easy access. Biomarkers may indicate various aspects of biological processes in healthy and/or pathological states, or as a response to drug therapy. According to the clinical features described, biomarkers are usually classified into predictive, diagnostic, monitoring and safety biomarkers. Some nerve injury markers, humoral markers, cytokines and immune cells in serum or cerebrospinal fluid have potential roles in disease severity and prognosis in autoimmune diseases occurring in the CNS, which provides a promising approach for clinicians to early intervention and prevention of future disability. Therefore, this review mainly summarizes the potential biomarkers indicated in autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
- Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|